NODE=B077RE;LINKAGE=A

NODE=B077IM;LINKAGE=A

Page 1

NODE=B077

NODE=B077225

NODE=B077RE NODE=B077RE

NODE=B077IM NODE=B077IM

NODE=B077250

NODE=B077250

A(1810) 1/2⁺

 $I(J^P) = 0(\frac{1}{2}^+)$ Status: ***

I(1810) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1773± 7	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •
$2097 + 40 \\ - 1$	¹ KAMANO	15	DPWA	Multichannel
1780	ZHANG	13A	DPWA	Multichannel
1 From the preferred solution A in	n KAMANO 15.	Soluti	on B rep	ports $M = 1841^{+3}_{-4}$ MeV.

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
38±14	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
\bullet \bullet \bullet We do not use the following of	data for averages	, fits,	limits, e	tc. • • •
166^{+64}_{-12}	¹ KAMANO	15	DPWA	Multichannel
64	ZHANG	13A	DPWA	Multichannel
1 From the preferred solution A in	KAMANO 15.	Soluti	on B Re	ports $\Gamma=62^{+6}_{-4}$ MeV.

A(1810) POLE RESIDUES

The normalized	residue	is	the	residue	divided	by	$\Gamma_{pole}/2$	2.
----------------	---------	----	-----	---------	---------	----	-------------------	----

Normalized r	residue in N <i>K</i> →	$\rightarrow \Lambda(1810) \rightarrow N\overline{K}$			NODE=B077A00
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	NODE=B077A00
0.018 ± 0.008	65 ± 26	SARANTSEV 1	9 DPWA	<i>KN</i> multichannel	
• • • We do n	ot use the following	g data for averages, fits,	limits, etc.	• • •	
0.205	-63	¹ KAMANO 1	5 DPWA	Multichannel	OCCUR=4
¹ From the p	referred solution A	in KAMANO 15.			NODE=B077A00;LINKAGE=D
Normalized r	residue in $N\overline{K}$ –	$\rightarrow \Lambda(1810) \rightarrow \Sigma \pi$			NODE=B077A01
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	NODE=B077A01
0.045 ± 0.020	-143 ± 24	SARANTSEV 1	9 DPWA	$\overline{K}N$ multichannel	
• • • We do n	ot use the following	g data for averages, fits,	limits, etc.	• • •	
0.0325	29	¹ KAMANO 1	.5 DPWA	Multichannel	
¹ From the p	referred solution A	in KAMANO 15.			NODE=B077A01;LINKAGE=A
Normalized r	residue in $N\overline{K}$ –	$\rightarrow \Lambda(1810) \rightarrow \Lambda \eta$			NODE=B077A02
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	NODE=B077A02
• • • We do n	ot use the following	g data for averages, fits,	limits, etc.	• • •	
0.155	165	¹ KAMANO 1	5 DPWA	Multichannel	
¹ From the p	referred solution A	in KAMANO 15.			NODE=B077A02;LINKAGE=A
Normalized r	residue in $N\overline{K}$ –	$\rightarrow \Lambda(1810) \rightarrow \Lambda \sigma$			NODE=B077A05
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	NODE=B077A05
0.055±0.020	30 ± 16	SARANTSEV 1	9 DPWA	$\overline{K}N$ multichannel	
Normalized r	residue in $N\overline{K}$ -:	$\rightarrow \Lambda(1810) \rightarrow \Xi K$			NODE=B077A03
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	NODE=B077A03
• • • We do n	ot use the following	g data for averages, fits,	limits, etc.	• • •	
0.0937	-64	¹ KAMANO 1	5 DPWA	Multichannel	
¹ From the p	referred solution A	in KAMANO 15.			NODE=B077A03;LINKAGE=A
Normalized r	residue in $N\overline{K}$ -	\rightarrow $\Lambda(1810) \rightarrow \Sigma(13)$	85) <i>π</i>		NODE=B077A04
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	NODE=B077A04
0.08 ±0.03	-50 ± 30	SARANTSEV 1	9 DPWA	$\overline{K}N$ multichannel	
• • • We do n	ot use the following	g data for averages, fits,	limits, etc.	• • •	
0.244	-10	¹ KAMANO 1	5 DPWA	Multichannel	

 $^{1}\,\mathrm{From}$ the preferred solution A in KAMANO 15.

NODE=B077W

Normalized re	esidue in N K =	$\rightarrow \Lambda(1810) \rightarrow N\overline{K}^{*}(892), S=1/2, P$	-wave NODE=B077A07
0 03 +0 03		$\frac{DOCOMENT ND}{SARANTSEV} 19 DPWA \overline{K} N mi$	
• • • We do no	ot use the followin	g data for averages fits limits etc. $\bullet \bullet \bullet$	
0 150	07	1 KAMANO 15 DDWA Multich	aannal
1	- 91		
⁺ From the pr	referred solution A	in KAMANO 15.	NODE=B077A07;LINKAGE=A
Normalized re	esidue in $N\overline{K}$ –	$\rightarrow \Lambda(1810) \rightarrow N\overline{K}^*(892), S=3/2, P$	-wave NODE=B077A08
MODULUS	PHASE (°)	DOCUMENT ID TECN COMME	NT NODE=B077A08
0.05 ±0.04		SARANTSEV 19 DPWA $\overline{K}N$ mu	ultichannel
• • • We do no	ot use the followin	g data for averages, fits, limits, etc. • • •	
0.0497	2	¹ KAMANO 15 DPWA Multich	nannel
1 From the pr	- referred colution A		
	referred solution P	III RAMANO 15.	NODE=B077A08;LINKAGE=A
		<i>Л</i> (1810) MASS	NODE=B077M
VALUE (MeV)		DOCUMENT ID	NODE=B077M
1740 to 1840 (#	≈ 1790) OUR ES ⁻	TIMATE	$ ightarrow$ UNCHECKED \leftarrow
1773± 7		SARANTSEV 19 DPWA $\overline{K}N$ multic	channel
$1821\!\pm\!10$		ZHANG 13A DPWA Multichan	nel
1841 ± 20		$GOPAL \qquad 80 DPWA \ \overline{K} N \to \ \overline{K}$	N
$1735\pm$ 5		CARROLL 76 DPWA Isospin-0 to	otal σ
$1746\!\pm\!10$		PREVOST 74 DPWA $K^- N \rightarrow$	$\Sigma(1385)\pi$
$1780\!\pm\!20$		LANGBEIN 72 IPWA $\overline{K}N$ multic	channel
• • • We do no	ot use the followin	g data for averages, fits, limits, etc. • • •	
1853 ± 20		GOPAL 77 DPWA $\overline{K}N$ multic	channel
1861 or 1953		¹ MARTIN 77 DPWA $\overline{K}N$ multic	channel
1755		KIM 71 DPWA K-matrix a	analysis
1800		ARMENTEROS70 HBC $\overline{K}N \rightarrow \overline{K}$	N
1750		ARMENTEROS70 HBC $\overline{K}N \rightarrow \Sigma$	π OCCUR=2
$1690\!\pm\!10$		BARBARO 70 HBC $\overline{K}N \rightarrow \Sigma$	π
1740		BAILEY 69 DPWA $\overline{K}N \rightarrow \overline{K}$	N
1745		ARMENTEROS68B HBC $\overline{K}N \rightarrow \overline{K}$	N
¹ The two M/	ARTIN 77 values	are from a T-matrix pole and from a Breit-W	Vigner fit. NODE=B077;LINKAGE=B

Л(1810) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	NODE=B077W
50 to 170 (≈ 110) OUR ESTIMA	TE				$ ightarrow$ UNCHECKED \leftarrow
$39\!\pm\!15$	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
174 ± 50	ZHANG	13A	DPWA	Multichannel	
164 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
90±20	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$	
46±20	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$	
120 ± 10	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel	
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
$166\!\pm\!20$	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
535 or 585	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel	
28	CARROLL	76	DPWA	lsospin-0 total σ	
35	KIM	71	DPWA	K-matrix analysis	
30	ARMENTERO	S70	HBC	$\overline{K}N \rightarrow \overline{K}N$	
70	ARMENTERO	S70	HBC	$\overline{K}N \rightarrow \Sigma \pi$	OCCUR=2
22	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$	
300	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
147	ARMENTERO	568 B	HBC		
1 The two MARTIN 77 values ar	e from a T-matrix	pole	and from	m a Breit-Wigner fit.	NODE=B077W;LINKAGE=B

A(1810) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	NK	0.05 to 0.35
Γ2	$\Sigma \pi$	(16 ± 5) %
Г3	$\Lambda\eta$	
Γ ₄	ΞK	
Γ ₅	$\Sigma(1385)\pi$	(40 ±15) %
Г ₆	$N\overline{K}^*(892)$	30–60 %
Γ ₇	$N\overline{K}^*(892)$, $S\!\!=\!\!1/2$, P -wave	
Г ₈	$N\overline{K}^{*}(892)$, $S\!\!=\!\!3/2$, P -wave	

A(1810) BRANCHING RATIOS

					Г. /Г
	DOCUMENT ID		TECN	COMMENT	'1/'
0.05 to 0.35 OUR ESTIMATE	DOCOMENT ID		TLCN	COMMENT	
0.025±0.013	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
0.19 ± 0.08	ZHANG	13A	DPWA	$\overline{K}N$ multichannel	
0.24 ± 0.04	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.36 ± 0.05	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel	
\bullet \bullet \bullet We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
0.225	¹ KAMANO	15	DPWA	$\overline{K}N$ multichannel	
0.21 ±0.04	GOPAL	77	DPWA	See GOPAL 80	
0.52 or 0.49	² MARTIN	77	DPWA	$\overline{K}N$ multichannel	
0.30	KIM	71	DPWA	K-matrix analysis	
0.15	ARMENTERC	S70	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.55	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.4	ARMENTERC	S68 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$\Gamma(\Sigma \pi)/\Gamma_{\text{total}}$			TEAN	601 / J = 1	Γ ₂ /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
0.16 ±0.05	SARANTSEV	19	DPWA	K N multichannel	
• • We do not use the following	g data for average	s, fits,	limits, e	etc. ● ● ●	
0.009	¹ KAMANO	15	DPWA	Multichannel	
$^1{\sf From}$ the preferred solution A	in KAMANO 15.				
$\Gamma(\Lambda\eta)/\Gamma_{total}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet \bullet We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
0.111	¹ KAMANO	15	DPWA	Multichannel	
¹ From the preferred solution A	in KAMANO 15.				
$\Gamma(\Xi K)/\Gamma_{total}$					Г₄/Г
VALUE	DOCUMENT ID		TECN	COMMENT	-1
• • • We do not use the followin	g data for average	s. fits.	limits. e	tc. ● ● ●	
0.051		15		Multichannal	
0.051	NAMANU	10	DEVVA	wultichannei	

 $^{1}\,\mathrm{From}$ the preferred solution A in KAMANO 15.

$\Gamma(\Sigma(1385)\pi)/\Gamma_{total}$

$\Gamma(\Sigma(1385)\pi)/\Gamma_{\text{total}}$					Γ ₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.40 ±0.15	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
\bullet \bullet \bullet We do not use the following c	lata for averages	, fits,	limits, e	tc. ● ● ●	
0.600	^l kamano	15	DPWA	Multichannel	
1 From the preferred solution A in	KAMANO 15.				

$\Gamma(N\overline{K}^*(892), S=1/2, P-wave)/\Gamma_{total}$

/۲٦	l

VALUE	DOCUMENT ID		TECN COMMENT
$\bullet \bullet \bullet$ We do not use the followin	g data for averages	, fits,	limits, etc. • • •
0.003	¹ KAMANO	15	DPWA Multichannel
1 From the preferred solution A	in KAMANO 15.		

NODE=B077215;NODE=B077

DESIG=1
DESIG=2
DESIG=7
DESIG=8
DESIG=3
DESIG=6;OUR EST
DESIG=4
DESIG=5

NODE=B077220

NODE=B077R1 NODE=B077R1 \rightarrow UNCHECKED \leftarrow

NODE=B077R1;LINKAGE=A NODE=B077R1;LINKAGE=B

NODE=B077R00 NODE=B077R00

NODE=B077R00;LINKAGE=A

NODE=B077R04 NODE=B077R04

NODE=B077R04;LINKAGE=A

NODE=B077R05 NODE=B077R05

NODE=B077R05;LINKAGE=A

NODE=B077R01 NODE=B077R01

OCCUR=2 NODE=B077R01;LINKAGE=B

NODE=B077R02 NODE=B077R02

OCCUR=2 NODE=B077R02;LINKAGE=B

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(18)$	10) $\rightarrow \Sigma \pi$		TECN	(Γ ₁ Γ ₂) ^{1/2} /Γ	NODE=B077R2 NODE=B077R2
-0.08 ± 0.05	ZHANG	13A	DPWA	Multichannel	
-0.24 ± 0.04	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
• • • We do not use the following o	lata for averages	, fits,	limits, e	etc. • • •	
+0.25 or +0.23 < 0.01 0.17 +0.20	¹ MARTIN LANGBEIN KIM ² ARMENTEROS	77 72 71 570	DPWA IPWA DPWA DPWA	$\overline{K}N$ multichannel $\overline{K}N$ multichannel K-matrix analysis $\overline{K}N \rightarrow \Sigma \pi$	
-0.13 ± 0.03 1 The two MARTIN 77 values are 2 The published sign has been cha	BARBARO from a T-matrix inged to be in ac	70 pole cord	DPWA and from with the	$KN ightarrow \Sigma \pi$ m a Breit-Wigner fit. baryon-first convention.	NODE=B077R2;LINKAGE=B NODE=B077;LINKAGE=E
$\frac{(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \Lambda(18)}{\frac{VALUE}{+0.18 \pm 0.10}}$	10) → Σ(1385 DOCUMENT ID PREVOST	5)π 74	<u>tecn</u> DPWA	$\frac{(\Gamma_{1}\Gamma_{5})^{\frac{1}{2}}}{K^{-}N \rightarrow \Sigma(1385)\pi}$	NODE=B077R3 NODE=B077R3
$\frac{(\Gamma_i\Gamma_f)^{\frac{1}{2}}}{VALUE} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(18)$ $\frac{VALUE}{-0.14 \pm 0.03}$	10) $\rightarrow N\overline{K}^*(8)$ $\frac{DOCUMENT ID}{CAMERON}$	92), 78в	S=1/2 <u>TECN</u> DPWA	$\frac{P-\text{wave}}{K^{-} p \rightarrow N\overline{K}^{*}} (\Gamma_{1}\Gamma_{7})^{\frac{1}{2}}/\Gamma$	NODE=B077R4 NODE=B077R4
1 The published sign has been cha	inged to be in ac	cord	with the	baryon-first convention.	NODE=B077R4;LINKAGE=E

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(181)$	$10) \rightarrow N\overline{K}^*(8)$	92),	<i>S</i> =3/2,	P -wave $(\Gamma_1\Gamma_8)^{\frac{1}{2}}/\Gamma_1$
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.38\pm0.06$	ZHANG	13A	DPWA	Multichannel
$+0.35\pm0.06$	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$

A(1810) REFERENCES

SARANTSEV	19	EPJ A55 180	A.V. Sarantsev et al.	(BONN, PNPI)		
KAMANO	15	PR C92 025205	H. Kamano <i>et al.</i>	(ANL, OSAK)		
ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>	(KSU)		
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP		
CAMERON	78B	NP B146 327	W. Cameron et al.	(RHEL, LOIC) IJP		
GOPAL	77	NP B119 362	G.P. Gopal <i>et al.</i>	(LOIC, RHEL) IJP		
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.	G. Moorhouse (LOUC+) IJP		
Also		NP B126 266	B.R. Martin, M.K. Pidcock	(LOUC)		
Also		NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP		
CARROLL	76	PRL 37 806	A.S. Carroll et al.	(BNL) I		
PREVOST	74	NP B69 246	J. Prevost <i>et al.</i>	(SACL, CERN, HEID)		
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner	(MPIM) IJP		
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP		
Also		Duke Conf. 161	J.K. Kim	(HARV) IJP		
Hyperon Resonances, 1970						
ARMENTEROS	70	Duke Conf. 123	R. Armenteros et al.	(CERN, HEID, SACL) IJP		
Hyperon Re	sonanc	es, 1970				
BARBARO	70	Duke Conf. 173	A. Barbaro-Galtieri	(LRL) IJP		
Hyperon Re	sonanc	es, 1970				
BAILEY	69	Thesis UCRL 50617	J.M. Bailey	(LLL) IJP		
ARMENTEROS	68B	NP B8 195	R. Armenteros et al.	(CERN, HEID, SACL) IJP		

NODE=B077

NODE=B077R5 NODE=B077R5

KEFID=5/50/	1
REFID=55441	L
REFID=31755	5
REFID=31838	3
REFID=31750)
REFID=31762)
REFID=31763	ŝ
REFID=31764	İ.
REFID=31760)
REFID=31785	5
REFID=31758	3
REFID=31740)
REFID=31741	L
REFID=31842	2
REFID=31777	,
REFID=31841	L
REFID=31867	'