NODE=B130

 $\Xi_c(2970)$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ***

was $\Xi_c(2980)$ $J^P = 1/2^+$ is favored by MOON 21.

*Ξ*_c(2970) MASSES

c(2970) ⁺ MA	SS			
ALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
964.3±1.5 OUR	FIT Error includ	des scale factor	of 3.9.	.
967.1±1.4 OUR	AVERAGE Erro	r includes scale	factor of 2.0	. See the ideogram below.
966.0 \pm 0.8 \pm 0.2 974.9 \pm 1.5 \pm 2.1	0.9 k 244 ± 39	YELTON KATO	16 BELL 14 BELL	$e^+e^- \rightarrow \Upsilon(4S), \Upsilon(5S)$ and continuum $e^+e^- \Upsilon(1S)$ to $\Upsilon(5S)$
$969.3 \pm 2.2 \pm 1.7$	756 ± 206	AUBERT	08J BABR	$e^+e^- \approx 10.58 \text{ GeV}$
$967.7 \pm 2.3 \substack{+1.1 \\ -1.2}$	78 ± 13	LESIAK	08 BELL	$e^+ e^- \approx \Upsilon(4S)$
• • We do not u	se the following	data for average	es, fits, limite	s, etc. ● ● ●
$978.5 \pm 2.1 \pm 2.0$	405 ± 51	CHISTOV	06 BELL	See KATO 14
WEIGHT 2967.1±1	ED AVERAGE .4 (Error scaled b	y 2.0)		
		this ideog sarily the obtained f utilizing m quantities	ram only. Th same as our rom a least-s leasurements as additiona	ey are not neces- 'best' values, squares constrained fit s of other (related) l information.
		····· YE	LTON TO IBERT SIAK (Conf	$\begin{array}{c c} & \chi^{2} \\ 16 & \text{BELL} & 1.7 \\ 14 & \text{BELL} & 9.2 \\ 08J & \text{BABR} & 0.6 \\ 08 & \text{BELL} & 0.1 \\ & 11.6 \\ \hline \\ \text{idence Level} = 0.0089) \end{array}$
2960 29	65 2970 29	75 2980 2	2985 2990)
= (2070	$(M_{2})^{+}$ MASS (M_{2})	/) //)	2000 2000	, ,
$=_{c}(2910)$		vj		
E _c (2970) ⁰ MAS	S			
• •				

The evidence is	statistically	weaker for this ch	narge state.		NODE=B130M0
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	NODE=B130M0
2967.1 ±1.7 OUR F	IT Error in	ncludes scale facto	or of 6.7.		
2965.9 ±2.2 OUR A	VERAGE	Error includes scal	le factor of 7.4.		
$2964.88 \pm 0.26 \pm 0.20$	11.7k	¹ AAIJ	20x LHCB	<i>pp</i> at 13 TeV	
2970.8 $\pm 0.7 \pm 0.2$	1.4k	YELTON	16 BELL	$e^+e^- ightarrow ~argama(4S), \ argama(5S), ext{ continuum}$	
$2972.9\ \pm 4.4\ \pm 1.6$	67 ± 44	AUBERT	08j BABR	e^+e^-pprox 10.58 GeV	
$2965.7 \ \pm 2.4 \ +1.1 \\ -1.2$	57 ± 13	LESIAK	08 BELL	$e^+e^-pprox \Upsilon(4S)$	
$2977.1\ \pm 8.8\ \pm 3.5$	42 ± 24	CHISTOV	06 BELL	$e^+e^-pprox \Upsilon(4S)$	
¹ AAIJ 20X reports 2	2964.88 ± 0	$0.26 \pm 0.14 \pm 0.14$	4 MeV where tl	he last uncertainty is due	NODE=B130M0;LINKAGE=A

¹ AAIJ 20x reports 2964.88 \pm 0.26 \pm 0.14 \pm 0.14 MeV where the last uncertainty is due to the Λ_c^+ mass. Further studies are required to establish whether the narrow resonance at 2965 MeV is a different baryon from the narrow resonance at 2970 MeV seen by YELTON 16.

$\Xi_c(2970) - \Xi_c$ MASS DIFFERENCES

$m_{\Xi_c(2970)^+} - m_{\Xi_c^+}$	ŧ				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
496.6±1.5 OUR FIT	Error inclu	des scale factor o	of 3.7.		
498.1±0.8±0.2	916	YELTON	16	BELL	e^+e^- , γ regions

NODE=B130207

NODE=B130M0

 $\substack{\mathsf{NODE}=\mathsf{B130DM}+\\\mathsf{NODE}=\mathsf{B130DM}+}$

Page 1

NODE=B130

NODE=B130205

NODE=B130M+ NODE=B130M+

$m_{\Xi_c(2970)^0} - m_{\Xi}$	0				NODE=B130DM0
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	NODE=B130DM0
496.7±1.8 OUR FIT	Error inclue	des scale factor of 5	.3.	1	
499.9±0.7±0.2	1.4k	YELTON 2	l6 BELL	e^+e^- , Υ regions	
Ξε	(2970)+ –	<i>Ξ</i> _c (2970) ⁰ MAS	S DIFFE	RENCE	NODE=B130D+0
VALUE (MeV)		DOCUMENT ID	TECN	COMMENT	NODE=B130D+0
-2.8±1.9 OUR FIT	Error includ	les scale factor of 4	.8.		
-4.8±0.1±0.5		YELTON 2	L6 BELL	916 and 1443 evts	
		<i>Ξ_c</i> (2970) WIDT	HS		NODE=B130210
Ξ _c (2970) ⁺ WIDT	Ή				NODE=B130W+
VALUE (MeV)	EVTS	DOCUMENT ID		COMMENT	NODE=B130W+
20.9 ^{+2.4} _{-3.5} OUR AVE	RAGE Error	includes scale facto	r of 1.2.		
$28.1 \pm 2.4 \substack{+1.0 \\ -5.0}$	916	YELTON :	l6 BELL	e^+e^- , $arTau$ regions	
$14.8 \pm 2.5 \pm 4.1$	244 ± 39	KATO I	4 BELL	$e^+e^-arphi(1S)$ to $arphi(5S)$	
27 ±8 ±2	756 ± 206	AUBERT ()8j babr	e^+e^-pprox 10.58 GeV	
$18 \pm 6 \pm 3$	78 ± 13	LESIAK ()8 BELL	$e^+ e^- pprox ~\Upsilon(4S)$	
• • • We do not use	the following	data for averages,	fits, limits,	etc. • • •	
$43.5 \pm 7.5 \pm 7.0$	405 ± 51	CHISTOV ()6 BELL	See KATO 14	
Ξ _c (2970) ⁰ WIDTI	н				NODE-B130W0
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	NODE=B130W0
$14.1\!\pm\!0.9\!\pm\!1.3$	11.7k	¹ AAIJ	20X LHC	B pp at 13 TeV	
$30.3 \pm 2.3^{+1.0}_{-1.8}$	1443	YELTON	16 BELI	L e^+e^- , γ regions	
• • • We do not use	the following	data for averages,	fits, limits,	etc. • • •	
31 ±7 ±8	67 ± 44	AUBERT	08j bab	R e^+e^-pprox 10.58 GeV	
$15 \pm 6 \pm 3$	57 ± 13	LESIAK	08 BELI	L $e^+e^-pprox~\Upsilon(4S)$	
¹ Further studies and a different baryon	re required to from the nar	establish whether t row resonance at 2	:he narrow 970 MeV s	resonance at 2965 MeV is een by YELTON 16.	NODE=B130W0;LINKAGE=A
	Ξ _c (2	2970) DECAY M	ODES		NODE=B130215;NODE=B130
Mode		Fr	action (Γ _i	/Γ)	
$\overline{\Gamma_1 \Lambda_c^+ \overline{K} \pi}$		se	en		DESIG=1
$\Gamma_2 \qquad \Sigma_c(2455)$	\overline{K}	se	en		DESIG=2;OUR EST
$\Gamma_{3} = \Lambda_{c}^{+} \overline{K}$		nc	ot seen		DESIG=3;OUR EST
$\Gamma_4 \qquad \Lambda_c^{+} K^{-}$		se	en		DESIG=7
$\Gamma_5 = \overline{E_c} 2\pi$		se	en		DESIG=4;OUR EST
$\Gamma_6 = \Xi_c' \pi$		se	en		DESIG=6

$\Lambda_c^+ \overline{K} \pi$	seen
$\Sigma_c(2455)\overline{K}$	seen
$\Lambda_c^+\overline{K}$	not seen
$\Lambda_c^+ K^-$	seen
$\Xi_c 2\pi$	seen
$\Xi_c'\pi$	seen
$\Xi_c(2645)\pi$	seen

Ξ_c(2970) BRANCHING RATIOS

 Γ_7

$\Gamma(\Lambda_c^+\overline{K}\pi)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
seen		AUBERT	180	BABR	$e^+e^- \approx \Upsilon(4S)$	
seen		CHISTOV	06	BELL	$e^+e^-\approx \Upsilon(4S)$	
$\Gamma(\Lambda_{c}^{+}K^{-})/\Gamma_{\text{total}}$						Г4/Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
seen	11.7k	¹ AAIJ	20X	LHCB	<i>pp</i> at 13 TeV	

 $^1\,{\rm Further}$ studies are required to establish whether the narrow resonance at 2965 MeV is a different baryon from the narrow resonance at 2970 MeV seen by YELTON 16.

$\Gamma(\boldsymbol{\Sigma_{c}(2455)\overline{K}})/\Gamma(\boldsymbol{\Lambda_{c}^{+}\overline{K}\pi})$					1
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.55 \pm 0.07 \pm 0.13$	AUBERT	180	BABR	$e^+e^-\approx$	$\Upsilon(4S)$

 Γ_2/Γ_1

NODE=B130220

NODE=B130R00 NODE=B130R00

NODE=B130R04 NODE=B130R04

NODE=B130R04;LINKAGE=A

DESIG=5

7/16/2025 11:33

Page 2

NODE=B130R03 NODE=B130R03

NODE=B130R02 NODE=B130R02

NODE=B130R05 NODE=B130R05

NODE=B130R05;LINKAGE=A

$\Gamma(\Xi_c'\pi)/\Gamma_{\text{total}}$			Г ₆ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
seen	YELTON 16	BELL	e^+e^- , γ regions
$\Gamma(\Xi_c(2645)\pi)/\Gamma_{total}$			Г ₇ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
seen	LESIAK 08	BELL	$e^+e^-pprox \Upsilon(4S)$
$\Gamma(\Xi_{c}'\pi)/\Gamma(\Xi_{c}(2645)\pi)$			Γ ₆ /Γ ₇
VALUE EVTS	DOCUMENT ID	TECN	COMMENT
1.67±0.29^{+0.15}±0.25 778	¹ MOON 2	1 BELI	_ e^+e^- at $arphi(nS)$
1		0	1 i

¹ Measurement of the ratio of $\Xi_c(2970)^+ \rightarrow \Xi_c(2645)^0 \pi^+$ versus $\Xi_c(2970)^+ \rightarrow \Xi_c'^0 \pi^+$. The last uncertainty is from possible isospin-symmetry-breaking effects. MOON 21 determines from an angular analysis of the $\Xi_c^+ \pi^+ \pi^-$ final state that the spin of the $\Xi_c(2970)^+$ is strongly compatible with J = 1/2, assuming domination by the lowest partial wave in $\Xi_c(2970)^+ \rightarrow \Xi_c(2645)^0 \pi^+$. When further combined with the size of this ratio, MOON 21 determines from heavy quark symmetry that the spin-parity of the $\Xi_c(2970)^+$ is favored to be $J^P = 1/2^+$, with light degrees of freedom in the 0⁺ state.

Ξ_c(2970) REFERENCES

NODE=B130

REFID=61122
REFID=60564
REFID=57432
REFID=55801
REFID=52168
REFID=52460
REFID=51431