5/14/2019 14:11

NODE=B051

 $\Sigma(1670)$ Bumps OMITTED FROM SUMMARY TABLE

Formation experiments are listed separately in the preceding entry.

 $I(J^P) = 1(?^?)$

Probably there are two states at the same mass with the same quantum numbers, one decaying to $\Sigma \pi$ and $\Lambda \pi$, the other to $\Lambda(1405)\pi$. See the note in front of the preceding entry.

Σ(1670) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)EV	'TS	DOCUMENT ID		TECN	CHG	COMMENT	NODE
≈ 1670 OUR ESTIMATE							$\rightarrow UN$
1670± 4	1	CARROLL	76	DPWA		lsospin-1 total σ	
1675 ± 10	2	HEPP	76	DBC	_	$K^- N$ 1.6–1.75 GeV/ c	
$1665\pm~1$		APSELL	74	HBC		<i>К</i> р 2.87 GeV/с	
$1688\pm~2$ or $1683\pm5~1.2$	2k	BERTHON	74	HBC	0	Quasi-2-body σ	
$1670\pm~6$		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma \pi \pi 4 \text{ GeV}$	
1668 ± 10		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma 3\pi 4 \text{ GeV}$	OCCU
1660 ± 10		ALVAREZ	63	HBC	+	<i>К</i> р 1.51 GeV/с	
• • • We do not use the f	followi	ng data for aver	ages,	fits, limi	ts, et	c. ● ● ●	
1668±10 1	50 3	FERRERSORIA	81	OMEG	_	$\pi^- p$ 9,12 GeV/ c	
1655 to 1677		TIMMERMANS	576	HBC	+	K ⁻ p 4.2 GeV/c	
$1665\pm$ 5		BUGG	68	CNTR		$K^- p$, d total σ	
1661± 9	70	PRIMER	68	HBC	+	See BARNES 69E	
1685		ALEXANDER	62C	HBC	-0	π^- p 2–2.2 GeV/c	

Σ(1670) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	NODE=E
$67.0\pm~2.4$		APSELL	74	HBC		<i>К[—] р</i> 2.87 GeV/ <i>с</i>	
110 ± 12		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma \pi \pi 4 \text{ GeV}$	
$\begin{array}{rrr}135&+40\\-30\end{array}$		AGUILAR	70 B	HBC		$K^- p \rightarrow \Sigma 3\pi 4 \text{ GeV}$	OCCUR=
40 ± 10		ALVAREZ	63	HBC	+		
• • • We do r	not use the follo	wing data for ave	erages	, fits, lii	nits, et		
90 ±20	150	³ FERRERSORI	481	OMEG	_	π^- p 9,12 GeV/c	
52		¹ CARROLL	76	DPWA		lsospin-1 total σ	
48 to 63		TIMMERMAN	S76	HBC	+	<i>К р</i> 4.2 GeV/ <i>с</i>	
30 ± 15		BUGG	68	CNTR			
60 ± 20	70	PRIMER	68	HBC	+	See BARNES 69E	
45		ALEXANDER	62C	HBC	-0		

Σ(1670) DECAY MODES (PRODUCTION EXPERIMENTS)

	DESIG=1	

NODE=B051215;NODE=B051

	Mode	
Γ ₁	NK	DESIG=1
Γ2	$\Lambda\pi$	DESIG=2
Γ3	$\Sigma \pi$	DESIG=3
Γ4	$\Lambda\pi\pi$	DESIG=4
Γ ₅	$\Sigma \pi \pi$	DESIG=5
Г ₆	$\Sigma(1385)\pi$	DESIG=6
Г ₇	$\Lambda(1405)\pi$	DESIG=7

NODE=B051

NODE=B051M

=B051M CHECKED ←

R=2

NODE=B051W

B051W

=2

$\Sigma(1670)$ BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\Gamma(N\overline{K})/\Gamma(\Sigma\pi)$						Γ_1/Γ_3	NODE=B051B1
VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	NODE=B051R1
<0.03		TIMMERMAN	S76	HBC	+	$K^- p$ 4.2 GeV/c	
<0.10		BERTHON	74	HBC	0	Quasi-2-body σ	
<0.2		AGUILAR	70B	HBC			
< 0.26		BARNES	69E	HBC	+	K = p 3.9 - 5 GeV/c	
0.025	0		00 60		0	Assuming $J = 3/2$	
< 0.24	0		00 66	HBC	+	K^{-} p 2.25 GeV/C	
<0.0	0		63	HBC	⊤ ⊥	K^{-} p 1.15 GeV/C	
$\geq 0.5 \pm 0.25$	0	SMITH	63	HBC	-0	<i>n p</i> 1.15 Gev/e	
						F /F	
$(/(\pi))/(2\pi)$				TECN	CUC	12/13	NODE=B051R2
	EVIS	DOCUMENT ID			<u>CHG</u>		NODE=B051R2
0.76 ± 0.09		ESTES	(4 605	HBC	0	K = p 2.1, 2.6 GeV/c	
0.45 ± 0.15 0.15 ± 0.07		BARNES	69E	HBC	+	K p 3.9–5 GeV/C	
0.13 ± 0.07 0.11 ± 0.06	33		68	HBC	т 	K^{-} n 17 GeV/c	
● ● We do not use	e the foll	owing data for aver	ages, i	fits, limi	ts, etc	. • • •	
< 0.45±0.07			\$76	HRC	1	K^{-} p 4.2 GeV/c	
$\geq 0.43 \pm 0.07$ 0.55 ± 0.11		BERTHON	74	HBC	+	$\Lambda = p 4.2 \text{ GeV}/c$	
0.35±0.11	0	PRIMER	68	HBC	+	See BARNES 69E	
<0.6	0	LONDON	66	HBC	+	$K^{-}p$ 2.25 GeV/c	
1.2	130	ALVAREZ	63	HBC	+	$K^{-}p$ 1.15 GeV/c	
1.2		SMITH	63	HBC	-0	, ,	
$\Gamma(A)/\Gamma(\nabla -)$						Г /Г.	
$(/(\pi \pi))/(2\pi)$				TECN	CUC	14/13	NODE=B051R3
<u>VALUE</u>	<u>EV15</u>		66		<u>CHG</u>	$\frac{COMMENT}{K} = 2.25 \text{ CeV}/2$	NODE=D051K5
< 0.0	00		00 62	нвс	+	K = p 2.25 GeV/c	
0.50	90	SMITH	03 63	нвс	+	κ p 1.15 Gev/c	
0.17		5101111	05	nbc	-0		
$\Gamma(\Sigma\pi\pi)/\Gamma(\Sigma\pi)$						Γ_5/Γ_3	NODE=B051R4
VALUE	<u>EVTS</u>	DOCUMENT ID	1	TECN .	CHG O	COMMENT	NODE=B051R4
largest at small		ESTES	74 H	HBC (0	K ⁻ p 2.1,2.6 GeV/c	
angles				C+- 111			
• • • vve do not use	e the foll	owing data for aver	ages,	rits, iimi	ts, etc		
<0.2		² HEPP	76 E	DBC ·	- 1	K ⁻ N 1.6-1.75 GeV/c	
0.56	180	ALVAREZ (53 F	HBC -	+ /	K ⁻ p 1.15 GeV/c	
$\Gamma(\Lambda(1405)\pi)/\Gamma(\lambda)$	Σπ)					Γ7/Γ3	
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	NODE=B051R5 NODE=B051R5
1.8 ± 0.3 to		3,4 TIMMERMAN	S76	HBC	+	K^- p 4 2 GeV/c	
0.02 ± 0.07						···	
largest at small an- gles		ESTES	74	HBC	±	K ⁻ p 2.1,2.6 GeV/c	
3.0 ±1.6	50	LONDON	66	HBC	+	$K^- p$ 2.25 GeV/c	
• • • We do not use	e the foll	owing data for aver	ages,	fits, limi	ts, etc		
0.58 ± 0.20	17	PRIMER	68	HBC	+	See BARNES 69E	
$\Gamma(\Sigma\pi)/\Gamma(\Sigma\pi\pi)$						Γ₂/Γ ₅	
VALUE		DOCUMENT	חו	TEC	N CF	IG COMMENT	NODE=B051R6 NODE=B051R6
varies with prod and	مام	5 APSELL	7	4 HR	<u> </u>	K^{-} n 2 87 GeV/c	
1.39 ± 0.16	Sic	BERTHON	7	4 HB	C 0	Quasi-2-body σ	
2.5 to 0.24		⁴ EBERHARI	5 6	9 HB	С	$K^- p 2.6 \text{ GeV}/c$	
<0.4		BIRMINGH	AM 6	6 HB	C +	К ⁻ р 3.5 GeV/с	
0.30 ± 0.15		LONDON	6	6 HB	C +	K ⁻ p 2.25 GeV/c	
	۲ - ۱					F /F	
$1(/(1405)\pi)/1(2$	<i>μππ</i>)		10			17/15	NODE=B051R7
VALUE		DOCUMENT	ID A REFE	<u>TEC</u>	<u>N CF</u>	IG COMMENT	NODE=B051R7
0.97 ± 0.08		IIMMERM	ANS7	ο HB0		κ^{-} p 4.2 GeV/c	
1.00 ± 0.02		APSELL	7	4 HB	L	К [—] р 2.87 GeV/ <i>с</i>	
$0.90^{+0.10}_{-0.16}$		EBERHARI) 6	5 HB	C +	<i>К[—] р</i> 2.45 GeV/ <i>с</i>	

NODE=B051220

Page 3

$\Gamma(\Lambda(1405)\pi)/\Gamma(\Sigma(1385)\pi)$				Г ₇ /Г ₆	NODE=B051B8
VALUE	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT	NODE=B051R8
<0.8	EBERHARD 65	HBC	+	$K^- p$ 2.45 GeV/c	
$\Gamma(\Lambda\pi\pi)/\Gamma(\Sigma\pi\pi)$				Γ_4/Γ_5	NODE=B051R9
VALUE	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT	NODE=B051R9
$0.35 {\pm} 0.2$	BIRMINGHAM 66	HBC	+	<i>К⁻р</i> 3.5 GeV/ <i>с</i>	
$\Gamma(\Lambda\pi)/\Gamma(\Sigma\pi\pi)$				Γ_2/Γ_5	NODE=B051R10
VALUE	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT	NODE=B051R10
<0.2	BIRMINGHAM 66	HBC	+	$K^- p$ 3.5 GeV/c	
$\Gamma(\Lambda\pi)/[\Gamma(\Lambda\pi)+\Gamma(\Sigma\pi)]$				$\Gamma_2/(\Gamma_2+\Gamma_3)$	NODE
VALUE	DOCUMENT ID	TECN			NODE=B051R11
<0.6	AGUILAR 70B	HBC			
$\Gamma(\Sigma(1385)\pi)/\Gamma(\Sigma\pi)$				Γ_6/Γ_3	NODE-B051B12
VALUE	DOCUMENT ID	TECN	COMN	/ENT	NODE=B051R12
\leq 0.21 \pm 0.05	TIMMERMANS76	HBC	K ⁻ p	9 4.2 GeV/ <i>c</i>	

$\Sigma(1670)$ QUANTUM NUMBERS (PRODUCTION EXPERIMENTS)

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	NODE=B051Q1
$J^{P} = 3/2^{-}$	400	BUTTON	68	HBC	±	$\Sigma^0 \pi$	
$J^{P} = 3/2^{-1}$		EBERHARD	67	HBC	+	$\Lambda(1405)\pi$	
$J^{P} = 3/2^{+}$		LEVEQUE	65	HBC		$\Lambda(1405)\pi$	

Σ(1670) FOOTNOTES

 $^{1}\,\text{Total}$ cross-section bump with (J+1/2) Γ_{el} / Γ_{total} = 0.23.

² Enhancements in $\Sigma \pi$ and $\Sigma \pi \pi$ cross sections. ³ Backward production in the $\Lambda \pi^- K^+$ final state.

⁴ Depending on production angle.

⁵ APSELL 74, ESTES 74, and TIMMERMANS 76 find strong branching ratio dependence on production angle, as in earlier production experiments.

$\Sigma(1670)$ REFERENCES (PRODUCTION EXPERIMENTS)

FERRERSORIA	81	NP B178 373	A. Ferrer Soria et al.	(CERN, CDEF, EPOL+)
CARROLL	76	PRL 37 806	A.S. Carroll et al.) (BNL) I
HEPP	76	NP B115 82	V. Hepp <i>et al.</i>	(CERN, HEID, MPIM) I
TIMMERMANS	76	NP B112 77	J.J.M. Timmermans et al.	(NIJM, CERN+) JP
APSELL	74	PR D10 1419	S.P. Apsell et al.	(BRAN, UMD, SYRA+)I
BERTHON	74	NC 21A 146	A. Berthon et al.	(CDEF, RHEL, SACL+)
ESTES	74	Thesis LBL-3827	R.D. Estes	(LBL)
AGUILAR	70B	PRL 25 58	M. Aguilar-Benitez et al.	(BNL, SYRA)
BARNES	69E	BNL 13823	V.E. Barnes <i>et al.</i>	(BNL, SYRA)
EBERHARD	69	PRL 22 200	P.H. Eberhard <i>et al.</i>	(LRL)
HUWE	69	PR 181 1824	D.O. Huwe	(LRL)
BUGG	68	PR 168 1466	D.V. Bugg et al.	(RHEL, BIRM, CAVE) I
BUTTON	68	PRL 21 1123	J. Button-Shafer	(MASA, LRL) JP
PRIMER	68	PRL 20 610	M. Primer <i>et al.</i>	(SYRA, BNL)
EBERHARD	67	PR 163 1446	P. Eberhard et al.	(LRL, ILL) IJP
BIRMINGHAM	66	PR 152 1148	M. Haque <i>et al.</i>	(BIRM, GLAS, LOIC, OXF+)
LONDON	66	PR 143 1034	G.W. London et al.	(BNL, SYRA) IJ
EBERHARD	65	PRL 14 466	P.H. Eberhard <i>et al.</i>	(LRL, ILL) I
LEVEQUE	65	PL 18 69	A. Leveque et al.	(SACL, EPOL, GLAS+) JP
ALVAREZ	63	PRL 10 184	L.W. Alvarez et al.	(LRL) I
SMITH	63	Athens Conf. 67	G.A. Smith	(LRL)
ALEXANDER	62C	CERN Conf. 320	G. Alexander et al.	(LRL) I
				. ,

NODE=B051

NODE=B051Q1

NODE=B051;LINKAGE=B NODE=B051;LINKAGE=C NODE=B051;LINKAGE=D NODE=B051;LINKAGE=E NODE=B051;LINKAGE=G

NODE=B051

REFID=32189
REFID=31/00
REFID=32187
REFID=32188
REFID=32183
REFID=31745
REFID=32185
REFID=20692
REFID=32180
REFID=32181
REFID=32019
REFID=31601
REFID-32178
REFID-32170
REFID=32102
DEEID_21602
NEFID 11774
REFID=11/74
REFID=321/4
REFID=32190
REFID=321/1
REFID=32172
REFID=32170