Reference = AABOUD 18N; PRL 121 081801 Verifier code = ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

NODE=SXXX005

not in other sections Other Particle Searches NODE=S015 OMITTED FROM SUMMARY TABLE LIMITS ON JET-JET RESONANCES NODE=S015420 Heavy Particle Production Cross Section NODE=S015HP Limits are for a particle decaying to two hadronic jets. NODE=S015HP NODE=S015HP DOCUMENT ID TECN COMMENT Units(pb) CL% Mass(GeV) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ SIRUNYAN 19B CMS $pp \rightarrow jA, A \rightarrow b\overline{b}$ ² AABOUD $pp \rightarrow Y \rightarrow HX \rightarrow (bb) +$ 18AD ATLS (qq)³ AABOUD 18CK ATLS $pp \rightarrow bbb + \not\!\!E_T$ ⁴ AABOUD 18CL ATLS $pp \rightarrow$ vector-like quarks ⁵ AABOUD YOUR DATA 18N ATLS $pp \rightarrow jj$ resonance ⁶ SIRUNYAN 18DJ CMS $pp \rightarrow ZZ$ or $WZ \rightarrow I\bar{I}ii$ ⁷ SIRUNYAN 18DY CMS $pp \rightarrow RR; R \rightarrow jj$ ⁸ KHACHATRY...17W CMS $p p \rightarrow j j$ resonance ⁹ KHACHATRY...17Y CMS $pp \rightarrow (8-10) j + \not \! E_T$ ¹⁰ SIRUNYAN 17F CMS $p\,p
ightarrow \, jj$ angular distribution ¹¹ AABOUD 16 ATLS $pp \rightarrow b + jet$ 12 AAD16N ATLS $pp \rightarrow 3$ high E_T jets 13 AAD 16s ATLS $p p \rightarrow j j$ resonance ¹⁴ KHACHATRY...16K CMS $p p \rightarrow j j$ resonance ¹⁵ KHACHATRY...16L CMS $pp \rightarrow jj$ resonance ¹⁶ AAD 13D ATLS 7 TeV $pp \rightarrow 2$ jets 17 AALTONEN 13R CDF 1.96 TeV $p\overline{p} \rightarrow 4$ jets ¹⁸ CHATRCHYAN 13A CMS 7 TeV $pp \rightarrow 2$ jets ¹⁹ CHATRCHYAN 13A CMS 7 TeV $pp \rightarrow b\overline{b}X$ OCCUR=2 ²⁰ AAD 12s ATLS 7 TeV $pp \rightarrow 2$ jets ²¹ CHATRCHYAN 12BL CMS 7 TeV $pp \rightarrow t\bar{t}X$ ²² AAD 11AG ATLS 7 TeV $pp \rightarrow 2$ jets ²³ AALTONEN 11M CDF 1.96 TeV $p\overline{p} \rightarrow W+2$ jets ²⁴ ABAZOV 111 D0 1.96 TeV $p\overline{p} \rightarrow W+2$ jets 25 AAD 10 ATLS 7 TeV $pp \rightarrow 2$ jets ²⁶ KHACHATRY...10 CMS 7 TeV $pp \rightarrow 2$ jets ²⁷ ABE 99F CDF 1.8 TeV $p\overline{p} \rightarrow b\overline{b}+anything$ ²⁸ ABE 97G CDF 1.8 TeV $p\overline{p} \rightarrow 2$ jets ²⁹ ABE 93G CDF <2603 95 200 1.8 TeV $p\overline{p} \rightarrow 2$ jets ²⁹ ABE 93G CDF OCCUR=2 1.8 TeV $p\overline{p} \rightarrow 2$ jets 44 95 400 < ²⁹ ABE 95 600 93G CDF 1.8 TeV $p \overline{p} \rightarrow 2$ jets OCCUR=3 7 <¹SIRUNYAN 19B search for low mass resonance $pp \rightarrow jA$, $A \rightarrow b\overline{b}$ at 13 TeV using 35.9 NODE=S015HP;LINKAGE=R fb^{-1} ; no signal; exclude resonances 50-350 GeV depending on production and decay. ²AABOUD 18AD search for new heavy particle $Y \rightarrow HX \rightarrow (bb) + (qq)$. No signal NODE=S015HP;LINKAGE=L observed. Limits set on m(Y) vs. m(X) in the ranges of m(Y) in 1-4 TeV and m(X) in 50-1000 GeV NODE=S015HP;LINKAGE=N 13 TeV using two complementary analyses with 24.3/36.1 fb⁻¹; no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95confidence level. ⁴AABOUD 18CL search for $pp \rightarrow$ vector-like quarks \rightarrow jets at 13 TeV with 36 fb⁻¹; no NODE=S015HP;LINKAGE=O signal seen; limits set on various VLQ scenarios. For pure $B \rightarrow Hb$ or $T \rightarrow Ht$, set the mass limit m > 1010 GeV. 5 AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb $^{-1}$; limits set YOUR NOTE NODE=S015HP;LINKAGE=M on m(Z') in the mass range of 450–1800 GeV. ⁶SIRUNYAN 18DJ search for $pp \rightarrow ZZ$ or $WZ \rightarrow I\bar{I}jj$ resonance at 13 TeV, 35.9 fb⁻¹; NODE=S015HP;LINKAGE=P no signal; limits set in the 400-4500 GeV mass range, exclusion of W' up to 2270 GeV in the HVT model A, and up to 2330 for HVT model B. WED bulk graviton exclusion up to 925 GeV. ⁷SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 NODE=S015HP;LINKAGE=Q fb^{-1} ; no signal; limits placed on RPV top-squark pair production

SEARCHES

 $^8\rm KHACHATRYAN$ 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc. NODE=S015HP;LINKAGE=I ⁹KHACHATRYAN 17Y search for $pp \rightarrow (8-10) j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY. NODE=S015HP;LINKAGE=J 10 SIRUNYAN 17F measure $pp \rightarrow ~jj$ angular distribution in 2.6 fb $^{-1}$ at 13 TeV; limits NODE=S015HP;LINKAGE=K set on LEDs and quantum black holes. 11 AABOUD 16 search for resonant dijets including one or two *b*-jets with 3.2 fb $^{-1}$ at NODE=S015HP;LINKAGE=F 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1-1.5 TeV. 12 AAD 16N search for $~\geq$ 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black NODE=S015HP;LINKAGE=D holes (Fig. 10) and string balls (Fig. 11). 13 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions NODE=S015HP;LINKAGE=E of excited quarks, W', Z' and contact interaction parameter space. 14 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 NODE=S015HP;LINKAGE=G for limits on axigluons, diquarks etc. 15 KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 NODE=S015HP;LINKAGE=H fb^{-1} of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500-800 GeV. $^{16}\mathrm{AAD}$ 13D search for dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 4.8 NODE=S015HP;LINKAGE=GA fb^{-1} . The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 17 AALTONEN 13R search for production of a pair of jet-jet resonances in $p \, \overline{p}$ collisions at NODE=S015HP;LINKAGE=C $E_{\rm cm} = 1.96$ TeV with L = 6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits. ¹⁸CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm} =$ NODE=S015HP;LINKAGE=CA 7 TeV with L = 4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m = 1.0-4.3 TeV. ¹⁹CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L NODE=S015HP:LINKAGE=CT = 4.8 fb⁻¹. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 20 AAD 12S search for dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 1.0 NODE=S015HP;LINKAGE=DA fb $^{-1}$. See their Fig. 3 and Table 2 for limits on resonance cross section in the range m= 0.9-4.0 TeV. ²¹CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L NODE=S015HP;LINKAGE=CH = 4.4 fb $^{-1}$. See their Fig. 4 for limits on resonance cross section in the range m = 0.5-3.0 TeV. ²²AAD 11AG search for dijet resonances in *pp* collisions at $E_{cm} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6-4 TeV are given in their Table 3. NODE=S015HP;LINKAGE=AD 23 AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in NODE=S015HP;LINKAGE=AL W + 2 jet events in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV with L = 4.3 fb⁻¹. ²⁴ABAZOV 111 search for two-jet resonances in W + 2 jet events in $p\overline{p}$ collisions at E_{cm} NODE=S015HP;LINKAGE=AZ = 1.96 TeV with L = 4.3 fb⁻¹ and give limits $\sigma < (2.6-1.3)$ pb (95% CL) for m =110-170 GeV. The result is incompatible with AALTONEN 11M. $^{25}\,{\rm AAD}$ 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L NODE=S015HP;LINKAGE=AA = 315 nb⁻¹. Limits on the cross section in the range 10–10³ pb is given for m =0.3-1.7 TeV. ²⁶ KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at $E_{cm} = 7$ TeV NODE=S015HP;LINKAGE=KH with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m =0.5–2.6 TeV separately in the final states qq, qg, and gg. 27 ABE 99F search for narrow $b\,\overline{b}$ resonances in $p\,\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. Limits on NODE=S015HP;LINKAGE=FH $\sigma(p\overline{p} \rightarrow X + \text{anything}) \times B(X \rightarrow b\overline{b})$ in the range 3–10³ pb (95%CL) are given for m_{χ} =200–750 GeV. See their Table I. ²⁸ ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with 106 pb⁻¹ of data at $E_{\rm cm} = 1.8$ TeV. Limits on $\sigma(p\overline{p} \rightarrow X + {\rm anything}) \cdot {\rm B}(X \rightarrow jj)$ in the range $10^4 - 10^{-1}$ pb NODE=S015HP;LINKAGE=B (95%CL) are given for dijet mass m=200-1150 GeV with both jets having $|\eta| < 2.0$ and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G. ²⁹ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for Γ NODE=S015HP;LINKAGE=A = 0.02 M. Their Table II gives limits for M = 200-900 GeV and $\Gamma = (0.02-0.2)$ M. **REFERENCES FOR Other Particle Searches**

A.M. Sirunyan et al. SIRUNYAN 19B PR D99 012005 (CMS Collab.) 18AD PL B779 24 18CK PR D98 092002 AABOUD AABOUD M. Aaboud et al. (ATLAS Collab.) (ATLAS Collab.) M. Aaboud et al. AABOUD 18CL PR D98 092005 M. Aaboud et al. (ATLAS Collab.) AABOUD 18N PRL 121 081801 M. Aaboud et al. (ATLAS Collab.) SIRUNYAN 18DJ JHEP 1809 101 (CMS Collab.) A.M. Sirunyan et al. SIRUNYAN 18DY PR D98 112014 A.M. Sirunyan et al. CMS Collab. KHACHATRY ÌCMS Collab Ì 17W PL B769 520 V. Khachatryan et al. PL B770 257 KHACHATRY... 17Y (CMS Collab.) V. Khachatrvan et al. SIRUNYAN JHEP 1707 013 CMS Collab. 17F A.M. Sirunyan et al. PL B759 229 (ATLAS Collab.) AABOUD 16 M. Aaboud et al.

YOUR PAPER

NODE=S015

REFID=59516
REFID=58998
REFID=59470
REFID=59472
REFID=58866
REFID=59341
REFID=59504
REFID=57899
REFID=57904
REFID=57820
REFID=57233

Page	4
------	---

AAD	16N	JHEP 1603 026	G
AAD	16S	PL B754 302	G.
KHACHATRY	16K	PRL 116 071801	V.
KHACHATRY	16L	PRL 117 031802	V.
AAD	13D	JHEP 1301 029	G.
AALTONEN	13R	PRL 111 031802	Τ.
CHATRCHYAN	13A	JHEP 1301 013	S.
AAD	12S	PL B708 37	G.
CHATRCHYAN	12BL	JHEP 1212 015	S.
AAD	11AG	NJP 13 053044	G
AALTONEN	11M	PRL 106 171801	Τ.
ABAZOV	111	PRL 107 011804	V.
AAD	10	PRL 105 161801	G
KHACHATRY	10	PRL 105 211801	V.
Also		PRL 106 029902	V.
ABE	99F	PRL 82 2038	F.
ABE	97G	PR D55 5263	F.
ABE	93G	PRL 71 2542	F.

G. Aad et al.
G. Aad et al.
V. Khachatryan et al.
V. Khachatryan et al.
G. Aad et al.
T. Aaltonen et al.
G. Aad et al.
S. Chatrchyan et al.
G. Aad et al.
T. Aaltonen et al.
T. Aaltonen et al.
Mad et al.
T. Aaltonen et al.
V.M. Abazov et al.
G. Aad et al.
V. Khachatryan et al.
Y. Khachatryan et al.
F. Abe et al.
F. Abe et al.
F. Abe et al.

(ATLAS	Collab.)
ATLAS	Collab.)
CMS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
) (CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
CMS	Collab.)
(ATLAS	Collab.)
CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
CMS	Collab.)
(CMS	Collab.)
(CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=57168 REFID=57206 REFID=57181 REFID=57195 REFID=54792 REFID=55220	
REFID=54770 REFID=54770 REFID=54079 REFID=54009 REFID=16445 REFID=53467 REFID=53465 REFID=534672 REFID=45743	

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov April 5, 2019

OMITTED FROM SUMMARY TABLE

Heavy Particle Production Cross Section

Limits a	e for a particle	e decaying to two had	ronic jet	s.
Units(pb) CL%	Mass(GeV)	DOCUMENT ID	TECN	COMMENT
	ot use the foll	owing data for average	oc fite l	limite ote

YOUR DATA

YOUR NOTE

			100 00	pp j,,,,	
		² AABOUD	18AD ATLS	$pp \rightarrow Y \rightarrow HX \rightarrow (bb) + (aa)$	
		³ AABOUD	18ск ATLS	$pp \rightarrow bbb + \not\!\!\! E_T$	
		⁴ AABOUD	18CL ATLS	$pp \rightarrow \text{vector-like}$ quarks	
		⁵ AABOUD	18N ATLS	$p p \rightarrow j j$ resonance	
		⁶ SIRUNYAN	18DJ CMS	$pp \rightarrow ZZ$ or $WZ \rightarrow I\overline{I}jj$	
		⁷ SIRUNYAN	18DY CMS	$pp \rightarrow RR; R \rightarrow jj$	
		⁸ KHACHATRY	.17W CMS	p p ightarrow j j resonance	
		⁹ KHACHATRY	.17Y CMS	$pp ightarrow$ (8–10) $j{+} ot\!$	
		¹⁰ SIRUNYAN	17F CMS	$p p \rightarrow j j$ angular distribution	
		¹¹ AABOUD	16 ATLS	$p p \rightarrow b + jet$	
		¹² AAD	16N ATLS	$p p ightarrow $ 3 high E_T jets	
		¹³ AAD	16s ATLS	$pp \rightarrow jj$ resonance	
		¹⁴ KHACHATRY	.16K CMS	$p p \rightarrow j j$ resonance	
		¹⁵ KHACHATRY	.16L CMS	$p p \rightarrow j j$ resonance	
		¹⁶ AAD	13D ATLS	7 TeV $pp \rightarrow 2$ jets	
		¹⁷ AALTONEN	13R CDF	1.96 TeV $p\overline{p} \rightarrow 4$ jets	
		¹⁸ CHATRCHYAN	13A CMS	7 TeV $pp \rightarrow 2$ jets	
		¹⁹ CHATRCHYAN	13A CMS	7 TeV $pp \rightarrow b\overline{b}X$	OCCUR=2
		²⁰ AAD	12s ATLS	7 TeV $pp \rightarrow 2$ jets	
		²¹ CHATRCHYAN	12BL CMS	7 TeV $pp \rightarrow t\bar{t}X$	
		²² AAD	11AG ATLS	7 TeV $pp \rightarrow 2$ jets	
		²³ AALTONEN	11M CDF	1.96 TeV $p\overline{p} \rightarrow W+2$ jets	
		²⁴ ABAZOV	11ı D0	1.96 TeV $p\overline{p} \rightarrow W+2$ jets	
		²⁵ AAD	10 ATLS	7 TeV $pp \rightarrow 2$ jets	
		²⁶ KHACHATRY	.10 CMS	7 TeV $pp \rightarrow 2$ jets	
		²⁷ ABE	99F CDF	1.8 TeV $p\overline{p} \rightarrow b\overline{b}+$ anything	
		²⁸ ABE	97G CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets	
<2603	95 200	²⁹ ABE	93G CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets	
< 44	95 400	²⁹ ABE	93G CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets	OCCUR=2
< 7	95 600	²⁹ ABE	93G CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets	OCCUR=3
	NYAN 198 sea	urch for low mass resona	nce $nn \rightarrow i$	$A \rightarrow b\overline{b}$ at 13 TeV using 35.9	
$_{\rm fb}-1$	no signal: ex	clude resonances 50-35	0 GeV depen	ding on production and decay	NODE=3013111 ,EINRAGE=R
² AAB	OUD 18AD sea	arch for new heavy part	sicle $Y \rightarrow H$	$X \rightarrow (bb) + (qq)$. No signal	
obser	ved. Limits se	t on m(Y) vs. m(X) in	the ranges of	of m(Y) in 1–4 TeV and m(X) in	
250-10	000 GeV.		-		
³ AAB(OUD 18CK sea	rch for SUSY Higgsino	s in gauge-m	ediation via $pp ightarrow bbb + ot\!$	NODE=S015HP;LINKAGE=N
13 Te	V using two c	complementary analyses	with 24.3/3	6.1 fb ^{-1} ; no signal is found and	

Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95confidence level. ⁴AABOUD 18CL search for $pp \rightarrow$ vector-like quarks \rightarrow jets at 13 TeV with 36 fb⁻¹; no

- signal seen; limits set on various VLQ scenarios. For pure $B \rightarrow Hb$ or $T \rightarrow Ht$, set the mass limit m > 1010 GeV.
- 5 AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb $^{-1}$; limits set on m(Z') in the mass range of 450–1800 GeV.

⁶ SIRUNYAN 18DJ search for $pp \rightarrow ZZ$ or $WZ \rightarrow I\bar{I}jj$ resonance at 13 TeV, 35.9 fb⁻¹; no signal; limits set in the 400-4500 GeV mass range, exclusion of W^{\prime} up to 2270 GeV in the HVT model A, and up to 2330 for HVT model B. WED bulk graviton exclusion up to 925 GeV.

⁷SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 fb^{-1} ; no signal; limits placed on RPV top-squark pair production

NODE=S015HP;LINKAGE=Q

NODE=S015HP;LINKAGE=O

NODE=S015HP;LINKAGE=M

NODE=S015HP;LINKAGE=P

Page 6

- $^8\rm KHACHATRYAN$ 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc. NODE=S015HP;LINKAGE=I ⁹KHACHATRYAN 17Y search for $pp \rightarrow (8-10)j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY. NODE=S015HP;LINKAGE=J 10 SIRUNYAN 17F measure $pp \rightarrow ~jj$ angular distribution in 2.6 fb $^{-1}$ at 13 TeV; limits NODE=S015HP;LINKAGE=K set on LEDs and quantum black holes. 11 AABOUD 16 search for resonant dijets including one or two *b*-jets with 3.2 fb $^{-1}$ at NODE=S015HP;LINKAGE=F 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1-1.5 TeV. 12 AAD 16N search for $~\geq$ 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black NODE=S015HP;LINKAGE=D holes (Fig. 10) and string balls (Fig. 11). 13 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions NODE=S015HP;LINKAGE=E of excited quarks, W', Z' and contact interaction parameter space. 14 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 NODE=S015HP;LINKAGE=G for limits on axigluons, diquarks etc. 15 KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 NODE=S015HP;LINKAGE=H fb^{-1} of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500-800 GeV. ¹⁶AAD 13D search for dijet resonances in *pp* collisions at $E_{\rm cm}$ = 7 TeV with L = 4.8 NODE=S015HP;LINKAGE=GA ${\rm fb}^{-1}.$ The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 17 AALTONEN 13R search for production of a pair of jet-jet resonances in $p \, \overline{p}$ collisions at NODE=S015HP;LINKAGE=C $E_{\rm cm} = 1.96$ TeV with L = 6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits. ¹⁸CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm} =$ NODE=S015HP;LINKAGE=CA 7 TeV with L = 4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m = 1.0-4.3 TeV. ¹⁹CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L NODE=S015HP:LINKAGE=CT = 4.8 fb $^{-1}$. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 20 AAD 12S search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=1.0NODE=S015HP;LINKAGE=DA fb^{-1} . See their Fig. 3 and Table 2 for limits on resonance cross section in the range m = 0.9-4.0 TeV. ²¹CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{cm} = 7$ TeV with L NODE=S015HP;LINKAGE=CH = 4.4 fb $^{-1}$. See their Fig. 4 for limits on resonance cross section in the range m = 0.5-3.0 TeV. ²²AAD 11AG search for dijet resonances in *pp* collisions at $E_{cm} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6-4 TeV are given in their Table 3. NODE=S015HP;LINKAGE=AD 23 AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in NODE=S015HP;LINKAGE=AL W + 2 jet events in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV with L = 4.3 fb⁻¹.
- ²⁴ABAZOV 111 search for two-jet resonances in W + 2 jet events in $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV with L = 4.3 fb⁻¹ and give limits σ < (2.6–1.3) pb (95% CL) for m = 110–170 GeV. The result is incompatible with AALTONEN 11M.
- ²⁵ AAD 10 search for narrow dijet resonances in *pp* collisions at $E_{\rm cm} = 7$ TeV with L = 315 nb⁻¹. Limits on the cross section in the range 10–10³ pb is given for *m* = 0.3–1.7 TeV. ²⁶ KHACHATRYAN 10 search for narrow dijet resonances in *pp* collisions at $E_{\rm cm} = 7$ TeV
- with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m = 0.5-2.6 TeV separately in the final states qq, qg, and gg.
- ²⁷ ABE 99F search for narrow $b\overline{b}$ resonances in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV. Limits on $\sigma(p\overline{p} \rightarrow X + \text{ anything}) \times B(X \rightarrow b\overline{b})$ in the range 3–10³ pb (95%CL) are given for m_X =200–750 GeV. See their Table I.
- ²⁸ ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with 106 pb⁻¹ of data at $E_{\rm cm} = 1.8$ TeV. Limits on $\sigma(p\overline{p} \rightarrow X + {\rm anything}) \cdot {\rm B}(X \rightarrow jj)$ in the range 10⁴-10⁻¹ pb (95%CL) are given for dijet mass m=200-1150 GeV with both jets having $|\eta| < 2.0$ and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G.
- ²⁹ ABE 93G give cross section times branching ratio into light (*d*, *u*, *s*, *c*, *b*) quarks for Γ = 0.02 *M*. Their Table II gives limits for *M* = 200–900 GeV and Γ = (0.02–0.2) *M*.

REFERENCES FOR Other Particle Searches

YOUR PAPER	SIRUNYAN AABOUD AABOUD AABOUD SIRUNYAN SIRUNYAN KHACHATRY KHACHATRY	19B 18AD 18CK 18CL 18N 18DJ 18DY 17W 17Y	PR D99 012005 PL B779 24 PR D98 092002 PR D98 092005 PRL 121 081801 JHEP 1809 101 PR D98 112014 PL B769 520 PL B770 257	A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. A.M. Sirunyan et al. V. Khachatryan et al. V. Khachatryan et al.	(CMS (ATLAS (ATLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
	KHACHATRY SIRUNYAN AABOUD	17V 17Y 17F 16	PL B709 520 PL B770 257 JHEP 1707 013 PL B759 229	V. Khachatryan <i>et al.</i> A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS (CMS (CMS (ATLAS	Collab.) Collab.) Collab.)

NODE=S015

NODE=S015HP;LINKAGE=AZ

NODE=S015HP;LINKAGE=AA

NODE=S015HP;LINKAGE=KH

NODE=S015HP;LINKAGE=FH

NODE=S015HP;LINKAGE=B

NODE=S015HP;LINKAGE=A

REFID=59516
RFFID=58998
REEID-50470
REFID=59472
REFID=58866
REFID=59341
REFID=59504
REFID=57899
REFID=57904
REFID=57820
REEID-57233
NEI ID-37233

AAD	16N	JHEP 1603 026	G
AAD	16S	PL B754 302	G
KHACHATRY	16K	PRL 116 071801	V
KHACHATRY	16L	PRL 117 031802	V
AAD	13D	JHEP 1301 029	G
AALTONEN	13R	PRL 111 031802	Т
CHATRCHYAN	13A	JHEP 1301 013	S
AAD	12S	PL B708 37	G
CHATRCHYAN	12BL	JHEP 1212 015	S
AAD	11AG	NJP 13 053044	G
AALTONEN	11M	PRL 106 171801	Т
ABAZOV	111	PRL 107 011804	ν
AAD	10	PRL 105 161801	G
KHACHATRY	10	PRL 105 211801	ν
Also		PRL 106 029902	ν
ABE	99F	PRL 82 2038	F
ABE	97G	PR D55 5263	F
ABE	93G	PRL 71 2542	F

G. Aad et al. G. Aad et al. V. Khachatryan et al. V. Khachatryan et al. G. Aad et al. S. Chatrchyan et al. G. Aad et al. S. Chatrchyan et al. G. Aad et al. T. Aaltonen et al. V. Machatryan et al. V. Khachatryan et al. F. Abe et al. F. Abe et al. F. Abe et al.

(ATLAS	Collab.)
(ATLAS	Collab.)
(CIVIS	Collab.)
(CIVIS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
(CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=57168
REFID=57200 REFID=57181 REFID=57195
REFID=54792 REFID=55220
REFID=54770 REFID=54152
REFID=54776 REFID=54009
REFID=10445 REFID=16475 REFID=53477
REFID=53465 REFID=53629
REFID=46728 REFID=45343
REFID=43512

AABOUD 18BY; JHEP 1810 047ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

	BOTTOM MESONS $(B = \pm 1)$	NODE=MXXX045
	$B^+ = u \overline{b}, \ B^0 = d \overline{b}, \ \overline{B}{}^0 = \overline{d} b, \ B^- = \overline{u} b,$ similarly for B^* 's	NODE=MXXX045
	$B^{0} \qquad I(J^{P}) = \frac{1}{2}(0^{-})$	NODE=\$042
	Quantum numbers not measured. Values shown are quark-model predictions.	NODE=S042
	See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B^0_s/b$ -baryon AD-MIXTURE sections.	
	See the Note "Production and Decay of <i>b</i> -flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.	
	POLARIZATION IN B ⁰ DECAY	NODE=S042223
	In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (<i>L</i>) or both are transverse and parallel () or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases $\phi_{ }$ and ϕ_\perp . See the definitions in the note on "Polarization in <i>B</i> Decays" review in the B^0 Particle Listings.	NODE=\$042223
	$\Gamma_L/\Gamma \text{ in } B^0 \rightarrow K^*(892)^0 \mu^+ \mu^- (0.04 < q^2 < 6.0 \text{ GeV}^2/c^4)$ VALUE DOCUMENT ID TECN COMMENT	NODE=S042A08 NODE=S042A08
YOUR DATA	0.50±0.06±0.04 ¹ AABOUD 18BY ATLA <i>pp</i> at 8 TeV	1
YOUR NOTE	¹ A set of angular parameters obtained for this decay are also presented.	NODE=S042A08;LINKAGE=A
	B⁰ REFERENCES	NODE=S042
YOUR PAPER	AABOUD 18BY JHEP 1810 047 M. Aaboud et al. (ATLAS Collab.)	REFID=59350

Reference Verifier code = AABOUD 18CJ; PR D98 052008
 = ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

4/5/2019 10:34 Page 12

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W'); 2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained.

 $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass-au plane for each mode.

 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

YOUR PAPER	AABOUD AABOUD AAIJ BANERJEE	18CJ 18CM 18AJ 18	PR D98 052008 PR D98 092008 PRL 120 061801 PRL 120 231802	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> R. Aaij <i>et al.</i> D. Banerjee <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (NA64 Collab.)
	BANERJEE	18A	PR D97 072002	D. Banerjee <i>et al.</i>	(NA64 Collab.)
	SIRUNYAN	18 18BB	JHEP 1806 120	L. Marsicano <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb_Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller	(WASH)
	AAD	160	PL B760 520	G. Aad <i>et al.</i>	(ATLAS Collab.)
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS Collab.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay et al.	(HINR, ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3 Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson <i>et al.</i>	(MICH)

Page 13

4/5/2019 10:34

NODE=S015CS;LINKAGE=J

NODE=S015CS;LINKAGE=G

NODE=S015CS;LINKAGE=H

NODE=S015CS;LINKAGE=Q

NODE=S015CS;LINKAGE=F

NODE=S015CS;LINKAGE=E

NODE=S015CS;LINKAGE=B

NODE=S015CS:LINKAGE=D

NODE=S015CS;LINKAGE=A

NODE=S015

REFID-50//1
NEI ID - 39441
REEID-60/7/
NEI ID-39474
REEID-50100
IVEL ID = 29199
DEEID_60020
KEFID=30030
DEEID_E0016
VELID=20810
REFID=30907
DEEID_E0110
KEFID=39112
KEFID=39300
DECID_60210
KELID=28210
DEEID E0267
REFID=59307
REFID=59409
REFID=59500
REFID=5(100)
REFID=58300
REFID=59311
REFID=5/109
REFID=5/1/2
REFID=59302
REFID=50407
REFID=45/22
DEEID 44001
KEFID=44291
DEEID 41720
KEFID = 41/39
DEEID 10600
KEFID=10022
DEEID 10000
KEFID=12580

Reference = Verifier code =

= AABOUD 18CK; PR D98 092002
 = ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

NODE=S015HP;LINKAGE=Q

Units(pb) CL% Mass(GeV)

	• • • We	e do i	not use [.]	the following data for a	averag	es, fits,	limits, etc. • • •		
				¹ SIRUNYAN	19 B	CMS	$pp \rightarrow jA, A \rightarrow b\overline{b}$	1	
				² AABOUD	18A1	DATLS	$pp \rightarrow Y \rightarrow HX \rightarrow (bb) +$		
				2			(qq)		
YOUR DATA				³ AABOUD	18Cł	< ATLS	$p p ightarrow ~ b b b + ot\!$		
				4 AABOUD	18CI	_ ATLS	$p p \rightarrow$ vector-like quarks		
				³ AABOUD	18N	ATLS	$p p ightarrow j j$ resonance _		
				^o SIRUNYAN	18D.	J CMS	$pp \rightarrow ZZ$ or $WZ \rightarrow IIjj$		
				SIRUNYAN	18D'	Y CMS	$pp \rightarrow RR; R \rightarrow jj$		
				° KHACHATRY	17W	CMS	$p p \rightarrow j j$ resonance		
				⁹ KHACHATRY	17Y	CMS	рр $ ightarrow$ (8–10) ј $+$ $\!\!E_T$		
				¹⁰ SIRUNYAN	17F	CMS	$p p \rightarrow j j$ angular distribution		
				11 AABOUD	16	ATLS	$p p \rightarrow b + jet$		
				12 AAD	16N	ATLS	$pp ightarrow$ 3 high ${\it E}_{T}$ jets		
				¹³ AAD	16S	ATLS	$p p \rightarrow j j$ resonance		
				¹⁴ KHACHATRY	16K	CMS	$p p \rightarrow j j$ resonance		
				¹⁵ KHACHATRY	16L	CMS	$p p \rightarrow j j$ resonance		
				¹⁰ AAD	13D	ATLS	7 TeV $pp \rightarrow 2$ jets		
				¹⁷ AALTONEN	13r	CDF	1.96 TeV $p \overline{p} \rightarrow 4$ jets		
				¹⁸ CHATRCHYA	N 13A	CMS	7 TeV $pp \rightarrow 2$ jets		
				¹⁹ CHATRCHYA	N 13A	CMS	7 TeV $pp \rightarrow bbX$		OCCUR=2
				²⁰ AAD	12S	ATLS	7 TeV $pp \rightarrow 2$ jets		
				²¹ CHATRCHYA	N 12BI	CMS	7 TeV $pp \rightarrow t \overline{t} X$		
				²² AAD	11A(G ATLS	7 TeV $pp \rightarrow 2$ jets		
				²³ AALTONEN	11M	CDF	1.96 TeV $p\overline{p} \rightarrow W+2$ jets		
				²⁴ ABAZOV	11	D0	1.96 TeV $p\overline{p} \rightarrow W+2$ jets		
				²⁵ AAD	10	ATLS	7 TeV $p p \rightarrow 2$ jets		
				²⁶ KHACHATRY	10	CMS	7 TeV $p p \rightarrow 2$ jets		
				²⁷ ABE	99F	CDF	1.8 TeV $p\overline{p} \rightarrow b\overline{b}+a$ nything		
				²⁸ ABE	97 G	CDF	1.8 TeV $p\overline{p} ightarrow$ 2 jets		
	<2603	95	200	²⁹ ABE	93 G	CDF	1.8 TeV $p\overline{p} ightarrow$ 2 jets		
	< 44	95	400	²⁹ ABE	93 G	CDF	1.8 TeV $p\overline{p} ightarrow$ 2 jets		OCCUR=2
	< 7	95	600	²⁹ ABE	93 G	CDF	1.8 TeV $p\overline{p} ightarrow$ 2 jets		OCCUR=3
	¹ SIRU	NYAI	N 19B se	arch for low mass resor	ance	pp→ i	$A. A \rightarrow b\overline{b}$ at 13 TeV using 35.9	1	NODE-S015HP-LINKAGE-R
	$_{\rm fb}-1$	nos	signal [,] e	xclude resonances 50-3	50 Ge	V depen	ding on production and decay		
	$^{2}AABC$, יופי כווכ	18AD se	earch for new heavy na	rticle	$Y \rightarrow F$	$IX \rightarrow (bb) + (aa)$ No signal	i	
	obser	ved.	Limits s	et on $m(Y)$ vs. $m(X)$	in the	ranges of	of $m(Y)$ in 1–4 TeV and $m(X)$ in		NODE=3015HF,EINRAGE=E
	_ 50-10	000 🤆	GeV.			0		1	
YOUR NOTE	³ AAB(DUC	18CK se	arch for SUSY Higgsin	os in {	gauge-m	ediation via $pp ightarrow bbb + ot\!$		NODE=S015HP;LINKAGE=N
	13 Te	eV us	ing two	complementary analys	es witł	h 24.3/3	6.1 fb $^{-1}$; no signal is found and		
	Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are								
	exclue 4 A A D	ded a	at the 95	confidence level.	ł				
			18CL se	arch for $pp \rightarrow \text{vector-}$	ike qu	arks →	Jets at 13 TeV with 36 fb ⁻⁺ ; no		NODE=S015HP;LINKAGE=O
	signal seen; limits set on various VLQ scenarios. For pure $B \rightarrow Hb$ or $I \rightarrow Ht$, set the mass limit $m > 1010$ CoV								
	the mass minum γ 2010 GeV. 5 AABOLID 18N search for dijet resonance at Atlas with 13 TeV and 20.3 fb ⁻¹ . limits out							i	
	and (7^{1}) in the mass range of $450-1800$ GeV								NODE=301511F,EINRAGE=M
	⁶ SIRU	(N 18DIS	earch for $pp \rightarrow ZZ$ or	W Z	→ līii	resonance at 13 TeV 35.9 fb $^{-1}$.	i	
	no sia	mal	limite ce	p = 2 = 0	/ mass	range	exclusion of W' up to 2270 GeV		NODE=3013111 ,EINRAGE=1
	in the	snai, ∘ HV	T model	A and up to 2330 fo	r HVT	model	B WFD bulk graviton exclusion		
	up to	925	GeV.				6 2010101	1	

DOCUMENT ID TECN COMMENT

⁷SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 ${\rm fb}^{-1}$; no signal; limits placed on RPV top-squark pair production

REFID=59516 REFID=58998 REFID=59470 REFID=59472

REFID=58866 REFID=59341 REFID=59504 REFID=57899 REFID=57904 REFID=57820 REFID=57233

 $^8\rm KHACHATRYAN$ 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc. NODE=S015HP;LINKAGE=I ⁹KHACHATRYAN 17Y search for $pp \rightarrow (8-10)j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. NODE=S015HP;LINKAGE=J Limits set on colorons, axigluons, RPV, and SUSY. 10 SIRUNYAN 17F measure $pp \rightarrow ~jj$ angular distribution in 2.6 fb $^{-1}$ at 13 TeV; limits NODE=S015HP;LINKAGE=K set on LEDs and quantum black holes. 11 AABOUD 16 search for resonant dijets including one or two *b*-jets with 3.2 fb $^{-1}$ at NODE=S015HP;LINKAGE=F 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1-1.5 TeV. 12 AAD 16N search for $~\geq$ 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black NODE=S015HP;LINKAGE=D holes (Fig. 10) and string balls (Fig. 11). 13 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions NODE=S015HP;LINKAGE=E of excited quarks, W', Z' and contact interaction parameter space. 14 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 NODE=S015HP;LINKAGE=G for limits on axigluons, diquarks etc. 15 KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 NODE=S015HP;LINKAGE=H fb^{-1} of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500-800 GeV. $^{16}\mathrm{AAD}$ 13D search for dijet resonances in pp collisions at E_{cm} = 7 TeV with L = 4.8 NODE=S015HP;LINKAGE=GA fb^{-1} . The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 17 AALTONEN 13R search for production of a pair of jet-jet resonances in $p \, \overline{p}$ collisions at NODE=S015HP;LINKAGE=C $E_{\rm cm} = 1.96$ TeV with L = 6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits. 18 CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm} =$ NODE=S015HP;LINKAGE=CA 7 TeV with L = 4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m = 1.0-4.3 TeV. ¹⁹CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm}=$ 7 TeV with LNODE=S015HP:LINKAGE=CT = 4.8 fb⁻¹. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m = 1.0-4.0 TeV. $^{20}\mathrm{AAD}$ 12S search for dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 1.0 NODE=S015HP;LINKAGE=DA fb $^{-1}$. See their Fig. 3 and Table 2 for limits on resonance cross section in the range m= 0.9 - 4.0 TeV. ²¹CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L NODE=S015HP;LINKAGE=CH = 4.4 fb $^{-1}$. See their Fig. 4 for limits on resonance cross section in the range m = 0.5-3.0 TeV. ²²AAD 11AG search for dijet resonances in *pp* collisions at $E_{cm} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6-4 TeV are given in their Table 3. NODE=S015HP;LINKAGE=AD 23 AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in NODE=S015HP;LINKAGE=AL W + 2 jet events in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV with L = 4.3 fb⁻¹. ²⁴ABAZOV 111 search for two-jet resonances in W + 2 jet events in $p\overline{p}$ collisions at E_{cm} NODE=S015HP;LINKAGE=AZ = 1.96 TeV with L = 4.3 fb⁻¹ and give limits $\sigma < (2.6-1.3)$ pb (95% CL) for m =110-170 GeV. The result is incompatible with AALTONEN 11M. $^{25}\,{\rm AAD}$ 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L NODE=S015HP;LINKAGE=AA = 315 nb⁻¹. Limits on the cross section in the range 10–10³ pb is given for m =0.3-1.7 TeV. 26 KHACHATRYAN 10 search for narrow dijet resonances in *pp* collisions at $E_{\rm cm} = 7$ TeV NODE=S015HP;LINKAGE=KH with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m =0.5–2.6 TeV separately in the final states qq, qg, and gg. 27 ABE 99F search for narrow $b\,\overline{b}$ resonances in $p\,\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. Limits on NODE=S015HP;LINKAGE=FH $\sigma(p\overline{p} \rightarrow X + \text{anything}) \times B(X \rightarrow b\overline{b})$ in the range 3–10³ pb (95%CL) are given for m_{χ} =200–750 GeV. See their Table I. $^{28}\,{\sf ABE}$ 97G search for narrow dijet resonances in $p\,\overline{p}$ collisions with 106 ${\rm pb}^{-1}$ of data at NODE=S015HP;LINKAGE=B $E_{cm} = 1.8$ TeV. Limits on $\sigma(p\overline{p} \rightarrow X + anything) \cdot B(X \rightarrow jj)$ in the range $10^4 - 10^{-1}$ pb (95%CL) are given for dijet mass m=200-1150 GeV with both jets having $|\eta| < 2.0$ and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G. ²⁹ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for Γ NODE=S015HP;LINKAGE=A = 0.02 M. Their Table II gives limits for M = 200-900 GeV and $\Gamma = (0.02-0.2)$ M. **REFERENCES FOR Other Particle Searches** NODE=S015

R PAPER	SIRUNYAN AABOUD AABOUD AABOUD SIRUNYAN SIRUNYAN KHACHATRY SIRUNYAN AABOUD	19B 18AD 18CK 18CL 18N 18DJ 18DY 17W 17Y 17F 16	PR D99 012005 PL B779 24 PR D98 092002 PR D98 092005 PRL 121 081801 JHEP 1809 101 PR D98 112014 PL B769 520 PL B770 257 JHEP 1707 013 PL B759 229	 A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. A.M. Sirunyan et al. A.M. Sirunyan et al. V. Khachatryan et al. V. Khachatryan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. 	(CMS (ATLAS (ATLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS (CMS (CMS (CMS	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
	AABOUD	16	PL B759 229	M. Aaboud et al.	(ATLAS	Collab.)

YOU

AAD	16N	JHEP 1603 026
AAD	16S	PL B754 302
KHACHATRY	16K	PRL 116 071801
KHACHATRY	16L	PRL 117 031802
AAD	13D	JHEP 1301 029
AALTONEN	13R	PRL 111 031802
CHATRCHYAN	13A	JHEP 1301 013
AAD	12S	PL B708 37
CHATRCHYAN	12BL	JHEP 1212 015
AAD	11AG	NJP 13 053044
AALTONEN	11M	PRL 106 171801
ABAZOV	111	PRL 107 011804
AAD	10	PRL 105 161801
KHACHATRY	10	PRL 105 211801
Also		PRL 106 029902
ABE	99F	PRL 82 2038
ABE	97G	PR D55 5263
ABE	93G	PRL 71 2542

G. Aad et al.
G. Aad et al.
V. Khachatryan et al.
G. Aad et al.
T. Aaltonen et al.
G. Aad et al.
G. Aad et al.
G. Aad et al.
S. Chatrchyan et al.
G. Aad et al.
T. Aaltonen et al.
V.M. Abazov et al.
G. Aad et al.
V. Khachatryan et al.
V. Khachatryan et al.
F. Abe et al.
F. Abe et al.
F. Abe et al.

(ATLAS	Collab.)
(CMS	Collab.)
CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=57168 REFID=57206 REFID=57181 REFID=57195 REFID=54792 REFID=54770 REFID=54770 REFID=54776 REFID=54776 REFID=54776 REFID=54009 REFID=54077 REFID=53477 REFID=53477 REFID=53475 REFID=53475
REFID=57181 REFID=57181 REFID=57195 REFID=54792 REFID=54770 REFID=54770 REFID=54776 REFID=54079 REFID=16445 REFID=54079 REFID=53477 REFID=53475 REFID=53465 REFID=53629 REFID=46728
REFID=57195 REFID=57195 REFID=54792 REFID=54770 REFID=54152 REFID=54152 REFID=16455 REFID=16475 REFID=53477 REFID=53465 REFID=53629 REFID=46728
REFID=54792 REFID=54792 REFID=54770 REFID=54152 REFID=54152 REFID=54009 REFID=16445 REFID=53477 REFID=53465 REFID=53465 REFID=53629 REFID=46728
REFID=55220 REFID=54770 REFID=54152 REFID=54776 REFID=54776 REFID=16445 REFID=16475 REFID=53477 REFID=53465 REFID=53629 REFID=46728
REFID=54770 REFID=54152 REFID=54776 REFID=54009 REFID=16445 REFID=53477 REFID=53477 REFID=53465 REFID=53629 REFID=46728
REFID=54152 REFID=54776 REFID=54009 REFID=16445 REFID=16445 REFID=53465 REFID=53629 REFID=46728
REFID=54/70 REFID=54009 REFID=16445 REFID=16475 REFID=53467 REFID=53629 REFID=53629 REFID=46728
REFID=16445 REFID=16445 REFID=53477 REFID=53465 REFID=53629 REFID=46728
REFID=16475 REFID=53477 REFID=53465 REFID=53629 REFID=46728
REFID=53477 REFID=53465 REFID=53629 REFID=46728
REFID=53465 REFID=53629 REFID=46728
REFID=53029 REFID=46728
REFID=45343
REFID=43512

Reference Verifier code = AABOUD 18CL; PR D98 092005 = ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

SEARCHES not in other sections	NODE=SXXX005
ther Particle Searches	NODE-S015
TTED FROM SUMMARY TABLE	NODE_3013
LIMITS ON JET-JET RESONANCES	- NODE=S015420

Heavy Particle Production Cross Section

YOUR DATA

L	imits a	re for a part	icle decaying to two	hadr	onic jets	5.		NODE=S0
Units(pb)	CL%	Mass(GeV)	DOCUMENT ID		TECN	COMMENT		NODE=S02
• • • \	Ve do	not use the	following data for av	/erage	es, fits, l	imits, etc. • • •		
			¹ SIRUNYAN	19 B	CMS	$pp \rightarrow jA, A \rightarrow b\overline{b}$		
			² AABOUD	18AD	ATLS	$pp \rightarrow Y \rightarrow HX \rightarrow (bb) +$		
			³ AABOUD	18CK	ATLS	$pp \rightarrow bbb + E_{T}$	1	
			⁴ AABOUD	180	ATLS	$p p \rightarrow \text{vector-like quarks}$	1	
			⁵ AABOUD	18N	ATLS	$pp \rightarrow ii$ resonance		
			⁶ SIRUNYAN	1801	CMS	$pp \rightarrow ZZ \text{ or } WZ \rightarrow I\overline{I}ii$		
			⁷ SIRUNYAN	18DY	CMS	$pp \rightarrow RR R \rightarrow ii$		
			⁸ KHACHATRY	.17W	CMS	$pp \rightarrow ii$ resonance	•	
			⁹ KHACHATRY	.17Y	CMS	$pp \rightarrow (8-10) i + E_T$		
			¹⁰ SIRUNYAN	17F	CMS	$pp \rightarrow ii$ angular distribution		
			¹¹ AABOUD	16	ATLS	$pp \rightarrow b + \text{iet}$		
			¹² AAD	16N	ATLS	$pp \rightarrow 3$ high E_T jets		
			¹³ AAD	16S	ATLS	$pp \rightarrow ii$ resonance		
			¹⁴ KHACHATRY	.16ĸ	CMS	$pp \rightarrow ii$ resonance		
			¹⁵ KHACHATRY	.16L	CMS	$pp \rightarrow ii$ resonance		
			¹⁶ AAD	13D	ATLS	7 TeV $pp \rightarrow 2$ jets		
			¹⁷ AALTONEN	13R	CDF	1.96 TeV $p\overline{p} \rightarrow 4$ jets		
			¹⁸ CHATRCHYAN	13A	CMS	7 TeV $pp \rightarrow 2$ jets		
			¹⁹ CHATRCHYAN	13A	CMS	7 TeV $pp \rightarrow b\overline{b}X$		OCCUR=2
			²⁰ AAD	12S	ATLS	7 TeV $pp \rightarrow 2$ jets		
			²¹ CHATRCHYAN	12BL	CMS	7 TeV $pp \rightarrow t\bar{t}X$		
			²² AAD	11AG	ATLS	7 TeV $pp \rightarrow 2$ jets		
			²³ AALTONEN	11 M	CDF	1.96 TeV $p\overline{p} \rightarrow W+2$ jets		
			²⁴ ABAZOV	111	D0	1.96 TeV $p\overline{p} \rightarrow W+2$ jets		
			²⁵ AAD	10	ATLS	7 TeV $pp \rightarrow 2$ jets		
			²⁶ KHACHATRY	.10	CMS	7 TeV $pp \rightarrow 2$ jets		
			²⁷ ABE	99F	CDF	1.8 TeV $p\overline{p} \rightarrow b\overline{b}+$ anything		
			²⁸ ABE	97 G	CDF	1.8 TeV $p \overline{p} ightarrow$ 2 jets		
<2603	95	200	²⁹ ABE	93 G	CDF	1.8 TeV $p \overline{p} ightarrow$ 2 jets		
< 44	95	400	²⁹ ABE	93 G	CDF	1.8 TeV $p\overline{p} ightarrow$ 2 jets		OCCUR=2
< 7	95	600	²⁹ ABE	93 G	CDF	1.8 TeV $p\overline{p} \rightarrow 2$ jets		OCCUR=3
¹ SIR	UNYA	N 19B search	for low mass resona	nce p	p→ i	A, $A \rightarrow b\overline{b}$ at 13 TeV using 35.9	1	NODE=S0
fb	¹ : no s	signal: exclu	de resonances 50-35	, 0 Ge\	/ depend	ding on production and decay.		

²AABOUD 18AD search for new heavy particle $Y \rightarrow HX \rightarrow (bb) + (qq)$. No signal observed. Limits set on m(Y) vs. m(X) in the ranges of m(Y) in 1–4 TeV and m(X) in 50-1000 GeV.

13 TeV using two complementary analyses with 24.3/36.1 fb⁻¹; no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95confidence level.

- ⁴AABOUD 18CL search for $pp \rightarrow$ vector-like quarks \rightarrow jets at 13 TeV with 36 fb⁻¹; no YOUR NOTE signal seen; limits set on various VLQ scenarios. For pure $B \rightarrow Hb$ or $T \rightarrow Ht$, set the mass limit m > 1010 GeV.
 - 5 AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb $^{-1}$; limits set on m(Z') in the mass range of 450–1800 GeV.

⁶ SIRUNYAN 18DJ search for $pp \rightarrow ZZ$ or $WZ \rightarrow I\bar{I}jj$ resonance at 13 TeV, 35.9 fb⁻¹; no signal; limits set in the 400-4500 GeV mass range, exclusion of W^{\prime} up to 2270 GeV in the HVT model A, and up to 2330 for HVT model B. WED bulk graviton exclusion up to 925 GeV.

⁷SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 NODE=S015HP;LINKAGE=Q fb^{-1} ; no signal; limits placed on RPV top-squark pair production

NODE=S015420

NODE=S015HP NODE=S015HP NODE=S015HP

OCCUR=3 NODE=S015HP;LINKAGE=R NODE=S015HP;LINKAGE=L NODE=S015HP;LINKAGE=N NODE=S015HP;LINKAGE=O NODE=S015HP;LINKAGE=M NODE=S015HP;LINKAGE=P

 $^8\rm KHACHATRYAN$ 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc. NODE=S015HP;LINKAGE=I ⁹ KHACHATRYAN 17Y search for $pp \rightarrow (8-10)j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY. NODE=S015HP;LINKAGE=J 10 SIRUNYAN 17F measure $pp \rightarrow ~jj$ angular distribution in 2.6 fb $^{-1}$ at 13 TeV; limits NODE=S015HP;LINKAGE=K set on LEDs and quantum black holes. 11 AABOUD 16 search for resonant dijets including one or two *b*-jets with 3.2 fb $^{-1}$ at NODE=S015HP;LINKAGE=F 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1-1.5 TeV. 12 AAD 16N search for $~\geq$ 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black NODE=S015HP;LINKAGE=D holes (Fig. 10) and string balls (Fig. 11). 13 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions NODE=S015HP;LINKAGE=E of excited quarks, W', Z' and contact interaction parameter space. 14 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 NODE=S015HP;LINKAGE=G for limits on axigluons, diquarks etc. 15 KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 NODE=S015HP;LINKAGE=H fb^{-1} of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500-800 GeV. $^{16}\mathrm{AAD}$ 13D search for dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 4.8 NODE=S015HP;LINKAGE=GA fb^{-1} . The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 17 AALTONEN 13R search for production of a pair of jet-jet resonances in $p \, \overline{p}$ collisions at NODE=S015HP;LINKAGE=C $E_{\rm cm} = 1.96$ TeV with L = 6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits. ¹⁸CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm} =$ NODE=S015HP;LINKAGE=CA 7 TeV with L = 4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m = 1.0-4.3 TeV. ¹⁹CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L NODE=S015HP:LINKAGE=CT = 4.8 fb $^{-1}$. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 20 AAD 12S search for dijet resonances in pp collisions at $E_{\rm cm}=7$ TeV with L=1.0NODE=S015HP;LINKAGE=DA fb^{-1} . See their Fig. 3 and Table 2 for limits on resonance cross section in the range m = 0.9-4.0 TeV. ²¹CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{cm} = 7$ TeV with L NODE=S015HP;LINKAGE=CH = 4.4 fb $^{-1}$. See their Fig. 4 for limits on resonance cross section in the range m = 0.5-3.0 TeV. ²²AAD 11AG search for dijet resonances in *pp* collisions at $E_{cm} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6-4 TeV are given in their Table 3. NODE=S015HP;LINKAGE=AD 23 AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in NODE=S015HP;LINKAGE=AL W + 2 jet events in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV with L = 4.3 fb⁻¹. ²⁴ABAZOV 111 search for two-jet resonances in W + 2 jet events in $p\overline{p}$ collisions at E_{cm} NODE=S015HP;LINKAGE=AZ = 1.96 TeV with L = 4.3 fb⁻¹ and give limits $\sigma < (2.6-1.3)$ pb (95% CL) for m =110-170 GeV. The result is incompatible with AALTONEN 11M. $^{25}\,{\rm AAD}$ 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L NODE=S015HP;LINKAGE=AA = 315 nb⁻¹. Limits on the cross section in the range 10–10³ pb is given for m =0.3-1.7 TeV. ²⁶ KHACHATRYAN 10 search for narrow dijet resonances in pp collisions at $E_{cm} = 7$ TeV NODE=S015HP;LINKAGE=KH with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m =0.5–2.6 TeV separately in the final states qq, qg, and gg. 27 ABE 99F search for narrow $b\overline{b}$ resonances in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV. Limits on NODE=S015HP;LINKAGE=FH $\sigma(p\overline{p} \rightarrow X + \text{anything}) \times B(X \rightarrow b\overline{b})$ in the range 3–10³ pb (95%CL) are given for m_{χ} =200–750 GeV. See their Table I. ²⁸ ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with 106 pb⁻¹ of data at $E_{\rm cm} = 1.8$ TeV. Limits on $\sigma(p\overline{p} \rightarrow X + {\rm anything}) \cdot {\rm B}(X \rightarrow jj)$ in the range 10⁴-10⁻¹ pb NODE=S015HP;LINKAGE=B (95%CL) are given for dijet mass m=200-1150 GeV with both jets having $|\eta| < 2.0$ and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G. ²⁹ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for Γ NODE=S015HP;LINKAGE=A = 0.02 M. Their Table II gives limits for M = 200-900 GeV and $\Gamma = (0.02-0.2)$ M. **REFERENCES FOR Other Particle Searches** NODE=S015

	SIRUNYAN	19B	PR D99 012005	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AABOUD	18AD	PL B779 24	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18CK	PR D98 092002	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
YOUR PAPER	AABOUD	18CL	PR D98 092005	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18N	PRL 121 081801	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	SIRUNYAN	18DJ	JHEP 1809 101	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	18DY	PR D98 112014	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	KHACHATRY	17W	PL B769 520	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	KHACHATRY	17Y	PL B770 257	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AABOUD	16	PL B759 229	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)

REFID=59516
REFID=58998
REFID=59470
REFID=59472
REFID=58866
REFID=59341
REFID=59504
REFID=57899
REFID=57904
REFID=57820
REFID=57233

AAD	16N	JHEP 1603 026
AAD	16S	PL B754 302
KHACHATRY	16K	PRL 116 071801
KHACHATRY	16L	PRL 117 031802
AAD	13D	JHEP 1301 029
AALTONEN	13R	PRL 111 031802
CHATRCHYAN	13A	JHEP 1301 013
AAD	12S	PL B708 37
CHATRCHYAN	12BL	JHEP 1212 015
AAD	11AG	NJP 13 053044
AALTONEN	11M	PRL 106 171801
ABAZOV	111	PRL 107 011804
AAD	10	PRL 105 161801
KHACHATRY	10	PRL 105 211801
Also		PRL 106 029902
ABE	99F	PRL 82 2038
ABE	97G	PR D55 5263
ABE	93G	PRL 71 2542

G. Aad et al.
G. Aad et al.
V. Khachatryan et al.
G. Aad et al.
T. Aaltonen et al.
G. Aad et al.
G. Aad et al.
G. Aad et al.
S. Chatrchyan et al.
G. Aad et al.
T. Aaltonen et al.
V.M. Abazov et al.
G. Aad et al.
V. Khachatryan et al.
V. Khachatryan et al.
F. Abe et al.
F. Abe et al.
F. Abe et al.

(ΔΤΙ Δ S	Collab)
(ATLAS	Collab.)
(CMS	Collab.)
(CNS	Collab.)
	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
(CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=57168
REFID=57206
REFID = 57181 REFID = 57195
REFID=54792
REFID=55220
REFID = 54770
REFID=54152 REFID=54776
REFID=54009
REFID=16445
REFID=16475
REFID=534/7
REFID=53629
REFID=46728
REFID=45343
REFID=43512

Reference Verifier code AABOUD 18CM; PR D98 092008
 ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W'); 2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \, \text{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode. 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) long-NODE=S015CS;LINKAGE=A lived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3

REFERENCES FOR Other Particle Searches

interaction cross section are given in figure 2.

GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and

YOUR PAPER

	AABOUD	18CJ	PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS	Collab.
R	AABOUD	18CM	PR D98 092008	M. Aaboud <i>et al.</i>	(ATLAS	Collab.
	AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>	`(LHCb	Collab.
	BANERJEE	18	PRL 120 231802	D. Banerjee <i>et al.</i>	(NA64	Collab.
	BANERJEE	18A	PR D97 072002	D. Banerjee et al.	(NA64	Collab.
	MARSICANO	18	PR D98 015031	L. Marsicano et al.		
	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS	Collab.
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	(CMS	Collab.
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	(CMS	Collab.
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.	(CMS	Collab.
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	(CMS	Collab.
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS	Collab.
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb	Collab
	ZANG	17	PL B773 159	X. Zang, G.A. Miller		(WASH
	AAD	160	PL B760 520	G. Aad et al.	(ATLAS	Collab
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	ATLAS	Collab.
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	(HINR,	ANIK+
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR	Collab.
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV	Collab.
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT,	, FLOR
	AKESSON	91	ZPHY C52 219	T. Akesson et al.	(HELIOS	Collab.
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3	Collab.
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.		(MICH

NODE=S015

4/5/2019 10:34

Page 24

REFID-50//1
REFID=59474
REFID=59199
REFID-58838
REFID=58910
REFID=58967
REFID-50112
REFID=59300
REFID=59318
REFID=59367
REEID-50460
REFID=59500
REFID=57706
REFID=58366
REEID-50311
NET ID - 59511
REFID=57169
REFID=57172
REEID-59302
REFID=30407
REFID=45722
REFID=44291
RFFID-41730
DECID 10600
REFID=10022
REFID=12580

= AABOUD 19L; 1812.03017 = ATLAS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Pierre Savard

EMAIL: savard@physics.utoronto.ca

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's

Quantum numbers not measured. Values shown are quark-model

 $I(J^P) = \frac{1}{2}(0^-)$

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE sections.

 B^0

γ

predictions.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

$\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$	Γ ₅₁₄ /Γ
Test for $\Delta B=1$ weak neutral current.	Allowed by higher-order electroweak interactions.

	VALUE (units 10 ⁻⁹)	<u></u> <u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	NODE=304210
	0.16 ^{+0.16} _{-0.14} O	ur avera	GE Error include	s scale factor of	1.9. See the ideogram	
YOUR DATA	below. $- 0.19 \pm 0.16$		¹ AABOUD	19L ATLS	<i>pp</i> at 7, 8, 13 TeV	I
	$0.15 \substack{+0.12 + 0.00}{-0.10 - 0.00}$	0.02 0.01	² AAIJ	17AI LHCB	<i>pp</i> at 7, 8, 13 TeV	
	$0.39\substack{+0.16 \\ -0.14}$		³ KHACHATR	Y15BE LHC	<i>pp</i> at 7, 8 TeV	
	• • • We do not us	se the follow	ving data for avera	ges, fits, limits,	etc. • • •	
	$-$ 0.25 \pm 0.20		⁴ AABOUD	16L ATLS	pp at 7, 8 TeV, Repl. by AABOUD 16	OCCUR=2
	< 0.80	90	⁵ AAIJ	13B LHCB	Repl. by AAIJ 13BA	
	< 0.63	90	⁶ AAIJ	13BA LHCB	Repl. by KHACHA-	
	< 3.8	90	⁷ AALTONEN	13F CDF	IRYAN 15BE nn at 1.96 TeV	
	< 0.92	90	⁸ CHATRCHY	AN 13AW CMS	pp at 1.50 TeV	
	< 2.6	90	⁵ AAIJ	12A LHCB	Repl. by AAIJ 12W	
	< 0.81	90	⁹ AAIJ	12w LHCB	Repl. by AAIJ 13B	
	< 1.4	90	⁹ CHATRCHY/	AN 12A CMS	pp at 7 TeV	
	< 12	90	¹⁰ AAIJ	11B LHCB	Repl. by AAIJ 12A	
	< 5.0	90	⁹ AALTONEN	11AG CDF	$p\overline{p}$ at 1.96 TeV	
	< 3.7	90	⁹ CHATRCHY	AN11⊤ CMS	Repl. by CHA- TRCHYAN 12A	
OUR NOTE	¹ Corresponds to	a 95% CL (upper limit of < 2 .	1×10^{-10} .		NODE=S042R7:LINKAGE=F
	² Corresponds to	a 95% CL (upper limit of < 0 .	34×10^{-9} .		NODE=S042R7;LINKAGE=E
	³ Derived from t	he combine	d fit to CMS and	l LHCb data.	Uncertainty includes both	NODE=S042R7;LINKAGE=D
	statistical and s = $0.14 \stackrel{+0.08}{-0.06}$.	ystematic co	omponent. Also re	ports B($B^0 ightarrow$	$\mu^+\mu^-)/B(B_s \to \mu^+\mu^-)$	
	⁴ This value is o uppper limit of	btained from $< 0.42 imes 1$	n a profile-likelihc .0 ^{—9} at 95% C.L.	ood fit, see Fig	9. It corresponds to an	NODE=S042R7;LINKAGE=AB
	$5 \text{ Uses B}(B^+ \rightarrow = (1.94 \pm 0.06)$	NODE=S042R7;LINKAGE=AJ				
	⁶ Reports also a $J/\psi K^+ \rightarrow \mu^+$	NODE=S042R7;LINKAGE=IA				
	⁷ Uses normalizat	ion mode E	$B(B^+ \rightarrow J/\psi K^+)$	$) = (10.22 \pm 0)$	$(.35) \times 10^{-4}$.	NODE=S042R7;LINKAGE=AN
	⁸ Uses B($B^+ \rightarrow$	$J/\psi K^+$ –	$\rightarrow \mu^+ \mu^- K^+) =$	$(6.0 \pm 0.2) \times 1$	0^{-5} for normalization.	NODE=S042R7:LINKAGE=CT
	⁹ Uses B($B^+ \rightarrow$	$J/\psi K^+ \rightarrow$	$\mu^+ \mu^- K^+) = ($	$6.01\pm0.21) imes$	10 ⁻⁵ .	NODE=S042R7;LINKAGE=AT

⁹ Uses $B(B^+ \rightarrow J/\psi \wedge \gamma \rightarrow \mu^+ \mu^- \wedge \gamma) = (0.01 \pm 0.21) \wedge 10^{-1}$ ¹⁰ Uses *B* production ratio $f(\overline{b} \rightarrow B^+)/f(\overline{b} \rightarrow B_s^0) = 3.71 \pm 0.47$ and three normalization modes. NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

NODE=S042R7 NODE=S042R7 NODE=S042R7

NODE=S042220

NODE=S042220

NODE=S042R7;LINKAGE=AI

B⁰ REFERENCES

YOUR PAPER	AABOUD	19L	1812.03017	M. AABOUD et al.	(ATLAS Col	lab.)
	AAIJ	17AI	PRL 118 191801	R. Aaij et al.	(LHCb Col	lab.)
	AABOUD	16L	EPJ C76 513	M. Aaboud et al.	(ATLAS Col	lab.)
	KHACHATRY	15BE	NAT 522 68	V. Khachatryan et al.	(CMS and LHCb Col	lab.)
	AAIJ	13B	PRL 110 021801	R. Aaij et al.	LHCb Col	lab.)
	AAIJ	13BA	PRL 111 101805	R. Aaij et al.	(LHCb Col	lab.)
	AALTONEN	13F	PR D87 072003	T. Aaltonen et al.	(CDF Col	lab.)
	CHATRCHYAN	13AW	PRL 111 101804	S. Chatrchyan et al.	(CMS Col	lab.)
	AAIJ	12A	PL B708 55	R. Aaij <i>et al.</i>	(LHCb Col	lab.)
	AAIJ	12W	PRL 108 231801	R. Aaij <i>et al.</i>	(LHCb Col	lab.)
	CHATRCHYAN	12A	JHEP 1204 033	S. Chatrchyan et al.	(CMS Col	lab.)
	AAIJ	11B	PL B699 330	R. Aaij <i>et al.</i>	(LHCb Col	iab.)
	AALTONEN	11AG	PRL 107 191801	T. Aaltonen <i>et al.</i>	(CDF Col	iab.)
	Also		PRL 107 239903 (errat.)	T. Aaltonen <i>et al.</i>	(CDF Col	iab.)
	CHATRCHYAN	11T	PRL 107 191802	S. Chatrchyan et al.	(CMS Col	iab.)

 B_s^0

BOTTOM, STRANGE MESONS $(B=\pm 1, S=\mp 1)$ $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}b, \ \text{ similarly for } B_s^*$'s

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quarkmodel predictions.

B⁰ BRANCHING RATIOS

	$\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$					Г ₁₂₆ /Г
	Test for $\Delta B = 1$ weak	neutral current.				
	<u>VALUE (units 10^{-9})</u> <u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
	$2.7^{+0.6}_{-0.5}$ OUR AVERAGE	Error includes	scale f	factor of	1.2.	
OUR DATA	$2.8^{+0.8}_{-0.7}$	AABOUD	19L	ATLS	<i>pp</i> at 7, 8, 13 TeV	I
	$3.0\!\pm\!0.6^{+0.3}_{-0.2}$	AAIJ	17AI	LHCB	<i>pp</i> at 7, 8, 13 TeV	
	13 $^{+9}_{-7}$	1 AALTONEN	13F	CDF	$p \overline{p}$ at 1.96 TeV	
	$3.0^{+1.0}_{-0.9}$	² CHATRCHYA	N 13AV	VCMS	<i>pp</i> at 7, 8 TeV	
	$\bullet \bullet \bullet$ We do not use the following	lowing data for av	erages	s, fits, li	mits, etc. • • •	
	$0.9^{+1.1}_{-0.8}$	³ AABOUD	16L	ATLS	<i>p p</i> at 7, 8 TeV, Repl AABOUD 16L	l. by
	$2.8^{+0.7}_{-0.6}$	⁴ KHACHATRY	15 BE	LHC	<i>pp</i> at 7, 8 TeV	
	$3.2^{+1.4}_{-1.2}{}^{+0.5}_{-0.3}$	⁵ AAIJ	13 B	LHCB	Repl. by AAIJ 13BA	
	20 + 1.1 + 0.3	6	1204		Dont by KUACUA	

$3.2^{+1.4}_{-1.2}{}^{+0.5}_{-0.3}$		⁵ AAIJ	13B LHCB	Repl. by AAIJ 13BA
$2.9^{+1.1}_{-1.0}{}^{+0.3}_{-0.1}$		⁶ AAIJ	13BA LHCB	Repl. by KHACHA-
<12	90	⁷ ABAZOV	13C D0	$p\overline{p}$ at 1.96 TeV
<19	90	⁸ AAD	12AE ATLS	pp at 7 TeV
<12	90	⁹ AAIJ	12A LHCB	Repl. by AAIJ 12W
< 3.8	90	¹⁰ AAIJ	12W LHCB	Repl. by AAIJ 13B
< 6.4	90	¹¹ CHATRCHYAN	12A CMS	pp at 7 TeV
<43	90	¹² AAIJ	11B LHCB	Repl. by AAIJ 12A
<35	90	¹³ AALTONEN	11AG CDF	$p\overline{p}$ at 1.96 TeV
<16	90	¹⁴ CHATRCHYAN	N11⊤ CMS	Repl. by CHATRCHYAN 12A
<42	90	¹⁵ ABAZOV	10s D0	<i>pp</i> at 1.96 TeV
-				

¹Uses normalization mode B($B^+ \rightarrow J/\psi K^+$) = (10.22±0.35)×10⁻⁴ and *B* production ratio f($\overline{b} \rightarrow B_s^0$)/f($\overline{b} \rightarrow B_d^0$) = 0.28±0.04. ²Uses *B* production ratio f($\overline{b} \rightarrow B_s^0$)/f($\overline{b} \rightarrow B_d^0$) = 0.256±0.020 and B($B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$) = (6.0±0.2)×10⁻⁵ for normalization. ³This value corresponds to an upper limit of < 3.0×10⁻⁹ at 95% C.L. It uses f_s/f_d = 0.24±0.02

 $0.24\,\pm\,0.02.$

⁴ Determined from the joint fit to CMS and LHCb data. Uncertainty includes both statistical and systematic component.

NODE=S042

REFID=59640
REFID=57928
REFID=57469
REFID=56946
REFID=54767
REFID=55227
REFID=55142
REFID=55225
REFID=54033
REFID=54217
REFID=54060
REFID=16667
REFID=53834
REFID=54005
REFID=53839

NODE=MXXX046

NODE=MXXX046

NODE=S086

NODE=S086

NODE=S086230

NODE=S086R14 NODE=S086R14 NODE=S086R14

OCCUR=2

NODE=S086R14;LINKAGE=CT

NODE=S086R14;LINKAGE=AN

NODE=S086R14;LINKAGE=B

NODE=S086R14;LINKAGE=D

NODE=S086 REFID=59640 REFID=57928 REFID=57469 REFID=557469 REFID=554767 REFID=55143 REFID=55143 REFID=554194 REFID=54033 REFID=540400 REFID=54005 REFID=53839 REFID=538481

 5 Uses B production ratio f($\overline{b} \rightarrow ~B^0_{s})/f(\overline{b} \rightarrow ~B^0_{d}) = 0.256 \pm 0.020$ and two normalization NODE=S086R14;LINKAGE=A modes: $B(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) = (6.01 \pm 0.21) \times 10^{-5}$ and $B(B^0 \to K^+ \pi^-) = (1.94 \pm 0.06) \times 10^{-5}$. ⁶Uses *B* production ratio $f(\overline{b} \rightarrow B_{S}^{0})/f(\overline{b} \rightarrow B_{d}^{0}) = 0.259 \pm 0.015$ and normalization NODE=S086R14;LINKAGE=IA modes $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$ and $B^0 \rightarrow K^+ \pi^-$. ⁷ Uses normalization mode B($B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10⁻⁵ NODE=S086R14;LINKAGE=BA and *B* production ratio $f(\overline{b} \rightarrow B_s^0)/f(\overline{b} \rightarrow B_d^0) = 0.263 \pm 0.017$. ⁸ Uses *B* production ratio $f(\overline{b} \rightarrow B^+)/f(\overline{b} \rightarrow B_s^0) = 3.75 \pm 0.29$ and $B(B^+ \rightarrow J/\psi K^+ \rightarrow B_s^0) = 3.75 \pm 0.29$ NODE=S086R14;LINKAGE=AD $\mu^+ \mu^- K^+$) = (6.0 ± 0.2) × 10⁻⁵. ⁹ Uses *B* production ratio $f(\overline{b} \rightarrow B_s^0)/f(\overline{b} \rightarrow B_d^0) = 0.267 \substack{+0.021 \\ -0.020}$ and three normalization NODE=S086R14;LINKAGE=AJ modes $B(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) = (6.01 \pm 0.21) \times 10^{-5}$, $B(B^0 \to K^+ \pi^-) = (1.94 \pm 0.06) \times 10^{-5}$, and $B(B_s^0 \to J/\psi \phi \to \mu^+ \mu^- K^+ K^-) = (3.4 \pm 0.9) \times 10^{-5}$. ¹⁰ Uses *B* production ratio $f(\overline{b} \to B_s^0)/f(\overline{b} \to B_d^0) = 0.267^{+}_{-0.020}$ and three normalization modes of $B^+ \to J/\psi K^+$, $B^0 \to K^+ \pi^-$, and $B_s^0 \to J/\psi \phi$. ¹¹ Uses $f_s/f_u = 0.267 \pm 0.021$ and $B(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) = (6.0 \pm 0.2) \times 10^{-5}$. NODE=S086R14;LINKAGE=IJ NODE=S086R14;LINKAGE=CA ¹²Uses B production ratio f($\overline{b} \rightarrow B^+$)/f($\overline{b} \rightarrow B_s^0$) = 3.71 ± 0.47 and three normalization NODE=S086R14;LINKAGE=AI modes. ¹³Uses *B* production ratio $f(\overline{b} \rightarrow B^+)/f(\overline{b} \rightarrow B_c^0) = 3.55 \pm 0.47$ and $B(B^+ \rightarrow J/\psi K^+ \rightarrow J/\psi K^+)$ NODE=S086R14;LINKAGE=AT $\mu^+\mu^-K^+$) = (6.01 ± 0.21) × 10⁻⁵. ¹⁴Uses *B* production ratio $f(\overline{b} \rightarrow B^+)/f(\overline{b} \rightarrow B^0_s) = 3.55 \pm 0.42$ and $B(B^+ \rightarrow J/\psi K^+ \rightarrow U)$ NODE=S086R14;LINKAGE=CH $\mu^+ \mu^- K^+$) = (6.0 ± 0.2) × 10⁻⁵. ¹⁵Uses B production ratio f($\overline{b} \rightarrow B^+$)/f($\overline{b} \rightarrow B^0_c$) = 3.86 ± 0.59, and the number of NODE=S086R14;LINKAGE=AA $B^+ \rightarrow J/\psi K^+$ decays.

B⁰ REFERENCES

		1.01	1010 00017			C !! !)
YOUR PAPER	AABOUD	19L	1812.03017	M. AABOUD et al.	(ATLAS	Collab.)
	AAIJ	17AI	PRL 118 191801	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AABOUD	16L	EPJ C76 513	M. Aaboud et al.	(ATLAS	Collab.)
	KHACHATRY	15BE	NAT 522 68	V. Khachatryan et al.	(CMS and LHCb	Collab.)
	AAIJ	13B	PRL 110 021801	R. Aaij et al.	` (LHCb	Collab.)
	AAIJ	13BA	PRL 111 101805	R. Aaij et al.	(LHCb	Collab.)
	AALTONEN	13F	PR D87 072003	T. Aaltonen et al.	(CDF	Collab.)
	ABAZOV	13C	PR D87 072006	V.M. Abazov et al.	(D0	Collab.)
	CHATRCHYAN	13AW	PRL 111 101804	S. Chatrchyan et al.	(CMS	Collab.)
	AAD	12AE	PL B713 387	G. Aad et al.	(ATLAS	Collab.)
	AAIJ	12A	PL B708 55	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	12W	PRL 108 231801	R. Aaij et al.	(LHCb	Collab.)
	CHATRCHYAN	12A	JHEP 1204 033	S. Chatrchyan et al.	(CMS	Collab.)
	AAIJ	11B	PL B699 330	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AALTONEN	11AG	PRL 107 191801	T. Aaltonen et al.	(CDF	Collab.)
	Also		PRL 107 239903 (errat.)	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	CHATRCHYAN	11T	PRL 107 191802	S. Chatrchyan et al.	(CMS	Collab.)
	ABAZOV	10S	PL B693 539	V.M. Abazov et al.	`(D0	Collab.)

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Fabio Anulli

EMAIL: anulli@slac.stanford.edu

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT !! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov April 5, 2019

	$\begin{array}{c} \text{BOTTOM MESONS} \\ (B=\pm 1) \end{array}$	NODE=MXXX045
	$B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's	NODE=MXXX045
	B^0 $I(J^P) = \frac{1}{2}(0^-)$	NODE=S042
	Quantum numbers not measured. Values shown are quark-model predictions.	NODE=5042
	See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.	
	See the Note "Production and Decay of <i>b</i> -flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.	
	B⁰ BRANCHING RATIOS	NODE=S042220
	For branching ratios in which the charge of the decaying B is not determined, see the B^\pm section.	NODE=S042220
YOUR DATA	$ \begin{array}{c c} \Gamma(p p \overline{p} \overline{p}) / \Gamma_{\text{total}} & \Gamma_{460} / \Gamma \\ \hline VALUE (\text{units } 10^{-7}) & \underline{CL\%} & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline < 2.0 & 90 & 1 \text{LEES} & 18C & \text{BABR} & e^+ e^- \rightarrow \ \Upsilon(4S) \end{array} $	NODE=S042P27 NODE=S042P27
YOUR NOTE	1 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.	NODE=S042P27;LINKAGE=A
	B ⁰ REFERENCES	NODE=S042
YOUR PAPER	LEES 18C PR D98 071102 J.P. Lees et al. (BABAR Collab.)	REFID=59451

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Marco Battaglieri

EMAIL: marco.battaglieri@ge.infn.it

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT !! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

SEARCHES not in other sections

Other Particle Searches

OMITTED FROM SUMMARY TABLE

YOUR DATA

YOUR NOTE

LIMITS ON NEUTRAL PARTICLE PRODUCTION							NODE=S015415	
Heavy Particle Pro	ductior	Cross Section					NODE=S015CS	
VALUE (cm^2/N)	CL%	DOCUMENT ID		TECN	COMMENT		NODE=S015CS	
• • • We do not use	the follo	wing data for avera	ges, f	its, limit	s, etc. ● ● ●			
		¹ AABOUD	18CJ	ATLS	$pp \rightarrow VV/\ell\ell/\ell\nu, V =$	L		
		² AABOUD ³ AAIJ	18CM 18AJ	ATLS LHCB	$pp \rightarrow e\mu/e\tau/\mu\tau$ $pp \rightarrow A' \rightarrow \mu^+\mu^-;$			
		⁴ BANERJEE ⁵ BANERJEE ⁶ MARSICANO	18 18A 18	NA64 NA64 E137	$eZ \rightarrow eZX(A')$ $eZ \rightarrow eZA', A' \rightarrow \chi\chi$ $e^+e^- \rightarrow A'(\gamma)$ visible			
		⁷ SIRUNYAN	18BE	B CMS	$pp \rightarrow Z' \rightarrow \ell^+ \ell^- \text{ at } 13$	I		
		⁸ SIRUNYAN	18DA	A CMS	$pp \rightarrow Black Hole, string ball sphaleron$	L		
		 ⁹ SIRUNYAN ¹⁰ SIRUNYAN ¹¹ SIRUNYAN ¹² SIRUNYAN 	18DE 18DF 18DU 18EE	CMS CMS CMS CMS CMS	$pp \rightarrow jj$ $pp \rightarrow b\mu\overline{\mu}$ $pp \rightarrow \gamma\gamma$ $pp \rightarrow V \rightarrow Wh; h \rightarrow$			
		¹³ AABOUD ¹⁴ AAIJ ¹⁵ AAD ¹⁶ AAD ¹⁷ KRASZNAHO.	17B 17BF 160 16R 16	ATLS LHCB ATLS ATLS	$bb; W \rightarrow I\nu$ WH, ZH resonance $pp \rightarrow \pi_V \pi_V, \pi_V \rightarrow jj$ $\ell + (\ell \text{s or jets})$ WW, WZ, ZZ resonance $p^7 \text{Li} \rightarrow {}^8\text{Be} \rightarrow X(17)N,$ $X(17) \qquad z^+ z^-$	I		
$< 10^{-36}$ -10 ⁻³³ $<(4$ -0.3) $\times 10^{-31}$ $< 2 \times 10^{-36}$ $< 2.5 \times 10^{-35}$	90 95 90	 LEES ADAMS GALLAS AKESSON BADIER GUSTAFSON 	15E 97B 95 91 86 76	BABR KTEV TOF CNTR BDMP CNTR	$x(17) \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \text{ collisions}$ $m= 1.2-5 \text{ GeV}$ $m= 0.5-20 \text{ GeV}$ $m= 0-5 \text{ GeV}$ $\tau = (0.05-1.) \times 10^{-8}\text{ s}$ $\tau > 10^{-7} \text{ s}$			
¹ AABOUD 18CJ m	ake mul	tichannel search fo	pp ·	$\rightarrow VV$	$/\ell\ell/\ell\nu, V = W,Z,h$ at 13		NODE=S015CS;LINKAGE=R	
² AABOUD 18CM se	earch for	lepton-flavor violat	ing re	sonance	in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13	i	NODE=S015CS;LINKAGE=S	
IeV, 36.1 fb ⁻¹ ; n ³ AAIJ 18AJ search detector using 1.6	for pror fb ⁻¹ o	is found and limits npt and delayed da f <i>pp</i> collisions at 1	place irk ph 3 Te\	ed for va oton de /; limits	rious BSM models. cay $A' \rightarrow \mu^+ \mu^-$ at LHCb on m(A') vs. kinetic mixing	İ	NODE=S015CS;LINKAGE=K	
⁴ BANERJEE 18 se eZX(A'); no sig	earch foi mal fou	r dark photon $A'/$ nd and limits set 10^{-4} evoluting pa	16.7 on th	MeV bo ne <i>X-e</i>	son X at NA64 via $eZ \rightarrow$ coupling ϵ_e in the range	İ	NODE=S015CS;LINKAGE=L	
⁵ BANERJEE 18A s invisible; no signal	search found a	or invisibly decayin and limits set on mi	g dar xing f	k photom for m(A'	$\begin{array}{l} \text{ns in } eZ \rightarrow eZA', A' \rightarrow \\ 0 < 1 \text{ GeV.} \end{array}$	İ	NODE=S015CS;LINKAGE=M	
⁶ MARSICANO 18 s e beam dump data	search fo a. No sig	or dark photon e^+ , gnal observed and l	e [—] — imits	$\rightarrow A'(\gamma)$ set in ϵ	visible decay in SLAC E137 coupling vs $m(A')$ plane, see		NODE=S015CS;LINKAGE=P	
⁷ SIRUNYAN 18BB	search fo	or high mass dilept	on res	ionance;	no signal found and exclude	ĺ	NODE=S015CS;LINKAGE=O	
⁸ SIRUNYAN 18DA s events at 13 TeV,	e or ∠`, search fo 35.9 fb⁻	for $pp \rightarrow \text{Black Hole}^{-1}$; no signal, require	s. , strin re e.g	ng ball, s 5. m(BH	phaleron via high multiplicity)¿10.1 TeV		NODE=S015CS;LINKAGE=T	

 9 SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) > 5.9–8.2 TeV.

 10 SIRUNYAN 18DR search for dimuon resonance in $pp \rightarrow b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) $\sim~$ 28 GeV in some channels.

NODE=S015

NODE=SXXX005

NODE=S015CS;LINKAGE=U

NODE=S015CS;LINKAGE=V

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W'); 2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their

figure 5 for the contours of limits in the mass- τ plane for each mode. GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m > 2 GeV) long-NODE=S015CS;LINKAGE=A

 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m>2 GeV) long-lived neutral hadrons in the M4 neutral beam. The above typical value is for m=3 GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

	AABOUD	18CJ	PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	AABOUD	18CM	PR D98 092008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>	(LHCb Collab.)
	BANERJEE	18	PRL 120 231802	D. Banerjee <i>et al.</i>	(NA64 Collab.)
	BANERJEE	18A	PR D97 072002	D. Banerjee <i>et al.</i>	(NA64 Collab.)
OUR PAPER	SIRUNYAN SIRUNYAN	18 18BB 18DA	JHEP 1806 120 JHEP 1811 042	L. Marsicano <i>et al.</i> A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
	SIRUNYAN SIRUNYAN	18DR 18DU	JHEP 1811 161 PR D98 092001	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaii <i>et al.</i>	(LHCb Collab.)
	ZANG AAD	17 160	PL B773 159 PL B760 520 PL B765 285	X. Zang, G.A. Miller G. Aad <i>et al.</i>	(WASH) (ATLAS Collab.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	(HINR, ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees <i>et al.</i>	(BABAR Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOR)
	AKESSON	91	7PHY C52 219	T. Akesson <i>et al</i>	(HELIOS Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3 Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson <i>et al.</i>	(MICH)

NODE=S015

DEEID_50441
REFID=59441
REFID=59474
REFID=59199
REFID=58838
RFFID=58916
REFID-58067
DEFID 50110
REFID=59112
REFID=59306
REFID=59318
REFID=59367
RFFID=59469
REFID-50566
DECID_5706
REFID=58300
REFID=59311
REFID=57169
RFFID=57172
REFID-50302
DEEID_56467
REFID=45/22
REFID=44291
REFID=41739
REFID=10622
REFID=12580
ILL ID -12300

4/5/2019 10:34 Page 33

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.

Dear Colleague,

- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov April 5, 2019

YOUR PAPER LOUVOT

PRL 104 231801

10

R. LOUVOT et al.

(BELLE Collab.)

REFID=53334

SIBIDANOV 18; PRL 121 031801BELLE

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

B. Aubert et al.

B. Aubert et al.

B. Aubert et al.

B. Aubert et al.

M. Artuso et al.

N. Satovama et al.

10E

09V

07

95

04O

PR D81 051101

PR D79 091101

PRL 92 221803

08AD PR D77 091104

PL B647 67

PRL 75 785

AUBERT

AUBERT

AUBERT

AUBERT

ARTUSO

SATOYAMA

REFID=58854 REFID=56552 REFID=53218 REFID=52882 REFID=52347 REFID=51649 REFID=49930 REFID=44347

(BABAR Collab.)

(BABAR Collab.)

(BABAR Collab.) (BELLE Collab.)

(BABAR Collab.)

(CLEO Collab.)

NAKANO 18; PR D97 092003BELLE

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PR D97 092003 NAKANO 18

09

AUBERT

H. Nakano et al. PR D79 011102 B. Aubert et al.

(BELLE Collab.) (BABAR Collab.)

REFID=58936 REFID=52639

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov 4/5/201

B^{\pm} REFERENCES

A. Vossen et al.

YOUR PAPER VOSSEN

AUBERT LIVENTSEV

LIVENTSEV 05

PR D98 012005 18 08Q PRL 100 151802 08 PR D77 091503 PR D72 051109

value.

B. Aubert *et al.*D. Liventsev *et al.*D. Liventsev *et al.*

(BELLE Collab.) (BABAR Collab.) (BELLE Collab.)

(BELLE Collab.)

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " $B^0 - \overline{B}^0$ Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

	$\Gamma(\overline{D}{}^{0}\pi^{-}\ell^{+} u_{\ell})/\Gamma_{ ext{total}}$				Г ₈ /Г	NODE=S042Q36
	VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT		NODE=S042Q36
	4.1 ±0.5 OUR AVERAGE $[(4.3 \pm 0.6) \times 10^{-3} \text{ OUR 20}]$	18 AVERAGE]				NEW
YOUR DATA	$\begin{array}{r} 4.05 \pm 0.36 \pm 0.41 \\ 4.3 \ \pm 0.8 \ \pm 0.3 \end{array}$	VOSSEN 18 ¹ AUBERT 08	BELL BQ BABR	$e^+ e^- ightarrow ~\Upsilon(4S) \ e^+ e^- ightarrow ~\Upsilon(4S)$) I	
	• • • We do not use the follow	owing data for averages,	fits, limit	s, etc. ● ● ●		
	$\begin{array}{rrr} 4.4 \ \pm 0.9 \ \pm 0.2 \\ 3.3 \ \pm 0.9 \ \pm 0.1 \end{array}$	^{1,2} LIVENTSEV 08 ³ LIVENTSEV 05	BELL BELL	Repl. by VOSSE Repl. by LIVENT	N 18 SEV 08	
	¹ Uses a fully reconstructed ² LIVENTSEV 08 reports $\overline{D}^0 \pi^- \ell^+ \nu_\ell)/\Gamma_{\text{total}}] / [1000 \pm 10^{-2}]$, which we 10^{-2} . Our first error is a error from using our best	I B meson as a tag on t $(4.2 \pm 0.7 \pm 0.6) \times 10$ B $(B^0 \rightarrow D^- \ell^+ \nu_{\ell})$] as escale to our best value B their experiment's error value	he recoil s $^{-3}$ from a suming B($^{3}(B^{0} ightarrow B)$ and our se	ide. a measurement of $B^0 \rightarrow D^- \ell^+ \nu_{\ell}) = (2.20)$ $D^- \ell^+ \nu_{\ell}) = (2.20)$ econd error is the s	$[\Gamma(B^0 \rightarrow = (2.12 \pm \pm 0.10) \times \text{ystematic}]$	NODE=S042Q36 NODE=S042Q36
	³ LIVENTSEV 05 reports $0.15 \pm 0.03 \pm 0.03$ which $0.10) \times 10^{-2}$. Our first systematic error from using	$ [\Gamma(B^0 \rightarrow \overline{D}{}^0 \pi^- \ell^+ \nu_{\ell} $ we multiply by our best error is their experimeng our best value.)/F _{total}] value B(<i>E</i> nt's error	$/ [B(B^+ \to \overline{D}^0 \ell \\ B^+ \to \overline{D}^0 \ell^+ \nu_{\ell}) =$ and our second er	$(2+ u_\ell)]=$ = (2.20 \pm ror is the	NODE=S042Q36
	$\Gamma(\overline{D}^{*0}\pi^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$				Γ ₁₂ /Γ	NODE=S042Q37
	<u>VALUE (units 10^{-3})</u>	DOCUMENT ID	TECN	COMMENT	2	NODE-3042Q37
	5.8 ±0.8 OUR AVERAGE 2018 AVERAGE]	Error includes scale fac	tor of 1.4.	$[(4.9\pm0.8)\times10]$	-3 OUR	NEW
YOUR DATA	$6.46 \pm 0.53 \pm 0.52$ 4.8 ±0.8 ±0.4 • • • We do not use the following th	VOSSEN 18 ¹ AUBERT 08 owing data for averages,	B BELL BQ BABR fits, limit	$e^+ e^- ightarrow \ \Upsilon(4S) \ e^+ e^- ightarrow \ \Upsilon(4S) \ \mathrm{s, \ etc.} \ ullet \ \mathrm{e}^- \ \mathrm{e}^-$)	
	5.8 $\pm 2.3 \pm 0.3$ 4.9 $\pm 1.1 \pm 0.1$	1,2 LIVENTSEV 08 ^{3,4} LIVENTSEV 05	B BELL B BELL	Repl. by VOSSE Repl. by LIVENT	N 18 SEV 08	
	¹ Uses a fully reconstructed ² LIVENTSEV 08 reports $\overline{D}^{*0}\pi^{-}\ell^{+}\nu_{\ell})/\Gamma_{\text{total}}]/$ 0.20)×10 ⁻² , which we refer to solve the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of the term of term of the term of t	If B meson as a tag on t (5.6 \pm 2.1 \pm 0.8) \times 10 [B(B ⁰ \rightarrow D ⁻ $\ell^+ \nu_{\ell}$)] as escale to our best value B their experiment's error value	he recoil s $^{-3}$ from a suming B($_3(B^0 ightarrow I)$ and our se	ide. a measurement of $(B^0 \rightarrow D^- \ell^+ \nu_\ell) = (2.20)$ econd error is the s	$[\Gamma(B^0 \rightarrow = (2.12 \pm \pm 0.10) \times \text{ystematic}]$	NODE=S042Q37 NODE=S042Q37
	³ Excludes D^{*+} contribution ⁴ LIVENTSEV 05 Γ_{total}] / [B($B^+ \rightarrow \overline{D}^*$	to n to $D\pi$ modes. reports $[\Gamma(B^0 + \nu_\ell)] = 0.10$	$ ightarrow$ \pm 0.02 \pm	$\overline{D}^{*0}\pi^{-1}$ = 0.01 which we m	$^{-}\ell^{+} u_{\ell})/$ ultiply by	NODE=S042Q37 NODE=S042Q37

our best value B($B^+ \rightarrow \overline{D}^*(2007)^0 \ell^+ \nu_\ell$) = (4.88 ± 0.10) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best NODE=S041

REFID=58961
REFID=52229 REFID=52230
REFID=50903
NODE=S042

NODE=S042

NODE=S042220 NODE=S042220

NODE=S042Q36;LINKAGE=BE NODE=S042Q36;LINKAGE=LV

NODE=S042Q36;LINKAGE=LI

NODE=S042Q37;LINKAGE=BE NODE=S042Q37;LINKAGE=LV

NODE=S042Q37;LINKAGE=EC NODE=S042Q37;LINKAGE=LI

NODE=S042

)	REFID
)	REFID
)	REFID
	DELID

B⁰ REFERENCES

YOUR PAPER	VOSSEN	18	PR D98 012005	A. Vossen <i>et al.</i>	(BELLE Collab.)	REFID=58961
	AUBERT	08Q	PRL 100 151802	B. Aubert <i>et al.</i>	(BABAR Collab.)	REFID=52229
	LIVENTSEV	08	PR D77 091503	D. Liventsev <i>et al.</i>	(BELLE Collab.)	REFID=52230
	LIVENTSEV	05	PR D72 051109	D. Liventsev <i>et al.</i>	(BELLE Collab.)	REFID=50903

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

AUBERT GABYSHEV EPJ C78 252 PR D77 031101 PRL 97 202003

08H

06

B. Aubert *et al.* N. Gabyshev *et al.* (BELLE Collab.) (BABAR Collab.) (BELLE Collab.)

```
REFID=59162
REFID=52169
REFID=51488
```

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

- Dear Colleague,
 - (1) Please check the results of your experiment carefully. They are marked.
 - (2) Please reply within one week.
 - (3) Please reply even if everything is correct.
 - (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
 - (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

 YOUR PAPER
 LI
 18D
 EPJ C78 928
 Y.B. Li et al.
 (BELLE Collab.)

 AUBERT
 08H
 PR D77 031101
 B. Aubert et al.
 (BABAR Collab.)

 GABYSHEV
 06
 PRL 97 202003
 N. Gabyshev et al.
 (BELLE Collab.)

REFID=59326 REFID=52169 REFID=51488 SANDILYA 18; PR D98 071101BELLE

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, B^0 = d\overline{b}, \overline{B}^0 = \overline{d}b, B^- = \overline{u}b,$ similarly for B^* 's

 B^0

Quantum numbers not measured. Values shown are quark-model predictions.

 $I(J^P) = \frac{1}{2}(0^-)$

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " $B^0-\overline{B}^0$ Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

	$\Gamma(K^*(892)^0 e^+ \mu^-)/$	Γ _{total}					Г ₅₄₃ /Г
	VALUE (units 10^{-7})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
	<1.6 (CL = 90%) [<5	5.3×10^{-1}	7 (CL = 90%) O	UR 20	18 BEST	Г LIMIT]	
YOUR DATA	<1.6	90	¹ SANDILYA	18	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
	$\bullet \bullet \bullet$ We do not use the	e following	g data for average	s, fits,	limits, e	etc. • • •	
	<5.3	90	² AUBERT,B	06J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
YOUR NOTE	¹ Uses B($\gamma(4S) \rightarrow B$	$B^{0}\overline{B}^{0}) =$	$0.486 \pm 0.006.$				
² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.							
	$\Gamma(K^*(000)) = +) /$	-					F /F
	$1(K^{*}(892)^{\circ}e^{-}\mu^{+})/$	total					544/
	VALUE (units 10^{-7})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
	<1.2 (CL = 90%) [<3	8.4×10^{-1}	7 (CL = 90%) O	UR 20	18 BEST	Г LIMIT]	
YOUR DATA	<1.2	90	¹ SANDILYA	18	BELL	$e^+ e^- \rightarrow$	$\Upsilon(4S)$
	$\bullet \bullet \bullet$ We do not use the	e following	g data for average	s, fits,	limits, e	etc. • • •	
	<3.4	90	² AUBERT,B	06J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
	¹ Uses B($\gamma(4S) \rightarrow B$	$B^{0}\overline{B}^{0}) =$	$0.486 \pm 0.006.$				
TOOR NOTE	² Assumes equal produ	iction of I	B0 and $^{B+}$ at γ	(45).			
	$\Gamma(K^*(892)^0 e^{\pm} \mu^{\mp})/$	F total					Г545/Г
	Test of lenton fam	ilv numbe	er conservation				9197
	VALUE (units 10^{-7}) (DOCUMENT ID	г	ECN C	OMMENT	
	< 1.8 (CL = 90%)	5.8×10^{-1}	-7 (CL = 90%) ()UR 2	018 BFS	ST LIMIT	
YOUR DATA	< 1.8	0	¹ SANDILYA	18 E	BELL e	$e^+e^- \rightarrow \gamma$	^(4 <i>S</i>)

YOUR DATA< 1.8</th>901SANDILYA18BELL $e^+e^- \rightarrow \Upsilon(4S)$ ••• We do not use the following data for averages, fits, limits, etc.••< 5.8</td>902AUBERT,B06JBABR $e^+e^- \rightarrow \Upsilon(4S)$ <34</td>902AUBERT02LBABRRepl. by AUBERT,B06JYOUR NOTE1Uses B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = 0.486 ± 0.006.

²Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

B⁰ REFERENCES

NODE=S042220

NODE=S042220

NODE=S042T03 NODE=S042T03

NODE=S042T03;LINKAGE=A NODE=S042T03;LINKAGE=EP

NODE=S042T04 NODE=S042T04

NODE=S042T04;LINKAGE=A NODE=S042T04;LINKAGE=EP

NODE=S042B25 NODE=S042B25 NODE=S042B25

NODE=S042B25;LINKAGE=A NODE=S042B25;LINKAGE=EP

NODE=S042

REFID=59450 REFID=51305 REFID=48751

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} b, \ B^- = \overline{u} b,$ similarly for B^* 's

 B^0

 $I(J^{P}) = \frac{1}{2}(0^{-})$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

	$\Gamma(J/\psi(1S)\pi^0)/\Gamma_{total}$			Γ ₂₀₁ /Ι
	VALUE (units 10^{-5}) CL%	DOCUMENT ID	TECN	COMMENT
	1.66 ± 0.10 OUR AVER [(1.76 \pm 0.16) \times 10 ⁻⁵ OU	RAGE R 2018 AVERAGE Sca	ale factor =	1.1]
YOUR DATA	$1.62\!\pm\!0.11\!\pm\!0.06$	¹ PAL	18 BELL	$e^+e^- ightarrow ~\Upsilon(4S)$
	$1.69\!\pm\!0.14\!\pm\!0.07$	¹ AUBERT	08AU BABI	R $e^+e^- ightarrow ~\Upsilon(4S)$
	$2.5 \ \begin{array}{c} +1.1 \\ -0.9 \end{array} \pm 0.2$	¹ AVERY	00 CLE2	$e^+e^- ightarrow ~\Upsilon(4S)$
	• • • We do not use the f	ollowing data for avera	nges, fits, lin	its, etc. • • •
	$1.94\!\pm\!0.22\!\pm\!0.17$	¹ AUBERT,B	06B BABI	R Repl. by AUBERT 08AU
	$2.3 \pm 0.5 \pm 0.2$	¹ ABE	03B BELL	Repl. by PAL 18
	$2.0 \pm 0.6 \pm 0.2$	⁺ AUBERT 2 ACCIADDI	02 BABI	R Repl. by AUBERT, B 06B
	< 52 90	BISHAI	970 LS 96 CLF2	Sup by AVERY 00
	<690 90	¹ ALEXANDER	95 CLE2	Sup. by BISHAI 96
OUR NOTE	¹ Assumes equal product	ion of B^+ and B^0 at	the $\Upsilon(4S)$.	
	² ACCIARRI 97C assume	s B ^U production fracti	on (39.5 \pm -	4.0%) and $B_{s}~(12.0\pm3.0\%)$
		CP VIOLATION PA	ARAMETE	RS
	$C_{J/\psi(1S)\pi^0} (B^0 \rightarrow J/\psi(1S)\pi^0)$	$\psi(1S)\pi^0)$		
	VALUE	DOCUMENT ID	TECN	COMMENT
	0.03±0.17 OUR AVERA 2018 AVERAGE]	GE Error includes sc	ale factor of	1.5. $[-0.13 \pm 0.13 \text{ OUR}]$
OUR DATA	$0.15\!\pm\!0.14 \substack{+0.04 \\ -0.03}$	¹ PAL	18 BELL	$e^+e^- ightarrow ~\Upsilon(4S)$
	$-0.20\!\pm\!0.19\!\pm\!0.03$	AUBERT	08AU BABR	$e^+e^- ightarrow ~\Upsilon(4S)$
	$\bullet \bullet \bullet$ We do not use the f	ollowing data for avera	iges, fits, lin	nits, etc. • • •
	$-0.08\!\pm\!0.16\!\pm\!0.05$	¹ LEE	08A BELL	Repl. by PAL 18
	$-0.21 \pm 0.26 \pm 0.06$	AUBERT,B	06B BABR	Repl. by AUBERT 08AU
	$0.01 \pm 0.29 \pm 0.03$		04 BELL	Repl. by LEE 08A
	$0.38 \pm 0.41 \pm 0.09$	AUBERT	USN BABR	REPI. DY AUBERT, B UOB
UR NOTE	⁺ BELLE Collab. quotes	$A_{J/\psi\pi^0}$ which is equ	al to $-C_{J/\psi}$	b,π^0 .
	$S_{J/\psi(1S)\pi^0} (B^0 \rightarrow J/)$	$\psi(1S)\pi^0)$		
	VALUE	DOCUMENT ID	TECN	COMMENT
	2018 AVERAGE Scale factor	GE Error includes score 1.9]	ale factor of	2.2. $[-0.94 \pm 0.29 \text{ OUR}]$
YOUR DATA	$-0.59\!\pm\!0.19\!\pm\!0.03$	PAL	18 BELL	$e^+e^- ightarrow ~\Upsilon(4S)$

AUBERT

08AU BABR $e^+e^- \rightarrow \Upsilon(4S)$

NODE=S042220

NODE=S042220

E=S042S35 E=S042S35

E=S042S35;LINKAGE=EP E=S042S35;LINKAGE=CQ

E=S042229

E=S042CPL E=S042CPL

E=S042CPL;LINKAGE=KA

E=S042SPL E=S042SPL

 $-1.23\pm0.21\pm0.04$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$-0.65 \pm 0.21 \pm 0.05$	LEE	08A	BELL	Repl. by PAL 18
$-0.68 \pm 0.30 \pm 0.04$	AUBERT,B	06 B	BABR	Repl. by AUBERT 08AU
$-0.72\pm0.42\pm0.09$	KATAOKA	04	BELL	Repl. by LEE 08A
$0.05\!\pm\!0.49\!\pm\!0.16$	AUBERT	03N	BABR	Repl. by AUBERT, B 06B

B⁰ REFERENCES

18 PR D98 112008 08AU PRL 101 021801 B. Pal *et al.* B. Aubert *et al.* S.E. Lee *et al.* (BELLE Collab.) (BABAR Collab.) YOUR PAPER PAL AUBERT LEE 08A PR D77 071101 (BELLE Collab.) AUBERT,B 06B PR D74 011101 B. Aubert et al. (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) KATAOKA 04 PRL 93 261801 S.U. Kataoka et al. PR D67 032003 PRL 91 061802 PR D65 032001 K. Abe *et al.*B. Aubert *et al.*B. Aubert *et al.* ABE AUBERT 03B 03N AUBERT 02 (CLEO Collab.) (L3 Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) P. Avery *et al.* M. Acciarri *et al.* AVERY 00 PR D62 051101 ACCIARRI 97C PL B391 481 96 95 BISHAI PL B369 186 M. Bishai et al. ALEXANDER Also PL B341 435 J. Alexander *et al.* PL B347 469 (erratum) J. Alexander *et al.*

NODE=S042

REFID=59499
REFID=52369
REFID=52338
REFID=51288
REFID=50364
REFID=49205
REFID=49514
REFID=48514
REFID=47693
REFID=45249
REFID=44832
REFID=44113
REFID=44211

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

NODE=S042A01;LINKAGE=A

NODE=S042A01;LINKAGE=C

 ^1A model-independent measurement uses the binned Dalitz plot technique. $^2\text{Analyses}$ joint data sample of Belle and BaBar using Dalitz plot analysis of $D \to \mathcal{K}^0_S \pi^+\pi^-$; the second error combines experimental systematic uncertainty and the Dalitz plot model uncertainty

YOUR PAPER	ADACHI	18	PR D98 112012
	Also		PRL 121 261801
	VOROBYEV	16	PR D94 052004
	AUBERT	07BH	PRL 99 231802
	KROKOVNY	06	PRL 97 081801

B⁰ REFERENCES

I. Adachi *et al.* I. Adachi *et al.* V. Vorobyev *et al.* B. Aubert *et al.* P. Krokovny *et al.*

(BELLE and BABAR Collabs.) (BELLE and BABAR Collabs.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.)

NODE=S042

REFID=59502
REFID=59543
REFID=57427
REFID=52090
REFID=51363

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.

Dear Colleague,

- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

REFID=45431

HELLER 15 PR D91 112009 09AT PR D80 111105 (BELLE Collab.) (BABAR Collab.) A. Heller et al. AUBERT B. Aubert et al. PR D56 11 T. Browder et al. BROWDER 97 (CLEO Collab.)

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

 $(6.28\pm0.32)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

	$\Gamma(\overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow pK^{-}K^{-}\pi^{+})/\Gamma_{\text{total}}$					Г ₅₅₀ /Г	
	<u>VALUE</u> (units 10 ⁻⁶)	DOCUMENT ID		TECN	COMMENT		
YOUR DATA	5.47±1.78±0.57	¹ LI	19A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
YOUR NOTE	1 Using a hadronic B-tagging method based on a full reconstruction.						I

NODE=S041P60 NODE=S041P60

NODE=S041P60;LINKAGE=A

B[±] REFERENCES

YOUR PAPER LI

AUBERT CHISTOV 19APRL12208200108HPRD7703110106APRD74111105

Y.B. Li *et al.* B. Aubert *et al.* R. Chistov *et al.* (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) NODE=S041 REFID=59595 REFID=52169 REFID=51588

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

	ВОТ	NODE=MXXX045		
	$B^+ = u\overline{b}, \ B^0 = d\overline{b}$, $\overline{B}^0 = \overline{d} b$, $B^- = \overline{u} b$,	similarly for B^* 's	NODE=MXXX045
	B^0	NODE=S042		
	Quantum numbers no predictions.	ot measured. Values show	vn are quark-model	NODE=S042
	See also the B^{\pm}/B^0 . MIXTURE sections.			
	See the Note "Produce beginning of the B^{\pm} Mixing" near the end			
	CP V	NODE=S042229		
	$C(B^{0} \rightarrow K^{0}_{S}\pi^{0}\pi^{0})$ <u>VALUE</u> $-0.21\pm0.20 \text{ OUR AVERAGE}$ $[0.2 \pm 0.5 \text{ OUR 2018 AVERAGE}$	<u>DOCUMENT ID</u> <u>TE</u>	CN COMMENT	NODE=S042CK2 NODE=S042CK2 NEW
YOUR DATA	$-0.28 \pm 0.21 \pm 0.04$ $0.23 \pm 0.52 \pm 0.13$	¹ YUSA 19 BE AUBERT 07AQ BA	$ELL e^+ e^- ightarrow \varUpsilon(4S) \ ABR e^+ e^- ightarrow \varUpsilon(4S)$	I
YOUR NOTE	1 Reports value of A which is e	equal to $-C$.		NODE=S042CK2;LINKAGE=A
	$S(B^0 \rightarrow K^0_S \pi^0 \pi^0)$ VALUE	DOCUMENT ID TE	CN COMMENT	NODE=S042SK2 NODE=S042SK2
	0.89 ^{+0.27} OUR AVERAGE [0.7 ± 0.7 OUR 2018 AVERAGE]		NEW
YOUR DATA	$\begin{array}{c} 0.92 \substack{+0.27 \\ -0.31} \pm 0.11 \\ 0.72 \pm 0.71 \pm 0.08 \end{array}$	YUSA 19 BE AUBERT 07AQ BA	ELL $e^+e^- \rightarrow \Upsilon(4S)$ ABR $e^+e^- \rightarrow \Upsilon(4S)$	I
		B ⁰ REFERENCES		
YOUR PAPER	YUSA 19 PR D99 011102 AUBERT 07AQ PR D76 071101	Y. Yusa <i>et al.</i> B. Aubert <i>et al.</i>	(BELLE Collab.) (BABAR Collab.)	REFID=59597 REFID=51980

PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 201

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

	BOT	NODE=MXXX045				
	$B^+ = u\overline{b}, \ B^0 = d\overline{b}$, $\overline{B}{}^0=\overline{d}b,B^-=\overline{u}$	b, sin	nilarly for <i>l</i>	B*'s	NODE=MXXX045
		D	1			NODE=S041
	B^{\pm}	I(J') =	$=\frac{1}{2}(0^{-1})$)		
	Quantum numbers no predictions.	NODE=S041				
	See also the B^{\pm}/B^0 . MIXTURE sections.	ADMIXTURE and B^\pm	$/B^{0}/B_{s}^{0}$	/ <i>b</i> -baryon /	AD-	
	B	+ BRANCHING RAT	IOS			NODE=S041215
	$\Gamma(\rho \overline{\Lambda} K^+ K^-) / \Gamma_{\text{total}}$ <i>VALUE</i> (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT	Г ₅₁₂ /Г	NODE=S041P54 NODE=S041P54
YOUR DATA	$4.10^{+0.45}_{-0.43}\pm0.50$	¹ LU 19	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	I
YOUR NOTE	¹ Assumes equal production of	$\tau^{}B^{+}$ and B^{0} at the $arphi(4)$	IS).			NODE=S041P54;LINKAGE=A
	$\Gamma(\rho \overline{\Lambda} \phi) / \Gamma_{\text{total}}$ VALUE (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT	Г ₅₁₃ /Г	NODE=S041P55 NODE=S041P55
YOUR DATA	0.795±0.209±0.077	1 LU 19	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	1
YOUR NOTE	1 Assumes equal production of	B^+ and B^0 at the $\Upsilon(4)$	<i>S</i>).			NODE=S041P55;LINKAGE=A
	$\frac{\Gamma(\overline{\rho}\Lambda K^+ K^-)}{\Gamma_{\text{total}}}$	DOCUMENT ID	TECN	COMMENT	Г ₅₁₄ /Г	NODE=S041P56 NODE=S041P56
YOUR DATA	$3.70^{+0.39}_{-0.37} \pm 0.44$	¹ LU 19	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	1
YOUR NOTE	1 Assumes equal production of	B^+ and B^0 at the $\Upsilon(4)$	5).			NODE=S041P56;LINKAGE=A
	$\Gamma(\Lambda(1520)\overline{\Lambda}K^+)/\Gamma_{total}$				Г ₅₁₈ /Г	NODE=S041P57
YOUR DATA	VALUE (units 10 ⁻⁰) 2.23+0.63+0.25	1 III 19	BELL	$\frac{COMMENT}{e^+e^-} \rightarrow$	$\Upsilon(45)$	
YOUR NOTE	¹ Assumes equal production of	$^{+}B^{+}$ and B^{0} at the $\Upsilon(4)$	IS).		(10)	NODE=S041P57:LINKAGE=A
	$\Gamma(\Lambda\overline{\Lambda}(1520)K^+)/\Gamma_{\text{total}}$				Г ₅₁₉ /Г	NODE=S041P58
YOUR DATA	VALUE (units 10 ⁻⁰)	1	<u>TECN</u>	$\frac{COMMENT}{e^+e^-} \rightarrow$	$\Upsilon(\Lambda S)$	NODE-3041F36
YOUR NOTE	1 Assumes equal production of	B^+ and B^0 at the $\Upsilon(4)$	<i>S</i>).		, (+3)	NODE=S041P58;LINKAGE=A
		B[±] REFERENCES				NODE=S041
YOUR PAPER	LU 19 PR D99 032003	PC. Lu et al.		(BEL	LE Collab.)	REFID=59614

WATANUKI 19; PR D99 032012BELLE

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

34 Page 67

NODE=S049A06;LINKAGE=A

NODE=S049A06 NODE=S049A06

NODE=S049245

NODE=S049245

$A_{CP}(B)$	\rightarrow	$X_{s}\gamma)$	=
VALUE			

YOUR NOTE

$(A_{CP}(B^+ \rightarrow X_s \gamma) + A_{CP}(B^0 \rightarrow X_s \gamma))/2$

 $e^+e^- \rightarrow \Upsilon(4S)$

I

I

 VALUE
 DOCUMENT II

 YOUR DATA
 0.0091±0.0121±0.0013
 ¹ WATANUKI

$$1$$
 WATANUKI 19 BELL

 $1\,{\rm Using}$ a sum-of-exclusive technique with $m_{\ensuremath{\chi_{\rm S}}}~<2.8~{\rm GeV/c^2}.$

ISOSPIN ASYMMETRY

 Δ_{0-} is defined as

$$\frac{\Gamma(\overline{B}^0 \to f_d) - \Gamma(B^- \to f_u)}{\Gamma(\overline{B}^0 \to f_d) + \Gamma(B^- \to f_u)},$$

the isospin asymmetry of inclusive neutral and charged B decay.

	$\begin{array}{l} \Delta_{0-}(B(B \to X_{s}\gamma)) \\ \xrightarrow{VALUE} \\ \hline -0.006 \pm 0.020 \text{ OUR AVERAG} \\ [-0.01 \pm 0.06 \text{ OUR 2018 AVERAG} \end{array}$	<u>DOCUMENT ID</u> E AGE]	<u>TECN</u>	COMMENT		NODE=S049IA1 NODE=S049IA1 NEW
YOUR DATA	$\begin{array}{c} -0.0048 \pm 0.0149 \pm 0.0150 \\ -0.06 \ \pm 0.15 \ \pm 0.07 \\ -0.006 \ \pm 0.058 \ \pm 0.026 \end{array}$	¹ WATANUKI 19 ^{2,3} AUBERT 080 AUBERT,B 05R	BELL BABR BABR	$e^+e^- ightarrow ~\Upsilon(4S) \ e^+e^- ightarrow ~\Upsilon(4S) \ e^+e^- ightarrow ~\Upsilon(4S)$	I	
YOUR NOTE	1 Using a sum-of-exclusive technique with $m_{X_S}~<2.8~{\rm GeV/c^2}.$ 2 The result is for $E_{\gamma}~>2.2~{\rm GeV}.$ 3 Uses a fully reconstructed B meson as a tag on the recoil side.					NODE=S049IA1;LINKAGE=A NODE=S049IA1;LINKAGE=RT NODE=S049IA1;LINKAGE=UB

B^{\pm}/B^{0} ADMIXTURE REFERENCES

YOUR PAPER	WATANUKI	19	PR D99 032012	S. Watanuki <i>et al.</i>	(BELLE Collab.)
	LEES	14K	PR D90 092001	J.P. Lees et al.	(BABAR Collab.)
	AUBERT	08BJ	PRL 101 171804	B. Aubert et al.	(BABAR Collab.)
	AUBERT	080	PR D77 051103	B. Aubert et al.	(BABAR Collab.)
	AUBERT,B	05R	PR D72 052004	B. Aubert et al.	(BABAR Collab.)
	AUBERT,B	04E	PRL 93 021804	B. Aubert et al.	(BABAR Collab.)
	NISHIDA	04	PRL 93 031803	S. Nishida <i>et al.</i>	(BELLE Collab.)

NODE=S049

REFID=59618
REFID=56157
REFID=52553
REFID=52223
REFID=50896
REFID=50058
REFID=49994

= KALIYAR 19; PR D99 031102 = BELLE

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Karim Trabelsi EMAIL: karim.trabelsi@kek.jp

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

= SIRUNYAN 18R; PR D97 072010 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

REFID=58922 REFID=55783 REFID=55086

N REFERENCES

YOUR PAPER	SIRUNYAN	18R	PR D97 072010	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	AAD	14L	PR D89 092009	G. Aad et al.	(ATLAS Collab.)
	AAIJ	13AG	PL B724 27	R. Aaij <i>et al.</i>	(LHCb Collab.)

YOUR

SIRUNYAN 18AW; JHEP 1805 127CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA
REFID=59101 REFID=57684 REFID=57620 REFID=10622

	SEARCHES not in other sections		NODE=SXXX005
	Other Particle Searches OMITTED FROM SUMMARY TABLE		NODE=S015
	LIMITS ON CHARGED PARTICLES IN HADRONIC REACTIONS		NODE=S015430
	Long-Lived Particle Search at Hadron Collisions Limits are for cross section times branching ratio.		NODE=S015XL NODE=S015XL
	VALUE (pb/nucleon) CL% DOCUMENT ID TECN COMMENT		NODE=S015XL
YOUR DATA	• • We do not use the following data for averages, fits, limits, etc. • • • $ \begin{array}{r} 1 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	I	
YOUR NOTE	¹ SIRUNYAN 18AW search for very long lived particles (LLPs) decaying hadronically or to $u = u = 0$ (limits set on lifetime vs. cross section		NODE=S015XL;LINKAGE=D
	² AAIJ 16AR search for long lived particles from $H \rightarrow XX$ with displaced X decay vertex using 0.62 fb ⁻¹ at 7 TeV; limits set in Fig. 7. ³ KHACHATRYAN 16BW search for heavy stable charged particles via ToF with 2.5 fb ⁻¹	•	NODE=S015XL;LINKAGE=B
	⁴ BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.		NODE=S015XL;LINKAGE=C
	REFERENCES FOR Other Particle Searches		NODE=S015

YOUR PAPER	SIRUNYAN	18AW	JHEP 1805 127	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AAIJ	16AR	EPJ C76 664	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	KHACHATRY	16BW	PR D94 112004	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3	Collab.)
	DADIEN	00	21111 C31 21	J. Daulei et al.	(IVAS	collab.)

= SIRUNYAN 18BB; JHEP 1806 120 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

SEARCHES not in other sections

Other Particle Searches

OMITTED FROM SUMMARY TABLE

LIMITS ON NEUTRAL PARTICLE PRODUCTION

TECN COMMENT

 $pp \rightarrow VV/\ell\ell/\ell\nu, V =$

W,Z,h

18AJ LHCB $pp \rightarrow A' \rightarrow \mu^+ \mu^-$; dark photon

 $\textit{pp} \rightarrow \textit{e}\,\mu \,/\,\textit{e}\,\tau \,/\,\mu \tau$

18cj ATLS

18CM ATLS

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD

² AABOUD

³ AAIJ

Heavy Particle Production Cross Section CL%

VALUE (cm^2/N)

YOUR DATA

		⁴ BANERJEE	18	NA64	$eZ \rightarrow eZX(A')$		
		⁵ BANERJEE	18A	NA64	$eZ \rightarrow eZA', A' \rightarrow \chi\chi$		
		⁶ MARSICANO	18	E137	$e^+e^- \rightarrow A'(\gamma)$ visible		
		7			decay		
		⁷ SIRUNYAN	18B	b CMS	$pp \rightarrow Z' \rightarrow \ell^+ \ell^- \text{ at } 13$		
		⁸ SIRUNYAN	18D	A CMS	$ \begin{array}{l} IeV \\ pp \to Black \ Hole, \ string \\ ball. \ sphaleron \end{array} $		
		⁹ SIRUNYAN	18D	D CMS	$pp \rightarrow jj$		
		¹⁰ SIRUNYAN	18D	r CMS	$pp \rightarrow b\mu\overline{\mu}$		
		¹¹ SIRUNYAN	18D	U CMS	$pp \rightarrow \gamma\gamma$		
		¹² SIRUNYAN	18EI	CMS	$pp \rightarrow V \rightarrow Wh; h \rightarrow$		
		10			$b\overline{b}; W \rightarrow I\nu$	-	
		¹³ AABOUD	17B	ATLS	WH, ZH resonance		
		¹⁴ AAIJ	17B	R LHCB	$pp \rightarrow \pi_V \pi_V, \pi_V \rightarrow jj$		
		¹⁵ AAD	160	ATLS	$\ell + (\ell s \text{ or jets})$		
		¹⁶ AAD	16R	ATLS	WW , WZ , ZZ resonance	_	
		¹⁷ KRASZNAHO	16		$p^7 \text{Li} \rightarrow {}^8 \text{Be} \rightarrow X(17) N$,		
					$X(17) \rightarrow e^+ e^-$		
		¹⁸ LEES	15E	BABR	e^+e^- collisions		
		¹⁹ ADAMS	97 B	KTEV	m = 1.2 - 5 GeV		
$< 10^{-36} - 10^{-33}$	90	²⁰ GALLAS	95	TOF	<i>m</i> = 0.5–20 GeV		
$<(4-0.3) \times 10^{-31}$	95	²¹ AKESSON	91	CNTR	m = 0-5 GeV		
$<2 \times 10^{-36}$	90	²² BADIER	86	BDMP	$\tau = (0.05 - 1.) \times 10^{-8} s$		
$<2.5 \times 10^{-35}$		²³ GUSTAFSON	76	CNTR	$\tau > 10^{-7} \text{ s}$		
	mako mu	ltichannal soarch fo			$1/\ell\ell/\ell_{W} = M/Z h \rightarrow 13$		
$T_{\rm av}$ 26 1 fb -1	no cigno	l found: limits place	d for		$\gamma cc/cv, v = vv, z, n at 13$		NODE=S015CS;LINKAGE=R
	no signa	r lonton flavor violat		several I	$\sin p p \rightarrow o \mu / o \pi / \mu \pi o t 12$		
	search io		ung n	esonance	$pp \rightarrow e\mu/er/\mu at 13$		NODE=S015CS;LINKAGE=S
1eV, 30.1 fb -;	no signa	I is found and limits	i piac	ed for va			
~ AAIJ 18AJ search	n tor pro	mpt and delayed da	ark pl	noton de	cay $A' \rightarrow \mu + \mu$ at LHCb		NODE=S015CS;LINKAGE=K
detector using 1.	6 fb c	of pp collisions at 1	3 le	V; limits	on m(A') vs. kinetic mixing		

- are set. ⁴ BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow$ eZX(A'); no signal found and limits set on the X- e^- coupling ϵ_e in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space.
- 5 BANERJEE 18A search for invisibly decaying dark photons in $eZ \rightarrow eZA'$, $A' \rightarrow$ invisible; no signal found and limits set on mixing for m(A') < 1 GeV.
- ⁶MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7.
- ⁷SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of Z', KK graviton models.
 - ⁸SIRUNYAN 18DA search for $pp \rightarrow$ Black Hole, string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb $^{-1}$; no signal, require e.g. m(BH)¿10.1 TeV
 - 9 SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) 5.9–8.2 TeV.
- 10 SIRUNYAN 18DR search for dimuon resonance in $pp
 ightarrow \ b \mu \overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

NODE=SXXX005

NODE=S015415

NODE=S015

NODE=S015CS NODE=S015CS

YOUR NOTE

NODE=S015CS:LINKAGE=L

NODE=S015CS;LINKAGE=M

NODE=S015CS;LINKAGE=P

NODE=S015CS;LINKAGE=O

NODE=S015CS;LINKAGE=T

NODE=S015CS;LINKAGE=U

NODE=S015CS;LINKAGE=V

 $^{11}{\rm SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W')¿2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \, \text{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.

²³ GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m > 2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3 GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

	AABOUD	18C.J	PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	AABOUD	18CM	PR D98 092008	M Aaboud et al	(ATLAS Collab.)
	AAU	18A.J	PRL 120 061801	R. Aaii <i>et al.</i>	(LHCb Collab.)
	BANER IFF	18	PRI 120 231802	D Baneriee <i>et al</i>	(NA64 Collab.)
	BANER IFF	18A	PR D97 072002	D Baneriee <i>et al</i>	(NA64 Collab.)
	MARSICANO	18	PR D98 015031	L. Marsicano <i>et al.</i>	(
YOUR PAPER	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	(CMS_Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	(CMS_Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	(CMS Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	`(LHCb_Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller	` (WASH)
	AAD	160	PL B760 520	G. Aad et al.	(ATLAS Collab.)
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS Collab.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	(HINR, ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3 Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.	(MICH)

NODE=S015

NODE=S015CS;LINKAGE=A

4/5/2019 10:34

Page 76

REFID=59441 REFID=59474 REFID=59199 REFID=58838 REFID=58916 REFID=58967 REFID=59112 REFID=59306 REFID=59318 REFID=59367 REFID=59469 REFID=59566 REFID=57706 REFID=58366 REFID=59311 REFID=57169 REFID=57172 REFID=59302 RFFID=56467 REFID=45722 REFID=44291 REFID=41739 REFID=10622 REFID=12580

SIRUNYAN 18BY; EPJ C78 457CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's

 B^0

 $I(J^P) = \frac{1}{2}(0^-)$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

B⁰ MEAN LIFE

See $B^{\pm}/B^0/B^0_s/b$ -baryon ADMIXTURE section for data on *B*-hadron mean life averaged over species of bottom particles.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

	$VALUE (10^{-12} s)$	EVTS	DOCUMENT ID		TECN	COMMENT		NODE=S042T
	1.520±0.004 OUR EV	ALUATIO						\rightarrow UNCHECKED \leftarrow
	Average is meaningless	. [(1.5	$519\pm0.004) imes10^{-1}$	-12 s	OUR 20)18 AVERAGE]		
YOUR DATA	$1.515\!\pm\!0.005\!\pm\!0.006$		¹ SIRUNYAN	18BY	′ CMS	<i>pp</i> at 8 TeV		
	$1.534\!\pm\!0.019\!\pm\!0.021$		² ABAZOV	15A	D0	<i>pp</i> at 1.96 TeV	-	
	$1.499\!\pm\!0.013\!\pm\!0.005$		³ AAIJ	14E	LHCB	pp at 7 TeV		
	$1.524 \pm 0.006 \pm 0.004$		⁴ AAIJ	14E	LHCB	pp at 7 TeV		OCCUR=2
	$1.524\!\pm\!0.011\!\pm\!0.004$		⁵ AAIJ	14R	LHCB	pp at 7 TeV		
	$1.509\!\pm\!0.012\!\pm\!0.018$		⁶ AAD	130	ATLS	pp at 7 TeV		
	$1.508 \!\pm\! 0.025 \!\pm\! 0.043$		³ ABAZOV	120	D0	<i>p p</i> at 1.96 TeV		
	$1.507\!\pm\!0.010\!\pm\!0.008$		AALTONEN	11	CDF	<i>pp</i> at 1.96 TeV		
	$1.414 \!\pm\! 0.018 \!\pm\! 0.034$		⁸ ABAZOV	09e	D0	<i>pp</i> at 1.96 TeV		
	$1.504 \!\pm\! 0.013 \!+\! 0.018 \!-\! 0.013$		⁹ AUBERT	06 G	BABR	$e^+e^- ightarrow ~\Upsilon(4S)$		
	$1.534\!\pm\!0.008\!\pm\!0.010$		¹⁰ ABE	05 B	BELL	$e^+e^- \rightarrow \Upsilon(4S)$		
	$1.531\!\pm\!0.021\!\pm\!0.031$		¹¹ ABDALLAH	04E	DLPH	$e^+e^- \rightarrow Z$		
	$1.523^{+0.024}_{-0.023}{\pm}0.022$		¹² AUBERT	03 C	BABR	$e^+e^- ightarrow ~\Upsilon(4S)$		
	$1.533 \!\pm\! 0.034 \!\pm\! 0.038$		¹³ AUBERT	03H	BABR	$e^+e^- \rightarrow \Upsilon(4S)$		
	$1.497 \!\pm\! 0.073 \!\pm\! 0.032$		¹⁴ ACOSTA	02C	CDF	$p\overline{p}$ at 1.8 TeV		
	$1.529\!\pm\!0.012\!\pm\!0.029$		¹⁵ AUBERT	02H	BABR	$e^+e^- ightarrow \Upsilon(4S)$		
	$1.546 \!\pm\! 0.032 \!\pm\! 0.022$		¹⁶ AUBERT	01F	BABR	$e^+ e^- ightarrow ~\Upsilon(4S)$		
	$1.541\!\pm\!0.028\!\pm\!0.023$		¹⁵ ABBIENDI,G	00 B	OPAL	$e^+e^- \rightarrow Z$		
	$1.518\!\pm\!0.053\!\pm\!0.034$		¹⁷ BARATE	00 R	ALEP	$e^+e^- \rightarrow Z$		
	$1.523\!\pm\!0.057\!\pm\!0.053$		¹⁸ ABBIENDI	99J	OPAL	$e^+e^- \rightarrow Z$		
	$1.474 \!\pm\! 0.039 \!+\! 0.052 \\ -\! 0.051$		¹⁷ ABE	98Q	CDF	$p\overline{p}$ at 1.8 TeV		
	$1.52 \ \pm 0.06 \ \pm 0.04$		¹⁸ ACCIARRI	9 8S	L3	$e^+e^- \rightarrow Z$		
	$1.64\ \pm 0.08\ \pm 0.08$		¹⁸ ABE	97J	SLD	$e^+e^- \rightarrow Z$		
	$1.532\!\pm\!0.041\!\pm\!0.040$		¹⁹ ABREU	97F	DLPH	$e^+e^- \rightarrow Z$		
	$1.25 \begin{array}{c} +0.15 \\ -0.13 \end{array} \pm 0.05$	121	¹⁴ BUSKULIC	96J	ALEP	$e^+e^- \rightarrow Z$		OCCUR=3

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

NODE=S042T

NODE=S042T

 $1.49 \begin{array}{c} +0.17 \\ -0.15 \end{array} \begin{array}{c} +0.08 \\ -0.06 \end{array}$ OCCUR=4 ²⁰ BUSKULIC ALEP $e^+e^- \rightarrow Z$ 961 $1.61 \begin{array}{c} +0.14 \\ -0.13 \end{array} \pm 0.08$ 17,21 ABREU 950 DLPH $\rightarrow Z$ ²² ADAM $1.63 \pm 0.14 \pm 0.13$ 95 DLPH $e^+e^- \rightarrow Z$ 17,23 AKERS $1.53 \pm 0.12 \pm 0.08$ 95T OPAL $e^+e^- \rightarrow Z$ • • • We do not use the following data for averages, fits, limits, etc. • • • $1.501^{+0.078}_{-0.074}\!\pm\!0.050$ ³ ABAZOV 075 D0 Repl. by ABAZOV 12U ³ ABULENCIA $1.524 \pm 0.030 \pm 0.016$ 07A CDF Repl. by AALTONEN 11 $1.473^{+0.052}_{-0.050}\!\pm\!0.023$ ⁸ ABAZOV 05B D0 Repl. by ABAZOV 05W $1.40 \begin{array}{c} +0.11 \\ -0.10 \end{array} \pm 0.03$ ³ ABAZOV 05C D0 Repl. by ABAZOV 07s ⁸ ABAZOV $1.530 \!\pm\! 0.043 \!\pm\! 0.023$ 05W D0 Repl. by ABAZOV 09E ²⁴ ACOSTA $1.54 \ \pm 0.05 \ \pm 0.02$ CDF Repl. by AALTONEN 11 05 ¹⁶ ABE 02H BELL Repl. by ABE 05B $1.554 \pm 0.030 \pm 0.019$ 14 ABE $1.58\ \pm 0.09\ \pm 0.02$ 98B CDF Repl. by ACOSTA 02C 17 ABE $1.54\ \pm 0.08\ \pm 0.06$ 96C CDF Repl. by ABE 98Q ²⁵ BUSKULIC $e^+ e^- \rightarrow Z$ $1.55\ \pm 0.06\ \pm 0.03$ 96j ALEP ¹⁷ BUSKULIC OCCUR=2 $1.61 \ \pm 0.07 \ \pm 0.04$ 96J ALEP Repl. by BARATE 00R ²⁶ ADAM $e^+\,e^-\,\rightarrow~Z$ 1.62 ± 0.12 95 DLPH OCCUR=2 ¹⁴ ABE $1.57\ \pm 0.18\ \pm 0.08$ 121 94D CDF Repl. by ABE 98B $1.17 \ +0.29 \ -0.23$ ± 0.16 ¹⁷ ABREU 96 93D DLPH Sup. by ABREU 95Q $1.55\ \pm 0.25\ \pm 0.18$ 76 ²² ABREU 93G DLPH Sup. by ADAM 95 $1.51 \begin{array}{c} +0.24 \\ -0.23 \end{array} \begin{array}{c} +0.12 \\ -0.14 \end{array}$ ¹⁷ ACTON 78 93C OPAL Sup. by AKERS 95⊤ $^{+0.20}_{-0.18} \ ^{+0.07}_{-0.13}$ ¹⁷ BUSKULIC 1.52 77 93D ALEP Sup. by BUSKULIC 96J $1.20 \begin{array}{c} +0.52 \\ -0.36 \end{array} \begin{array}{c} +0.16 \\ -0.14 \end{array}$ ²⁷ WAGNER 15 MRK2 $E_{cm}^{ee} = 29 \text{ GeV}$ 90 $0.82 \begin{array}{c} +0.57 \\ -0.37 \end{array} \pm 0.27$ ²⁸ AVERILL 89 HRS $E_{\rm cm}^{ee} = 29 \, {\rm GeV}$ ¹Measured using $B^0 \rightarrow J/\psi \, \kappa^*(892)^0$ and $B^0 \rightarrow J/\psi \, \kappa^0_{\,\rm S}$ decays. YOUR NOTE NODE=S042T;LINKAGE=G ² Measured using $B^0 \rightarrow D^- \mu^+ \nu X$ decays. ³ Measured mean life using $B^0 \rightarrow J/\psi K_S^0$ decays. NODE=S042T;LINKAGE=AV NODE=S042T;LINKAGE=AO ⁴Measured using $B^0 \rightarrow J/\psi K^{*0}$ decays. NODE=S042T;LINKAGE=B ⁵ Measured using $B^0 \rightarrow K^+ \pi^-$ decays. ⁶ Measured with $B^0_d \rightarrow J/\psi(\mu^+\mu^-) K^0_S(\pi^+\pi^-)$ decays. NODE=S042T;LINKAGE=D NODE=S042T;LINKAGE=AD ⁷Measured mean life using fully reconstructed decays $(J/\psi \kappa^{(*)})$. ⁸ Measured mean life using $B^0 \rightarrow J/\psi K^{*0}$ decays. ⁹Measured using a simultaneous fit of the B^0 lifetime and $\overline{B}{}^0B^0$ oscillation frequency Δm_d in the partially reconstructed $B^0 \rightarrow D^{*-} \ell \nu$ decays. ¹⁰ Measurement performed using a combined fit of *CP*-violation, mixing and lifetimes. $^{11}\,{\rm Measurement}$ performed using an inclusive reconstruction and B flavor identification technique. $^{12}{\rm AUBERT}$ 03C uses a sample of approximately 14,000 exclusively reconstructed B^0 \rightarrow $D^*(2010)^-\ell
u$ and simultaneously measures the lifetime and oscillation frequency. ¹³Measurement performed with decays $B^0 \rightarrow D^{*-}\pi^+$ and $B^0 \rightarrow D^{*-}\rho^+$ using a partial reconstruction technique. $^{14}\,\mathrm{Measured}$ mean life using fully reconstructed decays. ¹⁵Data analyzed using partially reconstructed $\overline{B}^0 \rightarrow D^{*+} \ell^- \overline{\nu}$ decays. 16 Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively. $^{17}\,{\rm Data}$ analyzed using $D\,/\,D^*\,\ell\,{\rm X}$ event vertices. ¹⁸ Data analyzed using charge of secondary vertex. ¹⁹Data analyzed using inclusive $D/D^* \ell X$. ²⁰Measured mean life using partially reconstructed $D^{*-}\pi^+X$ vertices. ²¹ABREU 95Q assumes $B(B^0 \rightarrow D^{**-} \ell^+ \nu_{\ell}) = 3.2 \pm 1.7\%$. 22 Data analyzed using vertex-charge technique to tag B charge. ²³AKERS 95T assumes $B(B^0 \rightarrow D_s^{(*)}D^{0(*)}) = 5.0 \pm 0.9\%$ to find B^+/B^0 yield. ²⁴ Measured using the time-dependent angular analysis of $B^0_d \rightarrow J/\psi K^{*0}$ decays. 25 Combined result of $D/D^*\ell x$ analysis, fully reconstructed B analysis, and partially reconstructed $D^{*-}\pi^+X$ analysis.

²⁶Combined ABREU 95Q and ADAM 95 result.

²⁷WAGNER 90 tagged B^0 mesons by their decays into $D^{*-}e^+\nu$ and $D^{*-}\mu^+\nu$ where the D^{*-} is tagged by its decay into $\pi^{-}\overline{D}^{0}$.

NODE=S042T;LINKAGE=AA NODE=S042T;LINKAGE=AZ NODE=S042T;LINKAGE=AU NODE=S042T;LINKAGE=AE NODE=S042T;LINKAGE=AB NODE=S042T;LINKAGE=C3 NODE=S042T;LINKAGE=BH NODE=S042T;LINKAGE=CD NODE=S042T;LINKAGE=C2 NODE=S042T;LINKAGE=FT NODE=S042T;LINKAGE=C NODE=S042T;LINKAGE=M NODE=S042T;LINKAGE=I NODE=S042T;LINKAGE=F NODE=S042T;LINKAGE=H

NODE=S042T;LINKAGE=L

NODE=S042T;LINKAGE=CQ

- NODE=S042T;LINKAGE=AC

NODE=S042T;LINKAGE=J

NODE=S042DGS

NODE=S042DGS

NODE=S042T;LINKAGE=A

 $^{28}\,{\rm AVERILL}$ 89 is an estimate of the B^0 mean lifetime assuming that $B^0 \rightarrow ~D^{*+} +$ X always.

 $\Delta\Gamma_{B^0_d}$ / $\Gamma_{B^0_d}$

 $\Gamma_{B_d^0}$ and $\Delta\Gamma_{B_d^0}$ are the decay rate average and difference between two B_d^0 *CP* eigenstates (light – heavy). The λ_{CP} characterizes B^0 and \overline{B}^0 decays to states of charmonium plus \mathcal{K}_L^0 , see the review on "*CP* Violation" in the reviews section in the reviews section.

"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group (HFLAV) by taking into account correlations between measurements.

	VALUE (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT		NODE=S042DGS
	- 0.2 ±1.0 OUR	EVALUATIO)N					\rightarrow UNCHECKED \leftarrow
	0.1 ±1.0 OUR	AVERAGE						NEW
	$[(-0.2 \pm 1.1) \times 10^{-2}]$	OUR 2018	AVERAGE]				-	
YOUR DATA	$3.4 \hspace{0.2cm} \pm 2.3 \hspace{0.2cm} \pm 2.4$		¹ SIRUNYAN	18by	CMS	<i>pp</i> at 8 TeV		
	$-$ 0.1 ± 1.1 ± 0.9		² AABOUD	16 G	ATLS	<i>pp</i> at 7, 8 TeV		
	$-$ 4.4 ± 2.5 ± 1.1		³ AAIJ	14E	LHCB	pp at 7 TeV		
	$1.7 \pm 1.8 \pm 1.1$		⁴ HIGUCHI	12	BELL	$e^+e^- \rightarrow \Upsilon(4S)$		
	$0.8 \pm 3.7 \pm 1.8$		⁵ AUBERT,B	04C	BABR	$e^+e^- \rightarrow \Upsilon(4S)$		
	0 ±9		° ABDALLAH	03 B	DLPH	$e^+ e^- \rightarrow Z$		
	• • • We do not use t	the following	data for average	s, fits,	limits, e	etc. ● ● ●		
	0.50 ± 1.38		ABAZOV	14	D0	$p\overline{p}$ at 1.96 TeV		
	< 80	95	⁷ BEHRENS	00 B	CLE2	$e^+ e^- ightarrow ~ \Upsilon(4S)$		
YOUR NOTE	1 Measured using B^0 21.9 \pm 0.7 degrees	${}^{0} \rightarrow J/\psi K^{\circ}$	*(892) ⁰ and <i>B</i> ⁰	$\rightarrow J/$	$\psi \kappa^0_S$ d	ecays, and assuming eta =		NODE=S042DGS;LINKAGE=C
	² Measured from th $J/\psi K^{*0}$ decays.	e ratio of de	ecay time distrib	utions	of <i>B</i> ⁰	$\rightarrow J/\psi K_S^0$ and $B^0 =$		NODE=S042DGS;LINKAGE=B
	³ Measured using th	e effective lif	etimes of $B^0 \rightarrow$	$J/\psi k$	$\begin{pmatrix} 0 \\ c \end{pmatrix}$ and	$B^0 \rightarrow J/\psi K^{*0}$ decays.		
	⁴ Reports $-\Delta\Gamma_d/\Gamma_d$	$_{ m J}$ using B^0 -	$\rightarrow J/\psi K_S^0, J/\psi$	6κ <mark>0</mark> , Ι	$D^{-}\pi^{+}$,	$D^{*-}\pi^+$, $D^{*-}\rho^+$, and		NODE=S042DGS;LINKAGE=HI
	$D^{*-}\ell^+ u$ decays.							
	⁵ Corresponds to 90	% confidence	range [-0.084,	0.068].				NODE=S042DGS;LINKAGE=AB
	⁶ Used the measured 95% C.L.	$\tau_{B^0} = 1.55$	5 ± 0.03 ps. Com	respond	ds to an	upper limit of < 0.18 at		NODE=S042DGS;LINKAGE=BL
	⁷ BEHRENS 00B us	ses high-mon	nentum lepton t	ags an	d partia	ally reconstructed \overline{B}^0 —		NODE=S042DGS:LINKAGE=KS
	$D^{*+}\pi^-$, $ ho^-$ deca	iys to determ	ine the flavor of	the B	meson.	Assumes Δ_{md} =0.478 ±		
	0.018 ps $^{-1}$ and $ au_{I}$	$_{ m P0}$ =1.548 \pm	0.032 ps.					
	L	٠.						

B⁰ REFERENCES

YOUR PAPER	SIRUNYAN	18BY	EPJ C78 457	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AABOUD	16G	JHEP 1606 081	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	ABAZOV	15A	PRL 114 062001	V.M. Abazov et al.	(D0	Collab.)
	AAIJ	14E	JHEP 1404 114	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	14R	PL B736 446	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	ABAZOV	14	PR D89 012002	V.M. Abazov <i>et al.</i>	(D0	Collab.)
	AAD	13U	PR D87 032002	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	ABAZOV	12U	PR D85 112003	V.M. Abazov et al.	(D0	Collab.)
	HIGUCHI	12	PR D85 071105	T. Higuchi <i>et al.</i>	(BELLE	Collab.)
	AALTONEN	11	PRL 106 121804	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	ABAZOV	09E	PRL 102 032001	V.M. Abazov et al.	(D0	Collab.)
	ABAZOV	07S	PRL 99 142001	V.M. Abazov et al.	(D0	Collab.)
	ABULENCIA	07A	PRL 98 122001	A. Abulencia et al.	(FNAL CDF	Collab.)
	AUBERT	06G	PR D73 012004	B. Aubert <i>et al.</i>) (BABAR	Collab.)
	ABAZOV	05B	PRL 94 042001	V.M. Abazov et al.) (D0	Collab.)
	ABAZOV	05C	PRL 94 102001	V.M. Abazov et al.	(D0	Collab.)
	ABAZOV	05W	PRL 95 171801	V.M. Abazov et al.	(D0	Collab.)
	ABE	05B	PR D71 072003	K. Abe <i>et al.</i>	(BELLE	Collab.)
	Also		PR D71 079903 (errat.)	K. Abe <i>et al.</i>	(BELLE	Collab.)
	ACOSTA	05	PRL 94 101803	D. Acosta <i>et al.</i>	(CDF	Collab.)
	ABDALLAH	04E	EPJ C33 307	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
	AUBERT.B	04C	PR D70 012007	B. Aubert <i>et al.</i>	(BABAR	Collab.)
	Also		PRL 92 181801	B. Aubert et al.	BABAR	Collab.)
	ABDALLAH	03B	EPJ C28 155	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
	AUBERT	03C	PR D67 072002	B. Aubert <i>et al.</i>	(BABAR	Collab.)
	AUBERT	03H	PR D67 091101	B. Aubert <i>et al.</i>	ÌBABAR	Collab.)
	ABE	02H	PRL 88 171801	K. Abe <i>et al.</i>) (BELLE	Collab.
	ACOSTA	02C	PR D65 092009	D. Acosta <i>et al.</i>	(CDF	Collab.)
	AUBERT	02H	PRL 89 011802	B. Aubert et al.	(BABAR	Collab.)
	Also		PRL 89 169903 (errat.)	B. Aubert <i>et al.</i>	(BABAR	Collab.)
					(=:::=)	

NODE=S042

REFID=59185
REFID-57337
REFID-56380
REFID-55680
DEEID_55760
DEEID_55601
DEEID_5/021
DEEID_54939
REFID - 54550
REFID=52008
REFID=51002
REFID=51087
REFID=50492
REFID=50511
REFID=50929
REFID=50517
REFID=50555
REFID=50519
REFID=49917
REFID=50046
REFID=49927
REFID=49242
REFID=49210
REFID=49430
REFID=48633
REFID=48794
REFID=48639
REFID=48983

AUBERT	01E	PRI 87 201803	R Aubert et al	(BABAR	Collab)
ABBIENDIG	00B	PI B493 266	G Abbiendi <i>et al</i>	(OPAL	Collab.)
RARATE	008	PL B402 275	R Barate et al	(ALEPH	Collab.)
REHRENS	00R	PL B490 36	R H Behrens et al		Collab.)
	000	EPI (12 600	C Abbiendi et al	(OPAL	Collab.)
ADDILINDI	00D	DD DE7 5292	E Aba at al		Collab.)
ADE	900	PR D57 5562	F. Abe et al.	(CDF	Collab.)
ABE	98Q	PR D58 092002	F. Abe et al.	(CDF	Collab.)
ACCIARRI	985	PL B438 417	M. Acciarri <i>et al.</i>	(L3	Collab.)
ABE	97J	PRL 79 590	K. Abe <i>et al.</i>	(SLD	Collab.)
ABREU	97F	ZPHY C74 19	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
Also		ZPHY C75 579 (erratum	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ABE	96C	PRL 76 4462	F. Abe et al.	CDF	Collab.)
BUSKULIC	96J	ZPHY C71 31	D. Buskulic et al.	(ALEPH	Collab.)
ABREU	95Q	ZPHY C68 13	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ADAM	95	ZPHY C68 363	W. Adam et al.	(DELPHI	Collab.)
AKERS	95T	ZPHY C67 379	R. Akers <i>et al.</i>	OPAL	Collab.)
ABE	94D	PRL 72 3456	F. Abe <i>et al.</i>	(CDF	Collab.)
ABREU	93D	ZPHY C57 181	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ABREU	93G	PL B312 253	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ACTON	93C	PL B307 247	P.D. Acton et al.) (OPAL	Collab.)
BUSKULIC	93D	PL B307 194	D. Buskulic et al.	(ÀLEPH	Collab.)
Also		PL B325 537 (erratum)	D. Buskulic et al.	(ALEPH	Collab.)
WAGNER	90	PRL 64 1095	S.R. Wagner et al.	(Mark II	Collab.)
AVERILL	89	PR D39 123	D.A. Averill et al.	(HRS	Collab.)
			—	(

REFID=48432
REFID=47835
REFID=47827
REFID=47776
REFID=46738
REFID=45880
REFID=46475
REFID=46503
REFID=45413
REFID=45412
REFID=45614
REFID=44700
REFID=44824
REFID=44460
REFID=44465
REFID=44379
REFID=43761
REFID=43267
REFID=43443
REFID=43352
REFID=43349
REFID=43945
REFID=41096
REFID=40691

NODE=MXXX046

NODE=MXXX046

NODE=S086

NODE=S086

NODE=S086TSH

NODE=S086TSH

I, J, P need confirmation. Quantum numbers shown are quarkmodel predictions.

 $I(J^P) = 0(0^-)$

BOTTOM, STRANGE MESONS

 $(B=\pm 1, S=\mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}b, \ \text{ similarly for } B_s^*$'s

B_{sH}^0 MEAN LIFE

 B^0_{sH} is the heavy mass state of two B^0_s *CP* eigenstates.

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from the averages of $\Gamma_{B^0_s}$ and $\Delta\Gamma_{B^0_s}$ (and their

correlation).

 B_s^0

	$VALUE (10^{-12} s)$	DOCUMENT ID	TECN	COMMENT		NODE=S086TSH
	1.615±0.009 OUR EVALUATI	ON				\rightarrow UNCHECKED \leftarrow
	1.68 \pm 0.04 OUR AVERAGE					NEW
	$[(2.0 \pm 0.4) imes 10^{-12} \text{ s OUR } 2]$	018 AVERAGE]				
	$\bullet \bullet \bullet$ We do not use the follow	ving data for avera	ages, fits, limit	s, etc. ● ● ●		
YOUR DATA	$1.677 \!\pm\! 0.034 \!\pm\! 0.011$	¹ SIRUNYAN	18BY CMS	pp at 8 TeV	1	
	$2.04 \ \pm 0.44 \ \pm 0.05$	² AAIJ	17AI LHCB	<i>pp</i> at 7, 8, 13 TeV	-	
	$1.70 \ \pm 0.14 \ \pm 0.05$	³ ABAZOV	16C D0	<i>pp</i> at 1.96 TeV		
	$1.75\ \pm 0.12\ \pm 0.07$	⁴ AAIJ	13AB LHCB	pp at 7 TeV		
	$1.652\!\pm\!0.024\!\pm\!0.024$	⁵ AAIJ	13AR LHCB	pp at 7 TeV		
	$1.700\!\pm\!0.040\!\pm\!0.026$	⁶ AAIJ	12AN LHCB	<i>pp</i> at 7 TeV		
		⁷ AALTONEN	12D CDF	$p\overline{p}$ at 1.96 TeV		
	$1.70 \begin{array}{c} +0.12 \\ -0.11 \end{array} \pm 0.03$	⁶ AALTONEN	11AB CDF	$p\overline{p}$ at 1.96 TeV		
	$1.613^{+0.123}_{-0.113}$	^{8,9} AALTONEN	08J CDF	Repl. by AALTONEN 12D		
	$1.58 \begin{array}{c} +0.39 \\ -0.42 \end{array} \begin{array}{c} +0.01 \\ -0.02 \end{array}$	⁹ ABAZOV	05W D0	Repl. by ABAZOV 08AM		
	$2.07 \begin{array}{c} +0.58 \\ -0.46 \end{array} \pm 0.03$	⁹ ACOSTA	05 CDF	Repl. by AALTONEN 08J		
YOUR NOTE	¹ Measured using $B_s^0 \rightarrow J/r$ is dominated by the $f_0(980)$	$\psi \pi^+ \pi^-$ decays w) resonance, maki	rith 0.9240 < 1 ng it a <i>CP</i> -od	m $(\pi\pi) < 1.0204$ GeV, which d state.		NODE=S086TSH;LINKAGE=E
	² Measured using $B_s \rightarrow \mu^+$	μ^- decays which,	in the Standar	d Model, correspond to B_{arr}^0	-	
	decays Assumes $-2 \operatorname{Re}(\lambda)$	$(1+ \lambda ^2) - 1$		· sh		NODE=500013H;LINKAGE=D
	$accays. Assumes = 2 \operatorname{Re}(X)$	$(1 + \gamma) = 1.$				

 3 Measured using J/ $\psi \, \pi^+ \, \pi^-$ mode with 0.880 $< {\it m}(\pi \, \pi) <$ 1.080 GeV/c², which is mostly $J/\psi f(0)(980)$ mode, a pure *CP*-odd final state.

NODE=S086TSH;LINKAGE=B

- ⁴ Measured using a pure *CP*-odd final state $J/\psi K_S^0$ with the assumption that contributions from penguin diagrams are small. ⁵ Measured using $B_s \rightarrow J/\psi \pi^+ \pi^-$ decays which, in the limit of $\phi_s = 0$ and $|\lambda| = 1$, correspond to B_{sH}^0 decays. ⁶ Measured using a pure *CP*-odd final state $J/\psi f_0(980)$.
- ⁷Uses the time-dependent angular analysis of $B_s^0 \rightarrow J/\psi \phi$ decays assuming *CP*-violating angle $\beta_{s}(B^{0} \rightarrow J/\psi \phi) = 0.02.$

⁸Obtained from $\Delta \Gamma_s$ and Γ_s fit with a correlation of 0.6. ⁹Measured using the time-dependent angular analysis of $B_s^0 \rightarrow J/\psi \phi$ decays.

B_{sL}^0 MEAN LIFE

 B_{sL}^{0} is the light mass state of two B_{s}^{0} CP eigenstates.

"OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV). It is derived from the averages of $\Gamma_{B^0_e}$ and $\Delta\Gamma_{B^0_e}$ (and their correlation).

	VALUE (10 ⁻¹² s)	DOCUMENT ID	TECN	COMMENT	NODE=S086TSL
	1.415 ± 0.006 OUR EVALUA	TION	10		\rightarrow UNCHECKED \leftarrow
	1.40 ± 0.02 OUR AVERAG	E [(1.379 \pm 0.031	$) \times 10^{-12} s$	OUR 2016 AVERAGE]	NEW
	• • • We do not use the fol	lowing data for aver	ages, fits, lim	its, etc. • • •	
YOUR DATA	1.40 ± 0.02	¹ SIRUNYAN	18BY CMS	<i>pp</i> at 8 TeV	
	$1.479\!\pm\!0.034\!\pm\!0.011$	² AAIJ	16AL LHCE	8 pp at 7, 8 TeV	
	$1.379\!\pm\!0.026\!\pm\!0.017$	³ AAIJ	14F LHCE	в ррат 7, 8 ТеV	
	$1.407 \pm 0.016 \pm 0.007$	⁴ AAIJ	14R LHCE	B pp at 7 TeV	
	$1.440 \pm 0.096 \pm 0.009$	4 AAIJ	12 LHCE	8 Repl. by AAIJ 14R	
	$1.455 \pm 0.046 \pm 0.006$		12R LHCE	Repl. by AAIJ 14R	
	$1.437 \substack{+0.054 \\ -0.047}$	^{6,7} AALTONEN	08J CDF	Repl. by AALTONEN 12D	
	$\begin{array}{r} 1.24 \hspace{0.2cm} +0.14 \hspace{0.2cm} +0.01 \\ -0.11 \hspace{0.2cm} -0.02 \end{array}$	⁷ ABAZOV	05W D0	Repl. by ABAZOV 08AM	
	$1.05 \begin{array}{c} +0.16 \\ -0.13 \end{array} \pm 0.02$	⁷ ACOSTA	05 CDF	Repl. by AALTONEN 08J	
	$1.27\ \pm 0.33\ \pm 0.08$	⁸ BARATE	00K ALEP	$e^+e^- \rightarrow Z$	
	1 Measured using results	in SIRUNYAN 18BY	for the hea	vy B_{ϵ}^{0} lifetime obtained from	
TOOR NOTE	$B_{a}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ decay	1000E=300013E,EN1010E=			
	squared of the <i>CP</i> -odd a statistical and systematic				
	² Measured using $B_s^0 \rightarrow$	$J/\psi\eta$ decays.			NODE=S086TSL UNKAGE=
	³ Measured using $B_s^0 \rightarrow$	NODE=S086TSL;LINKAGE=			
	of $\Gamma_L = 0.725 \pm 0.014$	$\pm 0.009 \text{ ps}^{-1}$.			
	⁴ Measured using $B_s^0 \rightarrow 1$	K^+K^- decays. The	ere may still I	pe CPV in the decay.	NODE=S086TSL;LINKAGE=
	⁵ Uses the time-dependen violating angle $\beta_s(B^0 -$	NODE=S086TSL;LINKAGE=			
	⁶ Obtained from $\Delta\Gamma_s$ and	Γ_s fit with a correla	ation of 0.6.		NODE=S086TSL:LINKAGE=
	⁷ Measured using the time	-dependent angular	analysis of <i>B</i>	$0 \rightarrow J/\psi \phi$ decays.	
	8 Uses dd correlations fro	$B^0 \rightarrow D^{(*)+} D^{(*)+}$	*)-	5	NODE-500013L,EINRAGE-
	$\phi \phi$ correlations not	$m_s \rightarrow b_s b_s$;		NODE=S086TSL;LINKAGE=
	E	B ⁰ _s MEAN LIFE ($B_S \rightarrow J/\psi$	φ)	NODE=S086TJP
	<i>VALUE</i> (10^{-12} s)	DOCUMENT	ID TE	CN COMMENT	NODE=S086TJP
	1.479±0.012 OUR EVALUA				\rightarrow UNCHECKED \leftarrow

L

	1.480 ± 0.007 OUR AVERAGE				
	$[(1.479 \pm 0.012) imes 10^{-12} \text{ s OUR}]$	2018 AVERAGE]			
YOUR DATA	$1.481\!\pm\!0.007\!\pm\!0.005$	¹ SIRUNYAN	18BY CMS	<i>pp</i> at 8 TeV	
	$1.480\!\pm\!0.011\!\pm\!0.005$	¹ AAIJ	14E LHCB	<i>pp</i> at 7 TeV	
	$1.444^{+0.098}_{-0.090}\pm0.020$	1 ABAZOV	05B D0	$p \overline{p}$ at 1.96 TeV	
	$1.34 \begin{array}{c} +0.23 \\ -0.19 \end{array} \pm 0.05$	² ABE	98B CDF	$p\overline{p}$ at 1.8 TeV	
	• • • We do not use the following	data for averages	fite limite e		

We do not use the following data for averages, fits, limits, etc.

NODE=S086TSH;LINKAGE=A

NODE=S086TSH;LINKAGE=C

NODE=S086TSH;LINKAGE=AL NODE=S086TSH;LINKAGE=AT

NODE=S086TSH;LINKAGE=AA NODE=S086TSH;LINKAGE=AC

C

B A

AI AT

AA AC BA

NODE=S086TSL

NODE=S086TSL

	VALUE (10 ⁻¹² s)	DOCUMENT ID	TECN	COMMENT		NODE=S091T
	$\begin{array}{c} \textbf{0.507 \pm 0.009} \textbf{OUR EVALUAT} \\ \textbf{0.510 \pm 0.009} \textbf{OUR AVERAGE} \\ [(0.507 \pm 0.009) \times 10^{-12} \text{ s OU} \end{array}$	IN 2018 AVERAGE]				\rightarrow UNCHECKED \leftarrow NEW
YOUR DATA	$0.541 \pm 0.026 \pm 0.014$ 0 5134 ± 0.0110 ± 0.0057	¹ SIRUNYAN 2,3 AALI	18BY CMS	pp at 8 TeV	I	
	$\begin{array}{c} 0.5134 \pm 0.0110 \pm 0.0037 \\ 0.509 \ \pm 0.008 \ \pm 0.012 \end{array}$	⁴ AAIJ	14G LHCB	pp at 7, 8 TeV		
	$0.452 \pm 0.048 \pm 0.027$	³ AALTONEN	13 CDF	<i>pp</i> at 1.96 TeV		

$\begin{array}{c} 0.448 \begin{array}{c} +0.038 \\ -0.036 \end{array} \pm 0$	0.032	⁵ ABAZOV	09н С	00	<i>pp</i> at 1.96 TeV
$\begin{array}{ccc} 0.463 & +0.073 \\ -0.065 & \pm 0 \end{array}$	0.036	⁵ ABULENCIA	060 C	DF	<i>pp</i> at 1.96 TeV
$0.46 \begin{array}{c} +0.18 \\ -0.16 \end{array} \pm 0$).03	⁵ ABE	98M C	DF	<i>pp</i> 1.8 TeV

YOUR NOTE

¹The lifetime is measured using the decays
$$B_c^+ \rightarrow J/\psi \pi^+$$
 and $B^+ \rightarrow J/\psi K^+$.
²Also measures the width difference $\Delta \Gamma = \Gamma_{B_c^+} - \Gamma_{B^+} = 4.46 \pm 0.14 \pm 0.07 \text{ mm}^{-1} \text{ c.}$

³Uses fully reconstructed $B_c^+ \rightarrow J/\psi \pi^+$ decays. ⁴Measured using $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu X$ decays.

⁵ The lifetime is measured from the $J/\psi e$ decay vertices.

B_{c}^{+} REFERENCES

YOUR PAPER	SIRUNYAN	18BY	EPJ C78 457	A.M. Sirunyan et al.
	AAIJ	15G	PL B742 29	R. Aaij et al.
	AAIJ	14G	EPJ C74 2839	R. Aaij <i>et al.</i>
	AALTONEN	13	PR D87 011101	T. Aaltonen et al.
	ABAZOV	09H	PRL 102 092001	V.M. Abazov et al.
	ABULENCIA	06O	PRL 97 012002	A. Abulencia et al.
	ABE	98M	PRL 81 2432	F. Abe et al.
	Also		PR D58 112004	F. Abe et al.

 Λ_b^0

¹The lifetime is measured us

BOTTOM BARYONS $(B = -1)$
$\Lambda^0_b = udb, \ \Xi^0_b = usb, \ \Xi^b = dsb, \ \Omega^b = ssb$

 $I(J^{P}) = 0(\frac{1}{2}^{+})$ Status: ***

(CMS Collab.) (LHCb Collab.)

(LHCb Collab.) (LHCb Collab.) (CDF Collab.) (D0 Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)

In the quark model, a Λ_b^0 is an isospin-0 u d b state. The lowest Λ_b^0 ought to have $J^P = 1/2^+$. None of *I*, *J*, or *P* have actually been measured.

∧⁰_b MEAN LIFE

See b-baryon Admixture section for data on b-baryon mean life average over species of *b*-baryon particles.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

	$VALUE (10^{-12} s)$	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S040T
	1.470±0.010 OUR EV	ALUATI	ON				\rightarrow UNCHECKED \leftarrow
YOUR DATA	$1.477 \pm 0.027 \pm 0.009$		¹ SIRUNYAN	18BY	CMS	pp at 8 TeV	
	$1.415\!\pm\!0.027\!\pm\!0.006$		² AAIJ	14E	LHCB	<i>pp</i> at 7 TeV	
	$1.479\!\pm\!0.009\!\pm\!0.010$		³ AAIJ	14U	LHCB	<i>pp</i> at 7, 8 TeV	
	$1.565 \!\pm\! 0.035 \!\pm\! 0.020$		² AALTONEN	1 4B	CDF	<i>pp</i> at 1.96 TeV	
	$1.449 \!\pm\! 0.036 \!\pm\! 0.017$		² AAD	13 U	ATLS	<i>pp</i> at 7 TeV	
	$1.503\!\pm\!0.052\!\pm\!0.031$		² CHATRCHYAN	13 AC	CMS	<i>pp</i> at 7 TeV	
	$1.303\!\pm\!0.075\!\pm\!0.035$		² ABAZOV	120	D0	<i>pp</i> at 1.96 TeV	
	$1.401\!\pm\!0.046\!\pm\!0.035$		⁴ AALTONEN	10 B	CDF	<i>р</i> рат 1.96 ТеV	
	$1.27 \begin{array}{c} +0.35 \\ -0.29 \end{array} \pm 0.09$		ABREU	95 S	DLPH	Excess $p\mu^-$, decay lengths	
	• • • We do not use t	he follov	ving data for ave	rages,	fits, lim	its, etc. ● ● ●	
	$1.482\!\pm\!0.018\!\pm\!0.012$		⁵ AAIJ	13BB	LHCB	Repl. by AAIJ 14∪	
	$1.537 \!\pm\! 0.045 \!\pm\! 0.014$		² AALTONEN	11	CDF	Repl. by AALTONEN 14B	
	$1.218^{+0.130}_{-0.115}{\pm}0.042$		² ABAZOV	07s	D0	Repl. by ABAZOV 120	
	$1.290 \substack{+0.119 + 0.087 \\ -0.110 - 0.091}$		⁶ ABAZOV	07 U	D0	<i>pp</i> at 1.96 TeV	

NODE=S091T;LINKAGE=C

NODE=S091T;LINKAGE=AA

NODE=S091T;LINKAGE=AL

NODE=S091T;LINKAGE=B NODE=S091T;LINKAGE=A

REFID=59185 REFID=56373 REFID=55693 REFID=54798 REFID=52702 REFID=51241 REFID=46120 REFID=46488

NODE=BXXX045

NODE=BXXX045

NODE=S040

NODE=S040

NODE=S040T

NODE=S040T

 $1.593^{+0.083}_{-0.078}\pm 0.033$ ² ABULENCIA 07A CDF Repl. by AALTONEN 11 $1.22 \ {}^{+0.22}_{-0.18} \ {}^{\pm 0.04}$ ² ABAZOV Repl. by ABAZOV 07s 05C D0 $1.11 \begin{array}{c} +0.19 \\ -0.18 \end{array} \pm 0.05$ ⁷ ABREU 99W DLPH $e^+e^- \rightarrow Z$ $1.29 \begin{array}{c} +0.24 \\ -0.22 \end{array} \pm 0.06$ ⁷ ACKERSTAFF 98G OPAL $e^+e^- \rightarrow Z$ ⁷ BARATE 1.21 ± 0.11 98D ALEP $e^+e^- \rightarrow Z$ ⁸ ABE $1.32\ \pm 0.15\ \pm 0.07$ 96M CDF $p\overline{p}$ at 1.8 TeV $1.19 \begin{array}{c} +0.21 \\ -0.18 \end{array} \begin{array}{c} +0.07 \\ -0.08 \end{array}$ ABREU 96D DLPH Repl. by ABREU 99W $1.14 \begin{array}{c} +0.22 \\ -0.19 \end{array} \pm 0.07$ AKERS 95K OPAL Repl. by ACKERSTAFF 98G 69 $1.02 \begin{array}{c} +0.23 \\ -0.18 \end{array} \pm 0.06$ 44 BUSKULIC 95L ALEP Repl. by BARATE 98D $^1\,{
m Measured}$ using $\Lambda^0_b o \ J/\psi \Lambda$ decays.

² Measured mean life using fully reconstructed $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decays. ³ Used $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays. ⁴ Measured mean life using fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ decays. ⁵ Measured the lifetime ratio of decays $\Lambda_b^0 \rightarrow J/\psi p K^-$ to $B^0 \rightarrow J/\psi \pi^+ K^-$ to be 0.976 \pm 0.012 \pm 0.006 with $\tau_{B^0} = 1.519 \pm 0.007$ ps. ⁶ Measured using semileptonic decays $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu \nu X$ and $\Lambda_c^+ \rightarrow K_S^0 p$. ⁷ Measured using $\Lambda_c \ell^-$ and $\Lambda \ell^+ \ell^-$.

⁸Excess $\Lambda_c \ell^-$, decay lengths.

$\tau_{A^0_*}/\tau_{B^0}$ MEAN LIFE RATIO

$\tau_{A^0_t}/\tau_{B^0}$ (direct measurements)

"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group
(HFLAV) by including both B⁰ and B⁺ decays.VALUEDOCUMENT IDTECNCOMMENT0.964±0.007 OUR EVALUATION

0.970\pm0.009 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. [0.969 \pm 0.010 OUR 2018 AVERAGE Scale factor = 1.6] YOUR DATA 0.978+0.018+0.006 ¹ SIRUNYAN 188Y CMS *p.p.* at 8 TeV

JON DAIA	$0.970 \pm 0.010 \pm 0.000$	JINONIAN	TODI CIVID	pparolev
	$0.929\!\pm\!0.018\!\pm\!0.004$	¹ AAIJ	14E LHCB	pp at 7 TeV
	$0.974 \!\pm\! 0.006 \!\pm\! 0.004$	² AAIJ	14∪ LHCB	<i>pp</i> at 7, 8 TeV
	$0.960\!\pm\!0.025\!\pm\!0.016$	³ AAD	13∪ ATLS	pp at 7 TeV
	$0.864 \!\pm\! 0.052 \!\pm\! 0.033$	^{4,5} ABAZOV	12U D0	$p\overline{p}$ at 1.96 TeV
	$1.020\!\pm\!0.030\!\pm\!0.008$	⁴ AALTONEN	11 CDF	$p\overline{p}$ at 1.96 TeV
	$\bullet \bullet \bullet$ We do not use the fo	ollowing data for avera	ages, fits, limit	ts, etc. • • •
	$0.976\!\pm\!0.012\!\pm\!0.006$	⁶ AAIJ	13bb LHCB	Repl. by AAIJ 14∪
	$0.811^{+0.096}_{-0.087}{\pm}0.034$	^{4,5} ABAZOV	07s D0	Repl. by ABAZOV 120
	$1.041\!\pm\!0.057$	⁷ ABULENCIA	07A CDF	Repl. by AALTONEN 11
	$0.87 \begin{array}{c} +0.17 \\ -0.14 \end{array} \pm 0.03$	⁷ ABAZOV	05C D0	Repl. by ABAZOV 075

YOUR NOTE

YOUR NOTE

 $= \begin{array}{c} 1 \text{ Measured using } \Lambda_b^0 \rightarrow J/\psi \Lambda \text{ and } B^0 \rightarrow J/\psi K^*(892)^0 \text{ decays.} \\ 2 \text{ Used } \Lambda_b^0 \rightarrow J/\psi p K^- \text{ and } B^0 \rightarrow J/\psi K^*(892)^0 \text{ decays.} \\ 3 \text{ Measured with } \Lambda_b^0 \rightarrow J/\psi (\mu^+ \mu^-) \Lambda^0 (p \pi^-) \text{ decays.} \\ 4 \text{ Uses fully reconstructed } \Lambda_b \rightarrow J/\psi \Lambda \text{ decays.} \\ 5 \text{ Uses } B^0 \rightarrow J/\psi K_S^0 \text{ decays for denominator.} \\ 6 \text{ Measures } 1/\tau_{\Lambda_b^0} - 1/\tau_{B^0} \text{ and uses } \tau_{B^0} = 1.519 \pm 0.007 \text{ ps to extract lifetime ratio.} \end{array}$

⁷Measured mean life ratio using fully reconstructed decays.

𝔥 REFERENCES

YOUR PAPER	SIRUNYAN	18BY	EPJ C78 457	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AAIJ	14E	JHEP 1404 114	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	14U	PL B734 122	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AALTONEN	14B	PR D89 072014	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	AAD	13U	PR D87 032002	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	AAIJ	13BB	PRL 111 102003	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	CHATRCHYAN	13AC	JHEP 1307 163	S. Chatrchyan <i>et al.</i>	(CMS	Collab.)
	ABAZOV	12U	PR D85 112003	V.M. Abazov et al.	(D0	Collab.)
	AALTONEN	11	PRL 106 121804	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	AALTONEN	10B	PRL 104 102002	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	ABAZOV	07S	PRL 99 142001	V.M. Abazov et al.	(D0	Collab.)

OCCUR=3

OCCUR=2

NODE=S040T;LINKAGE=A NODE=S040T;LINKAGE=AB NODE=S040T;LINKAGE=AI NODE=S040T;LINKAGE=AA NODE=S040T;LINKAGE=AJ

NODE=S040T;LINKAGE=AZ NODE=S040T;LINKAGE=KK NODE=S040T;LINKAGE=AE

NODE=S040211

NODE=S040TR NODE=S040TR

NODE=S040TR \rightarrow UNCHECKED \leftarrow NEW

NODE=S040TR;LINKAGE=B NODE=S040TR;LINKAGE=AA NODE=S040TR;LINKAGE=AD NODE=S040TR;LINKAGE=ZO NODE=S040TR;LINKAGE=ZV

NODE=S040TR;LINKAGE=A NODE=S040TR;LINKAGE=AB

NODE=S040

REFID=59185
REFID=55689
REFID=55763
REFID=55804
REFID=54939
REFID=55228
REFID=55044
REFID=54350
REFID=53674
REFID=53241
REFID=52008

ABAZOV	07U	PRL 99 182001	V.M. Abazov et al.	(D0	Collab.)	REFID=52043
ABULENCIA	07A	PRL 98 122001	A. Abulencia et al.	(FNAL CDF	Collab.)	REFID=51662
ABAZOV	05C	PRL 94 102001	V.M. Abazov et al.	(D0	Collab.)	REFID=50511
ABREU	99W	EPJ C10 185	P. Abreu et al.	(DELPHI	Collab.)	REFID=47301
ACKERSTAFF	98G	PL B426 161	K. Ackerstaff et al.	(OPAL	Collab.)	REFID=45875
BARATE	98D	EPJ C2 197	R. Barate et al.	(ALEPH	Collab.)	REFID=45878
ABE	96M	PRL 77 1439	F. Abe et al.	(CDF	Collab.)	REFID=44810
ABREU	96D	ZPHY C71 199	P. Abreu et al.	(DELPHI	Collab.)	REFID=44691
ABREU	95S	ZPHY C68 375	P. Abreu et al.	(DELPHI	Collab.)	REFID=44466
AKERS	95K	PL B353 402	R. Akers et al.	(OPAL	Collab.)	REFID=44324
BUSKULIC	95L	PL B357 685	D. Buskulic et al.	(ALEPH	Collab.)	REFID=44468

= SIRUNYAN 18DA; JHEP 1811 042 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

SEARCHES NODE=SXXX005 not in other sections Other Particle Searches NODE=S015 OMITTED FROM SUMMARY TABLE LIMITS ON NEUTRAL PARTICLE PRODUCTION NODE=S015415 Heavy Particle Production Cross Section NODE=S015CS NODE=S015CS VALUE (cm^2/N) CL% DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD 18CJ ATLS $pp \rightarrow VV/\ell\ell/\ell\nu, V =$ W,Z,h² AABOUD 18CM ATLS $\textit{pp} \rightarrow \textit{e}\,\mu\,/\,\textit{e}\,\tau\,/\,\mu\,\tau$ $pp \rightarrow A' \rightarrow \mu^+ \mu^-;$ ³ AAIJ 18AJ LHCB dark photon ⁴ BANERJEE 18 NA64 $eZ \rightarrow eZX(A')$ ⁵ BANERJEE 18A NA64 $eZ \rightarrow eZA', A' \rightarrow \chi\chi$ ⁶ MARSICANO 18 E137 $e^+e^- \rightarrow A'(\gamma)$ visible decay $pp \rightarrow Z' \rightarrow \ell^+ \ell^-$ at 13 ⁷ SIRUNYAN **18BB CMS** TeV ⁸ SIRUNYAN $pp \rightarrow \mathsf{Black}$ Hole, string YOUR DATA 18DA CMS ball, sphaleron ⁹ SIRUNYAN 18DD CMS $pp \rightarrow jj$ ¹⁰ SIRUNYAN 18DR CMS $pp \rightarrow b\mu\overline{\mu}$ ¹¹ SIRUNYAN 18DU CMS $pp \rightarrow \gamma \gamma$ ¹² SIRUNYAN $pp \rightarrow V \rightarrow Wh; h \rightarrow$ 18ED CMS $b\overline{b}; W \rightarrow I\nu$ ¹³ AABOUD 17B ATLS WH, ZH resonance ¹⁴ AAIJ 17BR LHCB $pp \rightarrow \pi_V \pi_V, \pi_V \rightarrow jj$ 15 aad 160 ATLS $\ell + (\ell \text{s or jets})$ ¹⁶ AAD 16R ATLS WW, WZ, ZZ resonance ¹⁷ KRASZNAHO...16 $p^7 \text{Li} \rightarrow {}^8 \text{Be} \rightarrow X(17) N$, $X(17) \rightarrow e^+ e^-$ 15E BABR e^+e^- collisions ¹⁸ LEES ¹⁹ ADAMS 97B KTEV m= 1.2-5 GeV ²⁰ GALLAS $< 10^{-36} - 10^{-33}$ 90 95 TOF m= 0.5-20 GeV $<(4-0.3) \times 10^{-31}$ ²¹ AKESSON 95 91 CNTR m = 0-5 GeV $<2 \times 10^{-36}$ ²² BADIER 86 BDMP $\tau = (0.05-1.) \times 10^{-8} s$ 90 $< 2.5 \times 10^{-35}$ ²³ GUSTAFSON 76 CNTR τ > 10⁻⁷ s ¹AABOUD 18CJ make multichannel search for $pp \rightarrow VV/\ell\ell/\ell\nu$, V = W,Z,h at 13 NODE=S015CS;LINKAGE=R TeV, 36.1 fb^{-1} ; no signal found; limits placed for several BSM models. ²AABOUD 18CM search for lepton-flavor violating resonance in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13 NODE=S015CS;LINKAGE=S TeV, 36.1 fb $^{-1}$; no signal is found and limits placed for various BSM models. ³AAIJ 18AJ search for prompt and delayed dark photon decay $A'
ightarrow \mu^+ \mu^-$ at LHCb NODE=S015CS;LINKAGE=K detector using 1.6 fb⁻¹ of pp collisions at 13 TeV; limits on m(A') vs. kinetic mixing are set ⁴BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow$ NODE=S015CS:LINKAGE=L eZX(A'); no signal found and limits set on the $X-e^-$ coupling ϵ_{ρ} in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space. 5 BANERJEE 18A search for invisibly decaying dark photons in eZ
ightarrow eZA', A'
ightarrowNODE=S015CS;LINKAGE=M invisible; no signal found and limits set on mixing for m(A') < 1 GeV. ⁶MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 NODE=S015CS;LINKAGE=P e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7. ⁷SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude NODE=S015CS;LINKAGE=O portions of p-space of Z', KK graviton models. 8 SIRUNYAN 18DA search for pp
ightarrow Black Hole, string ball, sphaleron via high multiplicity YOUR NOTE NODE=S015CS;LINKAGE=T events at 13 TeV, 35.9 fb $^{-1}$; no signal, require e.g. m(BH)¿10.1 TeV 9 SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal NODE=S015CS;LINKAGE=U observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) 5.9-8.2 TeV. 10 SIRUNYAN 18DR search for dimuon resonance in $pp \rightarrow ~b\mu\overline{\mu}$ at 8 and 13 TeV. Slight NODE=S015CS;LINKAGE=V

excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W')¿2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \, \text{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode. 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) long-NODE=S015CS;LINKAGE=A lived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

4/5/2019 10:34

NODE=S015 REFID=59441 REFID=59474 REFID=59199 REFID=58838 REFID=58916 REFID=58967 REFID=59112 REFID=59306 REFID=59318 REFID=59367 REFID=59469 REFID=59566 REFID=57706 REFID=58366 REFID=59311 REFID=57169 REFID=57172 REFID=59302 RFFID=56467 REFID=45722 REFID=44291 REFID=41739 REFID=10622 REFID=12580

Page 89

REFERENCES FOR Other Particle Searches

	AABOUD AABOUD AAIJ BANERJEE BANERJEE	18CJ 18CM 18AJ 18 18A	PR D98 052008 PR D98 092008 PRL 120 061801 PRL 120 231802 PR D97 072002	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> R. Aaij <i>et al.</i> D. Banerjee <i>et al.</i> D. Banerjee <i>et al.</i>	(ATLAS (ATLAS (LHCb (NA64 (NA64	Collab.) Collab.) Collab.) Collab.) Collab.)
	SIRLINYAN	18 18RR	PR D98 015031 IHEP 1806 120	L. Marsicano <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS	Collab)
YOUR PAPER	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	(CMS	Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS	Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller		(WASH)
	AAD	160	PL B760 520	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	(HINR,	ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR	Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV	Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT	FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson et al.	(HELIOS	Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3	Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.		(MICH)

SIRUNYAN 18DD; EPJ C78 789CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

SEARCHES not in other sections

Other Particle Searches

OMITTED FROM SUMMARY TABLE

LIMITS ON NEUTRAL PARTICLE PRODUCTION

DOCUMENT ID

• • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD

Heavy Particle Production Cross Section CL%

VALUE (cm^2/N)

YOUR DATA

YOUR NOTE

		0		vv,∠,n		
		² AABOUD	18CM ATLS	$pp ightarrow$ $e\mu/e au/\mu au$		
		³ AAIJ	18AJ LHCB	$pp \rightarrow A' \rightarrow \mu^+ \mu^-;$	I	
		⁴ BANERJEE	18 NA64	$eZ \rightarrow eZX(A')$	I	
		⁵ BANERJEE	18A NA64	$eZ ightarrow ~eZA'$, $A' ightarrow \chi\chi$		
		⁶ MARSICANO	18 E137	$e^+e^- \rightarrow A'(\gamma)$ visible		
		_		decay		
		⁷ SIRUNYAN	18bb CMS	$pp \rightarrow Z' \rightarrow \ell^+ \ell^- \text{ at } 13$		
		⁸ SIRUNYAN	18DA CMS	$p p \rightarrow Black Hole. string$	1	
		•		ball, sphaleron		
		⁹ SIRUNYAN	18DD CMS	$pp \rightarrow jj$		
		¹⁰ SIRUNYAN	18DR CMS	$pp ightarrow b \mu \overline{\mu}$		
		¹¹ SIRUNYAN	18DU CMS	$p p \rightarrow \gamma \gamma$		
		¹² SIRUNYAN	18ED CMS	$pp V \rightarrow Wh; h \rightarrow$		
		13	17- 47-0	$bb; W \rightarrow I\nu$		
		14 AABOUD	17B AILS	WH, ZH resonance		
		14 AAIJ	17BR LHCB	$pp \rightarrow \pi_V \pi_V, \pi_V \rightarrow jj$		
		¹³ AAD	160 ATLS	$\ell + (\ell s \text{ or jets})$		
		10 AAD	16R ATLS	$W_{\overline{W}}$, $W_{\overline{Z}}$, ZZ resonance		
		¹⁷ KRASZNAHO.	16	$p^{T} \text{Li} \rightarrow {}^{8}\text{Be} \rightarrow X(17) N,$		
		10		$X(17) \rightarrow e^+e^-$		
		¹⁸ LEES	15e BABR	e^+e^- collisions		
		¹⁹ ADAMS	97B KTEV	m = 1.2 - 5 GeV		
$< 10^{-30} - 10^{-33}$	90	²⁰ GALLAS	95 TOF	m = 0.5 - 20 GeV		
<(4–0.3) $ imes$ 10 ^{–31}	95	²¹ AKESSON	91 CNTR	m = 0-5 GeV		
$<2 \times 10^{-36}$	90	²² BADIER	86 BDMP	$ au =$ (0.05–1.) $ imes$ 10 $^{-8}$ s		
$< 2.5 \times 10^{-35}$		²³ GUSTAFSON	76 CNTR	$ au > 10^{-7}$ s		
¹ AABOUD 18CJ m	nake mul	tichannel search fo	r p p ightarrow V V	$\ell/\ell\ell/\ell u$, $V=W,Z,h$ at 13	L	NODE=S015CS;LINKAGE=R

TECN COMMENT

18CJ ATLS $pp \rightarrow VV/\ell\ell/\ell\nu, V =$

TeV, 36.1 fb^{-1} ; no signal found; limits placed for several BSM models. ²AABOUD 18CM search for lepton-flavor violating resonance in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13 NODE=S015CS;LINKAGE=S TeV, 36.1 fb^{-1} ; no signal is found and limits placed for various BSM models.

- 3 AAIJ 18AJ search for prompt and delayed dark photon decay ${\it A'} \rightarrow ~\mu^+\mu^-$ at LHCb detector using 1.6 fb⁻¹ of pp collisions at 13 TeV; limits on m(A') vs. kinetic mixing are set. ⁴BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow$
- eZX(A'); no signal found and limits set on the X- e^- coupling ϵ_e in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space.
- 5 BANERJEE 18A search for invisibly decaying dark photons in eZ
 ightarrow eZA', A'
 ightarrowinvisible; no signal found and limits set on mixing for m(A') < 1 GeV.
- ⁶MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7.
- ⁷SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of Z', KK graviton models.
- ⁸SIRUNYAN 18DA search for $pp \rightarrow$ Black Hole, string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb⁻¹; no signal, require e.g. m(BH)¿10.1 TeV
- 9 SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) 5.9–8.2 TeV.
 - 10 SIRUNYAN 18DR search for dimuon resonance in $pp
 ightarrow \ b \mu \overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

NODE=S015

NODE=SXXX005

NODE=S015415

NODE=S015CS NODE=S015CS

NODE=S015CS;LINKAGE=V

NODE=S015CS;LINKAGE=K

NODE=S015CS:LINKAGE=L

NODE=S015CS;LINKAGE=M

NODE=S015CS;LINKAGE=P

NODE=S015CS;LINKAGE=O

NODE=S015CS;LINKAGE=T

NODE=S015CS;LINKAGE=U

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W'); 2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode. 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) long-NODE=S015CS;LINKAGE=A lived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and

interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

	AABOUD AABOUD AAIJ BANERJEE BANERJEE MARSICANO	18CJ 18CM 18AJ 18 18A	PR D98 052008 PR D98 092008 PRL 120 061801 PRL 120 231802 PR D97 072002	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> R. Aaij <i>et al.</i> D. Banerjee <i>et al.</i> D. Banerjee <i>et al.</i>	(ATLAS Collab (ATLAS Collab (LHCb Collab (NA64 Collab (NA64 Collab)))))))
	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan et al.	(CMS Collab	o.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	CMS Collab	o.)
YOUR PAPER	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	CMS Collab	o.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	CMS Collab	o.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.	CMS Collab	o.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	CMS Collab	o.)
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS Collab	o.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb Collab	o.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller) (WASH	Η)́
	AAD	160	PL B760 520	G. Aad et al.	(ATLAS Collab	o.)
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	ATLAS Collab	o.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay et al.	(HINR, ANIK+	⊢)́
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR Collab	o.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab	o.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOF	₹)
	AKESSON	91	ZPHY C52 219	T. Akesson et al.	(HELIOS Collab	o.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	NA3 Collab	o.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.) (MICH	-Ú

NODE=S015

4/5/2019 10:34

Page 92

REFID=59 REFID=58 REFID=58 REFID=58 REFID=59 REFID=59 REFID=59 REFID=59 REFID=59 REFID=59 REFID=59 REFID=57 REFID=57 REFID=57 REFID=59 REFID=59 REFID=59 REFID=59 REFID=59	441 474 199 838 916 967 312 306 318 367 366 318 367 366 311 169 172 302 467
REFID=57	172
REFID=59	302
REFID=50	407
REFID-44	201
REFID=44	730
REFID-10	622
REFID-12	580
	000

SIRUNYAN 18DJ; JHEP 1809 101CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

SEARCHES NODE=SXXX005 not in other sections Other Particle Searches NODE=S015 OMITTED FROM SUMMARY TABLE LIMITS ON JET-JET RESONANCES NODE=S015420 Heavy Particle Production Cross Section NODE=S015HP Limits are for a particle decaying to two hadronic jets. NODE=S015HP NODE=S015HP DOCUMENT ID TECN COMMENT Units(pb) CL% Mass(GeV) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ SIRUNYAN 19B CMS $pp \rightarrow jA, A \rightarrow b\overline{b}$ ² AABOUD $pp \rightarrow Y \rightarrow HX \rightarrow (bb) +$ 18AD ATLS (qq)³ AABOUD 18CK ATLS $pp \rightarrow bbb + \not\!\!E_T$ ⁴ AABOUD 18CL ATLS $pp \rightarrow$ vector-like quarks ⁵ AABOUD 18N ATLS $pp \rightarrow jj$ resonance ⁶ SIRUNYAN YOUR DATA 18DJ CMS $pp \rightarrow ZZ \text{ or } W Z \rightarrow I\overline{I}ii$ ⁷ SIRUNYAN 18DY CMS $pp \rightarrow RR; R \rightarrow jj$ ⁸ KHACHATRY...17W CMS $p p \rightarrow j j$ resonance ⁹ KHACHATRY...17Y CMS $pp \rightarrow (8-10) j + \not \! E_T$ ¹⁰ SIRUNYAN 17F CMS $p \, p \,
ightarrow \, j j$ angular distribution ¹¹ AABOUD 16 ATLS $pp \rightarrow b + jet$ 12 AAD16N ATLS $pp \rightarrow 3$ high E_T jets 13 AAD 16s ATLS $p p \rightarrow j j$ resonance ¹⁴ KHACHATRY...16K CMS $p p \rightarrow j j$ resonance ¹⁵ KHACHATRY...16L CMS $pp \rightarrow jj$ resonance ¹⁶ AAD 13D ATLS 7 TeV $pp \rightarrow 2$ jets 17 AALTONEN 13R CDF 1.96 TeV $p\overline{p} \rightarrow 4$ jets ¹⁸ CHATRCHYAN 13A CMS 7 TeV $pp \rightarrow 2$ jets ¹⁹ CHATRCHYAN 13A CMS 7 TeV $pp \rightarrow b\overline{b}X$ OCCUR=2 ²⁰ AAD 12s ATLS 7 TeV $pp \rightarrow 2$ jets ²¹ CHATRCHYAN 12BL CMS 7 TeV $pp \rightarrow t\bar{t}X$ ²² AAD 11AG ATLS 7 TeV $pp \rightarrow 2$ jets ²³ AALTONEN 11M CDF 1.96 TeV $p\overline{p} \rightarrow W+2$ jets ²⁴ ABAZOV 111 D0 1.96 TeV $p\overline{p} \rightarrow W+2$ jets 25 AAD 10 ATLS 7 TeV $pp \rightarrow 2$ jets

> ²⁸ ABE 97G CDF 1.8 TeV $p\overline{p} \rightarrow 2$ jets ²⁹ ABE 93G CDF <2603 95 200 1.8 TeV $p\overline{p} \rightarrow 2$ jets ²⁹ ABE 93G CDF OCCUR=2 1.8 TeV $p\overline{p} \rightarrow 2$ jets 95 400 ²⁹ ABE 95 600 93G CDF 1.8 TeV $p \overline{p} \rightarrow 2$ jets OCCUR=3 ¹SIRUNYAN 19B search for low mass resonance $pp \rightarrow jA$, $A \rightarrow b\overline{b}$ at 13 TeV using 35.9 NODE=S015HP;LINKAGE=R fb^{-1} ; no signal; exclude resonances 50-350 GeV depending on production and decay. ²AABOUD 18AD search for new heavy particle $Y \rightarrow HX \rightarrow (bb) + (qq)$. No signal NODE=S015HP;LINKAGE=L observed. Limits set on m(Y) vs. m(X) in the ranges of m(Y) in 1-4 TeV and m(X) in 50-1000 GeV 3 AABOUD 18CK search for SUSY Higgsinos in gauge-mediation via $\it{pp}
> ightarrow \it{bbb}{+} \not{\!\!E_T}$ at NODE=S015HP;LINKAGE=N 13 TeV using two complementary analyses with 24.3/36.1 fb⁻¹; no signal is found and Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95confidence level. ⁴AABOUD 18CL search for $pp \rightarrow$ vector-like quarks \rightarrow jets at 13 TeV with 36 fb⁻¹; no NODE=S015HP;LINKAGE=O signal seen; limits set on various VLQ scenarios. For pure $B \rightarrow Hb$ or $T \rightarrow Ht$, set the mass limit m > 1010 GeV. 5 AABOUD 18N search for dijet resonance at Atlas with 13 TeV and 29.3 fb $^{-1}$; limits set NODE=S015HP;LINKAGE=M on m(Z') in the mass range of 450–1800 GeV. ⁶SIRUNYAN 18DJ search for $pp \rightarrow ZZ$ or $WZ \rightarrow I\bar{I}jj$ resonance at 13 TeV, 35.9 fb⁻¹; NODE=S015HP;LINKAGE=P no signal; limits set in the 400-4500 GeV mass range, exclusion of W' up to 2270 GeV in the HVT model A, and up to 2330 for HVT model B. WED bulk graviton exclusion up to 925 GeV. ⁷SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 NODE=S015HP;LINKAGE=Q fb^{-1} ; no signal; limits placed on RPV top-squark pair production

7 TeV $pp \rightarrow 2$ jets

1.8 TeV $p\overline{p} \rightarrow b\overline{b}+$ anything

²⁶ KHACHATRY...10 CMS

99F CDF

²⁷ ABE

44

7 <

<

YOUR NOTE

⁸ KHACHATRYAN 17W search for dijet resonance in 12.9 fb ^{-1} data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc.	NODE=S015HP;LINKAGE=I
⁹ KHACHATRYAN 17Y search for $pp \rightarrow (8-10) j$ in 19.7 fb ⁻¹ at 8 TeV. No signal seen. Limits set on colorons axielyons RPV and SUSY	NODE=S015HP;LINKAGE=J
¹⁰ SIRUNYAN 17F measure $pp \rightarrow jj$ angular distribution in 2.6 fb ⁻¹ at 13 TeV; limits set on LEDs and quantum black holes	NODE=S015HP;LINKAGE=K
¹¹ AABOUD 16 search for resonant dijets including one or two <i>b</i> -jets with 3.2 fb ⁻¹ at 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1–1.5 TeV	NODE=S015HP;LINKAGE=F
¹² AAD 16N search for \geq 3 jets with 3.6 fb ⁻¹ at 13 TeV; limits placed on micro black holes (Fig. 10) and string balls (Fig. 11)	NODE=S015HP;LINKAGE=D
¹³ AAD 16S search for high mass jet-jet resonance with 3.6 fb ⁻¹ at 13 TeV; exclude portions	NODE=S015HP;LINKAGE=E
 ¹⁴KHACHATRYAN 16K search for dijet resonance in 2.4 fb⁻¹ data at 13 TeV; see Fig. 3 for limits on axigluons, diquarks etc. 	NODE=S015HP;LINKAGE=G
¹⁵ KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 fb ⁻¹ of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set.	NODE=S015HP;LINKAGE=H
improving on the results by other experiments in the mass range between 500–800 GeV. ¹⁶ AAD 13D search for dijet resonances in <i>nn</i> collisions at $F_{10} = 7$ TeV with $L = 4.8$	
fb^{-1} . The observed events are compatible with Standard Model expectation. See their	NODE=S015HP;LINKAGE=GA
¹⁷ AALTONEN 13R search for production of a pair of jet-jet resonances in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with $L = 6.6$ fb ⁻¹ . See their Fig. 5 and Tables I, II for cross section	NODE=S015HP;LINKAGE=C
limits. ¹⁸ CHATRCHYAN 13A search for qq , qg , and gg resonances in pp collisions at $E_{cm} =$	NODE=S015HP:LINKAGE=CA
7 TeV with $L = 4.8 \text{ fb}^{-1}$. See their Fig. 3 and Table 1 for limits on resonance cross section in the range $m = 1.0-4.3$ TeV.	
¹⁹ CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L - 4.8 fb ⁻¹ . See their Fig. 8 and Table 4 for limits on resonance cross section in the	NODE=S015HP;LINKAGE=CT
range $m = 1.0-4.0$ TeV. ²⁰ A D 10° count for dijet reconcises in an collision at $E_{max} = 7$ TeV with $L = 1.0$	
fb^{-1} . See their Fig. 3 and Table 2 for limits on resonance cross section in the range m	NODE=S015HP;LINKAGE=DA
= 0.9–4.0 TeV. ²¹ CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{cm} = 7$ TeV with L	NODE=S015HP;LINKAGE=CH
= 4.4 fb ⁻¹ . See their Fig. 4 for limits on resonance cross section in the range $m = 0.5-3.0$ TeV.	
²² AAD 11AG search for dijet resonances in <i>pp</i> collisions at $E_{\rm cm} = 7$ TeV with L = 36 pb ⁻¹ . Limits on number of events for $m = 0.6-4$ TeV are given in their Table 3.	NODE=S015HP;LINKAGE=AD
²³ AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in $W + 2$ jet events in $n\overline{n}$ collisions at $E_{-} = -1.96$ TeV with $I = 4.3$ fb ⁻¹	NODE=S015HP;LINKAGE=AL
24 ABAZOV 111 search for two-jet resonances in $W + 2$ jet events in $p\overline{p}$ collisions at $E_{\rm cm}$	NODE=S015HP;LINKAGE=AZ
= 1.96 TeV with L = 4.3 fb ⁻¹ and give limits $\sigma < (2.6-1.3)$ pb (95% CL) for $m = 110-170$ GeV. The result is incompatible with AALTONEN 11M.	
²⁵ AAD 10 search for narrow dijet resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L	NODE=S015HP;LINKAGE=AA
= 315 nD $^{-1.05}$ Limits on the cross section in the range 10–10 $^{-1.05}$ pb is given for $m = 0.3-1.7$ TeV. 26 KHACHATEVAN 10 search for parrow dijet resonances in pp collisions at $E_{-1.05} = 7$ TeV.	
with L = 2.9 pb ⁻¹ . Limits on the cross section in the range 1–300 pb is given for $m = 0.5-2.6$ TeV separately in the final states qq , qg , and qg	NODE=S015HP;LINKAGE=KH
²⁷ ABE 99F search for narrow $b\bar{b}$ resonances in $p\bar{p}$ collisions at $E_{\rm cm}$ =1.8 TeV. Limits on	NODE=S015HP;LINKAGE=FH
$\sigma(p\bar{p} \rightarrow X+ \text{anything}) \times B(X \rightarrow bb)$ in the range 3–10 ⁻³ pb (95%CL) are given for m_{χ} =200–750 GeV. See their Table I.	
²⁸ ABE 97G search for narrow dijet resonances in $p\overline{p}$ collisions with 106 pb ⁻¹ of data at $E_{\rm cm} = 1.8$ TeV. Limits on $\sigma(p\overline{p} \rightarrow X + \text{anything}) \cdot B(X \rightarrow jj)$ in the range $10^4 - 10^{-1}$ pb (95%CL) are given for dijet mass $m=200-1150$ GeV with both jets having $ \eta < 2.0$ and the dijet system having $ \cos\theta^* < 0.67$. See their Table I for the list of limits. Supersedes	NODE=S015HP;LINKAGE=B
ABE 93G. ²⁹ ABE 93G give cross section times branching ratio into light (<i>d</i> , <i>u</i> , <i>s</i> , <i>c</i> , <i>b</i>) quarks for Γ = 0.02 <i>M</i> . Their Table II gives limits for <i>M</i> = 200–900 GeV and Γ = (0.02–0.2) <i>M</i> .	NODE=S015HP;LINKAGE=A
REFERENCES FOR Other Particle Searches	NODE=S015

	SIRUNYAN	19B	PR D99 012005	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AABOUD	18AD	PL B779 24	M. Aaboud et al.	(ATLAS	Collab.)
	AABOUD	18CK	PR D98 092002	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18CL	PR D98 092005	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18N	PRL 121 081801	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
YOUR PAPER	SIRUNYAN	18DJ	JHEP 1809 101	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DY	PR D98 112014	A.M. Sirunyan et al.	(CMS	Collab.)
	KHACHATRY	17W	PL B769 520	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	KHACHATRY	17Y	PL B770 257	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan et al.	(CMS	Collab.)
	AABOUD	16	PL B759 229	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)

REFID=59516
RFFID=58998
REFID - 50470
KEI ID = 39470
REFID=59472
REFID=58866
RFFID=59341
REFID=59504
REFID=57899
REFID=57904
REFID=57820
RFFID-57233
112-31233

AAD	16N	JHEP 1603 026
AAD	16S	PL B754 302
KHACHATRY	16K	PRL 116 071801
KHACHATRY	16L	PRL 117 031802
AAD	13D	JHEP 1301 029
AALTONEN	13R	PRL 111 031802
CHATRCHYAN	13A	JHEP 1301 013
AAD	12S	PL B708 37
CHATRCHYAN	12BL	JHEP 1212 015
AAD	11AG	NJP 13 053044
AALTONEN	11M	PRL 106 171801
ABAZOV	111	PRL 107 011804
AAD	10	PRL 105 161801
KHACHATRY	10	PRL 105 211801
Also		PRL 106 029902
ABE	99F	PRL 82 2038
ABE	97G	PR D55 5263
ABE	93G	PRL 71 2542

G. Aad et al.
G. Aad et al.
V. Khachatryan et al.
G. Aad et al.
T. Aaltonen et al.
G. Aad et al.
G. Aad et al.
G. Aad et al.
S. Chatrchyan et al.
G. Aad et al.
T. Aaltonen et al.
V.M. Abazov et al.
G. Aad et al.
V. Khachatryan et al.
V. Khachatryan et al.
F. Abe et al.
F. Abe et al.
F. Abe et al.

(11 1 2	Collab)
(ATLAS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
(CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=57168 REFID=57206 REFID=57181 REFID=57195 REFID=54792
REFID=55220 REFID=54770
REFID=54152 REFID=54776
REFID=54009 REFID=16445 REFID=16475
REFID=53477 REFID=53465
REFID=53629 REFID=46728
REFID=45343 REFID=43512

= SIRUNYAN 18DR; JHEP 1811 161 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

SEARCHES NODE=SXXX005 not in other sections Other Particle Searches NODE=S015 OMITTED FROM SUMMARY TABLE LIMITS ON NEUTRAL PARTICLE PRODUCTION NODE=S015415 Heavy Particle Production Cross Section NODE=S015CS NODE=S015CS VALUE (cm^2/N) CL% DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD 18CJ ATLS $pp \rightarrow VV/\ell\ell/\ell\nu, V =$ W,Z,h² AABOUD 18CM ATLS $\textit{pp} \rightarrow \textit{e}\,\mu\,/\,\textit{e}\,\tau\,/\,\mu\,\tau$ $pp \rightarrow A' \rightarrow \mu^+ \mu^-;$ ³ AAIJ 18AJ LHCB dark photon ⁴ BANERJEE 18 NA64 $eZ \rightarrow eZX(A')$ ⁵ BANERJEE 18A NA64 $eZ \rightarrow eZA', A' \rightarrow \chi\chi$ ⁶ MARSICANO 18 E137 $e^+e^- \rightarrow A'(\gamma)$ visible decay $pp \rightarrow Z' \rightarrow \ell^+ \ell^-$ at 13 ⁷ SIRUNYAN **18BB CMS** TeV ⁸ SIRUNYAN $pp \rightarrow \mathsf{Black}$ Hole, string 18DA CMS ball, sphaleron ⁹ SIRUNYAN 18DD CMS $pp \rightarrow jj$ ¹⁰ SIRUNYAN YOUR DATA 18DR CMS $pp \rightarrow b\mu\overline{\mu}$ ¹¹ SIRUNYAN 18DU CMS $pp \rightarrow \gamma \gamma$ ¹² SIRUNYAN $pp \rightarrow V \rightarrow Wh; h \rightarrow$ 18ED CMS $b\overline{b}; W \rightarrow I\nu$ ¹³ AABOUD 17B ATLS WH, ZH resonance ¹⁴ AAIJ 17BR LHCB $pp \rightarrow \pi_V \pi_V, \pi_V \rightarrow jj$ 15 aad 160 ATLS $\ell + (\ell \text{s or jets})$ ¹⁶ AAD 16R ATLS WW, WZ, ZZ resonance ¹⁷ KRASZNAHO...16 $p^7 \text{Li} \rightarrow {}^8 \text{Be} \rightarrow X(17) N$, $X(17) \rightarrow e^+e^-$ 15E BABR e^+e^- collisions ¹⁸ LEES ¹⁹ ADAMS 97B KTEV m= 1.2-5 GeV ²⁰ GALLAS $< 10^{-36} - 10^{-33}$ 90 95 TOF m= 0.5-20 GeV $<(4-0.3) \times 10^{-31}$ ²¹ AKESSON 95 91 CNTR m = 0-5 GeV $<2 \times 10^{-36}$ ²² BADIER 86 BDMP $\tau = (0.05-1.) \times 10^{-8} s$ 90 $<\!2.5 imes10^{-35}$ ²³ GUSTAFSON 76 CNTR τ > 10⁻⁷ s ¹AABOUD 18CJ make multichannel search for $pp \rightarrow VV/\ell\ell/\ell\nu$, V = W,Z,h at 13 NODE=S015CS;LINKAGE=R TeV, 36.1 fb^{-1} ; no signal found; limits placed for several BSM models. ²AABOUD 18CM search for lepton-flavor violating resonance in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13 NODE=S015CS;LINKAGE=S TeV, 36.1 fb $^{-1}$; no signal is found and limits placed for various BSM models. ³AAIJ 18AJ search for prompt and delayed dark photon decay $A'
ightarrow \mu^+ \mu^-$ at LHCb NODE=S015CS;LINKAGE=K detector using 1.6 fb⁻¹ of pp collisions at 13 TeV; limits on m(A') vs. kinetic mixing are set ⁴BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow$ NODE=S015CS:LINKAGE=L eZX(A'); no signal found and limits set on the $X-e^-$ coupling ϵ_{ρ} in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space. 5 BANERJEE 18A search for invisibly decaying dark photons in eZ
ightarrow eZA', A'
ightarrowNODE=S015CS;LINKAGE=M invisible; no signal found and limits set on mixing for m(A') < 1 GeV. ⁶MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 NODE=S015CS;LINKAGE=P e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7. ⁷SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude NODE=S015CS;LINKAGE=O portions of p-space of Z', KK graviton models. 8 SIRUNYAN 18DA search for pp
ightarrow Black Hole, string ball, sphaleron via high multiplicity NODE=S015CS;LINKAGE=T events at 13 TeV, 35.9 fb $^{-1}$; no signal, require e.g. m(BH)¿10.1 TeV 9 SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal NODE=S015CS;LINKAGE=U observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH)

YOUR NOTE

5.9-8.2 TeV.

¹⁰ SIRUNYAN 18DR search for dimuon resonance in $pp \rightarrow b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

NODE=S015CS;LINKAGE=V

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W'); 2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass-au plane for each mode. 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) long-NODE=S015CS;LINKAGE=A lived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and

interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

	AABOUD	18CJ	PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18CM	PR D98 092008	M. Aaboud et al.	ATLAS	Collab.)
	AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>	`(LHCb	Collab.)
	BANERJEE	18	PRL 120 231802	D. Banerjee et al.	(NA64	Collab.)
	BANERJEE	18A	PR D97 072002	D. Banerjee <i>et al.</i>	(NA64	Collab.)
	MARSICANO	18	PR D98 015031	L. Marsicano <i>et al.</i>	``	,
	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunvan et al.	(CMS	Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunvan et al.	(CMS	Collab.)
YOUR PAPER	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunvan et al.	(CMS	Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunvan et al.	(CMS	Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AALI	17BR	EP.J C77 812	R. Aaii <i>et al.</i>	(LHCb	Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller	((WASH)
	AAD	160	PL B760 520	G Aad et al	(ATLAS	Collab)
	AAD	16R	PL B755 285	G Aad et al	(ATLAS	Collab)
	KRASZNAHO	16	PRI 116 042501	A L Krasznahorkay et al	(HINR	ANIK+)
	LEES	15F	PRI 114 171801	IP Lees et al	(BABAR	Collab)
	ADAMS	97B	PRI 79 4083	I Adams et al	(ENAL KTeV	Collab.)
	GALLAS	95	PR D52 6	F Gallas et al	(MSU ENAL MIT	FLOR)
	AKESSON	91	7PHY (52 219	T Akesson et al	(HELIOS	Collab)
	BADIER	86	7PHV (31 21	I Badier et al	(NA3	Collab.)
		76	DDI 37 474	H.R. Gustafson at al	(NAS	(MICH)
	GUJIAFJUN	10		TLIN, GUSLAISVIL EL dL.		

NODE=S015

4/5/2019 10:34

Page 99

	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR				5555555555555555555544		479316101666061670620	149867268796661922721
ł	RF	FI	Б	_	4	57	2	2
i	RE	FI	Б	_	42	12	á	1
i	RE	FI	Б	_	<u>4</u> 1	17	3	å
i	RF	FI	Б	_	10	56	2	2
i	RF	FI	Б	_	12	25	8	ñ

= SIRUNYAN 18DU; PR D98 092001 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

¹⁰ SIRUNYAN 18DR search for dimuon resonance in $pp \rightarrow b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

NODE=S015CS;LINKAGE=V

 $^{11}{\rm SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow~\gamma\gamma$ at 13 TeV using YOUR NOTE NODE=S015CS;LINKAGE=W 35.9 fb $^{-1}$; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W')¿2.9 TeV. $^{13}\,{\sf AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}{\sf LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. 19 ADAMS 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their

figure 5 for the contours of limits in the mass-au plane for each mode. 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and

REFERENCES FOR Other Particle Searches

AABOUD 18CJ PR D98 052008 (ATLAS Collab.) M. Aaboud et al. AABOUD AAIJ (ATLAS Collab.) (LHCb Collab.) 18CM PR D98 092008 M. Aaboud et al. 18AJ PRL 120 061801 R. Aaij et al. BANERJEE PRL 120 231802 D. Baneriee et al (NA64 Collab.) 18 BANERJEE 18A PR D97 072002 D. Banerjee et al. (NA64 Collab.) MARSICANO 18 PR D98 015031 L. Marsicano et al. SIRUNYAN 18BB JHEP 1806 120 18DA JHEP 1811 042 A.M. Sirunyan et al. (CMS Collab.) (CMS_Collab.) SIRUNYAN A.M. Sirunyan et al. 18DD EPJ C78 789 (CMS Collab.) SIRUNYAN A.M. Sirunyan et al. 18DR JHEP 1811 161 SIRUNYAN A.M. Sirunyan et al. (CMS Collab.) YOUR PAPER SIRUNYAN 18DU PR D98 092001 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 18ED JHEP 1811 172 A.M. Sirunyan et al. (CMS_Collab.) 17B PL B765 32 17BR EPJ C77 812 AABOUD M. Aaboud et al. (ATLAS Collab. (LHCb Collab. AAIJ R. Aaij et al. ZANG PL B773 159 X. Zang, G.A. Miller 17 (WASH) 160 G. Aad et al. (ATLAS Collab.) AAD PL B760 520 AAD 16R PL B755 285 G. Aad et al. (ATLAS Collab.) KRASZNAHO... 16 PRL 116 042501 A.J. Krasznahorkay et al. (HINR, ANIK+) **LEES** 15F PRL 114 171801 J.P. Lees et al. (BABAR Collab. (FNAL KTeV Collab.) (MSU, FNAL, MIT, FLOR) PRL 79 4083 ADAMS 97B J. Adams et al. PR D52 6 GALLAS 95 Ε. Gallas et al. AKESSON ZPHY C52 219 (HELIOS Collab.) 91 Akesson et al. BADIER 86 ZPHY C31 21 Badier et al. (NA3 Collab. GUSTAFSON 76 PRL 37 474 H.R. Gustafson et al. (MICH)

interaction cross section are given in figure 2.

NODE=S015

NODE=S015CS;LINKAGE=A

REFID=59441 REFID=59474 REFID=59199 REFID=58838 REFID=58916 REFID=58967 REFID=59112 REFID=59306 REFID=59318 REFID=59367 REFID=59469 REFID=59566 REFID=57706 REFID=58366 REFID=59311 REFID=57169 REFID=57172 REFID=59302 RFFID=56467 REFID=45722 REFID=44291 REFID=41739 REFID=10622 REFID=12580

4/5/2019 10:34 Page 102

= SIRUNYAN 18DX; PR D98 112011 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

	BOTTOM MESONS $(B = \pm 1)$	NODE=MXXX045
	$B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's	NODE=MXXX045
	B^{\pm} $I(J^P) = \frac{1}{2}(0^-)$	NODE=S041
	Quantum numbers not measured. Values shown are quark-model predictions.	NODE=S041
	See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.	
	PARTIAL BRANCHING FRACTIONS	NODE=S041240
	$A_{FB}(B^+ \rightarrow K^+ \mu^+ \mu^-) (1.1 < q^2 < 6.0 \text{ GeV}^2/c^4)$ $A_{FB} \text{ is the forward-backward angular asymmetry of the lepton pair in } B \rightarrow \kappa^{(*)} e^+ e^-$ decays as defined in B^+ , B^0 administrate particle listing.	NODE=S041PBJ NODE=S041PBJ
	$\frac{VALUE}{-0.003 \pm 0.017 \text{ OUR AVERAGE}} \qquad \frac{DOCUMENT ID}{10005 \pm 0.018 \text{ OUR 2018 AVERAGE}} \qquad \frac{TECN}{TECN} \qquad \frac{COMMENT}{TECN}$	NODE=S041PBJ NEW
YOUR DATA	$-0.14 \ \begin{array}{c} +0.07 \\ -0.06 \ \pm 0.03 \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$0.02 \begin{array}{c} +0.05 \\ -0.03 \end{array} \begin{array}{c} +0.02 \\ -0.03 \end{array}$ AAIJ 13H LHCB Repl. by AAIJ 140	
YOUR NOTE	1 Measurement is performed in $1.0 < q^2 < 6.0 \ {\rm GeV}^2/c^4$. SIRUNYAN 18DX reports also measurements in several other q^2 intervals. 2 AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.	NODE=S041PBJ;LINKAGE=B NODE=S041PBJ;LINKAGE=A
	$\begin{array}{rcl} F_{H}(B^{+} \rightarrow & \mathcal{K}^{+} \mu^{+} \mu^{-}) \ (1.1 < q^{2} < 6.0 \ \mathrm{GeV}^{2}/c^{4}) \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \hline K_{H} \ \text{is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay width in the massless muon approximation.} \\ & & & \\ \hline K_{H} \ \mathsf$	NODE=S041PBL NODE=S041PBL NODE=S041PBL NEW
YOUR DATA	$0.38 + 0.17_{-0.21} \pm 0.09$ ¹ SIRUNYAN 18DX CMS <i>pp</i> at 8 TeV	I
	$0.03\pm0.03\pm0.02$ ² AAIJ 140 LHCB <i>pp</i> at 7, 8 TeV ••• We do not use the following data for averages, fits, limits, etc. •••	
	0.05 ^{+0.08+0.04} AAIJ 13H LHCB Repl. by AAIJ 140	
YOUR NOTE	1 Measurement is performed in $1.0 < q^2 < 6.0 \ \text{GeV}^2/\text{c}^4$. SIRUNYAN 18DX reports also measurements in several other q^2 intervals. 2 AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.	NODE=S041PBL;LINKAGE=B NODE=S041PBL;LINKAGE=A
		NODE=S041
YOUR PAPER	SIRUNYAN 18DX PR D98 112011 A.M. Sirunyan et al. (CMS Collab.) AAIJ 140 JHEP 1405 082 R. Aaij et al. (LHCb Collab.) AAIJ 13H JHEP 1302 105 R. Aaij et al. (LHCb Collab.)	REFID=59501 REFID=55728 REFID=54859

= SIRUNYAN 18DY; PR D98 112014 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

⁶SIRUNYAN 18DJ search for $pp \rightarrow ZZ$ or $WZ \rightarrow I\bar{I}jj$ resonance at 13 TeV, 35.9 fb⁻¹; no signal; limits set in the 400-4500 GeV mass range, exclusion of W' up to 2270 GeV in the HVT model A, and up to 2330 for HVT model B. WED bulk graviton exclusion up to 925 GeV.

⁷SIRUNYAN 18DY search for $pp \rightarrow RR$; $R \rightarrow jj$ two dijet resonances at 13 TeV 35.9 fb^{-1} ; no signal; limits placed on RPV top-squark pair production

NODE=SXXX005

NODE=S015HP;LINKAGE=Q

YOUR NOTE

REFID=59516 REFID=58998 REFID=59470 REFID=59472 REFID=58866 REFID=59341

REFID=59504 REFID=57899 REFID=57904 REFID=57820 REFID=57233

 $^8\rm KHACHATRYAN$ 17W search for dijet resonance in 12.9 fb $^{-1}$ data at 13 TeV; see Fig. 2 for limits on axigluons, diquarks, dark matter mediators etc. NODE=S015HP;LINKAGE=I ⁹KHACHATRYAN 17Y search for $pp \rightarrow (8-10) j$ in 19.7 fb⁻¹ at 8 TeV. No signal seen. Limits set on colorons, axigluons, RPV, and SUSY. NODE=S015HP;LINKAGE=J 10 SIRUNYAN 17F measure $pp \rightarrow ~jj$ angular distribution in 2.6 fb $^{-1}$ at 13 TeV; limits NODE=S015HP;LINKAGE=K set on LEDs and quantum black holes. 11 AABOUD 16 search for resonant dijets including one or two *b*-jets with 3.2 fb $^{-1}$ at NODE=S015HP;LINKAGE=F 13 TeV; exclude excited b^* quark from 1.1–2.1 TeV; exclude leptophilic Z' with SM couplings from 1.1-1.5 TeV. 12 AAD 16N search for $~\geq$ 3 jets with 3.6 fb $^{-1}$ at 13 TeV; limits placed on micro black NODE=S015HP;LINKAGE=D holes (Fig. 10) and string balls (Fig. 11). 13 AAD 16S search for high mass jet-jet resonance with 3.6 fb $^{-1}$ at 13 TeV; exclude portions NODE=S015HP;LINKAGE=E of excited quarks, W', Z' and contact interaction parameter space. 14 KHACHATRYAN 16K search for dijet resonance in 2.4 fb $^{-1}$ data at 13 TeV; see Fig. 3 NODE=S015HP;LINKAGE=G for limits on axigluons, diquarks etc. 15 KHACHATRYAN 16L use data scouting technique to search for jj resonance on 18.8 NODE=S015HP;LINKAGE=H fb^{-1} of data at 8 TeV. Limits on the coupling of a leptophobic Z' to quarks are set, improving on the results by other experiments in the mass range between 500-800 GeV. $^{16}\mathrm{AAD}$ 13D search for dijet resonances in pp collisions at E_{cm} = 7 TeV with L = 4.8 NODE=S015HP;LINKAGE=GA fb^{-1} . The observed events are compatible with Standard Model expectation. See their Fig. 6 and Table 2 for limits on resonance cross section in the range m = 1.0-4.0 TeV. 17 AALTONEN 13R search for production of a pair of jet-jet resonances in $p \, \overline{p}$ collisions at NODE=S015HP;LINKAGE=C $E_{\rm cm} = 1.96$ TeV with L = 6.6 fb⁻¹. See their Fig. 5 and Tables I, II for cross section limits. 18 CHATRCHYAN 13A search for qq, qg, and gg resonances in pp collisions at $E_{\rm cm} =$ NODE=S015HP;LINKAGE=CA 7 TeV with L = 4.8 fb⁻¹. See their Fig. 3 and Table 1 for limits on resonance cross section in the range m = 1.0-4.3 TeV. ¹⁹CHATRCHYAN 13A search for $b\overline{b}$ resonances in pp collisions at $E_{\rm cm}=$ 7 TeV with LNODE=S015HP:LINKAGE=CT = 4.8 fb⁻¹. See their Fig. 8 and Table 4 for limits on resonance cross section in the range m = 1.0-4.0 TeV. $^{20}\mathrm{AAD}$ 12S search for dijet resonances in pp collisions at $E_{\rm cm}$ = 7 TeV with L = 1.0 NODE=S015HP;LINKAGE=DA fb $^{-1}$. See their Fig. 3 and Table 2 for limits on resonance cross section in the range m= 0.9-4.0 TeV. ²¹CHATRCHYAN 12BL search for $t\bar{t}$ resonances in pp collisions at $E_{\rm cm} = 7$ TeV with L NODE=S015HP;LINKAGE=CH = 4.4 fb $^{-1}$. See their Fig. 4 for limits on resonance cross section in the range m = 0.5-3.0 TeV. ²²AAD 11AG search for dijet resonances in *pp* collisions at $E_{cm} = 7$ TeV with L = 36 pb⁻¹. Limits on number of events for m = 0.6-4 TeV are given in their Table 3. NODE=S015HP;LINKAGE=AD 23 AALTONEN 11M find a peak in two jet invariant mass distribution around 140 GeV in NODE=S015HP;LINKAGE=AL W + 2 jet events in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV with L = 4.3 fb⁻¹. ²⁴ABAZOV 111 search for two-jet resonances in W + 2 jet events in $p\overline{p}$ collisions at $E_{\rm cm}$ NODE=S015HP;LINKAGE=AZ = 1.96 TeV with L = 4.3 fb⁻¹ and give limits $\sigma < (2.6-1.3)$ pb (95% CL) for m =110-170 GeV. The result is incompatible with AALTONEN 11M. 25 AAD 10 search for narrow dijet resonances in *pp* collisions at $E_{\rm cm}$ = 7 TeV with L NODE=S015HP;LINKAGE=AA = 315 nb⁻¹. Limits on the cross section in the range 10–10³ pb is given for m =0.3-1.7 TeV. 26 KHACHATRYAN 10 search for narrow dijet resonances in *pp* collisions at $E_{\rm cm} = 7$ TeV NODE=S015HP;LINKAGE=KH with L = 2.9 pb⁻¹. Limits on the cross section in the range 1–300 pb is given for m =0.5–2.6 TeV separately in the final states qq, qg, and gg. 27 ABE 99F search for narrow $b\,\overline{b}$ resonances in $p\,\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. Limits on NODE=S015HP;LINKAGE=FH $\sigma(p\overline{p} \rightarrow X + \text{anything}) \times B(X \rightarrow b\overline{b})$ in the range 3–10³ pb (95%CL) are given for m_{χ} =200–750 GeV. See their Table I. $^{28}\,{\sf ABE}$ 97G search for narrow dijet resonances in $p\,\overline{p}$ collisions with 106 ${\rm pb}^{-1}$ of data at NODE=S015HP;LINKAGE=B $E_{cm} = 1.8$ TeV. Limits on $\sigma(p\overline{p} \rightarrow X + anything) \cdot B(X \rightarrow jj)$ in the range $10^4 - 10^{-1}$ pb (95%CL) are given for dijet mass m=200-1150 GeV with both jets having $|\eta| < 2.0$ and the dijet system having $|\cos\theta^*| < 0.67$. See their Table I for the list of limits. Supersedes ABE 93G. ²⁹ABE 93G give cross section times branching ratio into light (d, u, s, c, b) quarks for Γ NODE=S015HP;LINKAGE=A = 0.02 M. Their Table II gives limits for M = 200-900 GeV and $\Gamma = (0.02-0.2)$ M. **REFERENCES FOR Other Particle Searches** NODE=S015

	SIRUNYAN	19B	PR D99 012005	A.M. Sirunyan et al.	(CMS	Collab.)
YOUR PAPER	AABOUD	18AD	PL B779 24	M. Aaboud et al.	(ATLAS	Collab.)
	AABOUD	18CK	PR D98 092002	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18CL	PR D98 092005	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	AABOUD	18N	PRL 121 081801	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
	SIRUNYAN	18DJ	JHEP 1809 101	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DY	PR D98 112014	A.M. Sirunyan et al.	(CMS	Collab.)
	KHACHATRY	17W	PL B769 520	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	KHACHATRY	17Y	PL B770 257	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan et al.	(CMS	Collab.)
	AABOUD	16	PL B759 229	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)

AAD	16N	JHEP 1603 026
AAD	16S	PL B754 302
KHACHATRY	16K	PRL 116 071801
KHACHATRY	16L	PRL 117 031802
AAD	13D	JHEP 1301 029
AALTONEN	13R	PRL 111 031802
CHATRCHYAN	13A	JHEP 1301 013
AAD	12S	PL B708 37
CHATRCHYAN	12BL	JHEP 1212 015
AAD	11AG	NJP 13 053044
AALTONEN	11M	PRL 106 171801
ABAZOV	111	PRL 107 011804
AAD	10	PRL 105 161801
KHACHATRY	10	PRL 105 211801
Also		PRL 106 029902
ABE	99F	PRL 82 2038
ABE	97G	PR D55 5263
ABE	93G	PRL 71 2542

G. Aad et al.
G. Aad et al.
V. Khachatryan et al.
G. Aad et al.
T. Aaltonen et al.
G. Aad et al.
G. Aad et al.
G. Aad et al.
S. Chatrchyan et al.
G. Aad et al.
T. Aaltonen et al.
V.M. Abazov et al.
G. Aad et al.
V. Khachatryan et al.
V. Khachatryan et al.
F. Abe et al.
F. Abe et al.
F. Abe et al.

(ATLAS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
) (CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
(CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=5/168
REFID=57200 DEEID_57101
REFID=57101 REFID=57105
REFID=54792
REFID=55220
REFID=54770
REFID=54152
REFID=54776
REFID=54009
REFID=16445
REFID=104/5
REFID=534// REFID=52465
REFID=53405 REFID=53620
REFID=35025
REFID=45343
REFID=43512
= SIRUNYAN 19B; PR D99 012005 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

4/5/2019 10:34 Page 110

⁸ KHACHATF	RYAN 17W search for d	ijet resonance in 12.9 fb [—]	¹ data at 13 TeV; see Fig.	NODE=S015HP;LINKAGE=I
⁹ KHACHATF	RYAN 17Y search for p_i	$v \rightarrow (8-10) j$ in 19.7 fb ⁻¹	at 8 TeV. No signal seen.	NODE=S015HP;LINKAGE=J
¹⁰ SIRUNYAN	17F measure $pp \rightarrow j$	j angular distribution in 2	.6 fb $^{-1}$ at 13 TeV; limits	NODE=S015HP;LINKAGE=K
¹¹ AABOUD 1 13 TeV; exc	5 and quantum black ho 6 search for resonant clude excited b^* quark	oles. dijets including one or tw from 1.1–2.1 TeV; exclu	o <i>b</i> -jets with 3.2 fb $^{-1}$ at de leptophilic Z^\prime with SM	NODE=S015HP;LINKAGE=F
¹² AAD 16N se	from 1.1–1.5 TeV. earch for ≥ 3 jets with (5) and string hells (5)	h 3.6 fb $^{-1}$ at 13 TeV; lin	nits placed on micro black	NODE=S015HP;LINKAGE=D
13 AAD 16S sea	arch for high mass jet-je	g. 11). t resonance with 3.6 fb $^{-1}$.	at 13 TeV; exclude portions	NODE=S015HP;LINKAGE=E
of excited quarter of excited quarter of excited quarter of the second s	uarks, <i>W</i> ′, Z′ and cont RYAN 16K search for d <u>i</u>	act interaction parameter jet resonance in 2.4 fb $^{-1}$	space. data at 13 TeV; see Fig. 3	NODE=S015HP;LINKAGE=G
for limits on ¹⁵ KHACHATF	⊨axigluons, diquarks eto RYAN 16∟ use data sco	c. Duting technique to search	for jj resonance on 18.8	NODE=S015HP:LINKAGE=H
fb ⁻¹ of dat	a at 8 TeV. Limits on n the results by other e	the coupling of a leptoph periments in the mass rai	obic Z' to quarks are set,	
¹⁶ AAD 13D se	earch for dijet resonand	ces in pp collisions at E_{c}	m = 7 TeV with $L = 4.8$	NODE=S015HP;LINKAGE=GA
fb ⁻¹ . The Fig. 6 and 7	observed events are cor Fable 2 for limits on res	npatible with Standard Mo conance cross section in th	odel expectation. See their e range $m = 1.0-4.0$ TeV.	
17 AALTONEN	13R search for produc TeV with $I = 6.6$ fb ⁻	tion of a pair of jet-jet res -1 See their Fig. 5 and 7	onances in $p\overline{p}$ collisions at	NODE=S015HP;LINKAGE=C
limits.	(AN 13) sourch for an	a g and a g reconances	in an collisions at E	
7 TeV with	$L = 4.8 \text{ fb}^{-1}$. See th	eir Fig. 3 and Table 1 for	r limits on resonance cross	NODE=S015HP;LINKAGE=CA
section in th ¹⁹ CHATRCHY	he range $m = 1.0$ –4.3 T (AN 13A search for $b\overline{b}$	eV. resonances in <i>pp</i> collision	s at $E_{cm} = 7$ TeV with L	
$= 4.8 \text{ fb}^{-1}$. See their Fig. 8 and	Table 4 for limits on reso	nance cross section in the	
20 AAD 12S se	earch for dijet resonanc	es in <i>pp</i> collisions at <i>E</i> _c	$_{ m m}$ = 7 TeV with L = 1.0	NODE=S015HP;LINKAGE=DA
fb^{-1} . See t = 0.9–4.0 T	heir Fig. 3 and Table 2 ēV.	for limits on resonance c	ross section in the range m	
21 CHATRCHY = 4.4 fb ⁻¹	AN 12BL search for $t \overline{t}$. See their Fig. 4 for	resonances in <i>pp</i> collision limits on resonance cross	s at $E_{\rm cm}=$ 7 TeV with <i>L</i> section in the range $m=$	NODE=S015HP;LINKAGE=CH
0.5–3.0 TeV ²² AAD 11AG s	'. earch for dijet resonance	es in <i>p p</i> collisions at <i>E</i> _{cm} =	= 7 TeV with L = 36 pb $^{-1}$.	NODE=S015HP:LINKAGE=AD
Limits on nu ²³ AALTONEN	umber of events for <i>m</i> = I 11M find a peak in tv	= 0.6–4 TeV are given in t vo jet invariant mass distr	heir Table 3. bution around 140 GeV in	NODE=S015HP:LINKAGE=AL
W + 2 jet e	events in $p\overline{p}$ collisions a	at $E_{\rm cm} = 1.96$ TeV with L	$h = 4.3 \text{ fb}^{-1}$.	·····
= 1.96 TeV 110-170 Ge	II search for two-jet res with L = 4.3 fb ⁻¹ ar V The result is incomr	onances in $W+2$ jet even nd give limits $\sigma < (2.6–1)$	its in $p\bar{p}$ collisions at $E_{\rm CM}$.3) pb (95% CL) for $m = 1_{\rm M}$	NODE=S015HP;LINKAGE=AZ
²⁵ AAD 10 sea	arch for narrow dijet re	esonances in <i>pp</i> collisions	at $E_{\rm cm} = 7$ TeV with L	NODE=S015HP;LINKAGE=AA
$= 315 \text{ nb}^{-1}$ 0.3–1.7 TeV	^L . Limits on the cross	section in the range 10-	-10^3 pb is given for $m =$	
²⁶ KHACHATF	RYAN 10 search for nari 0 pb^{-1} , Limits on the	row dijet resonances in pp	collisions at $E_{\rm cm} = 7 {\rm TeV}$	NODE=S015HP;LINKAGE=KH
0.5–2.6 TeV	separately in the final	states qq , qg , and gg .		
$\sigma(p\overline{p} \rightarrow X)$	arch for narrow <i>bb</i> reso $(X \rightarrow B) \times B(X \rightarrow B)$	pnances in pp collisions at $b\overline{b}$) in the range 3–10 ³	$E_{\rm cm}$ =1.8 IeV. Limits on pb (95%CL) are given for	NODE=S015HP;LINKAGE=FH
m _X =200-7	50 GeV. See their Tabl	el.		
$E_{\rm cm} = 1.8^{-1}$	Farch for harrow dijet revealed in the second seco	$X + anything) \cdot B(X \rightarrow jj)$) in the range 10^4 – 10^{-1} pb	NODE=S015HP;LINKAGE=B
(95%CL) are the dijet sys	e given for dijet mass r tem having $ \cos \theta^* < 0$.67. See their Table I for th	h jets having $ \eta < 2.0$ and ne list of limits. Supersedes	
ABE 93G. ²⁹ ABE 93G giv	ve cross section times t	pranching ratio into light (d, u, s, c, b) quarks for Γ	
= 0.02 <i>M</i> . T	Their Table II gives limit	is for $M = 200-900$ GeV a	and $\Gamma = (0.02 - 0.2) M$.	
	REFERENCES F	OR Other Particle Sea	arches	NODE=S015
SIRUNYAN 19E AABOUD 18A	3 PR D99 012005 AD PL B779 24	A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)	REFID=59516 REFID=58998
AABOUD 180 AABOUD 180	CK PR D98 092002 CL PR D98 092005	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)	REFID=59470 REFID=59472
AABOUD 18N SIRUNYAN 18E	N PRL 121 081801 DJ JHEP 1809 101	M. Aaboud <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(ATLAS Collab.) (CMS Collab.)	REFID=58866 REFID=59341
SIRUNYAN 18E KHACHATRY 17V	DY PR D98 112014 V PL B769 520	A.M. Sirunyan <i>et al.</i> V. Khachatrvan <i>et al.</i>	(CMS Collab.) (CMS Collab.)	REFID=59504 REFID=57899
KHACHATRY 17Y SIRUNYAN 17F	/ PL B770 257	V. Khachatryan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)	REFID=57904 REFID=57820
AABOUD 16	PL B759 229	M. Aaboud <i>et al.</i>	(ATLAS Collab.)	REFID=57233

YOUR PAPER	SIRUNYAN AABOUD AABOUD AABOUD SIRUNYAN SIRUNYAN KHACHATRY SIRUNYAN SIRUNYAN AABOUD	19B 18AD 18CK 18CL 18N 18DJ 18DY 17W 17Y 17F 16	PR D99 012005 PL B779 24 PR D98 092002 PR D98 092005 PRL 121 081801 JHEP 1809 101 PR D98 112014 PL B769 520 PL B770 257 JHEP 1707 013 PL B759 229	A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. A.M. Sirunyan et al. A.M. Sirunyan et al. V. Khachatryan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS (ATLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS (CMS (CMS (ATLAS	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
	AABOUD	16	PL B759 229	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)

AAD	16N	JHEP 1603 026
AAD	16S	PL B754 302
KHACHATRY	16K	PRL 116 071801
KHACHATRY	16L	PRL 117 031802
AAD	13D	JHEP 1301 029
AALTONEN	13R	PRL 111 031802
CHATRCHYAN	13A	JHEP 1301 013
AAD	12S	PL B708 37
CHATRCHYAN	12BL	JHEP 1212 015
AAD	11AG	NJP 13 053044
AALTONEN	11M	PRL 106 171801
ABAZOV	111	PRL 107 011804
AAD	10	PRL 105 161801
KHACHATRY	10	PRL 105 211801
Also		PRL 106 029902
ABE	99F	PRL 82 2038
ABE	97G	PR D55 5263
ABE	93G	PRL 71 2542

G. Aad et al.
G. Aad et al.
V. Khachatryan et al.
G. Aad et al.
T. Aaltonen et al.
G. Aad et al.
G. Aad et al.
G. Aad et al.
S. Chatrchyan et al.
G. Aad et al.
T. Aaltonen et al.
V.M. Abazov et al.
G. Aad et al.
V. Khachatryan et al.
V. Khachatryan et al.
F. Abe et al.
F. Abe et al.
F. Abe et al.

(ATLAS	Collab.)
(CMS	Collab.)
CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(ATLAS	Collab.)
(CDF	Collab.)
(D0	Collab.)
(ATLAS	Collab.)
(CMS	Collab.)
(CMS	Collab.)
CDF	Collab.)
(CDF	Collab.)
(CDF	Collab.)

REFID=57168
REFID=57206
REFID=57181
REFID=57195
REFID=54792
REFID=55220
REFID=54770
REFID=54152
REFID=54776
REFID=54009
REFID=16445
REFID=16475
REFID=53477
REFID=53465
REFID=53629
REFID=46728
REFID=45343
REFID=43512

= SIRUNYAN 18ED; JHEP 1811 172 = CMS

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

CMS Physics Coordinator

EMAIL: cms-physics-coordinator@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

 10 SIRUNYAN 18DR search for dimuon resonance in $pp \rightarrow ~b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

 $^{11}{\sf SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W')¿2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data. ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H on massive RS graviton (Fig. 4). 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible NODE=S015CS;LINKAGE=Q evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17. $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits. $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which NODE=S015CS;LINKAGE=E decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in NODE=S015CS;LINKAGE=B pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
m s.}\,$ For $au\,>\,10^{-9}\,{
m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained. $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit NODE=S015CS:LINKAGE=D applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass-au plane for each mode.

 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

	AABOUD	18CJ	PR D98 052008	M. Aaboud et al.	(ATLAS	Collab.)
	AABOUD	18CM	PR D98 092008	M. Aaboud et al.	(ATLAS	Collab.)
	AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	BANERJEE	18	PRL 120 231802	D. Banerjee <i>et al.</i>	(NA64	Collab.)
	BANERJEE	18A	PR D97 072002	D. Banerjee et al.	(NA64	Collab.)
	MARSICANO	18	PR D98 015031	L. Marsicano et al.		,
	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.	(CMS	Collab.)
OUR PAPER	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	(CMS	Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS	Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	`(LHCb	Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller		(WASH)
	AAD	160	PL B760 520	G. Aad et al.	(ATLAS	Collab.)
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	ATLAS	Collab.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	HINR,	ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR	Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams et al.	(FNAL KTeV	Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT,	FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS	Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3	Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson <i>et al.</i>	,	(MICH)
						. /

YOUR NOTE

- REFID=59441 REFID=59474 REFID=59199 REFID=58838 REFID=58916 REFID=58967 REFID=59112 REFID=59306 REFID=59318 REFID=59367 REFID=59469 REFID=59566 REFID=57706 REFID=58366 REFID=59311 REFID=57169 REFID=57172 REFID=59302 REFID=56467 REFID=45722 REFID=44291 REFID=41739 REFID=10622 REFID=12580

NODE=S015

NODE=S015CS;LINKAGE=A

= ABAZOV 18B; PR D98 052010 = D0

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Dmitri Denisov

EMAIL: denisovd@fnal.gov

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

		NODE=MXXX045			
	$B^+ =$	$u\overline{b}, B^0 = d\overline{b}, \overline{b}$	$\overline{B}^0 = \overline{d} b, \ B^- = \overline{u} b,$	similarly for <i>B</i> *'s	NODE=MXXX045
	B^0		$I(J^P) = \frac{1}{2}(0)$)_)	NODE=S042
	Quant	um numbers not tions.	measured. Values shown	are quark-model	NODE=S042
	See als MIXT				
	See th beginn Mixing	_			
		B ⁰	BRANCHING RATIOS		NODE=S042220
	For bra mined,	nching ratios in wh see the B^\pm section	nich the charge of the decay n.	ing B is not deter-	NODE=S042220
YOUR DATA	Γ(Z _c (3900) [±] <u>VALUE</u> <0.015	$ \frac{K^{\mp}, Z_c^{\pm} \rightarrow J/\psi}{\frac{CL\%}{90}} $	² π [±])/Γ(<i>J/ψ</i> (1 <i>S</i>) <i>K</i> *(89) <u>DOCUMENT ID</u> <u>TECH</u> ABAZOV 18B D0	2) ⁰) F ₂₃₈ /F ₁₉ <u>COMMENT</u> pp at 1.96 TeV	NODE=S042P29 NODE=S042P29
			B ⁰ REFERENCES		NODE=S042
YOUR PAPER	ABAZOV 18E	B PR D98 052010	V.M. Abazov <i>et al.</i>	(D0 Collab.)	REFID=59442

BANERJEE 18; PRL 120 231802GNINENKO

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Sergei N. Gninenko EMAIL: sergei.gninenko@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

 $^{11}{\rm SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using NODE=S015CS;LINKAGE=W 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W')¿2.9 TeV. NODE=S015CS;LINKAGE=I NODE=S015CS;LINKAGE=J NODE=S015CS;LINKAGE=G black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions. 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed NODE=S015CS;LINKAGE=H NODE=S015CS;LINKAGE=Q $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the NODE=S015CS;LINKAGE=F NODE=S015CS;LINKAGE=E also our Light Gluino Section. $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ NODE=S015CS:LINKAGE=C interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10. NODE=S015CS;LINKAGE=B

> (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.)

(NA64 Collab.)

(NA64 Collab.)

(CMS Collab.) (CMS Collab.) (CMS Collab.)

(CMS Collab.)

(CMS Collab.)

(CMS_Collab.)

(WASH)

(ATLAS Collab. (LHCb Collab.

(ATLAS Collab.)

(ATLAS Collab.)

(HINR, ANIK+)

(BABAR Collab.

(HELIOS Collab.)

(NA3 Collab.

(MICH)

- 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
 m s.}\,$ For $au\,>\,10^{-9}\,{
 m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained.
- $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.
- 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches M. Aaboud et al.

Aaboud et al.

	AABOUD
	AABOUD
	AAIJ
YOUR PAPER	BANERJEE
	BANERJEE
	MARSICAN
	SIRUNYAN
	AABOUD
	AAIJ
	ZANG

AABOUD	18CM	PR D98 092008	M. Aaboud <i>et al.</i>
AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>
BANERJEE	18	PRL 120 231802	D. Banerjee et al.
BANERJEE	18A	PR D97 072002	D. Banerjee et al.
MARSICANO	18	PR D98 015031	L. Marsicano et al.
SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan et al.
SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.
SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.
SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.
SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.
SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.
AABOUD	17B	PL B765 32	M. Aaboud et al.
AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>
ZANG	17	PL B773 159	X. Zang, G.A. Miller
AAD	160	PL B760 520	G. Aad <i>et al.</i>
AAD	16R	PL B755 285	G. Aad <i>et al.</i>
KRASZNAHO	16	PRL 116 042501	A.J. Krasznahorkay e
LEES	15E	PRL 114 171801	J.P. Lees <i>et al.</i>
ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>
GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>
AKESSON	91	ZPHY C52 219	T. Akesson et al.
BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>
GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.

18CJ PR D98 052008

Aaij et al. Baneriee et al Banerjee et al. Marsicano et al. M. Sirunyan et al. .M. Sirunyan *et al.* .M. Sirunyan et al. .M. Sirunyan et al. .M. Sirunyan et al. .M. Sirunyan et al. 1. Aaboud et al. Aaij et al. Zang, G.A. Miller Aad et al. Aad et al. J. Krasznahorkay et al. P. Lees et al. (FNAL KTeV Collab.) (MSU, FNAL, MIT, FLOR) Adams et al. Gallas et al. Akesson et al.

NODE=S015

NODE=S015CS:LINKAGE=D

NODE=S015CS;LINKAGE=A

REFID=59441
RFFID=59474
REFID=59199
REFID=58838
REEID -58016
KEFID-30910
REFID=58967
REFID-50112
REFID=59300
REFID=59318
REEID-50367
KEI ID-39307
REFID=59469
REFID=59566
DEEID_57706
REFID=37700
REFID=58366
RFFID=59311
DEEID_57160
REFID=57109
REFID=57172
REFID=59302
REFID=50407
REFID=45722
REFID-44201
DEFID 41720
REFID=41739
REFID=10622
REEID -12580
NELID-12300

- ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with
- $^{13}{\rm AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with $3.2 \,\mathrm{fb}^{-1}$ of data.
- ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4.
- 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro
- on massive RS graviton (Fig. 4).
- ¹⁷ K e was ruled out already by ZANG 17.
- Upsilon region, which decays into $e^+ e^-$, $\mu^+ \mu^-$, $e^{\pm} \mu^{\mp}$, $\pi^+ \pi^-$, $K^+ K^-$, or $\pi^{\pm} K^{\mp}$. See their Fig. 2 for cross section limits.
- 19 ADAMS 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See

8 (8)
RASZNAHORKAY 16 report $p \operatorname{Li} \rightarrow \operatorname{Be} \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible
vidence for nuclear interference or new light boson . However, such nuclear interference
us ruled out already by ZANG 17

BANERJEE 18A; PR D97 072002GNINENKO

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Sergei N. Gninenko EMAIL: sergei.gninenko@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

YOUR DATA

YOUR NOTE

 8 SIRUNYAN 18DA search for pp
ightarrow Black Hole, string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb $^{-1}$; no signal, require e.g. m(BH)¿10.1 TeV

 9 SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) 5.9-8.2 TeV.

 10 SIRUNYAN 18DR search for dimuon resonance in $pp \rightarrow ~b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

NODE=S015CS;LINKAGE=V

NODE=S015CS;LINKAGE=U

4/5/2019 10:34

NODE=S015

REFID=59441 REFID=59474 REFID=58918 REFID=58916 REFID=58916 REFID=59306 REFID=59306 REFID=59306 REFID=59306 REFID=59306 REFID=59506 REFID=59311 REFID=57172 REFID=57172 REFID=57172 REFID=56467 REFID=56467 REFID=56422 REFID=41739 REFID=41739 REFID=41739 REFID=10622 REFID=10622

¹¹ SIRUNYAN 18DU search for high mass diphoton resonance in $pp \rightarrow \gamma\gamma$ at 13 TeV using 35.9 fb ⁻¹ ; no signal; limits placed on RS Graviton, LED, and clockwork.	NODE=S015CS;LINKAGE=W
¹² SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow l\nu$ at 13 TeV with 35.9 fb ⁻¹ ; no signal; limits set on m(W'); 2.9 TeV.	NODE=S015CS;LINKAGE=X
¹³ AABOUD 17B exclude $m(W', Z') < 1.49-2.31$ TeV depending on the couplings and W'/Z' degeneracy assumptions via WH , ZH search in pp collisions at 13 TeV with $2.2 \text{ m} = 1$ of data	NODE=S015CS;LINKAGE=I
¹⁴ AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4.	NODE=S015CS;LINKAGE=J
¹⁵ AAD 160 search for high $E_T \ell + (\ell \text{s or jets})$ with 3.2 fb ⁻¹ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions.	NODE=S015CS;LINKAGE=G
¹⁶ AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb ⁻¹ at 8 TeV data; limits placed on massive RS graviton (Fig. 4).	NODE=S015CS;LINKAGE=H
¹⁷ KRASZNAHORKAY 16 report $p \text{Li} \rightarrow \text{Be} \rightarrow e \bar{e} N 5 \sigma$ resonance at 16.7 MeV– possible evidence for nuclear interference or new light boson. However, such nuclear interference was ruled out already by ZANG 17.	NODE=S015CS;LINKAGE=Q
¹⁸ LEES 15E search for long-lived neutral particles produced in e^+e^- collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Eig. 2 for cross section limits	NODE=S015CS;LINKAGE=F
¹⁹ ADAMS 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K_L production for the mass range 1.2–5 GeV and lifetime 10^{-9} – 10^{-4} s. See also our Light Gluino Section	NODE=S015CS;LINKAGE=E
²⁰ GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/ <i>c p N</i> interactions decaying with a lifetime of 10^{-4} – 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm ² . See Fig 10	NODE=S015CS;LINKAGE=C
²¹ AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/ c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $\tau > 10^{-7}$ s. For $\tau > 10^{-9}$ s, $z < 10^{-3}$ s, $z < 10^{-3}$ s.	NODE=S015CS;LINKAGE=B
$\sigma < 10^{-50}$ cm ⁻² /nucleon is obtained. ²² BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^{\pm}$ etc. See their	NODE=S015CS;LINKAGE=D
figure 5 for the contours of limits in the mass- τ plane for each mode. ²³ GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy ($m > 2$ GeV) long- lived neutral hadrons in the M4 neutral beam. The above typical value is for $m = 3$ GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.	NODE=S015CS;LINKAGE=A

REFERENCES FOR Other Particle Searches

	AABOUD	18CJ	PR D98 052008	M. Aaboud et al.	(ATLAS Collab.)
	AABOUD	18CM	PR D98 092008	M. Aaboud et al.	(ATLAS Collab.)
	AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>	(LHCb_Collab.)
	BANERJEE	18	PRL 120 231802	D. Banerjee <i>et al.</i>	(NA64 Collab.)
YOUR PAPER	BANERJEE	18A	PR D97 072002	D. Banerjee et al.	(NA64 Collab.)
	MARSICANO	18	PR D98 015031	L. Marsicano et al.	· · · · · · · · · · · · · · · · · · ·
	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan et al.	(CMS Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller	(WASH)
	AAD	160	PL B760 520	G. Aad <i>et al.</i>	(ATLAS Collab.)
	AAD	16R	PL B755 285	G. Aad et al.	(ATLAS Collab.)
	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	(HINR, ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees et al.	(BABAR Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3 Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.	(MICH)

ALBERT 18C; PR D98 123012JGOODMAN

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

jordan goodman

EMAIL: goodman@umd.edu

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

APER	ALBERT 180	С РК	D98 123012	A. Albert <i>et al.</i>	1)	TAVVC	Collab.)	
	KHACHATRY 17	D JHE	P 1701 076	V. Khachatryan <i>et a</i>	al.	(CMS	Collab.)	
	AAD 16/	AI JHE	P 1603 041	G. Aad et al.	(A	TLAS	Collab.)	
	KHACHATRY 16	M PRL	117 051802	V. Khachatryan <i>et a</i>	al.	(CMS	Collab.)	
	ABBIENDI 001	D EPJ	C13 197	G. Abbiendi et al.	(ÒPAL	Collab.)	
	ACKERSTAFF 97	B PLI	B391 210	K. Ackerstaff et al.	(OPAL	Collab.)	

REFID=59510 REFID=57750 REFID=57322 REFID=57196 REFID=47464 REFID=45244 Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Jennifer Kile

EMAIL: jennifer.kile@cftp.tecnico.ulisboa.pt

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

4/5/2019 10:34 Page 128

NODE=S015

REFERENCES FOR Other Particle Searches

YOUR PAPER	KILE ABLIKIM ACKERSTAFF ABREU BARATE AKERS BUSKULIC ADACHI ADACHI KINOSHITA BARTEL	18 17AA 98P 97D 97K 95R 93C 90C 90E 82 80	JHEP 1810 116 PL B774 252 PL B433 195 PL B396 315 PL B405 379 ZPHY C67 203 PL B303 198 PL B244 352 PL B249 336 PRL 48 77 ZPHY C6 295	J. Ki M. A K. A P. Al R. B R. A D. B I. Ad I. Ad K. K W. E	ile, J. von Wimmersperg Ablikim <i>et al.</i> ckerstaff <i>et al.</i> breu <i>et al.</i> kers <i>et al.</i> kers <i>et al.</i> Juskulic <i>et al.</i> Jachi <i>et al.</i> Jachi <i>et al.</i> Sartel <i>et al.</i>	g-Toeller (B) (DE (A) (A) (TO (TO (TO (TO) (TO) (TO) (TO) (TO) ((LISBT) ES III Collab.) OPAL Collab.) LEPH Collab.) DPAL Collab.) DPAL Collab.) DPAZ Collab.) OPAZ Collab.) OPAZ Collab.) JADE Collab.)	REFID=59564 REFID=58253 REFID=46077 REFID=45316 REFID=45551 REFID=443705 REFID=41322 REFID=41410 REFID=12388 REFID=12158
------------	--	---	--	--	---	---	--	---

Reference Verifier code KRASZNAHORKAY 16; PRL 116 042501KRASZNAHOR

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

A. KRASZNAHORKAY

EMAIL: kraszna@atomki.hu

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

SEARCHES not in other sections

Other Particle Searches

OMITTED FROM SUMMARY TABLE

LIMITS ON NEUTRAL PARTICLE PRODUCTION

Heavy Particle Production Cross Section

	VALUE (cm^2/N)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	NODE=S015CS
	• • • We do not use	the follo	wing data for avera	ges, f	its, limit	s, etc. ● ● ●	
			¹ AABOUD	18CJ	ATLS	$pp \rightarrow VV/\ell\ell/\ell\nu, V = W, Z, h$	I
			² AABOUD	18CM	1ATLS	$pp \rightarrow e\mu/e\tau/\mu\tau$	
			³ AAIJ	18AJ	LHCB	$pp \rightarrow A' \rightarrow \mu^+ \mu^-;$ dark photon	
			⁴ BANERJEE	18	NA64	$eZ \rightarrow eZX(A')$	
			⁵ BANERJEE	18A	NA64	$eZ \rightarrow eZA', A' \rightarrow \chi\chi$	
			⁶ MARSICANO	18	E137	$e^+e^- \rightarrow A'(\gamma)$ visible decay	I
			⁷ SIRUNYAN	18BB	CMS	$pp \rightarrow Z' \rightarrow \ell^+ \ell^- \text{ at } 13$ TeV	
			⁸ SIRUNYAN	18DA	CMS	$pp \rightarrow$ Black Hole, string ball, sphaleron	
			⁹ SIRUNYAN	18DE	CMS	$pp \rightarrow jj$	
			¹⁰ SIRUNYAN	18DF	CMS	$p p ightarrow \ b \mu \overline{\mu}$	
			¹¹ SIRUNYAN	18DU	CMS	$pp \rightarrow \gamma \gamma$	
			¹² SIRUNYAN	18ED	CMS	$pp \rightarrow V \rightarrow Wh; h \rightarrow$	
			10			$b\overline{b}; W \rightarrow I\nu$	
			¹³ AABOUD	17 B	ATLS	WH, ZH resonance	
			¹⁴ AAIJ	17br	LHCB	$pp \rightarrow \pi_{V}\pi_{V}, \pi_{V} \rightarrow jj$	
			¹⁵ AAD	160	ATLS	$\ell + (\ell s \; or \; jets)$	
			¹⁶ AAD	16R	ATLS	WW , WZ , ZZ resonance	_
YOUR DATA			¹⁷ KRASZNAHO.	16		$p^7 \text{Li} \rightarrow {}^8 \text{Be} \rightarrow X(17) N$,	
						$X(17) ightarrow e^+ e^-$	
			¹⁸ LEES	15E	BABR	e^+e^- collisions	
			¹⁹ ADAMS	97 B	KTEV	m = 1.2 - 5 GeV	
	$< 10^{-36} - 10^{-33}$	90	²⁰ GALLAS	95	TOF	<i>m</i> = 0.5–20 GeV	
	$<$ (4–0.3) \times 10 ^{–31}	95	²¹ AKESSON	91	CNTR	m = 0-5 GeV	
	$<2 \times 10^{-36}$	90	²² BADIER	86	BDMP	au = (0.05–1.) $ imes$ 10 ^{-8} s	
	$< 2.5 \times 10^{-35}$		²³ GUSTAFSON	76	CNTR	$\tau > 10^{-7} \text{ s}$	
	¹ AABOUD 18CJ n	nake mul	tichannel search fo	pp -	$\rightarrow VV$	$/\ell\ell/\ell u$, $V=W$, Z , h at 13	NODE=S015CS;LINKAGE=R

TeV, 36.1 fb $^{-1}$; no signal found; limits placed for several BSM models. ²AABOUD 18CM search for lepton-flavor violating resonance in $pp \rightarrow e\mu/e\tau/\mu\tau$ at 13 NODE=S015CS;LINKAGE=S TeV, 36.1 fb^{-1} ; no signal is found and limits placed for various BSM models.

- 3 AAIJ 18AJ search for prompt and delayed dark photon decay ${\it A'} \rightarrow ~\mu^+\mu^-$ at LHCb detector using 1.6 fb⁻¹ of pp collisions at 13 TeV; limits on m(A') vs. kinetic mixing are set. ⁴BANERJEE 18 search for dark photon A'/16.7 MeV boson X at NA64 via $eZ \rightarrow$
- eZX(A'); no signal found and limits set on the X- e^- coupling ϵ_e in the range $1.3 \times 10^{-4} \le \epsilon_e \le 4.2 \times 10^{-4}$ excluding part of the allowed parameter space.
- 5 BANERJEE 18A search for invisibly decaying dark photons in eZ
 ightarrow eZA', A'
 ightarrowinvisible; no signal found and limits set on mixing for m(A') < 1 GeV.
- ⁶MARSICANO 18 search for dark photon $e^+e^- \rightarrow A'(\gamma)$ visible decay in SLAC E137 e beam dump data. No signal observed and limits set in ϵ coupling vs m(A') plane, see their figure 7.
- ⁷SIRUNYAN 18BB search for high mass dilepton resonance; no signal found and exclude portions of p-space of Z', KK graviton models.
- ⁸SIRUNYAN 18DA search for $pp \rightarrow$ Black Hole, string ball, sphaleron via high multiplicity events at 13 TeV, 35.9 fb $^{-1}$; no signal, require e.g. m(BH)¿10.1 TeV
- ⁹SIRUNYAN 18DD search for $pp \rightarrow jj$ deviations in dijet angular distribution. No signal observed. Set limits on large extra dimensions, black holes and DM mediators e.g. m(BH) 5.9–8.2 TeV.
- $^{10}\,{\sf SIRUNYAN}$ 18DR search for dimuon resonance in $pp \rightarrow ~b\mu\overline{\mu}$ at 8 and 13 TeV. Slight excess seen at m($\mu\overline{\mu}$) ~ 28 GeV in some channels.

NODE=S015

NODE=SXXX005

NODE=S015415

NODE=S015CS NODE=S015CS

NODE=S015CS;LINKAGE=V

NODE=S015CS;LINKAGE=K

NODE=S015CS:LINKAGE=L

NODE=S015CS;LINKAGE=M

NODE=S015CS;LINKAGE=P

NODE=S015CS;LINKAGE=O

NODE=S015CS;LINKAGE=T

NODE=S015CS;LINKAGE=U

REFID=59441 REFID=59474 REFID=58918 REFID=58916 REFID=58916 REFID=59306 REFID=59306 REFID=59306 REFID=59306 REFID=595066 REFID=59506 REFID=59311 REFID=57172 REFID=57172 REFID=57172 REFID=56467 REFID=56467 REFID=56422 REFID=44729 REFID=41739 REFID=41739 REFID=10622 REFID=10622 REFID=10622

	REFERENCES FOR Other Particle Searches	NODE=S015
	limit applies for particle modes, $\mu^{-}\pi^{-}$, $\mu^{+}\mu^{-}$, $\pi^{+}\pi^{-}X$, $\pi^{+}\pi^{-}\pi^{\pm}$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode. ²³ GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy ($m > 2$ GeV) long-lived neutral hadrons in the M4 neutral beam. The above typical value is for $m = 3$ GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.	NODE=S015CS;LINKAGE=A
	$\sigma < 10^{-30} \text{ cm}^{-2}/\text{nucleon is obtained.}$ ²² BADIER 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The	NODE=S015CS;LINKAGE=D
	²¹ AKESSON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $\tau > 10^{-7}$ s. For $\tau > 10^{-9}$ s	NODE=S015CS;LINKAGE=B
	²⁰ GALLAS 95 limit is for a weakly interacting neutral particle produced in 800 GeV/ <i>c p N</i> interactions decaying with a lifetime of 10^{-4} – 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm ² .	NODE=S015CS;LINKAGE=C
	¹⁹ ADAMS 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K_L production for the mass range 1.2–5 GeV and lifetime 10^{-9} – 10^{-4} s. See also our Light Gluino Section.	NODE=S015CS;LINKAGE=E
	¹⁸ LEES 15E search for long-lived neutral particles produced in e^+e^- collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits.	NODE=S015CS;LINKAGE=F
YOUR NOTE	¹⁷ KRASZNAHORKAY 16 report $pLi \rightarrow Be \rightarrow e\overline{e}N 5\sigma$ resonance at 16.7 MeV– possible evidence for nuclear interference or new light boson. However, such nuclear interference was ruled out already by ZANG 17.	NODE=S015CS;LINKAGE=Q
	¹⁶ AAD 16R search for WW , WZ , ZZ resonance in 20.3 fb ⁻¹ at 8 TeV data; limits placed on massive RS graviton (Fig. 4).	NODE=S015CS;LINKAGE=H
	¹⁵ AAD 160 search for high $E_T \ell + (\ell \text{s or jets})$ with 3.2 fb ⁻¹ at 13 TeV; exclude micro black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions.	NODE=S015CS;LINKAGE=G
	$3.2 \mathrm{fb}^{-1}$ of data. 14 AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4	NODE=S015CS;LINKAGE=J
	¹³ AABOUD 17B exclude m(W' , Z') < 1.49–2.31 TeV depending on the couplings and W'/Z' degeneracy assumptions via WH , ZH search in pp collisions at 13 TeV with	NODE=S015CS;LINKAGE=I
	¹² SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow l\nu$ at 13 TeV with 35.9 fb ⁻¹ : no signal: limits set on m(W'): 2.9 TeV	NODE=S015CS;LINKAGE=X
	¹¹ SIRUNYAN 18DU search for high mass diphoton resonance in $pp \rightarrow \gamma \gamma$ at 13 TeV using 35.9 fb ⁻¹ ; no signal; limits placed on RS Graviton, LED, and clockwork.	NODE=S015CS;LINKAGE=W

	AABOUD AABOUD AAIJ BANERJEE BANERJEE	18CJ 18CM 18AJ 18 18A	PR D98 052008 PR D98 092008 PRL 120 061801 PRL 120 231802 PR D97 072002	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> R. Aaij <i>et al.</i> D. Banerjee <i>et al.</i> D. Banerjee <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (NA64 Collab.) (NA64 Collab.)
	MARSICANO	18	PR D98 015031	L. Marsicano <i>et al.</i>	
	SIRUNYAN	18BB	JHEP 1806 120 JHEP 1811 042	A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.) (CMS Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan et al.	(CMS Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller	(WASH)
	AAD	160	PL B760 520	G. Aad et al.	(ATLAS Collab.)
	AAD	16R	PL B755 285	G. Aad et al.	(ATLAS Collab.)
YOUR PAPER	KRASZNAHO	. 16	PRL 116 042501	A.J. Krasznahorkay et al.	(HINR, ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees <i>et al.</i>	(BABAR Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT, FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3 Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.	(MICH)

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

	BOTTOM, CHARMED MESONS $(B = C = \pm 1)$	NODE=MXXX049
	$B_c^+ = c\overline{b}, \ B_c^- = \overline{c}b,$ similarly for B_c^* 's	NODE=MXXX049
		NODE=S091
	$B_c^+ \qquad I(J^P) = 0(0^-) \\ I, J, P \text{ need confirmation.}$	
	Quantum numbers shown are quark-model predictions.	NODE=S091
	B_c^+ BRANCHING RATIOS	NODE=S091225
YOUR DATA	$\frac{\Gamma(J/\psi(1S)\tau^{+}\nu_{\tau})/\Gamma(J/\psi(1S)\mu^{+}\nu_{\mu})}{\frac{DOCUMENT\ ID}{1\ AAIJ}} \frac{TECN}{18C\ LHCB\ pp\ at\ 7,\ 8\ TeV} \Gamma_{3}/\Gamma_{2}$	NODE=S091R29 NODE=S091R29
YOUR NOTE	¹ AAIJ 18C uses $ au^+ ightarrow \mu^+ u_\mu \overline{ u}_ au$ mode to obtain the ratio value.	NODE=S091R29;LINKAGE=A
	B_c^+ REFERENCES	NODE=S091
YOUR PAPER	AAIJ 18C PRL 120 121801 R. Aaij <i>et al.</i> (LHCb Collab.)	REFID=58813

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} b, \ B^- = \overline{u} b,$ similarly for B^* 's

 B^0

 $I(J^{P}) = \frac{1}{2}(0^{-})$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

	$\Gamma(D^*(2010)^-\tau^+\nu_{\tau})/\Gamma_{tot}$	al			Γ ₇ /Γ	NODE= $S042B09$
	VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT		NODE=S042B09
	1.48±0.18 OUR AVERAGE OUR 2018 AVERAGE]	Error includes scale fa	actor of 1.1.	$[(2.0\pm0.5)\times1]$	0-2	NEW
YOUR DATA	$1.42\!\pm\!0.094\!\pm\!0.140$	¹ AAIJ	18D LHCB	<i>pp</i> at 7, 8 TeV		
	$2.02^{+0.40}_{-0.37}\ \pm 0.37$	² MATYJA	07 BELL	$e^+e^- \rightarrow \Upsilon(45)$	5)	
	\bullet \bullet We do not use the follo	wing data for averages,	, fits, limits,	etc. • • •		
	$1.11 {\pm} 0.51 \ {\pm} 0.06$	³ AUBERT	08N BABR	Repl. by AUBER	T 09s	
YOUR NOTE	1 Noramlizes to B($B^{0} \rightarrow L^{2}$ Observed in the recoil of t 3 Uses a fully reconstructed	$D^*(2010)^- \pi^+ \pi^- \pi^+)$ he accompanying <i>B</i> me <i>B</i> meson as a tag on t	= (7.214 \pm eson. the recoil side	$0.28) \times 10^{-3}.$	I	NODE=S042B09;LINKAGE=A NODE=S042B09;LINKAGE=MA NODE=S042B09;LINKAGE=AU
	$\Gamma(D^*(2010)^-\tau^+\nu_{\tau})/\Gamma(D^*(2010)^-\tau^+\nu_{\tau}))$	$D^*(2010)^- \ell^+ \nu_\ell)$			Γ ₇ /Γ ₆	NODE=S042B95
	<u>VALUE</u> 0.315±0.018 OUR AVERAGE [0.325 ± 0.022 OUR 2018 AV	<u>DOCUMENT ID</u> ERAGE]	<u>TECN</u>	COMMENT		NODE=S042B95 NEW
YOUR DATA	$0.291\!\pm\!0.019\!\pm\!0.029$	¹ AAIJ	18D LHCB	<i>pp</i> at 7, 8 TeV		
	$0.302\!\pm\!0.030\!\pm\!0.011$	² SATO	16B BELL	$e^+e^- \rightarrow \Upsilon(4S)$	5)	
	$0.336\!\pm\!0.027\!\pm\!0.030$	³ AAIJ	15Q LHCB	<i>pp</i> at 7, 8 TeV		
	$0.355 \pm 0.039 \pm 0.021$	^{4,5} LEES	12D BABR	$e^+e^- \rightarrow \Upsilon(4S)$	5)	
	• • • We do not use the follo	wing data for averages	, fits, limits,	etc. ● ● ●		
	$0.207\!\pm\!0.095\!\pm\!0.008$	⁴ AUBERT	09s BABR	Repl. by LEES 1	2D	
YOUR NOTE	¹ Uses $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu}$	$_{ au}$ and $ au^+ ightarrow \pi^+ \pi^- \pi^-$	$\pi^+ \pi^0 \overline{ u}_{ au}$, and	d μ^+ as $\ell^+.$		NODE=S042B95;LINKAGE=C
	² Uses semileptonic <i>B</i> decay		NODE=S042B95;LINKAGE=B			
	3 Uses $ au^+ o \ \mu^+ u_\mu \overline{ u}_ au$ an		NODE=S042B951 INKAGE=A			
	⁴ Uses a fully reconstructed	B meson as a tag on t	he recoil side	2.		NODE=S042B95;LINKAGE=AU
	⁵ Uses $\tau^+ \rightarrow e^+ \nu_e \overline{\nu}_{\tau}$ and	d $ au^+ o \ \mu^+ u_\mu \overline{ u}_ au$ and	d e $^+$ or μ^+ a	as ℓ^+ .		NODE=S042B95;LINKAGE=LE
	$\Gamma(D^*(2010)^-\tau^+\nu_\tau)/\Gamma(L$	Ο*(2010) ⁻ π ⁺ π ⁺ π ⁻	-)	Г	¯ ₇ /Γ ₅₇	NODE=S042P26
	VALUE	<u>DOCUMENT ID</u>	TECN	COMMENT	•	NODE=S042P26
YOUR DATA	$1.97 \pm 0.13 \pm 0.18$	¹ AAIJ	18D LHCB	<i>pp</i> at 7, 8 TeV		
YOUR NOTE	¹ Uses $\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}$	$_{\tau}$ and $\tau^+ \rightarrow \pi^+ \pi^- \pi^-$	$\pi^+ \pi^0 \overline{\nu}_{\tau}$ mod	des.	I	NODE=S042P26;LINKAGE=A

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

NODE=S042220

NODE=S042220

NODE=S042

B⁰ REFERENCES

YOUR PAPER	AAIJ SATO AAIJ LEES Also AUBERT AUBERT Also MATYJA	18D 16B 15Q 12D 09S 08N 07	PRL 120 171802 PR D94 072007 PRL 115 111803 PRL 109 101802 PR D88 072012 PR D79 092002 PRL 100 021801 PR D79 092002 PRL 99 191807	R. Aaij et al. Y. Sato et al. R. Aaij et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. A. Matyja et al.	(LHCb Collab.) (BELLE Collab.) (LHCb Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.)	REFID=58822 REFID=57523 REFID=55493 REFID=55461 REFID=55461 REFID=52799 REFID=52299 REFID=52799 REFID=52022
	ΜΑΙΥJΑ	07	PRL 99 191807	A. Matyja <i>et al.</i>	(BELLE Collab.)	REFID=52022

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's

 B^0

for.

 $I(J^P) = \frac{1}{2}(0^-)$

 $\mathsf{Quantum}\xspace$ numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " $B^0-\overline{B}^0$ Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^\pm section.

	$\Gamma(\chi_{c0} K^0) / \Gamma_{total}$	DOCUMENT ID	TECN	Г ₂₅₀ /Г	NODE=S042S89 NODE=S042S89
		DOCOMENT ID		COMMENT	
	1.12^+_{-} 0.24 OUR AVER	AGE			NEW
	[(146 \pm 27) $ imes$ 10 $^{-6}$ OUR 2018	AVERAGE]			
YOUR DATA	_	¹ AAIJ	18F LHCB	<i>pp</i> at 7, 8 TeV	
	1.11^+ $\begin{array}{c} 0.20\\ 0.16\pm\end{array}$ 0.14				
	0.10	^{2,3} LEES	12I BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
	$145 {}^{+103}_{-\ 85} \pm \ 8$	2.4			
	148 + 30 + 13 ■	^{2,4} LEES	120 BABR	$e^+e^- ightarrow ~\Upsilon(4S)$	
	146 ± 30 ±13	^{2,5} AUBERT	09AU BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
	$142 + \begin{array}{c} 55 \\ - \begin{array}{c} 44 \end{array} \pm 22 \end{array}$				
	• • • We do not use the follow				
	< 113 90	⁵ GARMASH	07 BELL	$e^+e^- ightarrow ~\Upsilon(4S)$	
	<1240 90	² AUBERT	05K BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
	< 500 90	⁶ EDWARDS	01 CLE2	$e^+ e^- ightarrow ~\Upsilon(4S)$	
YOUR NOTE	¹ Uses Dalitz plot analysis of	NODE=S042S89;LINKAGE=B			
	fraction of the reference m				
	$0.20) \times 10^{-5}$ is used.				
	² Assumes equal production of 31555 12 mag and 500	of B^{\perp} and B° at the	T(4S).	(10) $(0, 0, 0)$	NODE=S042S89;LINKAGE=EP
	(0.45 ± 0.25) (0.61) (B ²	NODE=S042S89;LINKAGE=LE			
	$(0.46 - 0.17 \pm 0.21) \times 10^{-3}$				
	$= (3.16 \pm 0.17) \times 10^{-9}$. C is the systematic error from	Our first error is their e using our best value.	experiment's e	error and our second error	
	⁴ Measured in the $B^0 \rightarrow K_0^0$	K^+K^- decay.			
	- ⁵ Uses Dalitz plot analysis of	the $B^0 ightarrow K^0 \pi^+ \pi^-$	final state	decays.	NODE=S042S89;LINKAGE=GM
	⁶ EDWARDS 01 assumes equ uncertainties (28.3)% from	NODE=S042S89;LINKAGE=A			

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

NODE=S042220

NODE=S042220

	$\Gamma(K^0\pi^+\pi^- \text{non-resonant}))$	/F _{total}	Г ₃₀₁ /Г	
	$\frac{VALUE \text{ (units } 10^{-0}\text{)}}{126}$	DOCUMENT ID	<u>TECN</u> <u>COMMENT</u>	NODE-3042000
	13.9 ^{+2.9} OUR AVERAGE Eri [$(14.7^{+4.0}_{-2.6}) \times 10^{-6}$ OUR 2018	ror includes scale factors and the source of the scale factors and the scale factors are stated as the scale factors are state	ctor of 1.6. See the ideogram below. actor $= 2.1$]	NEW
YOUR DATA	$12.1 \pm 0.6 \pm 2.9$	¹ AAIJ	18F LHCB <i>pp</i> at 7, 8 TeV	
	$11.1^{+2.5}_{-1.0}{\pm}0.9$	² AUBERT	09AU BABR $e^+e^- ightarrow ~\Upsilon(4S)$	
	$19.9 \pm 2.5 \substack{+1.7 \\ -2.0}$	³ GARMASH	07 BELL $e^+e^- \rightarrow \Upsilon(4S)$	
YOUR NOTE	¹ Uses Dalitz plot analysis of	the $B^0 o K^0_S \pi^+ \eta$	π^- final state decays. For the branching	NODE=S042B00;LINKAGE=A
	fraction of the reference m $0.20) \times 10^{-5}$ is used.	ode, the PDG aver $f P^+$ and P^0 at the	age $B(B^0 \rightarrow K_S^0 \pi^+ \pi^-) = (4.96 \pm \chi^2(4.5))$	
	³ Uses Dalitz plot analysis of	the $B^0 \rightarrow K^0 \pi^+ \eta$	τ^{-} final state decays.	NODE=S042B00;LINKAGE=EP NODE=S042B00;LINKAGE=GM
	$\Gamma(\kappa^0 \rho^0) / \Gamma_{\text{total}}$		Г ₃₀₂ /Г	
	$\frac{VALUE \text{ (units } 10^{-6}\text{)}}{CL\%}$	DOCUMENT ID	<u>TECN</u> COMMENT	NODE=5042R12 NODE=5042R12
	3.4 ±1.1 OUR AVERA below $[(4.7 \pm 0.6) \times 10^{-6} \text{ O}]$	GE Error includes	scale factor of 2.3. See the ideogram	NEW
YOUR DATA	below. $[(4.7 \pm 0.0) \times 10 \ 0]$	¹ AAIJ	-J 18F LHCB pp at 7, 8 TeV	
	$1.89^{+0.55}_{-0.79} \pm 0.40$		-	
		² AUBERT	09AU BABR $e^+e^- ightarrow~arkappa(4S)$	
	$4.4 \begin{array}{c} +0.7 \\ -0.6 \end{array} \pm 0.3$			
	_	³ GARMASH	07 BELL $e^+e^- ightarrow argama(4S)$	
	$6.1 \ \pm 1.0 \ +1.1 \\ -1.2$			
	• • • We do not use the follow	ing data for average	es, fits, limits, etc. • • •	
	4.9 +0.8 +0.9 ■	² AUBERT	07F BABR Repl. by AUBERT 09AU	
	< 39 90	ASNER	96 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
	< 320 90 < 500 90	ALBRECHT ⁴ AVERY	91B ARG $e^+e^- \rightarrow \Upsilon(4S)$ 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
	<64000 90	⁵ AVERY	87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
YOUR NOTE	1 Uses Dalitz plot analysis of 1	the $B^0 o K^0_S \pi^+ \pi$	π^- final state decays. For the branching	NODE=S042R12;LINKAGE=A
	fraction of the reference m	ode, the PDG aver	rage $B(B^0 \to K_S^0 \pi^+ \pi^-) = (4.96 \pm$	
	$(0.20) \times 10^{-3}$ is used. ² Assumes equal production of	f B^+ and B^0 at the	r(4S).	
	³ Uses Dalitz plot analysis of	the $B^0 \rightarrow K^0 \pi^+ \eta$	τ^{-} final state decays.	NODE=S042R12;LINKAGE=GM
	⁴ AVERY 89B reports < 5.8 rescale to 50%.	$\times 10^{-4}$ assuming	the $\Upsilon(4S)$ decays 43% to B^0B^0 . We	NODE=S042R12;LINKAGE=A1
	5 AVERY 87 reports < 0.08 ; 50%.	assuming the $arphi(4S)$) decays 40% to $B^0\overline{B}{}^0$. We rescale to	NODE=S042R12;LINKAGE=AV
	$\Gamma(K^*(892)^+\pi^-)/\Gamma_{total}$		Г ₃₀₃ /Г	NODE=S042R11
	<u>VALUE (units 10^{-6})</u> <u>CL%</u>	DOCUMENT ID	TECN COMMENT	NODE=S042R11
	7.5 \pm0.4 OUR AVERAGI [(8.4 \pm 0.8) \times 10 ⁻⁶ OUR 2018	= AVERAGE]		NEW
YOUR DATA	$7.02 \pm 0.30 \pm 0.45$		18F LHCB pp at 7, 8 TeV	
	$8.0 \pm 1.1 \pm 0.8$	^{2,3} LEES	11 BABR $e^+e^- \rightarrow \Upsilon(4S)$	
	$8.3 + 0.8 \pm 0.8$	S,4 AUBERT	$09A0 \text{ BABR } e^+e^- \rightarrow T(4S)$	
	$8.4 \pm 1.1 \begin{array}{c} +1.0 \\ -0.9 \end{array}$	⁴ GARMASH	07 BELL $e^+e^- \rightarrow \Upsilon(4S)$	
	$16 \ \ {+6\atop-5}\ \ \pm 2$	³ ECKHART	02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$	
	• • • We do not use the follow	ing data for average	es, fits, limits, etc. • • •	
	12.6 $^{+2.7}_{-1.6}$ ± 0.9	^{2,3} AUBERT	08AQ BABR Repl. by LEES 11	
	$11.0 \ \pm 1.5 \ \pm 0.71$	³ AUBERT	06ו BABR Repl. by AUBERT מאטו	
	12.9 $\pm 2.4 \pm 1.4$	³ AUBERT,B	040 BABR Repl. by AUBERT 06	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	³ CHANG	04 BELL Repl. by GARMASH 07	

YOUR NOTE	< 72 90 <620 90 <380 90 <560 90 1 Uses Dalitz plot analysis of the fraction of the reference mode 0.20) × 10 ⁻⁵ is used. 2 Uses Dalitz plot analysis of B0 3 Assumes equal production of B 4 Uses Dalitz plot analysis of the 5 AVERY 89B reports < 4.4 × 32 rescale to 50%. 6 AVERY 87 reports < 7 × 10 ⁻⁴ to 50%.	ASNER 96 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ALBRECHT 91B ARG $e^+e^- \rightarrow \Upsilon(4S)$ ⁵ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ ⁶ AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $B^0 \rightarrow K_S^0 \pi^+ \pi^-$ final state decays. For the branching e, the PDG average $B(B^0 \rightarrow K_S^0 \pi^+ \pi^-) = (4.96 \pm 10^{-4} \pm 1$	NODE=S042R11;LINKAGE=A NODE=S042R11;LINKAGE=DA NODE=S042R11;LINKAGE=EP NODE=S042R11;LINKAGE=GM NODE=S042R11;LINKAGE=A1 NODE=S042R11;LINKAGE=AV
	$\Gamma((,\mathcal{K})_{0}^{*+}\pi^{-}, (,\mathcal{K})_{0}^{*+} \to \mathcal{K}^{0}\pi^{-})$	τ ⁺)/Γ _{total} Γ ₃₀₇ /Γ	NODE=S042P43 NODE=S042P43
YOUR DATA	$(16.2\pm0.69\pm1.15)\times10^{-6}$	¹ AAIJ 18F LHCB <i>pp</i> at 7, 8 TeV	
YOUR NOTE	¹ Uses Dalitz plot analysis of the S-wave component of $\mathcal{K}^0 \pi^+$. PDG average B($\mathcal{B}^0 \to \mathcal{K}^0_S \pi^+$	e $B^0 \rightarrow K_S^0 \pi^+ \pi^-$ final state decays. $(K\pi)_0^{*+}$ is the For the branching fraction of the reference mode, the $\pi^-\pi^-) = (4.96 \pm 0.20) \times 10^{-5}$ is used.	NODE=S042P43;LINKAGE=A
	$\Gamma(\kappa^0\sigma)/\Gamma_{\text{total}}$	Γ ₃₀₉ /Γ	NODE=S042P40
YOUR DATA	$(0.16^{+0.20}_{-0.04}\pm 0.15) \times 10^{-6}$	¹ AAIJ 18F LHCB <i>pp</i> at 7, 8 TeV	NODE-30421 40
YOUR NOTE	1 Uses Dalitz plot analysis of the fraction of the reference mode 0.20) $\times 10^{-5}$ is used.	$B^0 \rightarrow K_S^0 \pi^+ \pi^-$ final state decays. For the branching e, the PDG average $B(B^0 \rightarrow K_S^0 \pi^+ \pi^-) = (4.96 \pm$	NODE=S042P40;LINKAGE=A
YOUR DATA	$ \begin{array}{c} \Gamma(f_0(980) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	TotalTECNCOMMENTDOCUMENT IDTECNCOMMENTError includes scale factor of 1.3. See the ideogram2018 AVERAGE]AAIJ18FLHCBAUBERT09AUBABR $e^+e^- \rightarrow \Upsilon(4S)$ GARMASH07BELL $e^+e^- \rightarrow \Upsilon(4S)$	NODE=S042B05 NODE=S042B05 NEW
YOUR NOTE	• • We do not use the following $5.5 \pm 0.7 \pm 0.6$ 2 <360 90 4 ¹ Uses Dalitz plot analysis of the fraction of the reference mode 0.20×10^{-5} is used	data for averages, fits, limits, etc. • • • AUBERT 061 BABR Repl. by AUBERT 09AU AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $B^0 \rightarrow \kappa_S^0 \pi^+\pi^-$ final state decays. For the branching e, the PDG average B($B^0 \rightarrow \kappa_S^0 \pi^+\pi^-$) = (4.96 ±	NODE=S042B05;LINKAGE=A
	² Assumes equal production of B ³ Uses Dalitz plot analysis of the ⁴ AVERY 89B reports < 4.2×10^{-10} rescale to 50%.	\mathcal{K}^+ and \mathcal{B}^0 at the $\Upsilon(4S)$. $\mathcal{B}^0 \rightarrow \mathcal{K}^0 \pi^+ \pi^-$ final state decays. \mathcal{L}^{0-4} assuming the $\Upsilon(4S)$ decays 43% to $\mathcal{B}^0 \overline{\mathcal{B}}^0$. We	NODE=S042B05;LINKAGE=EP NODE=S042B05;LINKAGE=GM NODE=S042B05;LINKAGE=A1
	$\Gamma(K^0 f_0(1500))/\Gamma_{\text{total}}$	Γ ₃₁₀ /Γ DOCUMENT ID <u>TECN</u> COMMENT	NODE=S042P42 NODE=S042P42
YOUR DATA	$(1.29\pm0.27\pm0.70)\times10^{-6}$	¹ AAIJ 18F LHCB <i>pp</i> at 7, 8 TeV	
YOUR NOTE	⁺ Uses Dalitz plot analysis of the fraction of the reference mode $0.20) \times 10^{-5}$ is used.	$B^{\circ} \rightarrow \kappa_{S}^{\circ} \pi^{-} \pi^{-}$ final state decays. For the branching e, the PDG average $B(B^{0} \rightarrow \kappa_{S}^{0} \pi^{+} \pi^{-}) = (4.96 \pm$	NODE=S042P42;LINKAGE=A
	$\Gamma(\kappa_2^*(1430)^+\pi^-)/\Gamma_{total}$	Г ₃₁₄ /Г	NODE=S042R72
	$\frac{VALUE \text{ (units } 10^{-6})}{L0.1E}$	DOCUMENT ID TECN COMMENT	NODE=S042R72
TOUR DATA	3.65^{+0.15}±0.31 < 6 90	¹ AAIJ 18F LHCB pp at 7, 8 TeV ² GARMASH 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$	

	• • • We do not use the following data for averages, fits, limits, etc. • • •				
	< 16.2 90 ^{3,4} AUBERT 08AQ BABR $e^+e^- \rightarrow \Upsilon(4S)$				
	< 18 90 GARMASH 04 BELL Repl. by GARMASH 07				
	$ \begin{array}{cccc} <2000 & 90 & \text{ALBRECHT} & 91B & \text{ARG} & e^+e^- \rightarrow I(4S) \\ 1 & 0 & 0^- \\ \end{array} $				
YOUR NOTE	Uses Dalitz plot analysis of the $B^0 \rightarrow K_S^0 \pi^+ \pi^-$ final state decays. We compute	NODE=S042R72;LINKAGE=A			
	$B(B^0 \rightarrow K_2^*(1430)^+ \pi^-)$ using the PDG value $B(K_2^*(1430) \rightarrow K\pi) = 49.9 \times 10^{-2}$				
	and 2/3 for the $K^0 \pi^+$ fraction. For the branching fraction of the reference mode, the				
	PDG average $B(B^0 \rightarrow K_S^0 \pi^+ \pi^-) = (4.96 \pm 0.20) \times 10^{-5}$ is used.				
	2 GARMASH 07 reports B($B^0 ightarrow K_2^*(1430)^+ \pi^-) imes$ B($K_2^{*+} ightarrow K^0 \pi^+$) $<$ 2.1 $ imes$ 10 ⁻⁶	NODE=S042R72:LINKAGE=GM			
	using Dalitz plot analysis. We compute B($B^0 o \ \kappa_2^*(1430)^+ \pi^-)$ using the PDG value				
	$B(K^*_2(1430) ightarrow\ \kappa\pi)=49.9 imes10^{-2}$ and 2/3 for the $ar{K^0}\pi^+$ fraction.				
	² Uses Dalitz plot analysis of $B^0 \rightarrow K^+ \pi^- \pi^0$ decays.	NODE=S042R72:LINKAGE=DA			
	4 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.	NODE=S042R72;LINKAGE=EP			
	$\Gamma(V_*(1600) + -=) / \Gamma$				
	$1 (K^{+}(1080)' \pi) / 1_{total}$ 1 315/1	NODE=S042B03			
	VALUE (units 10 ⁻⁰) <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=5042B03			
YOUR DATA	14.1±0.58±0.84 ¹ AAIJ 18F LHCB <i>pp</i> at 7, 8 TeV				
	<10 90 ² GARMASH 07 BELL $e^+e^- \rightarrow T(4S)$				
	• • • We do not use the following data for averages, fits, limits, etc. • • •				
	<25 90 3,4 AUBERT 08AQ BABR $e^+e^- \rightarrow T(4S)$				
YOUR NOTE	¹ Uses Dalitz plot analysis of the $B^0 \rightarrow K_S^0 \pi^+ \pi^-$ final state decays. We compute	NODE=S042B03;LINKAGE=A			
	$B(B^0 o \ \kappa_2^*(1430)^+ \pi^-)$ using the PDG value $B(\kappa_2^*(1430) o \ \kappa\pi) = 49.9 imes 10^{-2}$				
	and 2/3 for the $K^0\pi^+$ fraction. For the branching fraction of the reference mode, the				
	PDG average B($B^0 ightarrow K^0_S \pi^+ \pi^-$) = (4.96 \pm 0.20) $ imes$ 10 ⁻⁵ is used.				
	² GARMASH 07 reports B($B^0 \rightarrow K^*(1680)^+\pi^-$)×B($K^{*+} \rightarrow K^0\pi^+$) < 2.6 × 10 ⁻⁶	NODE=S042B03;LINKAGE=GM			
	using Dalitz plot analysis. We compute B($B^0 o \kappa^*(1680)^+\pi^-)$ using the PDG value				
	$B(K^*(1680) \to K\pi) = 38.7 \times 10^{-2}$ and 2/3 for the $K^0\pi^+$ fraction.				
	³ Uses Dalitz plot analysis of $B^0 \rightarrow K^+ \pi^- \pi^0$ decays.	NODE=S042B03;LINKAGE=DA			
	Assumes equal production of B^+ and B° at the $T(43)$.	NODE=S042B03;LINKAGE=EP			
	CP VIOLATION PARAMETERS				
		NODE=S042229			
	CP VIOLATION PARAMETERS $A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-)$	NODE=S042229			
	CP VIOLATION PARAMETERS $A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-)$ VALUE DOCUMENT ID TECN COMMENT 0.27 ± 0.04 OUR AVERAGE	NODE=S042229 NODE=S042AC3 NODE=S042AC3			
	CP VIOLATION PARAMETERS $A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-)$ <u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> [-0.22 ± 0.06 OUR 2018 AVERAGE]	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \underline{VALUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & \text{OUR AVERAGE} \\ \hline \hline -0.22 \pm 0.06 & \text{OUR 2018 AVERAGE} \\ \hline -0.308 \pm 0.060 \pm 0.016 & ^1 \text{ AAIJ} & 18F \text{ LHCB } pp \text{ at 7, 8 TeV} \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \hline -0.27 \pm 0.04 \text{ OUR AVERAGE} \\ \hline \hline -0.22 \pm 0.06 \text{ OUR 2018 AVERAGE} \\ \hline \hline -0.308 \pm 0.060 \pm 0.016 & ^1 \text{ AAIJ} & 18 \text{F} \text{ LHCB } pp \text{ at 7, 8 TeV} \\ \hline -0.29 \pm 0.11 \pm 0.02 & ^2 \text{ LEES} & 11 & \text{BABR } e^+ e^- \rightarrow \Upsilon(4S) \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \underline{VALUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \textbf{-0.27 \pm 0.06 \ OUR \ 2018 \ AVERAGE} \\ \hline [-0.22 \pm 0.06 \ OUR \ 2018 \ AVERAGE] \\ \hline -0.308 \pm 0.060 \pm 0.016 & 1 \ AAIJ & 18F \ LHCB \ pp \ at \ 7, \ 8 \ TeV \\ \hline -0.29 \ \pm 0.11 \ \pm 0.02 & 2 \ LEES & 11 \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \ \pm 0.10 \ \pm 0.02 & 3,4 \ AUBERT & 09AU \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \to K^*(892)^+ \pi^-) \\ \hline \underline{MAUUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & OUR AVERAGE \\ \hline \hline -0.22 \pm 0.06 \ OUR \ 2018 \ AVERAGE \\ \hline \hline -0.308 \pm 0.060 \pm 0.016 & 1 \ AAIJ & 18F \ LHCB \ pp \ at \ 7, \ 8 \ TeV \\ \hline -0.29 \pm 0.11 \ \pm 0.02 & 2 \ LEES & 11 \ BABR \ e^+ e^- \to \ \Upsilon(4S) \\ \hline -0.21 \ \pm 0.10 \ \pm 0.02 & 3.4 \ AUBERT & 09AU \ BABR \ e^+ e^- \to \ \Upsilon(4S) \\ \hline -0.21 \ \pm 0.11 \ \pm 0.07 & 5 \ DALSENO & 09 \ BELL \ e^+ e^- \to \ \Upsilon(4S) \\ \hline \hline \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \underline{MAUUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & OUR \ AVERAGE \\ \hline \hline -0.22 \pm 0.06 \ OUR \ 2018 \ AVERAGE \\ \hline \hline -0.308 \pm 0.060 \pm 0.016 & 1 \ AAIJ & 18F \ LHCB \ pp \ at \ 7, \ 8 \ TeV \\ \hline -0.29 \pm 0.11 \ \pm 0.02 & 2 \ LES & 11 \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \ \pm 0.10 \ \pm 0.02 & 3.4 \ AUBERT & 09AU \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \ \pm 0.11 \ \pm 0.07 & 5 \ DALSENO \ 09 \ BELL \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline 0.26 \ + 0.33 \ + 0.10 & 6 \ EISENSTEIN \ 03 \ CLE2 \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \underline{Malue} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & OUR \ AVERAGE \\ \hline -0.22 \pm 0.06 & OUR \ 2018 \ AVERAGE \\ \hline -0.308 \pm 0.060 \pm 0.016 & 1 \ AAIJ & 18F \ LHCB \ pp \ at 7, 8 \ TeV \\ \hline -0.29 \pm 0.11 \pm 0.02 & 2 \ LES & 11 \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3,4 \ AUBERT & 09AU \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 \ DALSENO \ 09 \ BELL \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline 0.26 \ +0.33 \ +0.10 & 6 \ EISENSTEIN \ 03 \ CLE2 \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline \bullet \bullet We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \bullet \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \hline \\ \hline \underline{VALUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \underline{MALUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & OUR AVERAGE \\ \hline \hline -0.22 \pm 0.06 & OUR \ 2018 \ AVERAGE \\ \hline \hline -0.29 \pm 0.11 \pm 0.02 & 2 \ LEES & 11 & BABR \ e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3.4 \ AUBERT & 09AU \ BABR \ e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 \ DALSENO & 09 \ BELL \ e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.13 & +0.10 & 6 \ EISENSTEIN \ 03 \ CLE2 \ e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.26 \ -0.34 \ -0.08 & 6 \ EISENSTEIN \ 03 \ CLE2 \ e^+e^- \rightarrow \Upsilon(4S) \\ \hline \bullet \bullet We \ do \ not use \ the following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \bullet \\ \hline -0.19 \ -0.15 \ \pm 0.04 & 2 \ AUBERT \ 08AQ \ BABR \ Repl. \ by \ LEES \ 11 \\ \hline 0.11 \ + 0.05 \ AUDEDT \ 0.001 \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) & \underline{COMMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline MALUE & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & OUR AVERAGE \\ \hline \hline -0.22 \pm 0.06 & OUR 2018 & AVERAGE \\ \hline \hline -0.22 \pm 0.06 & OUR 2018 & AVERAGE \\ \hline -0.308 \pm 0.060 \pm 0.016 & 1 & AAIJ & 18F & LHCB & pp at 7, 8 & TeV \\ \hline -0.29 \pm 0.11 \pm 0.02 & 2 & LEES & 11 & BABR & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3.4 & AUBERT & 09AU & BABR & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 & DALSENO & 09 & BELL & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.26 & +0.33 & +0.10 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.19 & +0.20 & & 2 & AUBERT & 08AQ & BABR & Repl. & by LEES 11 \\ \hline -0.11 \pm 0.14 \pm 0.05 & 3 & AUBERT & 061 & BABR & Repl. & by AUBERT 09AU \\ \hline -0.15 & +0.09 & & HORDERE & HORDERE & HORDERE & HORDERE & HORDERE & DAUBERT 09AU \\ \hline -0.15 & +0.09 & & HORDERE & H$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \hline CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \underline{Malue} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline -0.27 \pm 0.04 & OUR AVERAGE \\ \hline \hline -0.22 \pm 0.06 & OUR \ 2018 \ AVERAGE \\ \hline \hline -0.29 \pm 0.011 \pm 0.02 & 2 \ LES & 11 & BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3.4 \ AUBERT & 09AU \ BABR \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 \ DALSENO & 09 \ BELL \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.26 \ +0.33 \ +0.10 & 6 \ EISENSTEIN \ 03 \ CLE2 \ e^+ e^- \rightarrow \ \Upsilon(4S) \\ \hline -0.19 \ +0.20 \ \pm 0.04 & 2 \ AUBERT \ 08AQ \ BABR \ Repl. \ by \ LEES \ 11 \\ \hline -0.11 \ \pm 0.14 \ \pm 0.05 & 3 \ AUBERT \ 06I \ BABR \ Repl. \ by \ AUBERT \ 09AU \\ \hline -0.23 \ \pm 0.18 \ +0.09 \ AUBERT, B \ 040 \ BABR \ Repl. \ by \ AUBERT \ 06I \\ \hline 1 \ Uses \ Dalitz \ plot \ analysis \ of \ the \ B^0 \rightarrow \ K_0^0 \ \pi^+ \pi^- \ final \ state \ decays. \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW			
YOUR DATA	$\begin{array}{c c} \textbf{CP VIOLATION PARAMETERS} \\ \hline \textbf{A}_{CP}(\textbf{B}^0 \rightarrow \textbf{K^*(892)^+ \pi^-)} \\ \hline \textbf{MALUE} & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \textbf{-0.27 \pm 0.04 OUR AVERAGE} \\ \hline \hline \textbf{-0.27 \pm 0.06 OUR 2018 AVERAGE} \\ \hline \hline \textbf{-0.22 \pm 0.06 OUR 2018 AVERAGE} \\ \hline \hline \textbf{-0.308 \pm 0.060 \pm 0.016} & 1 & \text{AAIJ} & 18F & \text{LHCB} & pp \text{ at } 7, 8 & \text{TeV} \\ \hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 2 & \text{LES} & 11 & \text{BABR} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.21 \pm 0.10 \pm 0.02} & 3,^4 & \text{AUBERT} & 09\text{AU BABR} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.21 \pm 0.11 \pm 0.07} & 5 & \text{DALSENO} & 09 & \text{BELL} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 040 & \text{BABR} & \text{Repl. by LEES 11} \\ \hline \textbf{0.11 \pm 0.14 \pm 0.05} & 3 & \text{AUBERT} & 061 & \text{BABR} & \text{Repl. by AUBERT 09AU} \\ \hline \textbf{0.23 \pm 0.18 + 0.09} & \text{AUBERT, B} & 040 & \text{BABR} & \text{Repl. by AUBERT 061} \\ \hline \textbf{1} & \text{Uses Dalitz plot analysis of the } B^0 \rightarrow \textbf{K}^0 \pi^+ \pi^- \text{ final state decays.} \\ \hline \textbf{2} & \text{Uses Dalitz plot analysis of the } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{2} & \text{Uses Dalitz plot analysis of } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{2} & \text{Uses Dalitz plot analysis of } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{2} & \text{Usend Dalitz plot analysis of } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{2} & \text{Usend Dalitz plot analysis of } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{2} & \text{Usend Dalitz plot analysis of } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{2} & \text{Usend Dalitz plot analysis of } B^0 \rightarrow \textbf{K}^+ \pi^- \pi^0 & \text{decays.} \\ \hline \textbf{3} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} & \textbf$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA			
YOUR DATA	$\begin{array}{c c} \textbf{CP VIOLATION PARAMETERS} \\ \hline \textbf{A}_{CP}(\textbf{B}^0 \rightarrow \textbf{K^*(892)^+ \pi^-)} \\ \hline \textbf{MALUE} & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \textbf{-0.27 \pm 0.04 OUR AVERAGE} \\ \hline \hline \textbf{-0.22 \pm 0.06 OUR 2018 AVERAGE} \\ \hline \hline \textbf{-0.22 \pm 0.06 OUR 2018 AVERAGE} \\ \hline \hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 2 \text{ LES} & 11 & \text{BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 3.4 \text{ AUBERT} & 09\text{AU BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.21 \pm 0.10 \pm 0.02} & 3.4 \text{ AUBERT} & 09\text{AU BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.21 \pm 0.11 \pm 0.07} & 5 \text{ DALSENO} & 09 & \text{BELL } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.26 + 0.33 + 0.10} & 6 & \text{EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.19 + 0.20} & \pm 0.04 & 2 \text{ AUBERT} & 08\text{AQ BABR} & \text{Repl. by LEES 11} \\ \hline \textbf{-0.11 \pm 0.14 \pm 0.05} & 3 \text{ AUBERT} & 06\text{I} & \text{BABR} & \text{Repl. by AUBERT 09AU} \\ \hline \textbf{0.23 \pm 0.18 + 0.09} & \text{AUBERT, B} & 04\text{O} & \text{BABR} & \text{Repl. by AUBERT 06} \\ \hline ^1 \text{ Uses Dalitz plot analysis of the } B^0 \rightarrow K_S^0 \pi^+ \pi^- \text{ final state decays.} \\ \hline ^2 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\ \hline ^3 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\ \hline \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU			
YOUR DATA	$\begin{array}{c c} \textbf{CP VIOLATION PARAMETERS} \\ \hline \textbf{A}_{CP}(\textbf{B}^0 \rightarrow \textbf{K^*(892)^+ \pi^-}) & \underline{\textbf{DCUMENT ID}} & \underline{\textbf{TECN}} & \underline{\textbf{COMMENT}} \\ \hline \textbf{VALUE} & \underline{\textbf{DOCUMENT ID}} & \underline{\textbf{TECN}} & \underline{\textbf{COMMENT}} \\ \hline \textbf{-0.27 \pm 0.04 OUR AVERAGE} \\ \hline \textbf{[}-0.22 \pm 0.06 OUR 2018 AVERAGE] \\ \hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 2 \ \text{LES} & 11 & \text{BABR } e^+ e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 3.4 \ \text{AUBERT} & 09 \ \text{AUBRR} & e^+ e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.21 \pm 0.10 \pm 0.02} & 3.4 \ \text{AUBERT} & 09 \ \text{AUBRR} & e^+ e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.21 \pm 0.11 \pm 0.07} & 5 \ \text{DALSENO} & 09 & \text{BELL} & e^+ e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.26 } & -0.33 & +0.10 & 6 \ \text{EISENSTEIN} & 03 & \text{CLE2} & e^+ e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.26 } & -0.34 & -0.08 & 6 \ \text{EISENSTEIN} & 03 \ \text{CLE2} & e^+ e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{-0.19 } & +0.20 & 2 \ \text{AUBERT} & 08 \ \text{AQ} \ \text{BABR} \ \text{Repl. by LEES 11} \\ \hline \textbf{-0.11 \pm 0.14 \pm 0.05} & 3 \ \text{AUBERT} & 061 \ \text{BABR} \ \text{Repl. by AUBERT 09 \ AUBERT 09 \ AUBERT, B & 040 \ \text{BABR} \ \text{Repl. by AUBERT} 061 \\ \hline \textbf{1} \ \text{Uses Dalitz plot analysis of the } B^0 \rightarrow K_S^0 \pi^+ \pi^- \ \text{final state decays.} \\ \hline \textbf{2} \ \text{Use Dalitz plot analysis of the } B^0 \rightarrow K_0^0 \pi^+ \pi^- \ \text{decays.} \\ \hline \textbf{3} \ \text{Use Dalitz plot analysis of B}^0 \rightarrow K_0^0 \pi^+ \pi^- \ \text{decays.} \\ \hline \textbf{4} \ \text{The first of two equivalent solutions is used.} \\ \hline \textbf{5} \ \textbf{1} \ \textbf{5} \ \textbf$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=BE			
YOUR DATA	CP VIOLATION PARAMETERS $A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-)$ VALUE DOCUMENT ID TECN COMMENT $-0.27 \pm 0.04 \text{ OUR AVERAGE}$ $[-0.22 \pm 0.06 \text{ OUR 2018 AVERAGE}]$ $-0.308 \pm 0.060 \pm 0.016$ 1 AAIJ 18F LHCB pp at 7, 8 TeV $-0.29 \pm 0.11 \pm 0.02$ 2 LES 11 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.21 \pm 0.10 \pm 0.02$ $3,4 \text{ AUBERT}$ 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.21 \pm 0.11 \pm 0.07$ 5 DALSENO 09 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.26 \pm 0.33 \pm 0.10$ 6 EISENSTEIN 03 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ -0.19 ± 0.04 2 AUBERT 08AQ BABR Repl. by LEES 11 $-0.11 \pm 0.14 \pm 0.05$ 3 AUBERT 061 BABR Repl. by AUBERT 09AU $0.23 \pm 0.18 \pm 0.06$ AUBERT,B 040 BABR Repl. by AUBERT 09AU $0.23 \pm 0.18 \pm 0.06$ AUBERT,B 040 BABR Repl. by AUBERT 061 $1 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.}$ $3 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.}$ $4 \text{ The first of two equivalent solutions is used.}$ $5 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced and analysis of B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent reduced analysis of B$	NODE=S042229 NODE=S042AC3 NODE=S042AC3 NEW NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=BE NODE=S042AC3;LINKAGE=DL			
YOUR DATA	CP VIOLATION PARAMETERS A _{CP} ($B^0 \rightarrow K^*(892)^+\pi^-$) <u>VALUE</u> DOCUMENT ID TECN COMMENT OUR OUR AVERAGE [-0.22 ± 0.06 OUR 2018 AVERAGE] -0.308±0.060±0.016 ¹ AAIJ 18F LHCB <i>pp</i> at 7, 8 TeV -0.29 ±0.11 ±0.02 ² LEES 11 BABR $e^+e^- \rightarrow \Upsilon(4S)$ -0.21 ±0.10 ±0.02 ^{3,4} AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ -0.21 ±0.11 ±0.07 ⁵ DALSENO 09 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 0.26 $^+0.33 + 0.10$ 6 EISENSTEIN 03 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 0.26 $^+0.33 + 0.00$ 6 EISENSTEIN 03 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 0.26 $^+0.034 + 0.008$ AUBERT 08AQ BABR Repl. by LEES 11 -0.11 ±0.14 ±0.05 ³ AUBERT 06I BABR Repl. by AUBERT 09AU 0.23 ±0.18 $^+0.09$ AUBERT, B 040 BABR Repl. by AUBERT 06I ¹ Uses Dalitz plot analysis of the $B^0 \rightarrow K_S^0 \pi^+ \pi^-$ final state decays. ² Uses Dalitz plot analysis of $B^0 \rightarrow K^0 \pi^+ \pi^-$ decays. ³ Uses Dalitz plot analysis of $B^0 \rightarrow K^0 \pi^+ \pi^-$ decays. ⁴ The first of two equivalent solutions is used. ⁵ Uses Dalitz plot analysis of $B^0 \rightarrow K^0 \pi^+ \pi^-$ decays and the first of two consistent solutions that may be preferred. ⁶ Corresponds to 90% confidence range $-0.31 < A_{CD} < 0.78$.	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=BE NODE=S042AC3;LINKAGE=DL			
YOUR DATA	$\begin{array}{c c} \textbf{CP VIOLATION PARAMETERS}\\ \hline \textbf{A}_{CP}(\textbf{B}^0 \rightarrow K^*(892)^+\pi^-) \\ \hline \textbf{MLUE} & DOCUMENT ID & TECN & COMMENT \\\hline \textbf{O.27 ± 0.06 OUR AVERAGE} \\ \hline \textbf{[}-0.22 \pm 0.06 OUR 2018 AVERAGE] \\\hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 1 \text{ AAIJ} & 18F \text{ LHCB } pp \text{ at } 7, 8 \text{ TeV} \\\hline \textbf{-0.29 \pm 0.11 \pm 0.02} & 2 \text{ LEES} & 11 & \text{BABR } e^+e^- \rightarrow \Upsilon(4S) \\\hline \textbf{-0.21 \pm 0.10 \pm 0.02} & 3, 4 \text{ AUBERT} & 09\text{ AU} \text{ BABR } e^+e^- \rightarrow \Upsilon(4S) \\\hline \textbf{-0.21 \pm 0.11 \pm 0.07} & 5 \text{ DALSENO} & 09 & \text{BELL } e^+e^- \rightarrow \Upsilon(4S) \\\hline \textbf{-0.26 + 0.33 + 0.10} & 6 \text{ EISENSTEIN} & 03 & \text{CLE2 } e^+e^- \rightarrow \Upsilon(4S) \\\hline \textbf{-0.26 + 0.33 + 0.10} & 6 \text{ EISENSTEIN} & 03 & \text{CLE2 } e^+e^- \rightarrow \Upsilon(4S) \\\hline \textbf{-0.26 + 0.33 + 0.10} & 6 \text{ EISENSTEIN} & 03 & \text{CLE2 } e^+e^- \rightarrow \Upsilon(4S) \\\hline \textbf{-0.19 - 0.15} \pm 0.04 & 2 \text{ AUBERT} & 08\text{ AQ} \text{ BABR} \text{ Repl. by LEES } 11 \\\hline \textbf{-0.11 \pm 0.14 \pm 0.05} & 3 \text{ AUBERT} & 061 & \text{ BABR} \text{ Repl. by AUBERT } 09\text{ AU} \\\hline \textbf{0.23 \pm 0.18 + 0.09} & \text{AUBERT, B} & 040 & \text{BABR} \text{ Repl. by AUBERT } 061 \\\hline \textbf{1} \text{ Uses Dalitz plot analysis of } \text{ B}^0 \rightarrow K^0_S \pi^+ \pi^- \text{ final state decays.} \\\hline \textbf{2} \text{ Uses Dalitz plot analysis of } \text{ B}^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\\hline \textbf{3} \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\\hline \textbf{4} \text{ The first of two equivalent solutions is used.} \\\hline \textbf{5} \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent solutions that may be preferred.} \\\hline \textbf{6} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{4} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{4} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{4} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{4} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{4} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{5} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{5} \text{ Corresponds to 90\% confidence range } -0.31 < \textbf{A}_{CP} < 0.78. \\\hline \textbf{5} Corresponds to 90\% confidence range$	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A			
YOUR DATA	$\begin{array}{c c} \textbf{CP VIOLATION PARAMETERS} \\ \hline \textbf{A}_{CP}(\textbf{B}^0 \rightarrow K^*(892)^+ \pi^-) \\ \hline \textbf{MUE} & \textbf{DOCUMENT ID} & \textbf{TECN} & \textbf{COMMENT} \\ \hline \textbf{O.27 ± 0.06 OUR AVERAGE} \\ \hline \hline \textbf{O.27 \pm 0.06 OUR 2018 AVERAGE} \\ \hline \hline \textbf{O.22 \pm 0.06 OUR 2018 AVERAGE} \\ \hline \hline \textbf{O.308 \pm 0.606 \pm 0.016} & 1 \text{ AAIJ} & 18F \text{ LHCB } pp \text{ at } 7, 8 \text{ TeV} \\ \hline \textbf{O.29 \pm 0.11 \pm 0.02} & 2 \text{ LEES} & 11 & \text{BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{O.21 \pm 0.10 \pm 0.02} & 3, 4 \text{ AUBERT} & 09\text{ AU BARR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{O.21 \pm 0.11 \pm 0.07} & 5 \text{ DALSENO} & 09 & \text{BELL } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{O.26 } -\textbf{O.34} - \textbf{O.08} & 6 \text{ EISENSTEIN} & 03 & \text{CLE2 } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{O.26 } -\textbf{O.34} - \textbf{O.08} & 6 \text{ EISENSTEIN} & 03 & \text{CLE2 } e^+e^- \rightarrow \Upsilon(4S) \\ \hline \textbf{O.23 \pm 0.18 \pm 0.04} & 2 \text{ AUBERT} & 08\text{ AQ BABR Repl. by LEES 11} \\ \hline \textbf{O.11 \pm 0.14 \pm 0.05} & 3 \text{ AUBERT} & 061 & \text{BABR Repl. by AUBERT 09AU} \\ \hline \textbf{O.23 \pm 0.18 \pm 0.09} & \text{AUBERT, B} & 040 & \text{BABR Repl. by AUBERT 061} \\ \hline 1 \text{ Uses Dalitz plot analysis of the } B^0 \rightarrow K_S^0 \pi^+ \pi^- \text{ final state decays.} \\ ^2 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\ ^3 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\ ^4 \text{ The first of two equivalent solutions is used.} \\ ^5 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent solutions that may be preferred.} \\ \hline \textbf{O} \text{ Corresponds to 90\% confidence range } -0.31 < A_{CP} < 0.78. \\ \hline \textbf{A}_{CP}(\textbf{B}^0 \rightarrow (K\pi)_0^{*+}\pi^-) \end{bmatrix}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A			
YOUR DATA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A NODE=S042AC3;LINKAGE=A			
YOUR DATA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=BE NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A NODE=S042AC3;LINKAGE=A NODE=S042CQ6 NODE=S042CQ6 NEW			
YOUR DATA	$\begin{array}{c c} CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \hline DOCUMENT ID & \underline{TECN} & \underline{COMMENT} \\ \hline \hline -0.27 \pm 0.06 \text{ OUR AVERAGE} \\ \hline \hline -0.22 \pm 0.06 \text{ OUR 2018 AVERAGE} \\ \hline \hline -0.22 \pm 0.06 \text{ OUR 2018 AVERAGE} \\ \hline \hline -0.29 \pm 0.11 \pm 0.02 & 2 \text{ LES} & 11 & \text{BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.29 \pm 0.11 \pm 0.02 & 3.4 \text{ AUBERT} & 09\text{ AU BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3.4 \text{ AUBERT} & 09\text{ AU BABR } e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 \text{ DALSENO} & 09 & \text{BELL } e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.26 \pm 0.33 \pm 0.10 & 6 \text{ EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.26 \pm 0.33 \pm 0.10 & 6 \text{ EISENSTEIN} & 03 & \text{CLE2} & e^+e^- \rightarrow \Upsilon(4S) \\ \hline \bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. \bullet \bullet \bullet \bullet \\ \hline -0.19 \pm 0.20 \pm 0.04 & 2 \text{ AUBERT} & 08\text{ AQ BABR Repl. by LEES 11} \\ \hline -0.11 \pm 0.14 \pm 0.05 & 3 \text{ AUBERT} & 061 & \text{BABR Repl. by AUBERT 09AU} \\ \hline 0.23 \pm 0.18 \pm 0.06 & \text{AUBERT, B} & 040 & \text{BABR Repl. by AUBERT 09AU} \\ \hline 0.23 \pm 0.18 \pm 0.06 & \text{AUBERT, B} & 040 & \text{BABR Repl. by AUBERT 061} \\ \hline 1 \text{ Uses Dalitz plot analysis of the } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ final state decays.} \\ ^2 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\ ^3 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays.} \\ ^4 \text{ The first of two equivalent solutions is used.} \\ \hline ^5 \text{ Uses Dalitz plot analysis of } B^0 \rightarrow K^0 \pi^+ \pi^- \text{ decays and the first of two consistent solutions that may be preferred.} \\ \hline 6 \text{ Corresponds to 90\% confidence range } -0.31 < A_{CP} < 0.78. \\ \hline MLUE & \underline{DOCUMENT ID} & \underline{TECN} & \underline{COMMENT} \\ \hline 0.02 \pm 0.04 & OUR AVERAGE \\ \hline [0.09 \pm 0.07 \text{ OUR 2018 AVERAGE]} \\ \hline -0.032 \pm 0.047 + 0.031 & 1 \text{ AUL} & 185 \pm \text{ HCB} \text{ an at 7.8 TeV} \\ \hline \end{array}$	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A NODE=S042AC3;LINKAGE=A			
YOUR DATA YOUR NOTE	$\begin{array}{c c} CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) & \hline DOCUMENT ID & TECN & COMMENT \\ \hline MUE & DOCUMENT ID & TECN & COMMENT \\ \hline -0.27 \pm 0.06 & OUR AVERAGE \\ \hline -0.22 \pm 0.06 & OUR 2018 & AVERAGE \\ \hline -0.29 \pm 0.11 \pm 0.02 & 2 & LEES & 11 & BABR & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.29 \pm 0.11 \pm 0.02 & 3.4 & AUBERT & 09AU BABR & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3.4 & AUBERT & 09AU BABR & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 & DALSENO & 09 & BELL & e^+e^- \rightarrow \Upsilon(4S) \\ \hline -0.26 + 0.33 + 0.10 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.26 + 0.33 + 0.10 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.26 + 0.34 - 0.08 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.26 + 0.019 + 0.02 & \pm 0.04 & 2 & AUBERT & 08AQ BABR Repl. by AUBERT 09AU \\ \hline 0.23 \pm 0.18 + 0.09 & AUBERT & 06I & BABR Repl. by AUBERT 09AU \\ \hline 0.23 \pm 0.18 + 0.09 & AUBERT, B & 040 & BABR Repl. by AUBERT 06I \\ ^1 Uses Dalitz plot analysis of B^0 \rightarrow K^0 \pi^+ \pi^- final state decays.^2 Uses Dalitz plot analysis of B^0 \rightarrow K^0 \pi^+ \pi^- decays.^4 The first of two equivalent solutions is used.^5 Uses Dalitz plot analysis of B^0 \rightarrow K^0 \pi^+ \pi^- decays and the first of two consistent solutions that may be preferred.^6 Corresponds to 90% confidence range -0.31 < A_{CP} < 0.78.A_{CP}(B^0 \rightarrow (K\pi)_0^{*+}\pi^-) MUE \qquad DOCUMENT ID \qquad TECN COMMENT O02 \pm 0.04 OUR AVERAGE[\\ \hline 0.003 \pm 0.07 OUR 2018 AVERAGE[\\ \hline -0.032 \pm 0.047 \pm 0.031 & 1 & AAIJ & 18F LHCB pp \text{ at } 7, 8 \text{ TeV} \\ \hline 0.07 + 0.14 \pm 0.01 & 2 & LEES & 11 & BABR e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.01 \pm 0.14 \pm 0.01 & 2 & LEES & 11 & BABR e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.01 \pm 0.14 \pm 0.01 & 2 & LEES & 11 & BABR e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.02 \pm 0.047 \pm 0.031 & 1 & AAIJ & 18F LHCB pp \text{ at } 7, 8 \text{ TeV} \\ \hline 0.07 + 0.14 \pm 0.01 & 2 & LEES & 11 & BABR e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.01 \pm 0.14 + 0.01 & 2 & LEES & 11 & BABR e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.02 \pm 0.047 \pm 0.031 & 1 & AAIJ & 18F LHCB e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.02 \pm 0.047 \pm 0.031 & 1 & AAIJ & 18F LHCB e^+e^- \rightarrow \Upsilon(4S) \\ \hline 0.01 \pm 0.14 \pm 0.01 & 2 & L$	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A NODE=S042AC3;LINKAGE=A			
YOUR DATA YOUR NOTE	$\begin{array}{c c} CP \text{ VIOLATION PARAMETERS} \\ \hline A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-) & \hline DOCUMENT ID & TECN & COMMENT \\ \hline \hline DOCUMENT ID & TECN & COMMENT \\ \hline \hline -0.27 \pm 0.04 & OUR AVERAGE \\ \hline \hline -0.22 \pm 0.06 & OUR 2018 & AVERAGE \\ \hline \hline -0.22 \pm 0.06 & OUR 2018 & AVERAGE \\ \hline \hline -0.29 \pm 0.11 \pm 0.02 & 2 & LEES & 11 & BABR & e^+e^- \rightarrow T(4S) \\ \hline -0.29 \pm 0.11 \pm 0.02 & 3.^4 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline -0.21 \pm 0.10 \pm 0.02 & 3.^4 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline -0.21 \pm 0.11 \pm 0.07 & 5 & DALSENO & 09 & BELL & e^+e^- \rightarrow T(4S) \\ \hline -0.26 & -0.34 & -0.08 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow T(4S) \\ \hline 0.26 & +0.33 \pm 0.10 & 6 & EISENSTEIN & 03 & CLE2 & e^+e^- \rightarrow T(4S) \\ \hline 0.26 & +0.34 & -0.08 & AUBERT & 06I & BABR & Repl. by LEES 11 \\ \hline -0.19 & +0.20 & 2 & AUBERT & 06I & BABR & Repl. by AUBERT 09AU \\ \hline 0.23 \pm 0.18 & +0.09 & AUBERT, B & 040 & BABR & Repl. by AUBERT 09AU \\ \hline 0.23 \pm 0.18 & +0.09 & AUBERT, B & 040 & BABR & Repl. by AUBERT 06I \\ \hline 1 & Uses Dalitz plot analysis of the B^0 \rightarrow K_S^0 \pi^+ \pi^- final state decays. ^2 & Uses Dalitz plot analysis of B^0 \rightarrow K^0 \pi^+ \pi^- decays. \\ ^3 & Uses Dalitz plot analysis of B^0 \rightarrow K^0 \pi^+ \pi^- decays and the first of two consistent solutions that may be preferred. ^6 & Corresponds to 90\% confidence range -0.31 < A_{CP} < 0.78. \\ \hline M2UE & DOCUMENT ID & TECN & COMMENT \\ \hline 0.02 \pm 0.04 & OUR AVERAGE \\ \hline 0.09 \pm 0.07 & OUR 2018 & AVERAGE \\ \hline -0.032 \pm 0.047 \pm 0.031 & 1 & AAIJ & 18F LHCB & pp at 7, 8 & TeV \\ 0.07 \pm 0.04 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm 0.03 & 3 & AUBERT & 09AU BABR & e^+e^- \rightarrow T(4S) \\ \hline 0.9 \pm 0.07 \pm $	NODE=S042229 NODE=S042AC3 NODE=S042AC3;LINKAGE=B NODE=S042AC3;LINKAGE=DA NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=AU NODE=S042AC3;LINKAGE=DL NODE=S042AC3;LINKAGE=A NODE=S042AC3;LINKAGE=A NODE=S042AC3;LINKAGE=A			

	$0.17 \begin{array}{c} +0.11 \\ -0.16 \end{array} \pm 0.22$	² AUBERT 08AQ BABF	R Repl. by LEES 11	
YOUR NOTE	 ¹ Uses Dalitz plot analysis of th ² Uses Dalitz plot analysis of B ³ Uses Dalitz plot analysis of E solutions is used. 	e $B^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays. $b^0 \rightarrow K^+ \pi^- \pi^0$ decays. $g^0 \rightarrow K^0 \pi^+ \pi^-$ decays and	the first of two equivalent	NODE=S042CQ6;LINKAGE=A NODE=S042CQ6;LINKAGE=DA NODE=S042CQ6;LINKAGE=AU
YOUR DATA	$\begin{array}{ccc} A_{CP}(B^{0} \rightarrow K_{2}^{*}(1430)^{+}\pi^{-}) \\ & & \\ & & \\ \hline & & \\ -0.29 \pm 0.22 \pm 0.09 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\frac{DOCUMENT ID}{1} \text{AAIJ} 18F LHCB}{10}$	COMMENT pp at 7, 8 TeV	NODE=S042A09 NODE=S042A09
YOUR NOTE	¹ Uses Dalitz plot analysis of th	NODE=S042A09;LINKAGE=A		
YOUR DATA	$A_{CP}(B^{0} \to K^{*}(1680)^{+}\pi^{-})$ $VALUE = -0.07 \pm 0.13 \pm 0.04$	DOCUMENT ID TECN 1 AAIJ 18F LHCB	<i>COMMENT</i> <i>pp</i> at 7, 8 TeV	NODE=S042A10 NODE=S042A10
YOUR NOTE	1 Uses Dalitz plot analysis of th	NODE=S042A10;LINKAGE=A		
YOUR DATA YOUR NOTE	$\begin{array}{l} A_{CP}(B^0 \rightarrow f_0(980) \mathcal{K}^0_S) \\ \hline \\ \hline \\ NALUE \\ \hline \\ 0.28 \pm 0.27 \pm 0.15 \\ 1 Uses Dalitz plot analysis of the set of the$	$rac{DOCUMENT \ ID}{1} rac{TECN}{AAIJ} 18F$ LHCB e $B^0 ightarrow \ {\cal K}^0_S \ \pi^+ \ \pi^-$ decays.	<i>COMMENT</i> <i>pp</i> at 7, 8 TeV	NODE=S042A11 NODE=S042A11 NODE=S042A11:LINKAGE=A
		NODE=S042		
YOUR PAPER	AAIJ 18F PRL 120 261801 LEES 12I PR D85 054023 LEES 12O PR D85 112010 LEES 11 PR D85 112010 AUBERT 09AU PR D80 112001 DALSENO 09 PR D79 072004 AUBERT 06AQ PR D78 052005 AUBERT 07F PR D78 052005 AUBERT 061 PR D73 031101 AUBERT 061 PR D70 091103 AUBERT, B 040 PR D70 091103 AUBERT, B 040 PR D69 012001 EISENSTEIN 03 PR D68 017101 ECHART 02 PRL 863 0 ASNER 96 PR D53 1039 ALBRECHT 91B PL B254 288 AVERY 87 PL B183 429	R. Aaij et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. B. Aubert et al. J. Dalseno et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. Chang et al. B.I. Eisenstein et al. E. Eckhart et al. D.M. Asner et al. H. Albrecht et al. P. Avery et al. P. Avery et al.	(LHCb Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)	$\begin{array}{l} {\sf REFID} = 58844 \\ {\sf REFID} = 54376 \\ {\sf REFID} = 54382 \\ {\sf REFID} = 51380 \\ {\sf REFID} = 552807 \\ {\sf REFID} = 52265 \\ {\sf REFID} = 51634 \\ {\sf REFID} = 51594 \\ {\sf REFID} = 50591 \\ {\sf REFID} = 50123 \\ {\sf REFID} = 49642 \\ {\sf REFID} = 49969 \\ {\sf REFID} = 49969 \\ {\sf REFID} = 47903 \\ {\sf REFID} = 47903 \\ {\sf REFID} = 44734 \\ {\sf REFID} = 44734 \\ {\sf REFID} = 40820 \\ {\sf REFID} = 40387 \\ \end{array}$

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's

 B^0

YOU

 $I(J^P) = \frac{1}{2}(0^-)$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

CP VIOLATION PARAMETERS

	$A_{CP} (B^0 \to K^+ \pi^-)$				
	VALUE	DOCUMENT ID		TECN	COMMENT
	-0.083±0.004 OUR AVERAG	SE			
	$[-0.082\pm0.006~{ m OUR}~2018~{ m A}]$	WERAGE]			
r data	$-0.084\!\pm\!0.004\!\pm\!0.003$	AAIJ	180	LHCB	<i>pp</i> at 7, 8 TeV
	$-0.083 \pm 0.013 \pm 0.004$	AALTONEN	14P	CDF	pp at 1.96 TeV
	$-0.080\pm0.007\pm0.003$	AAIJ	13AX	LHCB	pp at 7 TeV
	$-0.069 \pm 0.014 \pm 0.007$	DUH	13	BELL	$e^+ e^- ightarrow ~ \Upsilon(4S)$
	$-0.107 \pm 0.016 {+0.006 \atop -0.004}$	LEES	13D	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
	-0.04 ± 0.16	¹ CHEN	00	CLE2	$e^+e^- ightarrow ~\Upsilon(4S)$
	\bullet \bullet \bullet We do not use the follo	wing data for ave	rages,	fits, lim	its, etc. • • •
	$-0.088 \pm 0.011 \pm 0.008$	AAIJ	12V	LHCB	Repl. by AAIJ 13AX
	$-0.086 \pm 0.023 \pm 0.009$	AALTONEN	11N	CDF	Repl. by AALTONEN 14P
	$-0.094\!\pm\!0.018\!\pm\!0.008$	LIN	80	BELL	Repl. by DUH 13
	$-0.107 \!\pm\! 0.018 \!+\! 0.007 \!-\! 0.004$	AUBERT	07AF	BABR	Repl. by LEES 13D
	$-0.013 {\pm} 0.078 {\pm} 0.012$	ABULENCIA,A	06D	CDF	Repl. by AALTONEN 11N
	$-0.088\!\pm\!0.035\!\pm\!0.013$	² CHAO	05A	BELL	Repl. by CHAO 04B
	$-0.133\!\pm\!0.030\!\pm\!0.009$	³ AUBERT,B	04K	BABR	Repl. by AUBERT 07AF
	$-0.101\!\pm\!0.025\!\pm\!0.005$	⁴ CHAO	0 4B	BELL	Repl. by LIN 08
	$-0.07 \pm 0.08 \pm 0.02$	⁵ AUBERT	02D	BABR	Repl. by AUBERT 02Q
	$-0.102\!\pm\!0.050\!\pm\!0.016$	⁶ AUBERT	02Q	BABR	Repl. by AUBERT, B 04K
	$\begin{array}{ccc} -0.06 & \pm 0.09 & +0.01 \\ -0.02 \end{array}$	⁷ CASEY	02	BELL	Repl. by CHAO 04B
	$0.044 \substack{+0.186 + 0.018 \\ -0.167 - 0.021}$	⁸ ABE	01ĸ	BELL	Repl. by CASEY 02
	$-0.19\ \pm 0.10\ \pm 0.03$	⁹ AUBERT	01e	BABR	Repl. by AUBERT 02Q
	1 Corresponds to 90% confid	dence range – 0.3	0 <a< td=""><td>CP < 0.2</td><td>22.</td></a<>	CP < 0.2	22.
	2 Corresponds to a 90% CL	interval of -0.15	< 1	$A_{CP} <$	-0.03.
	³ Based on a total signal vie	Id of N($K^-\pi^+$)	+ N($\kappa^+\pi^-$	$= 1606 \pm 51$ events
	⁴ CHAO 04B reports significa	ance of 3.9 standa	rd dev	viation fo	ar deviation of A_{CD} from zero
	5 Corresponds to 90% confi	dence range -0.2	1 < A		CP in Sim 2010.
	Corresponds to 5070 Conne	actice tange = 0.2	- \A	CP < 0.1	01.

⁶Corresponds to 90% confidence range $-0.188 < A_{CP} < -0.016$.

⁷ Corresponds to 90% confidence range $-0.21 < A_{CP} < +0.09$.

⁸ Corresponds to 90% confidence range $-0.25 < A_{CP} < 0.37$.

 9 Corresponds to 90% confidence range $-0.35 <\!\!A_{CP} < -0.03.$

$C_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$

 $C_{\pi\pi}$ is defined as $(1-|\lambda|^2)/(1+|\lambda|^2)$, where the quantity $\lambda = q/p \overline{A}_f/A_f$ is a phase convention independent observable quantity for the final state f. For details, see the review on "*CP* Violation" in the Reviews section.

VALUE -0.32±0.04 OUR AVERAGE DOCUMENT ID TECN COMMENT

NODE=S042ACP;LINKAGE=AA NODE=S042ACP;LINKAGE=CO NODE=S042ACP;LINKAGE=AU NODE=S042ACP;LINKAGE=CH NODE=S042ACP;LINKAGE=AD NODE=S042ACP;LINKAGE=BR NODE=S042ACP;LINKAGE=CA NODE=S042ACP;LINKAGE=AX NODE=S042ACP;LINKAGE=L3

NODE=S042CPI NODE=S042CPI

NODE=S042CPI NEW

NODE=S042229

NODE=S042ACP NODE=S042ACP NEW

I

NODE=S042

NODE=MXXX045

NODE=MXXX045

NODE=S042

 $[-0.31\pm0.05$ OUR 2018 AVERAGE] YOUR DATA $-0.34\!\pm\!0.06\!\pm\!0.01$ AAIJ 180 LHCB pp at 7, 8 TeV $-0.38 \pm 0.15 \pm 0.02$ AALJ 13B0 LHCB pp at 7 TeV ¹ DALSENO BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.33 \pm 0.06 \pm 0.03$ 13 LEES 13D BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.25\!\pm\!0.08\!\pm\!0.02$ • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.21\!\pm\!0.09\!\pm\!0.02$ AUBERT 07AF BABR Repl. by LEES 13D 1 ISHINO $-0.55 \pm 0.08 \pm 0.05$ 07 BELL Repl. by DALSENO 13 1 ABE $-0.56\!\pm\!0.12\!\pm\!0.06$ BELL Repl. by ISHINO 07 05D $-0.09\pm0.15\pm0.04$ AUBERT, BE 05 BABR Repl. by AUBERT 07AF $^1\,\mathrm{ABE}$ $-0.58\!\pm\!0.15\!\pm\!0.07$ 04E BELL Repl. by ABE 05D ¹ ABE $-0.77 \pm 0.27 \pm 0.08$ **03**G BELL Repl. by ABE 04E. $-0.94^{+0.31}_{-0.25}{\pm}0.09$ ¹ ABE 02M BELL Repl. by ABE 03G $-0.25^{+0.45}_{-0.47}{\pm}0.14$ ² AUBERT 02D BABR Repl. by AUBERT 02Q ³ AUBERT $-0.30\pm0.25\pm0.04$ 02Q BABR Repl. by AUBERT, BE 05 ¹Paper reports $A_{\pi\pi}$ which equals to $-C_{\pi\pi}$. NODE=S042CPI;LINKAGE=MA 2 Corresponds to 90% confidence range $-1.0 <\! C_{\!\pi\,\pi} <$ 0.47. NODE=S042CPI;LINKAGE=AD 3 Corresponds to 90% confidence range $-0.72 < \! C_{\!\pi\pi} < 0.12$ NODE=S042CPI;LINKAGE=BR $S_{\pi\pi} (B^0 \rightarrow \pi^+ \pi^-)$ NODE=S042SPI $S_{\pi\,\pi}=2{
m Im}\lambda/(1{+}ig|\lambdaig|^2)$, see the note in the $C_{\pi\,\pi}$ datablock above. NODE=S042SPI DOCUMENT ID TECN COMMENT VALUE NODE=S042SPI -0.65 ± 0.04 OUR AVERAGE NFW $[-0.67 \pm 0.06 \text{ OUR } 2018 \text{ AVERAGE}]$ 180 LHCB pp at 7, 8 TeV YOUR DATA $-0.63\!\pm\!0.05\!\pm\!0.01$ AAL AAIJ 13B0 LHCB pp at 7 TeV $-0.71 \pm 0.13 \pm 0.02$ ¹ DALSENO BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.64 \pm 0.08 \pm 0.03$ 13 13D BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.68 \pm 0.10 \pm 0.03$ LEES \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 07AF BABR Repl. by LEES 13D $-0.60\!\pm\!0.11\!\pm\!0.03$ AUBERT BELL Repl. by DALSENO 13 $-0.61 \pm 0.10 \pm 0.04$ ISHINO 07 2 ABE $-0.67 \pm 0.16 \pm 0.06$ 05D BELL Repl. by ISHINO 07 $-0.30\pm0.17\pm0.03$ AUBERT, BE 05 BABR Repl. by AUBERT 07AF ³ ABE $-1.00\!\pm\!0.21\!\pm\!0.07$ BELL Repl. by ABE 05D 04E $-1.23 \pm 0.41 \substack{+0.08 \\ -0.07}$ ABE **03**G BELL Repl. by ABE 04E. $-1.21 \substack{+0.38 + 0.16 \\ -0.27 - 0.13 \\ 0.03 \substack{+0.52 \\ -0.56 \ \pm 0.11 \ }$ ABE 02M BELL Repl. by ABE 03G ⁴ AUBERT 02D BABR Repl. by AUBERT 02Q ⁵ AUBERT $0.02\!\pm\!0.34\!\pm\!0.05$ 02Q BABR Repl. by AUBERT, BE 05 1 An isospin analysis using other BELLE measurements, disfavors the region of 23.8 $^\circ$ <NODE=S042SPI;LINKAGE=DA $\phi_2 < 66.8^\circ$ at 68% CL. $^2\,{\rm Rule}$ out the CP-conserving case, ${\it C}_{\pi\pi}={\it S}_{\pi\pi}=$ 0, at the 5.4 sigma level. NODE=S042SPI;LINKAGE=AE 3 Rule out the *CP*-conserving case, ${\cal C}_{\pi\pi}={\cal S}_{\pi\pi}=$ 0, at the 5.2 sigma level. NODE=S042SPI;LINKAGE=AB 4 Corresponds to 90% confidence range $-0.89 < \! S_{\pi \, \pi} < 0.85$ NODE=S042SPI;LINKAGE=AD 5 Corresponds to 90% confidence range $-0.54 < S_{\pi\pi} < 0.58$. NODE=S042SPI;LINKAGE=BR **B⁰ REFERENCES** NODE=S042 YOUR PAPER (I HCb Collab.) REFID=58973 AALI 180 PR D98 032004 R. Aaij et al. REFID=56259 AALTONEN 14P PRL 113 242001 T. Aaltonen et al REFID=55208 AAIJ 13AX PRL 110 221601 R. Aaij et al.

JHEP 1310 183

PR D88 092003

PR D87 031103

PR D87 052009

PRL 108 201601

PRL 106 181802

NAT 452 332

PRL 99 021603

PRL 98 211801

PRL 97 211802

PRL 95 101801

PRL 95 151803

PR D71 031502

PRL 93 021601

PRL 93 131801

PRL 93 191802

PR D68 012001

R. Aaij et al.

R. Aaij et al.

S.

Β.

Υ.

κ

B.

Υ.

J. Dalseno et al.

Y. T. Duh et al. J.P. Lees et al.

T. Aaltonen et al

-W. Lin et al.

A. Abulencia et al.

Aubert et al.

Aubert et al.

Chao et al.

K. Abe et al.

Chao et al.

Abe et al.

B. Aubert et al.

H. Ishino et al.

K. Abe et al.

13BO

13

13

13D

12V

11N

07AF

08

07

06D

05D

05A

04F

04K

04B

03G

05

AAIJ

DUH

LEES

AAIJ

LIN

ABE

CHAO

CHAO

ABE

ABF

DALSENO

AALTONEN

ABULENCIA,A

AUBERT, BE

AUBERT,B

AUBERT

ISHINO

(LIICD	conab.j	
(CDF	Collab.)	
(LHCb	Collab.)	
(LHCb	Collab.)	
(BELLE	Collab.)	
(BELLE	Collab.)	
(BABAR	Collab.)	
(LHCb	Collab.)	
(CDF	Collab.)	
(BÈLLE	Collab.)	
(BABAR	Collab.)	
(BELLE	Collab.)	
CDF	Collab.)	
(BÈLLE	Collab.)	
(BABAR	Collab.)	
(BELLE	Collab.)	
(BELLE	Collab.)	
(BABAR	Collab.)	
(BELLE	Collab.)	
(BELLE	Collab.)	

REFID=55423

REFID=55488 REFID=54957 REFID=54958

REFID=54216

REFID=16447

REFID=52509

REFID=51861 REFID=51753

REFID=51490

REFID=50561

REFID=50921

REFID=50619

REFID=50056 REFID=50084

REFID=50272

REFID=49506

[0.26 \pm 0.04 OUR 2018 AVERA	GE]		
$0.213\!\pm\!0.015\!\pm\!0.007$	AAIJ	180 LHCB	<i>pp</i> at 7, 8 TeV
$0.22\ \pm 0.07\ \pm 0.02$	AALTONEN	14P CDF	$p\overline{p}$ at 1.96 TeV
$0.27\ \pm 0.04\ \pm 0.01$	AAIJ	13AX LHCB	pp at 7 TeV
\bullet \bullet We do not use the following	ng data for aver	ages, fits, limi	ts, etc. ● ● ●
$0.27\ \pm 0.08\ \pm 0.02$	AAIJ	12V LHCB	Repl. by AAIJ 13AX
$0.39 \ \pm 0.15 \ \pm 0.08$	AALTONEN	11N CDF	Repl. by AALTONEN 14P
	$ \begin{bmatrix} 0.26 \pm 0.04 & \text{OUR 2018 AVERAG} \\ 0.213 \pm 0.015 \pm 0.007 & \\ 0.22 \pm 0.07 & \pm 0.02 & \\ 0.27 & \pm 0.04 & \pm 0.01 & \\ \bullet & \bullet & \text{We do not use the followin} \\ 0.27 & \pm 0.08 & \pm 0.02 & \\ 0.39 & \pm 0.15 & \pm 0.08 & \\ \end{bmatrix} $		

B⁰_s REFERENCES

N	O	D	F =	S)86
	~	$\boldsymbol{\nu}$,00

I

YOUR PAPER	AAIJ AAIJ AALTONEN AAIJ AAIJ AALTONEN	180 PR D98 0 15AL JHEP 150 14P PRL 113 13AX PRL 110 12V PRL 108 11N PRL 106	32004 R. Aaij et al. 6 131 R. Aaji et al. 242001 T. Aaltonen et . 221601 R. Aaij et al. 201601 R. Aaij et al. 201601 R. Aaij et al. 281802 T. Aaltonen et .	(LHCb (LHCb al. (CDF (LHCb (LHCb al. (CDF	Collab.) REFID=58973 Collab.) REFID=56705 Collab.) REFID=56259 Collab.) REFID=55208 Collab.) REFID=54216 Collab.) REFID=16447
------------	--	--	---	--	---

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

	$\begin{bmatrix} \Gamma(D^{*}(2010)^{+}\overline{D}^{0}, D^{*+} \rightarrow D^{+}\pi^{0}/\gamma) + \Gamma(D^{+}\overline{D}^{*}(2007)^{0}) \end{bmatrix} / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c}) \qquad (\Gamma_{33} + \Gamma_{34}) / \Gamma \times B$ Value CL% DOCUMENT ID TECN COMMENT	NODE=S091R36 NODE=S091R36
YOUR DATA	<9 × 10 ⁻⁶ 90 ¹ AAIJ 18P LHCB pp at 7, 8 TeV	
YOUR NOTE	¹ AAIJ 18P reports $\left[\left[\Gamma(B_{c}^{+} \rightarrow D^{*}(2010)^{+}\overline{D}^{0}, D^{*+} \rightarrow D^{+}\pi^{0}/\gamma) + \Gamma(B_{c}^{+} \rightarrow D^{+}\overline{D}^{*}(2007)^{0})\right]/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c})\right] / \left[B(\overline{b} \rightarrow B^{+})\right] / \left[B(B^{+} \rightarrow \overline{D}^{0}D^{+})\right]$	NODE=S091R36;LINKAGE=A
	< 5.5 × 10 ⁻² which we multiply by our best values $B(\overline{b} \rightarrow B^+) = 40.5 \times 10^{-2}$, $B(B^+ \rightarrow \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}$.	
	$\begin{bmatrix} \Gamma(D^{*}(2010)^{+}D^{0}, D^{*+} \rightarrow D^{+}\pi^{0}/\gamma) + \Gamma(D^{+}D^{*}(2007)^{0}) \end{bmatrix} / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c}) \qquad (\Gamma_{35}+\Gamma_{36})/\Gamma \times B$	NODE=S091R37 NODE=S091R37
YOUR DATA	<3.4 × 10⁻⁶ 90 ¹ AAIJ 18P LHCB pp at 7, 8 TeV	
YOUR NOTE	¹ AAIJ 18P reports $\left[\left[\Gamma(B_{c}^{+} \rightarrow D^{*}(2010)^{+}D^{0}, D^{*+} \rightarrow D^{+}\pi^{0}/\gamma) + \Gamma(B_{c}^{+} \rightarrow D^{+}D^{*}(2007)^{0})\right]/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c})\right] / \left[B(\overline{b} \rightarrow B^{+})\right] / \left[B(B^{+} \rightarrow \overline{D}^{0}D^{+})\right]$	NODE=S091R37;LINKAGE=A
	< 2.2×10^{-2} which we multiply by our best values $B(\overline{b} \rightarrow B^+) = 40.5 \times 10^{-2}$, $B(B^+ \rightarrow \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}$.	
	$ \Gamma(D_{g}^{*+}\overline{D}^{*}(2007)^{0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_{c}) \qquad \Gamma_{37}/\Gamma \times B $ $ \underline{VALUE} \qquad \underline{CL\%} \qquad \underline{DOCUMENT \ ID} \qquad \underline{TECN} \underline{COMMENT} \qquad \underline$	NODE=S091R38 NODE=S091R38
YOUR DATA	<1.7 × 10^{-6} 90 ¹ AAIJ 18P LHCB <i>pp</i> at 7, 8 TeV	
YOUR NOTE	¹ AAIJ 18P reports $[\Gamma(B_c^+ \to D_s^{*+}\overline{D}^*(2007)^0)/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)] / [B(\overline{b} \to B^+)]$ $/ [B(B^+ \to \overline{D}^0 D^+)] < 1.1 \times 10^{-2}$ which we multiply by our best values $B(\overline{b} \to B^+)$ $= 40.5 \times 10^{-2}$, $B(B^+ \to \overline{D}^0 D^+) = 3.8 \times 10^{-4}$.	NODE=S091R38;LINKAGE=A
YOUR DATA	$\Gamma(D_s^{*+}D^{*}(2007)^{0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_c) \qquad \Gamma_{38}/\Gamma \times B$ $\xrightarrow{VALUE} \qquad CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $<31 \times 10^{-6} \qquad 90 \qquad 1 \text{ AAU} \qquad 18P HCB PD \text{ at } 7.8 \text{ TeV}$	NODE=S091R39 NODE=S091R39
YOUR NOTE	¹ AAIJ 18P reports $[\Gamma(B_c^+ \to D_s^{*+} D^*(2007)^0) / \Gamma_{\text{total}} \times B(\overline{b} \to B_c)] / [B(\overline{b} \to B^+)] / [B(B^+ \to \overline{D}^0 D^+)] < 2.0 \times 10^{-2}$ which we multiply by our best values $B(\overline{b} \to B^+) = 40.5 \times 10^{-2}$, $B(B^+ \to \overline{D}^0 D^+) = 3.8 \times 10^{-4}$.	NODE=S091R39;LINKAGE=A
	$\Gamma(D^{*}(2010)^{+}\overline{D}^{*}(2007)^{0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_{c}) \qquad \Gamma_{39}/\Gamma \times B$ $\frac{VALUE}{DOCUMENT ID} \qquad TECN \qquad COMMENT$	NODE=S091R40 NODE=S091R40
YOUR DATA	<1.0 × 10 90 ⁻¹ AAIJ 18P LHCB pp at 7, 8 leV	
YOUR NOTE	$ \begin{array}{l} \text{AAIJ 18P reports [I } (B_c^+ \rightarrow D^+(2010)^+ D^+(2007)^\circ)/\text{I}_{\text{total}} \times \text{B}(b \rightarrow B_c)] / [B(b \rightarrow B^+)] / [B(B^+ \rightarrow \overline{D}{}^0 D^+)] < 6.5 \times 10^{-1} \text{ which we multiply by our best values } B(\overline{b} \rightarrow B^+) = 40.5 \times 10^{-2}, \text{ B}(B^+ \rightarrow \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}. \end{array} $	NODE=S091R40;LINKAGE=A
	$\Gamma(D^*(2010)^+ D^*(2007)^0) / \Gamma_{\text{total}} \times \mathcal{B}(\overline{b} \to B_c) \qquad \Gamma_{40} / \Gamma \times \mathcal{B}$	
	VALUE CL% DOCUMENT ID TECN COMMENT	NODE=S091R41
YOUR DATA	<2.0 × 10⁻³ 90 ¹ AAIJ 18P LHCB <i>pp</i> at 7, 8 TeV	
YOUR NOTE	¹ AAIJ 18P reports $[\Gamma(B_c^+ \rightarrow D^*(2010)^+ D^*(2007)^0)/\Gamma_{total} \times B(b \rightarrow B_c)] / [B(b \rightarrow B^+)] / [B(B^+ \rightarrow \overline{D}{}^0 D^+)] < 1.3 \times 10^{-1}$ which we multiply by our best values $B(\overline{b} \rightarrow B^+) = 40.5 \times 10^{-2}$, $B(B^+ \rightarrow \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}$.	NODE=S091R41;LINKAGE=A
	B ⁺ _c REFERENCES	
YOUR PAPER	AAIJ 18P NP B930 563 R. Aaij <i>et al.</i> (LHCb Collab.)	REFID=59040

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

		Ξ_b BRANCHING RATIOS		NODE=S060215
	$\Gamma(pK^{-}\pi^{+}\pi^{-}\times B(b))$ <i>VALUE</i> (units 10 ⁻⁶)	$\frac{\Xi_b^0}{B(b \to \Lambda_b^0)} / \Gamma_{\text{total}}$	Г₁₆/Г	NODE=S060R12 NODE=S060R12
YOUR DATA	$1.91 {\pm} 0.35 {\pm} 0.18$	¹ AAIJ 18Q LHCB pr	o at 7, 8 TeV	
YOUR NOTE	¹ AAIJ 18Q reports [$\Gamma(\equiv [B(\Lambda_c^+ \rightarrow \rho K^- \pi^+)])$ we multiply by our best $\Lambda_c^+ \pi^-) = (4.9 \pm 0.4) >$ error is the systematic e	$F_b \rightarrow pK^-\pi^+\pi^- \times B(b \rightarrow \Xi_b^0)/B(h^0)$ $F_b[B(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-)] = (6.2 \pm 0.8 \pm 0.2)$ values $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.28 \pm 0.2)$ $E(10^{-3})$. Our first error is their experiment' error from using our best values.	$(p \rightarrow \Lambda_b^0))/\Gamma_{\text{total}}] /$ $\pm 0.8) \times 10^{-3}$ which $(32) \times 10^{-2}$, $B(\Lambda_b^0 \rightarrow$ s error and our second	NODE=S060R12;LINKAGE=A
	$\Gamma(pK^-K^-\pi^+ \times B(b-$	$\to = \overline{b}_b^0) / B(b \to \Lambda_b^0)) / \Gamma_{total}$	Г ₁₇ /Г	NODE=S060R13
	VALUE (units 10 ⁻⁶)	DOCUMENT IDCO	MMENT	NODE=S060R13
YOUR DATA	$1.73 \pm 0.27 \pm 0.16$	¹ AAIJ 18Q LHCB <i>p</i> _F	9 at 7, 8 TeV	
YOUR NOTE	¹ AAIJ 18Q reports [$\Gamma(\equiv [B(\Lambda_c^+ \rightarrow pK^-\pi^+)])$ we multiply by our best $\Lambda_c^+\pi^-) = (4.9 \pm 0.4) >$	$b \rightarrow pK^-K^-\pi^+ \times B(b \rightarrow \Xi_b^0)/B(b)$ $f[B(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-)] = (5.6 \pm 0.6 \pm 0.4 + 0.6 \pm 0.4 + 0.6 \pm 0.4 + 0.6 \pm 0.4 \pm 0.5 \pm $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	NODE=S060R13;LINKAGE=A
	error is the systematic e	rror from using our best values.	I	
YOUR DATA	$\Gamma(pK^-K^+K^- \times B(b - M^{-1}K^{-1}K^+K^-))$ <u>VALUE (units 10^6)</u> 0.18±0.09±0.02	$ = \frac{\mathbf{F}_{b}^{0}}{\mathbf{B}(b \rightarrow \Lambda_{b}^{0})} / \Gamma_{\text{total}} $ $ = \frac{DOCUMENT \ ID}{1,2} \frac{TECN}{AAIJ} \qquad 180 \ LHCB \ p_{B} $	Г₁₈/Г ммелт рат 7. 8 TeV	NODE=S060R14 NODE=S060R14
YOUR NOTE	¹ AAIJ 18Q reports [$\Gamma(\Xi$ [$B(\Lambda_c^+ \rightarrow pK^-\pi^+)$] which we multiply by o	$b \rightarrow pK^-K^+K^- \times B(b \rightarrow \Xi_b^0)/B(M^+)$ / $[B(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-)] = (0.57 \pm 0.28 \pm 0.28)$ ur best values $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (60)$	$b \rightarrow \Lambda_b^0) / \Gamma_{\text{total}}] /$ $0.08 \pm 0.10) \times 10^{-3}$ $5.28 \pm 0.32) \times 10^{-2}$,	NODE=S060R14;LINKAGE=A
YOUR NOTE	$B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = (4)$ our second error is the s ² AAIJ 18Q sees excess w 0.036) × 10 ⁻² and B(// sided limit [0.11-0.25] a	$(9 \pm 0.4) \times 10^{-3}$. Our first error is their expression of the systematic error from using our best values with a significance of 2.3σ . Using $B(\Lambda_b^0 \rightarrow \mu_c^+ \rightarrow \mu_c^- \pi^+) = (6.46 \pm 0.24) \times 10^{-1}$ t 90% C.L.	experiment's error and a. $\Lambda_c^+\pi^-) = (0.430 \pm 2^2$ the authors set two	NODE=S060R14;LINKAGE=B

FERENCES -b

 Ξ_b BRANCHING RATIOS

YOUR PAPER AAIJ 18Q JHEP 1802 098

R. Aaij *et al.*

(LHCb Collab.)

NODE=S060 REFID=59075

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

	Γ_L/Γ in $B^0_s \rightarrow K^*_2(1430)^0 \overline{R}_2$	₹*(892) ⁰			NODE=\$086A09
	VALUE	DOCUMENT ID	TECN	COMMENT	NODE=\$086A09
YOUR DATA	$0.62 \pm 0.16 \pm 0.25$	¹ AAIJ	18s LHCB	<i>pp</i> at 7, 8 TeV	1
YOUR NOTE	1 Measured in angular analysis,	which takes into acco	ount <i>S</i> -, <i>P</i> - ai	nd <i>D</i> -wave. contributions.	NODE=S086A09;LINKAGE=A
	$\Gamma_{\parallel}/\Gamma$ in $B^0_{\epsilon} \rightarrow K^*_2(1430)^0\overline{K}_2$	(892) ⁰			
	VALUE	DOCUMENT ID	TECN	COMMENT	NODE=\$086A13
YOUR DATA	$0.24 \pm 0.10 \pm 0.14$	¹ AAIJ	185 LHCB	<i>pp</i> at 7, 8 TeV	1
YOUR NOTE	1 Measured in angular analysis,	which takes into acco	ount <i>S</i> -, <i>P</i> - ai	nd <i>D</i> -wave. contributions.	NODE=S086A13;LINKAGE=A
	$\Gamma_L/\Gamma \text{ in } B^0_s \to K^*_2(1430)^0 \overline{P}_{VALUE}$	₹ (1430)⁰ 	TECN	COMMENT	NODE=S086A10 NODE=S086A10
YOUR DATA	$0.25 \pm 0.14 \pm 0.18$	¹ AAIJ	185 LHCB	<i>pp</i> at 7, 8 TeV	1
YOUR NOTE	1 Measured in angular analysis,	which takes into acco	ount <i>S</i> -, <i>P</i> - ai	nd <i>D</i> -wave. contributions.	NODE=S086A10;LINKAGE=A
	$ \Gamma_{\parallel 1}/\Gamma \text{ in } B_s^0 \to K_2^*(1430)^0 $ VALUE	K[*]2(1430)⁰ DOCUMENT ID	TECN	COMMENT	NODE=S086A18 NODE=S086A18
YOUR DATA	0.17±0.11±0.14	¹ AAIJ	18s LHCB	<i>pp</i> at 7, 8 TeV	
YOUR NOTE	1 Measured in angular analysis,	which takes into acco	ount S-, P- ai	nd <i>D</i> -wave. contributions.	NODE=S086A18;LINKAGE=A
YOUR DATA	$\frac{\Gamma_{\perp 1}/\Gamma \text{ in } B_s^0 \rightarrow K_2^*(1430)^0}{V_{ALUE}}$	 <u> <u> </u> </u>	<u>TECN</u>	COMMENT	NODE=S086A19 NODE=S086A19
		which takes into acco		d Dwave contributions	
YOUR NOTE			Juni 3-, F- ai	id D-wave. contributions.	NODE=S086A19;LINKAGE=A
	$\Gamma_{\parallel 2}/\Gamma \text{ in } B_s^0 \to K_2^*(1430)^0$ VALUE	K [*] (1430) ⁰ DOCUMENT ID	TECN	COMMENT	NODE=S086A20 NODE=S086A20
YOUR DATA	$0.015 \pm 0.033 \pm 0.107$	¹ AAIJ	185 LHCB	<i>pp</i> at 7, 8 TeV	1
YOUR NOTE	¹ Measured in angular analysis, v	which takes into acco	ount S-, P- an	d <i>D</i> -wave . contributions.	NODE=S086A20;LINKAGE=A

CP VIOLATION PARAMETERS in B_s^0

CP Violation phase β_s

 $-2\beta_s$ is the weak phase difference between B_s^0 mixing amplitude and the $B_s^0 \rightarrow J/\psi \phi$ decay amplitude driven by the $b \rightarrow c \overline{c} s$ transition (such as $B_s \rightarrow J/\psi \phi$, $J/\psi K^+ K^-$, $J/\psi \pi^+\pi^-$, and $D_s^+D_s^-$). The Standard Model value of β_s is $\arg(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*})$ if penguin contributions are neglected.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at $http://www.slac.stanford.edu/xorg/hflav/. The avalation <math display="inline">\rm Argentaric transformation transforma$ eraging/scaling procedure takes into account correlation between the measurements.

	VALUE (10 ⁻² rad)	DOCUMENT ID	TECN	COMMENT	NODE=S0
	1.1 ± 1.6 OUR EVALU	JATION			\rightarrow UNCHE
	1.8 \pm 1.7 OUR AVERA	AGE			
	$11.9 \ \pm 10.7 \ \pm 3.4$	¹ AAIJ	17∨ LHCB	<i>pp</i> at 7, 8 TeV	
	$4.5~\pm~3.9~\pm2.1$	² AAD	16ap ATLS	<i>pp</i> at 7, 8 TeV	
	$-11.5 \ {+14 \atop -14.5} \ \pm 1$	³ AAIJ	16AK LHCB	<i>pp</i> at 7, 8 TeV	
	$3.75 \pm 4.85 \pm 1.55$	⁴ KHACHATRY	16s CMS	pp at 8 TeV	
	$2.9~\pm~2.5~\pm0.3$	⁵ AAIJ	15I LHCB	<i>pp</i> at 7, 8 TeV	
	-1 \pm 9 ± 1	⁶ AAIJ	14AY LHCB	<i>pp</i> at 7, 8 TeV	
	$-$ 3.5 \pm 3.4 \pm 0.4	⁷ AAIJ	14s LHCB	<i>pp</i> at 7, 8 TeV	
		⁸ AALTONEN	12aj CDF	$p\overline{p}$ at 1.96 TeV	
	28 + 18 - 19	⁹ ABAZOV	12D D0	$p\overline{p}$ at 1.96 TeV	
	\bullet \bullet We do not use the fol	lowing data for ave	rages, fits, lir	nits, etc. • • •	
YOUR DATA	$5.0~\pm~6.5~\pm7.0$	¹⁰ AAIJ	18s LHCB	<i>pp</i> at 7, 8 TeV	I
	$6 + \frac{8}{-7}$ 11,	¹² AAIJ	15K LHCB	<i>pp</i> at 7, 8 TeV	
	$- 6 \pm 13 \pm 3$	¹³ AAD	14∪ ATLS	Repl. by AAD 16AP	OCCUR=3
	-17 ± 15 ± 3	¹⁴ AAIJ	14AE LHCB	<i>pp</i> at 7, 8 TeV	
	$-$ 0.5 \pm 3.5 \pm 0.5	¹⁵ AAIJ	13AR LHCB	Repl. by AAIJ 15	
		¹⁶ AAIJ	13AY LHCB	pp at 7 TeV	
	$-11.0 \ \pm 20.5 \ \pm 5.0$	¹⁷ AAD	12cv ATLS	Repl. by AAD 14∪	

86PHS

NODE=S086240

NODE=S086PHS

NODE=S086PHS

3

ECKED ←

NODE=S086PHS;LINKAGE=L

NODE=S086PHS;LINKAGE=J

	22	± 22	± 1	¹⁸ AAIJ	12B	LHCB	Repl. by AAIJ 12Q
_	8	\pm 9	± 3	¹⁹ AAIJ	12D	LHCB	Repl. by AAIJ 13AR
	0.95	+ 8.70 - 8.65	$0+0.15 \\ 5-0.20$	²⁰ AAIJ	12Q	LHCB	Repl. by AAIJ 13AR
				²¹ AALTONEN	12D	CDF	Repl. by AALTONEN 12A.
				²² AALTONEN	0 8G	CDF	Repl. by AALTONEN 12D
	28	$^{+12}_{-15}$	$^{+4}_{-1}$	^{9,23} ABAZOV	08AN	иD0	Repl. by ABAZOV 12D
	39.5	± 28.0	$^{+0.5}_{-7.0}$	^{24,25} ABAZOV	07	D0	Repl. by ABAZOV 07N
	35	$^{+20}_{-24}$		^{25,26} ABAZOV	07N	D0	Repl. by ABAZOV 08AM

¹Measured using time-dependent angular analysis of $B^0_s \to J/\psi \, K^+ \, K^-$ in the region m(KK) > 1.05 GeV.

 2 AAD 16AP reports ϕ_s = $-2~\beta_{\pmb{s}}$ = $-0.090\pm0.078\pm0.041$ rad. that was measured

using a time-dependent angular analysis of $B_{5}^{0} \rightarrow J/\psi \phi$ decays. ³AAIJ 16AK reports $\phi_{s} = -2 \ \beta_{s} = 0.23 \substack{+0.29 \\ -0.28} \pm 0.02$ rad. that was measured using a time-dependent angular analysis of $B_s^0 \rightarrow \psi(2S)\phi$ decays.

⁴ KHACHATRYAN 16S reports $\phi_s = -2 \ \beta_s = -0.075 \pm 0.097 \pm 0.031$ rad. that was measured using a time-dependent angular analysis of $B_s^0 \rightarrow J/\psi \phi$ decays.

 $^5\,{\rm AAIJ}$ 151 reports $\phi_s=-2~\beta_{\rm S}=-0.058\pm0.049\pm0.006$ rad. that was measured using a time-dependent angular analysis of $B_s^0 \rightarrow J/\psi K^+ K^-$ decays. It also combines this result with that of AAIJ 14S and quotes $\phi_s = -2 \beta_s = -0.010 \pm 0.039$ rad.

 $^6\,{\rm AAIJ}$ 14AY reports $\phi_{{\color{black} {\it S}}}=-2$ $\beta_{{\color{black} {\it S}}}=0.02\pm0.17\pm0.02$ rad. in a time-dependent fit to $B_s^0 \rightarrow D_s^+ D_s^-$, while allowing *CP* violation in decay.

⁷ AAIJ 14S reports $\phi_{s} = -2 \ \beta_{s} = 0.070 \pm 0.068 \pm 0.008$ rad. and $|\lambda| = 0.89 \pm 0.05 \pm 0.01$, when direct CP violation is allowed. Measured using a time-dependent fit to $B_s^0 \rightarrow$ $J/\psi\,\pi^+\,\pi^-$ decays.

⁸ AALTONEN 12AJ reports $-\pi/2 < \beta_s < -1.51$ or $-0.06 < \beta_s < 0.30$, or $1.26 < \beta_s < 0.30$ $\pi/2$ rad. at 68% CL. Measured using the time-dependent angular analysis of $B_c^0 \rightarrow$ $J/\psi \phi$ decays.

 $^9\,{\rm ABAZOV}$ 12D reports ϕ_{s} = -2 β_{s} = $-0.55 \substack{+0.38\\-0.36}$ rad. that was measured using a time-dependent angular analysis of $B^0_s \rightarrow J/\psi \phi$ decays. A single error includes both statistical and systematic uncertainties.

statistical and systematic uncertainties. ¹⁰ AAIJ 18S reports $\phi_s = -2 \ \beta_s = -0.10 \pm 0.13 \pm 0.14$ rad measured in $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ in the region 0.75 $< m(K^{\pm}\pi^{\mp}) < 1.6$ GeV. This is a $b \rightarrow d\overline{d}s$ transition with a decay amplitude phase different from that of $b \rightarrow c\overline{c}s$ transition. ¹¹ AAIJ 15K reports $-2\beta_s = -0.12^{+0.14}_{-0.16}$ rad. The value was obtained by measuring time-dependent *CP* asymmetry in $B_s^0 \rightarrow K^+K^-$ and using a U-spin relation between $B_s^0 \rightarrow K^+K^-$ and $B^0 \rightarrow \pi^+\pi^-$.

 $^{12}\,\bar{\rm Results}$ are also presented using additional inputs on $B^0 \rightarrow \ \pi^0 \, \pi^0$ and $B^+ \rightarrow \ \pi^+ \, \pi^0$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included.

 13 AAD 14U reports $\phi_s=-2$ $\beta_s=0.12\pm0.25\pm0.05$ rad. that was measured using a time-dependent angular analysis of $B^0_s \rightarrow J/\psi \phi$ decays.

¹⁴ Measured in $B^0_{s} \rightarrow \phi \phi$ decays. This is a $b \rightarrow s \bar{s} s$ transition with a decay amplitude phase different from that of $b \rightarrow c \overline{c} s$ transition.

phase different from that of $B \to ccs$ transition. ¹⁵AAIJ 13AR reports $\phi_s = -2\beta_s = 0.01 \pm 0.07 \pm 0.01$ rad. obtained from combined fit to $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ data sets. Also reports separate results of $\phi_s = 0.07 \pm 0.09 \pm 0.01$ rad. from $B_s^0 \to J/\psi K^+ K^-$ decays and $\phi_s = -0.14 \substack{+0.17 \\ -0.16} \pm 0.01$ rad. from $B_s^0 \to J/\psi \pi^+ \pi^-$ decays.

 $^{16}\,{\rm AAIJ}$ 13AY uses $B^0_{_{S}} \rightarrow ~\phi \phi$ mode, and reports the 68% CL interval of $\phi_{_{S}} = -2~\beta_{_{S}}$ as [-2.46, -0.76] rad.

 $^{17}\,{\rm AAD}$ 12CV reports ϕ_{S} = -2 $\beta_{\rm S}$ = 0.22 \pm 0.41 \pm 0.10 rad. that was measured using a time-dependent angular analysis of $B^0_{s} \rightarrow J/\psi \phi$ decays.

¹⁸ Reports $\phi_s = -2 \ \beta_s = -0.44 \pm 0.44 \pm 0.02$ rad. that was measured using a time-dependent fit to $B_s^0 \rightarrow J/\psi f_0(980)$ decays.

 $^{19}\,{\rm Reports}\,\,\phi_{s}\,=\,-2\,\,\beta_{s}\,=\,0.15\,\pm\,0.18\,\pm\,0.06$ rad. that was measured using a time-

dependent angular analysis of $B_s^0 \rightarrow J/\psi \phi$ decays. ²⁰ Reports $\phi_s = -2 \beta_s = -0.019 \substack{+0.173 + 0.004 \\ -0.174 - 0.003}$ rad. which was measured using a time-dependent fit to $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays, with the $\pi^+ \pi^-$ mass within 775–1550

NODE=S086PHS;LINKAGE=K NODE=S086PHS;LINKAGE=I NODE=S086PHS;LINKAGE=H NODE=S086PHS;LINKAGE=G NODE=S086PHS;LINKAGE=D NODE=S086PHS;LINKAGE=AL NODE=S086PHS;LINKAGE=OV NODE=S086PHS:LINKAGE=M NODE=S086PHS;LINKAGE=F NODE=S086PHS;LINKAGE=GB

NODE=S086PHS;LINKAGE=B

NODE=S086PHS;LINKAGE=JA

NODE=S086PHS;LINKAGE=AR

NODE=S086PHS;LINKAGE=AD NODE=S086PHS;LINKAGE=AI

NODE=S086PHS;LINKAGE=A

NODE=S086PHS;LINKAGE=AJ

NODE=S086PHS:LINKAGE=IA

MeV. Searches for, but finds no evidence, for direct *CP* violation in $B_s^0 \rightarrow J/\psi \pi \pi$ decays.

- $^{21}\,\rm Reports$ 0.02 $<~\phi_{\it S}<$ 0.52 or 1.08 $<~\phi_{\it S}<$ 1.55 rad. at 68% C.L. confidence regions in the two-dimensional space of ϕ_s and $\Delta\Gamma_{B_s^0}$ from $B_s^0 \rightarrow J/\psi \phi$ decays.
- $^{22}\,{\rm Reports}$ 0.32 < 2 $\beta_{\rm S}$ < 2.82 rad. at 68% C.L. and confidence regions in the twodimensional space of $2\beta_s$ and $\Delta\Gamma$ from the first measurement of $B_s^0 \rightarrow J/\psi \phi$ decays using flavor tagging. The probability of a deviation from SM prediction as large as the level of observed data is 15%. 23 Reports $\phi_s=-2~\beta_s$ and obtains 90% CL interval $-0.03~<~\beta_s~<0.60$ rad.
- ²⁴ The first direct measurement of the *CP*-violating mixing phase is reported from the time-dependent analysis of flavor untagged $B_s^0 \rightarrow J/\psi\phi$ decays.
- $^{25}\,\mathrm{Reports}\;\phi_{\mathrm{s}}$ which equals to $-2\beta_{\mathrm{s}}.$
- 26 Combines D0 collaboration measurements of time-dependent angular distributions in $B^0_{
 m s}
 ightarrow \, J/\psi \, \phi$ and charge asymmetry in semileptonic decays. There is a 4-fold ambiguity in the solution.

$|\lambda|$

	VALUE	DOCUMENT ID	TECN	COMMENT		NODE=S086LAM
	1.002±0.017 OUR AVERAGE					NEW
	$[1.001 \pm 0.017 \text{ OUR } 2018 \text{ AVERA}]$	GEJ				
YOUR DATA	$1.035 \pm 0.034 \pm 0.089$		18s LHCB	<i>pp</i> at 7, 8 TeV		
	$0.994 \!\pm\! 0.018 \!\pm\! 0.006$	² AAIJ	17V LHCB	<i>pp</i> at 7, 8 TeV		
	$1.045^{+0.069}_{-0.050}{\pm}0.007$	³ AAIJ	16AK LHCB	<i>pp</i> at 7, 8 TeV		
	$1.04 \ \pm 0.07 \ \pm 0.03$	⁴ AAIJ	14AE LHCB	<i>pp</i> at 7, 8 TeV		
	$0.91 \begin{array}{c} +0.18 \\ -0.15 \end{array} \pm 0.02$	⁵ AAIJ	14AY LHCB	<i>pp</i> at 7, 8 TeV		
YOUR NOTE	¹ Measured in $B_{c}^{0} \rightarrow (K^{+}\pi^{-})(K^{-}\pi^{+})$ in the region 0.75 $< m(K^{\pm}\pi^{\mp}) < 1.6$ GeV.					NODE=S086LAM-LINKAGE=C
	² Measured using time-depender					
	m(KK) > 1.05 GeV.	<u> </u>	5			NODE=3000LAM;LINKAGE=B

³Measured using time-dependent angular analysis of $B_{5}^{0} \rightarrow \psi(2S)\phi$ decays.

⁴ Measured in $B_s^0 \rightarrow \phi \phi$ decays. ⁵ Measured in $B_s^0 \rightarrow D_s^+ D_s^-$ decays.

B⁰ **REFERENCES**

YOUR PAPER	AAIJ	18S	JHEP 1803 140	R. Aaii <i>et al.</i>	(LHCb	Collab.)
	AAIJ	17V	JHEP 1708 037	R. Aaii et al.	(LHCb	Collab.)
	AAD	16AP	JHEP 1608 147	G. Aad et al.	(ÀTLAS	Collab.)
	AAIJ	16AK	PL B762 253	R. Aaij et al.	(LHCb	Collab.)
	KHACHATRY	16S	PL B757 97	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	AAIJ	15AF	JHEP 1507 166	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	151	PRL 114 041801	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	15K	PL B741 1	R. Aaij et al.	(LHCb	Collab.)
	AAD	14U	PR D90 052007	G. Aad et al.	(ÀTLAS	Collab.)
	AAIJ	14AE	PR D90 052011	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	14AY	PRL 113 211801	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	14S	PL B736 186	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	13AR	PR D87 112010	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	13AY	PRL 110 241802	R. Aaij et al.	(LHCb	Collab.)
	AAD	12CV	JHEP 1212 072	G. Aad et al.	(ATLAS	Collab.)
	AAIJ	12B	PL B707 497	R. Aaij et al.	(LHCb	Collab.)
	AAIJ	12D	PRL 108 101803	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	12F	PL B709 50	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	12Q	PL B713 378	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AALTONEN	12AJ	PRL 109 171802	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	AALTONEN	12D	PR D85 072002	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	ABAZOV	12D	PR D85 032006	V.M. Abazov <i>et al.</i>	(D0	Collab.)
	AALTONEN	08G	PRL 100 161802	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	ABAZOV	08AM	PRL 101 241801	V.M. Abazov <i>et al.</i>	(D0	Collab.)
	ABAZOV	07	PRL 98 121801	V.M. Abazov <i>et al.</i>	(D0	Collab.)
	ABAZOV	07N	PR D76 057101	V.M. Abazov et al.	(D0	Collab.)

NODE=S086PHS;LINKAGE=AT

NODE=S086PHS;LINKAGE=AA

NODE=S086PHS;LINKAGE=ZV NODE=S086PHS;LINKAGE=AZ

NODE=S086PHS;LINKAGE=RP NODE=S086PHS;LINKAGE=ZO

NODE-S086LAM

NODE=S086LAM;LINKAGE=A NODE=S086LAM;LINKAGE=AI NODE=S086LAM;LINKAGE=AA

NODE=S086

REFID=59085 REFID=57828 REFID=57350 REFID=57573 REFID=57215 REFID=56639 REFID=56377 REFID=56383 REFID=55883 REFID=55889 REFID=56119 REFID=55761 REFID=55159 REFID=55209 REFID=54785 REFID=54034 REFID=54036 REFID=54044 REFID=54190 REFID=54598 REFID=54070 REFID=54062 REFID=52228 REFID=52604 REFID=51664 REFID=51936

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}, B^0 = d\overline{b}, \overline{B}^0 = \overline{d}b, B^- = \overline{u}b,$ similarly for B^* 's

 B^0

 $I(J^P) = \frac{1}{2}(0^-)$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$

 $< 7.7 \times 10^{-5}$

YOUR

Test of lepton family number conservation. Allowed by higher-order electroweak inter-
actions.VALUECL%DOCUMENT IDTECNCOMMENT< 1.0 × 10⁻⁹ (CL = 90%) $[<2.8 × 10^{-9} (CL = 90\%)$ OUR 2018 BEST LIMIT]

 $< 1.0 \times 10^{-9}$ 1 AAIJ YOUR DATA 18⊤ LHCB pp at 7, 8 TeV 90 • • • We do not use the following data for averages, fits, limits, etc. • • • $<\,2.8\times10^{-9}$ 2 AAIJ 90 13BMLHCB Repl. by AAIJ 18T $<\,6.4\times10^{-8}$ $p\overline{p}$ at 1.96 TeV AALTONEN 90 09P CDF ³ AUBERT $<~9.2\times10^{-8}$ 08P BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 $<\,1.8\times10^{-7}$ ³ AUBERT 90

05W BABR $e^+e^- \rightarrow \Upsilon(4S)$ $<\,1.7\times10^{-7}$ ³ CHANG 03 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 90 $< 15 \times 10^{-7}$ ³ BERGFELD $e^+e^- \rightarrow \Upsilon(4S)$ 00B CLE2 90 $<\,3.5\times10^{-6}$ 90 ABE 98V CDF $p\overline{p}$ at 1.8 TeV $<\,1.6\times10^{-5}$ ⁴ ACCIARRI 97B L3 90 $e^+e^- \rightarrow Z$ $<\,5.9\times10^{-6}$ $e^+e^ \rightarrow \Upsilon(4S)$ 90 AMMAR 94 CLE2 $<\,3.4\times10^{-5}$ ⁵ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 90 $<\,4.5\times10^{-5}$ ⁶ ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90

87

CLEO $e^+e^- \rightarrow \Upsilon(4S)$

YOUR NOTE $< 3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 ¹Uses normalization modes $B(B^0 \rightarrow K^+\pi^-) = (19.6 \pm 0.5) \times 10^{-6}$ and $B(B^+ \rightarrow J/\psi K^+) = (1.026 \pm 0.031) \times 10^{-3}$.

 2 Uses normalization mode B($B^{0} \rightarrow K^{+}\pi^{-}$) = (19.4 ± 0.6) × 10⁻⁶.

⁷ AVERY

³Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

90

⁴ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_b .

⁵ Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

⁶ALBRECHT 87D reports $< 5 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}^0$. We rescale to 50%.

⁷ AVERY 87 reports $< 9 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}^0$. We rescale to 50%.

B⁰ REFERENCES

PAPER	AAIJ	18T	JHEP 1803 078	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	13BM	PRL 111 141801	R. Aaij et al.	(LHCb	Collab.)
	AALTONEN	09P	PRL 102 201801	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	AUBERT	08P	PR D77 032007	B. Aubert et al.	(BABAR	Collab.)
	AUBERT	05W	PRL 94 221803	B. Aubert et al.	(BABAR	Collab.)
	CHANG	03	PR D68 111101	MC. Chang et al.	(BELLE	Collab.)
	BERGFELD	00B	PR D62 091102	T. Bergfeld <i>et al.</i>	(CLEO	Collab.)
	ABE	98V	PRL 81 5742	F. Abe <i>et al.</i>	(CDF	Collab.)

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

NODE=S042220

NODE=S042R8

NODE=S042R8

NODE=S042R8

 Γ_{540}/Γ

I

NODE=S042220

NODE=S042R8;LINKAGE=A

NODE=S042R8;LINKAGE=AA NODE=S042R8;LINKAGE=EP NODE=S042R8;LINKAGE=BQ NODE=S042R8;LINKAGE=A1 NODE=S042R8;LINKAGE=W

NODE=S042R8;LINKAGE=Y

NODE=S042

REFID=59088
REFID=55413
REFID=52855
REFID=52225
REFID=50658
REFID=49640
REFID=47814
REFID=46697

	ACCIARRI 97B PL B391 474 M. Acciarri et al. (L3 Collab.) PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.) AMMAR 94 PR D49 5701 R. Ammar et al. (CLEO Collab.) AVERY 89B PL B223 470 P. Avery et al. (CLEO Collab.) ALBRECHT 87D PL B199 451 H. Albrecht et al. (ARGUS Collab.) AVERY 87 PL B183 429 P. Avery et al. (CLEO Collab.) GILES 84 PR D30 2279 R. Giles et al. (CLEO Collab.)	REFID=45248 REFID=44495 REFID=43736 REFID=40820 REFID=40325 REFID=40387 REFID=11570
	BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$	NODE=MXXX046
	$B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}b, \ \text{ similarly for } B_s^*$'s	NODE=MXXX046
	B_s^0 $I(J^P) = 0(0^-)$	NODE=S086
	<i>I</i> , <i>J</i> , <i>P</i> need confirmation. Quantum numbers shown are quark-model predictions.	NODE=S086
	B ⁰ BRANCHING RATIOS	NODE=S086230
	$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}} \qquad \Gamma_{135}/\Gamma$ Test of lepton family number conservation. $\frac{VALUE}{cL\%} \qquad CL\% \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $<54 \times 10^{-9} (Cl = 90\%) \qquad [<11 \times 10^{-8} (Cl = 90\%) OUR 2018 \text{ BEST LIMIT}]$	NODE=S086R22 NODE=S086R22 NODE=S086R22
YOUR DATA	<5.4 \times 10 ⁻⁹ 90 ¹ AAIJ 18T LHCB <i>pp</i> at 7, 8 TeV • • We do not use the following data for averages, fits, limits, etc. • • • <1.1 \times 10 ⁻⁸ 90 ² AAIJ 13BMLHCB Repl. by AAIJ 18T <2.0 \times 10 ⁻⁷ 90 AALTONEN 09P CDF <i>pp</i> at 1.96 TeV <6.1 \times 10 ⁻⁶ 90 ABE 98V CDF Repl. by AALTONEN 09P	
YOUR NOTE	<4.1 × 10 ⁻⁵ 90 ³ ACCIARRI 97B L3 $e^+e^- \rightarrow Z$ ¹ Uses normalization modes B($B^0 \rightarrow K^+\pi^-$) = (19.6 ± 0.5) × 10 ⁻⁶ and B($B^+ \rightarrow J/\psi K^+$) = (1.026 ± 0.031) × 10 ⁻³ with <i>B</i> production ratio f($\overline{b} \rightarrow B_s^0$)/f($\overline{b} \rightarrow B_d^0$) = 0.259 ± 0.015. The upper limit increases to 6 × 10 ⁻⁹ in the assumption of B_L -dominated decay amplitude.	NODE=S086R22;LINKAGE=A
	² Uses normalization mode $B(B^0 \rightarrow K^+\pi^-) = (19.4 \pm 0.6) \times 10^{-6}$ and <i>B</i> production ratio $f(\overline{b} \rightarrow B_s^0)/f(\overline{b} \rightarrow B_d^0) = 0.256 \pm 0.020$.	NODE=S086R22;LINKAGE=AA
	$^{\circ}$ ACCIARRI 97B assume PDG 96 production fractions for B' , B° , B_s , and Λ_b .	NODE=S086R22;LINKAGE=BQ
	B ⁰ _s REFERENCES	NODE=S086
YOUR PAPER	AAIJ 18T JHEP 1803 078 R. Aaij et al. (LHCb Collab.) AAIJ 13BM PRL 111 141801 R. Aaij et al. (LHCb Collab.) AALTONEN 09P PRL 102 201801 T. Aaltonen et al. (CDF Collab.) ABE 98V PRL 81742 F. Abe et al. (CDF Collab.) ACCIARRI 97B PL 8391 474 M. Acciarri et al. (L3 Collab.) PDG 96 PR D54 1 R. M. Barnett et al. (PDG Collab.)	REFID=59088 REFID=55413 REFID=52855 REFID=46697 REFID=45248 REFID=44495

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

77.3	$8^{+15.1}_{-14.9}\pm$ 5.9		^{16,17} AIHARA	12	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
68	$\pm 14~\pm~5$		¹⁸ DEL-AMO-SA	.10 F	BABR	Repl. by LEES 13B
7	to 173	95	¹⁹ DEL-AMO-SA	10 G	BABR	$e^+e^- ightarrow~\Upsilon(4S)$
78.4	$^{+10.8}_{-11.6}\pm$ 9.6		²⁰ POLUEKTOV	10	BELL	$e^+e^- ightarrow ~\Upsilon(4S)$
162	± 56		²¹ AUBERT	09 R	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
76	$^{+22}_{-23}$ \pm 7.1		²² AUBERT	08AL	BABR	Repl. by DEL-AMO- SANCHEZ 10F
53	$^{+15}_{-18}$ ± 10		²³ POLUEKTOV	06	BELL	Repl. by POLUEKTOV 10
70	$\pm 31 \begin{array}{c} +18 \\ -15 \end{array}$		²⁴ AUBERT,B	05Y	BABR	Repl. by AUBERT 08AL
77	$^{+17}_{-19}$ ± 17		²⁵ POLUEKTOV	04	BELL	Repl. by POLUEKTOV 06

¹Uses binned Dalitz plot analysis of D \rightarrow $K^0_S \pi^+ \pi^-$ and $K^0_S K^+ K^-$ from $B^\pm \rightarrow$ $D \, {\it K}^{\pm}$ modes. Strong phase measurements from CLEO-c of the D decay over the Dalitz plot are used as input.

- ²Measured in $B_s^0 \to D_s^{\mp} K^{\pm}$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s =$ 0.030 ± 0.033 from HFLAV. The value is modulo $180^{\circ}.$
 - 3 AAIJ 18Z reports the intervals (5–86) $^\circ$ or (185–266) $^\circ$ at 68% C.L. The extraction uses the time dependent CP violation measurement in $B^0 \rightarrow D^{\mp} \pi^{\pm}$ decays with external input and some theoretical assumptions.
 - ⁴Uses Dalitz plot analysis of $D \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow DK^*(892)^0$ modes. Measures $r_{B^0}=0.39\pm0.13$, and $\delta_{B^0}=197^{+24}_{-20}$ degrees.
 - 5 A combination of measurements from analyses of time-integrated $B^+ o ~ D \, {\cal K}^+$, $B^0 o$ $DK^{(*)0}$, $B^0 \rightarrow DK^+\pi^-$, and $B^+ \rightarrow DK^+\pi^+\pi^-$ tree-level decays. In addition, results from a time-dependent analysis of $B_s^0 \rightarrow D_s K$ decays are included.
 - ⁶A model-independent binned Dalitz plot analysis of the decays $B^0 \rightarrow DK^{*0}$, with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $D \rightarrow K_S^0 K^+ K^-$. The results cannot be combined with the model-dependent analysis of the same dataset reported in AAIJ 16AA.
 - ⁷ Angle γ required to satisfy 0 < γ < 180 degrees.
 - 8 Obtained by measuring time-dependent CP asymmetry in $B^0_{S} o K^+ K^-$ and using a U-spin relation between $B_s^0 \rightarrow K^+ K^-$ and $B^0 \rightarrow \pi^+ \pi^-$
 - 9 Results are also presented using additional inputs on $B^0 o \ \pi^0 \pi^0$ and $B^+ o \ \pi^+ \pi^0$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included.
 - ¹⁰Uses binned Dalitz plot analysis of $B^+ \rightarrow DK^+$ decays, with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $D \rightarrow K^0_{\varsigma} K^+ K^-$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input. Solution that satisfies 0 $<\gamma<$ 180 is chosen.
 - ¹¹AAIJ 14BE uses model-dependent analysis of $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10F.
 - ¹²Measured in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s = 12$ Measurement of ϕ_s
 - $0.01\pm0.07\pm0.0$ from AAIJ 13AR. The value is modulo 180° at 68% CL. 13 Presents a confidence region 55.4° $<\gamma<82.3^\circ$ at 68% CL with best fit value 72.6° and includes both statistical and systematic uncertainties. The corresponding 95% CL is 40.2 $^{\circ}~<~\gamma~<$ 92.7°. The value is determined from combination of measuremets using D meson decaying to K^+K^- , $\pi^+\pi^-$, $K^\pm\pi^\mp$, $K^0_S\pi^+\pi^-$, $K^0_SK^+K^-$, and $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$. Combines $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$
 - ¹⁴ Reports combination of published measurements using GGSZ, GLW, and ADS methods. Reports also 2σ range of 41–102° and a 5.9 σ significance for $\gamma(B^+ \rightarrow D^{(*)0} \kappa^{(*)+})$ \neq 0 hypothesis.

- 17 We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and $\overline{D}{}^0$ amplitudes.
- ¹⁸Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^ D^{(*)} {\it K}^+$, $D {\it K}^{*+}$ modes. The corresponding two standard deviation interval for γ is $39^{\circ} < \gamma < 98^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- 19 Reports confidence intervals for the CKM angle γ from the measured values of the GLW parameters using $B^{\pm} \rightarrow DK^{\pm}$ decays with D mesons decaying to non- $CP(K\pi)$, CPeven (K^+K^- , $\pi^+\pi^-$), and CP-odd ($K^0_S\pi^0$, $K^0_S\omega$) states.

NODE=S041GGM;LINKAGE=I

NODE=S041GGM:LINKAGE=J

NODE=S041GGM;LINKAGE=K

NODE=S041GGM;LINKAGE=C

NODE=S041GGM;LINKAGE=B

NODE=S041GGM;LINKAGE=E

NODE=S041GGM;LINKAGE=F NODE=S041GGM;LINKAGE=H

NODE=S041GGM;LINKAGE=IH

NODE=S041GGM;LINKAGE=A

NODE=S041GGM;LINKAGE=IA

NODE=S041GGM;LINKAGE=G

NODE=S041GGM;LINKAGE=AJ

NODE=S041GGM;LINKAGE=LE

NODE=S041GGM;LINKAGE=AA NODE=S041GGM;LINKAGE=AH

NODE=S041GGM;LINKAGE=AI

NODE=S041GGM;LINKAGE=DE

NODE=S041GGM;LINKAGE=DA

YOUR NOTE

- ²⁰ Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K^0_S \pi^+ \pi^-$ decays from $B^+ \rightarrow D^{(*)} K^+$ modes. The corresponding two standard deviation interval for γ is 54.2° < γ < 100.5°. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- ²¹Uses Dalitz plot analysis of $D^0 \rightarrow K_5^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow D^0 K^{*0}$ modes. The corresponding 95% CL interval is 77° < γ < 247°. A 180 degree ambiguity is implied.
- ²² Uses Dalitz plot analysis of $\overline{D}^0 \to \kappa_S^0 \pi^+ \pi^-$ and $\overline{D}^0 \to \kappa_S^0 \kappa^+ \kappa^-$ decays coming from $B^{\pm} \to D^{(*)} \kappa^{(*)\pm}$ modes. The corresponding two standard deviation interval is $29^{\circ} < \gamma < 122^{\circ}$.
- ²³Uses a Dalitz plot analysis of the $\overline{D}^0 \to K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes. The corresponding two standard deviations interval for gamma is $8^\circ < \gamma < 111^\circ.$
- 24 Uses a Dalitz plot analysis of neutral $D \rightarrow ~\kappa^0_S \pi^+\pi^-$ decays coming from $B^\pm \rightarrow$ DK^{\pm} and $B^{\pm} \rightarrow D^{*0}K^{\pm}$ followed by $D^{*0} \rightarrow D\pi^{0}$, $D\gamma$. The corresponding two standard deviations interval for gamma is $12^{\circ} < \gamma < 137^{\circ}$. AUBERT, B 05Y also reports the amplitude ratios and the strong phases.
- ²⁵ Uses a Dalitz plot analysis of the 3-body $D \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^{\pm} \rightarrow$ DK^{\pm} and $B^{\pm} \rightarrow D^*K^{\pm}$ followed by $D^* \rightarrow D\pi^0$; here we use D to denote that the neutral D meson produced in the decay is an admixture of D^0 and \overline{D}^0 . The corresponding two standard deviations interval for γ is 26° < γ < 126°. POLUEKTOV 04 also reports the amplitude ratios and the strong phases.

B^{\pm} REFERENCES

	AAIJ	18AD	JHEP 1808 176	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	Also		JHEP 1810 107 (errat.)	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
YOUR PAPER	AAIJ	18U	JHEP 1803 059	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	18Z	JHEP 1806 084	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	16AA	JHEP 1608 137	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	16AQ	JHEP 1612 087	R. Aaij et al.	(LHCb	Collab.)	REFID=
	AAIJ	16Z	JHEP 1606 131	R. Aaij et al.	(LHCb	Collab.)	REFID=
	AAIJ	15BC	PR D92 112005	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	15K	PL B741 1	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	14BA	JHEP 1410 097	R. Aaij et al.	(LHCb	Collab.)	REFID=
	AAIJ	14BE	NP B888 169	R. Aaij et al.	(LHCb	Collab.)	REFID=
	AAIJ	14BF	JHEP 1411 060	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	13AK	PL B726 151	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AAIJ	13AR	PR D87 112010	R. Aaij et al.	(LHCb	Collab.)	REFID=
	LEES	13B	PR D87 052015	J.P. Lees et al.	(BÀBAR	Collab.)	REFID=
	AAIJ	12AQ	PL B718 43	R. Aaij <i>et al.</i>	(LHCb	Collab.)	REFID=
	AIHARA	12	PR D85 112014	H. Aihara <i>et al.</i>	(BELLE	Collab.)	REFID=
	DEL-AMO-SA	. 10F	PRL 105 121801	P. del Amo Sanchez et	al. (BABAR	Collab.)	REFID=
	DEL-AMO-SA	. 10G	PR D82 072004	P. del Amo Sanchez et	al. (BABAR	Collab.)	REFID=
	LIBBY	10	PR D82 112006	J. Libby et al.	(CLEO	Collab.)	REFID=
	POLUEKTOV	10	PR D81 112002	A. Poluektov et al.	(BELLE	Collab.)	REFID=
	AUBERT	09R	PR D79 072003	B. Aubert et al.	(BABAR	Collab.)	REFID=
	AUBERT	08AL	PR D78 034023	B. Aubert et al.	(BABAR	Collab.)	REFID=
	POLUEKTOV	06	PR D73 112009	A. Poluektov et al.	(BELLE	Collab.)	REFID=
	AUBERT,B	05Y	PRL 95 121802	B. Aubert et al.	(BABAR	Collab.)	REFID=
	POLUEKTOV	04	PR D70 072003	A. Poluektov et al.	(BELLE	Collab.)	REFID=

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quarkmodel predictions.

CP VIOLATION PARAMETERS in B_s^0

$$r_B(B^0_s \rightarrow D^{\mp}_s K^{\pm})$$

 B_s^0

 ${\bf r}_B$ and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A(B_{S}^{0} \rightarrow D_{S}^{+}K^{-})$ and $A(B_{S}^{0} \rightarrow D_{S}^{-}K^{+})$,

NODE=S041GGM;LINKAGE=PU NODE=S041GGM;LINKAGE=D NODE=S041GGM;LINKAGE=AB NODE=S041GGM;LINKAGE=PL NODE=S041GGM;LINKAGE=AU

NODE=S041GGM;LINKAGE=PO

NODE=S041

RFFID-50138
REFID=55150
REFID=59352
REFID=59090
RFFID-50118
REFID=35110
REFID=5/349
DEEID_57665
REFID=57005
RFFID=57338
REFID=5/012
RFFID-56383
REFID=50505
REFID=56167
DEEID_66107
KEFID=50107
RFFID=56197
REFID=55097
RFFID=55159
REFID=54948
REFID-54504
REFID=54412
PEEID _53/13
REFID=33413
REFID=53455
DEEID_62602
KEFID=55565
REFID=53340
REFID=52796
RFFID=52361
KEFID=51287
REFID-50010
50919
REFIN=20003

NODE=MXXX046

NODE=MXXX046

NODE=S086

NODE=S086

NODE=S086240

NODE=S086ARX NODE=S086ARX

	VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S086ARX
	0.37 ^{+0.10} _{-0.09} OUR AVERAGE [0.5		NEW		
YOUR DATA	$0.37^{+0.10}_{-0.09}$	¹ AAIJ 180	LHCB	<i>pp</i> at 7, 8 TeV	
	• • • We do not use the following	g data for averages, fits,	limits, e	tc. • • •	
	$0.53 \substack{+0.17 \\ -0.16}$	² AAIJ 14BF	LHCB	Repl. by AAIJ 180	
YOUR NOTE	¹ Measured in $B^0_s \rightarrow D^{\mp}_s K^{\pm}_s$ -0.030 \pm 0.033 from HFLAV	decays, constraining -2	$2eta_{m{s}}$ by the	ne measurement of $\phi_{\pmb{s}} =$	NODE=S086ARX;LINKAGE=B
	² Measured in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ 0.01 \pm 0.07 \pm 0.0 from AAIJ	ne measurement of $\phi_{\pmb{S}} =$	NODE=S086ARX;LINKAGE=A		
	$ \frac{\delta_B(B_s^0 \rightarrow D_s^{\pm} K^{\mp})}{\frac{VALUE(^{\circ})}{358 \pm 14 \text{ OUR AVERAGE }}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	DOCUMENT ID 20)° OUR 2018 AVERA	<u>TECN</u>	COMMENT	NODE=S086DRX NODE=S086DRX
YOUR DATA	358+13	¹ AAIJ 18 \cup	LHCB	pp at 7, 8 TeV	
	 ••• We do not use the following 	g data for averages, fits,	limits, e	tc. ● ● ●	
	3^{+19}_{-20}	² AAIJ 14BF	LHCB	Repl. by AAIJ 180	
YOUR NOTE	¹ Measured in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ 0.030 ± 0.033 from HELAV	ne measurement of $\phi_{\pmb{S}} =$	NODE=S086DRX;LINKAGE=C		
	² Measured in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ 0.01 \pm 0.07 \pm 0.0 from AAIJ	ne measurement of $\phi_{{\it S}}=$ at 68% CL.	NODE=S086DRX;LINKAGE=A		
		-s			NUDE=5086
YOUR PAPER	AAIJ18UJHEP 1803 059AAIJ14BFJHEP 1411 060AAIJ13ARPR D87 112010	R. Aaij <i>et al.</i> R. Aaij <i>et al.</i> R. Aaij <i>et al.</i>		(LHCb Collab.) (LHCb Collab.) (LHCb Collab.)	REFID=59090 REFID=56197 REFID=55159

YOUR PAPER	AAIJ	18U JHEP 1803 059	R. Aaij <i>et al.</i>	(LHCb Collab.)
	AAIJ	14BF JHEP 1411 060	R. Aaij et al.	(LHCb_Collab.)
	AAIJ	13AR PR D87 112010	R. Aaij <i>et al.</i>	(LHCb Collab.)

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

NODE=MXXX045

NODE=MXXX045

NODE=S041

NODE=S041

NODE=S041220

NODE=S041220

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} \ b, \ B^- = \overline{u} \ b,$ similarly for B^* 's

YOUR PAPER AAIJ ADACHI

AUBERT,B

 $I(J^P) = \frac{1}{2}(0^-)$

 $\mathsf{Quantum}\xspace$ numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE sections.

CP VIOLATION

 ${\rm A}_{CP}$ is defined as

18W JHEP 1805 160 08 PR D77 091101

06A

PR D73 112004

$$\frac{B(B^- \to \overline{f}) - B(B^+ \to f)}{B(B^- \to \overline{f}) + B(B^+ \to f)}$$

the CP-violation charge asymmetry of exclusive B^- and B^+ decay.

	$A_{CP}(B^+ \rightarrow D_s^+ \overline{D}^0)$ VALUE (%)	DOCUMENT ID		TECN	COMMENT		NODE=S041A10 NODE=S041A10
YOUR DATA	$-0.4 \pm 0.5 \pm 0.5$	AAIJ	18W	LHCB	<i>pp</i> at 7, 8 TeV		
	$\begin{array}{rcl} A_{CP}(B^+ \rightarrow D^+ \overline{D}{}^0) \\ \hline \\ \hline \\ \hline 0.016 \pm 0.025 & \text{OUR AVERAGE} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>	-	NODE=S041AS4 NODE=S041AS4 NEW
YOUR DATA	$\begin{array}{r} 0.023 {\pm} 0.027 {\pm} 0.004 \\ 0.00 \ \pm 0.08 \ \pm 0.02 \\ - 0.13 \ \pm 0.14 \ \pm 0.02 \end{array}$	AAIJ ADACHI AUBERT,B	18W 08 06A	LHCB BELL BABR	pp at 7, 8 TeV $e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$	I	
	P					-	

B[±] REFERENCES

R. Aaij *et al.* I. Adachi *et al.* B. Aubert *et al.* NODE=S041

REFID=59099 REFID=52344
REFID=51283

(LHCb Collab.) (BELLE Collab.) (BABAR Collab.)

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT !! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

YOUR PAPER AALI 18X IHEP 1805 067 R. Aaij et al. (LHCb Collab.) **REFID=59105** 17BO JHEP 1711 156 (LHCb Collab.) REFID=58343 R. Aaij et al. AAIJ AUBERT 09AJ PR D80 092001 B. Aubert et al. (BABAR Collab.) REFID=53077 AUBERT,B 05U PR D72 071103 B. Aubert et al. (BABAR Collab.) REFID=50897

PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

BOTTOM MESONS
$$(B = \pm 1)$$
NODE-MXXX045 $B^{\pm} = u\overline{b}, B^0 = d\overline{b}, \overline{B}^0 = \overline{a}b, B^- = \overline{u}b, similarly for B^+s$ NODE-MXXX045 $\overline{B^{\pm}}$ $(J^0) = \frac{1}{2}(0^-)$ NODE-5041 $\overline{B^{\pm}}$ $(J^0) = \frac{1}{2}(0^-)$ NODE-504120 $\overline{B^{\pm}}$ $(J^0) = \frac{1}{2}(0^-)$ NODE-504120See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_{2}^0/b$ baryon AD-MIXTURE sections.NODE-504120 A_{CP} is defined as $B_{B^{\pm}} = -\overline{J} - B(B^{\pm} - e^{-1})$
 $(B^{\pm} - e^{-1}) + 12(B^{\pm} - e^{-1})$ NODE-504120 A_{CP} is defined as $B_{B^{\pm}} = -\overline{D} B^{\pm} + ab B^{\pm} decay.NODE-504120The parameters $r_{B^{\pm}}$ and $s_{B^{\pm}} = are the magnitude ratio and B^{\pm} decay.OPOLATION PARAMETERS IN $B^{\pm} \to DK^{\pm}$ AND SIMILAR DECAYSNODE-5041320The parameters $r_{B^{\pm}}$ and $s_{B^{\pm}} = r_{B^{\pm}} = m(q_{B^{\pm}} = \tau_{B^{\pm}})$ and $z_{B^{\pm}} = -\overline{D} C^{(1)} D(t^{(1)})$ and
 $A(B^{\pm} - D^{(2)} D(t^{(1)})$ and $A(B^{\pm} - D^{(2)} D(t^{(1)})$ and
 $A(B^{\pm} - D^{(2)} D(t^{(2)} D^{\pm}))$ and $z_{B^{\pm}} = r_{B^{\pm}} = m(q_{B^{\pm}} = \tau_{B^{\pm}})$ and $z_{B^{\pm}} = -DK^{\pm}$ "OUDE EVALUATION
 $B^{\pm} = r_{B^{\pm}} = m(d_{B^{\pm}} = \tau_{B^{\pm}})$ and $t_{B^{\pm}} = D^{\pm} = DK^{\pm}$ Table Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluation
 $B^{\pm} = \frac{1}{2}$ Advaluat$$

77.3	$3^{+15.1}_{-14.9}\pm$	5.9	16	5,17 A	AIHARA	12	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
68	± 14 \pm	5		¹⁸ C	DEL-AMO-SA	10F	BABR	Repl. by LEES 13B
7	to 173		95	¹⁹ C	DEL-AMO-SA	10 G	BABR	$e^+e^- ightarrow ~\Upsilon(4S)$
78.4	$4^{+10.8}_{-11.6}\pm$	9.6		²⁰ F	POLUEKTOV	10	BELL	$e^+e^- ightarrow ~\Upsilon(4S)$
162	± 56			م 21	UBERT	09 R	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
76	$^{+22}_{-23}$ ±	7.1		22 A	UBERT	08al	BABR	Repl. by DEL-AMO- SANCHEZ 10F
53	$^{+15}_{-18}$ ±	10		²³ F	POLUEKTOV	06	BELL	Repl. by POLUEKTOV 10
70	$\pm 31 \stackrel{+}{}$	18 15		24 A	UBERT,B	05Y	BABR	Repl. by AUBERT 08AL
77	$^{+17}_{-19}$ ±	17		²⁵ F	POLUEKTOV	04	BELL	Repl. by POLUEKTOV 06

¹Uses binned Dalitz plot analysis of D \rightarrow $K^0_S \pi^+ \pi^-$ and $K^0_S K^+ K^-$ from $B^\pm \rightarrow$ $D \, {\it K}^{\pm}$ modes. Strong phase measurements from CLEO-c of the D decay over the Dalitz plot are used as input.

²Measured in $B_{S}^{0} \rightarrow D_{S}^{\mp} K^{\pm}$ decays, constraining $-2\beta_{s}$ by the measurement of $\phi_{s} =$ 0.030 ± 0.033 from HFLAV. The value is modulo $180^\circ.$

- 3 AAIJ 18Z reports the intervals (5–86) $^\circ$ or (185–266) $^\circ$ at 68% C.L. The extraction uses the time dependent CP violation measurement in $B^0 \rightarrow D^{\mp} \pi^{\pm}$ decays with external input and some theoretical assumptions.
 - ⁴Uses Dalitz plot analysis of $D \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow DK^*(892)^0$ modes. Measures $r_{B^0}=0.39\pm0.13$, and $\delta_{B^0}=197^{+24}_{-20}$ degrees.
 - 5 A combination of measurements from analyses of time-integrated $B^+ o ~ D \, {\cal K}^+$, $B^0 o$ $DK^{(*)0}$, $B^0 \rightarrow DK^+\pi^-$, and $B^+ \rightarrow DK^+\pi^+\pi^-$ tree-level decays. In addition, results from a time-dependent analysis of $B_s^0 \rightarrow D_s K$ decays are included.
 - ⁶A model-independent binned Dalitz plot analysis of the decays $B^0 \rightarrow DK^{*0}$, with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $D \rightarrow K_S^0 K^+ K^-$. The results cannot be combined with the model-dependent analysis of the same dataset reported in AAIJ 16AA.
 - ⁷ Angle γ required to satisfy 0 < γ < 180 degrees.
 - 8 Obtained by measuring time-dependent CP asymmetry in $B^0_{S} o K^+ K^-$ and using a U-spin relation between $B_s^0 \rightarrow K^+ K^-$ and $B^0 \rightarrow \pi^+ \pi^-$
 - 9 Results are also presented using additional inputs on $B^0 o \ \pi^0 \pi^0$ and $B^+ o \ \pi^+ \pi^0$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included.
- ¹⁰Uses binned Dalitz plot analysis of $B^+ \rightarrow DK^+$ decays, with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $D \rightarrow K^0_{\varsigma} K^+ K^-$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input. Solution that satisfies 0 $<\gamma<$ 180 is chosen.
- ¹¹AAIJ 14BE uses model-dependent analysis of $D \rightarrow K_S^0 \pi^+ \pi^-$ amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10F.
- ¹²Measured in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s = 12$ Measurement of ϕ_s
- $0.01\pm0.07\pm0.0$ from AAIJ 13AR. The value is modulo 180° at 68% CL. 13 Presents a confidence region 55.4° $<\gamma<82.3^\circ$ at 68% CL with best fit value 72.6° and includes both statistical and systematic uncertainties. The corresponding 95% CL is 40.2 $^{\circ}~<~\gamma~<$ 92.7°. The value is determined from combination of measuremets using D meson decaying to K^+K^- , $\pi^+\pi^-$, $K^\pm\pi^\mp$, $K^0_S\pi^+\pi^-$, $K^0_SK^+K^-$, and $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$. Combines $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$
- ¹⁴ Reports combination of published measurements using GGSZ, GLW, and ADS methods. Reports also 2σ range of 41–102° and a 5.9 σ significance for $\gamma(B^+ \rightarrow D^{(*)0} \kappa^{(*)+})$ \neq 0 hypothesis.

- 17 We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and $\overline{D}{}^0$ amplitudes.
- ¹⁸Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^ D^{(*)} {\it K}^+$, $D {\it K}^{*+}$ modes. The corresponding two standard deviation interval for γ is $39^{\circ} < \gamma < 98^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- 19 Reports confidence intervals for the CKM angle γ from the measured values of the GLW parameters using $B^{\pm} \rightarrow DK^{\pm}$ decays with D mesons decaying to non- $CP(K\pi)$, CPeven (K^+K^- , $\pi^+\pi^-$), and *CP*-odd ($K^0_{S}\pi^0$, $K^0_{S}\omega$) states.

NODE=S041GGM;LINKAGE=I

NODE=S041GGM:LINKAGE=J

NODE=S041GGM;LINKAGE=K

NODE=S041GGM;LINKAGE=C

NODE=S041GGM;LINKAGE=B

NODE=S041GGM;LINKAGE=E

NODE=S041GGM;LINKAGE=F NODE=S041GGM;LINKAGE=H

NODE=S041GGM;LINKAGE=IH

NODE=S041GGM;LINKAGE=A

NODE=S041GGM;LINKAGE=IA

NODE=S041GGM;LINKAGE=G

NODE=S041GGM;LINKAGE=AJ

NODE=S041GGM;LINKAGE=LE

NODE=S041GGM;LINKAGE=AA NODE=S041GGM;LINKAGE=AH

NODE=S041GGM;LINKAGE=AI

NODE=S041GGM;LINKAGE=DE

NODE=S041GGM;LINKAGE=DA

YOUR NOTE

NODE=S041GGM;LINKAGE=PU

NODE=S041GGM;LINKAGE=D

NODE=S041GGM;LINKAGE=AB

NODE=S041GGM;LINKAGE=PL

NODE=S041GGM;LINKAGE=AU

NODE=S041GGM;LINKAGE=PO

NODE=S041

- ²⁰Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K^0_S \pi^+ \pi^-$ decays from $B^+ \rightarrow D^{(*)} K^+$ modes. The corresponding two standard deviation interval for γ is 54.2° < γ < 100.5°. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- ²¹Uses Dalitz plot analysis of $D^0 \rightarrow K_5^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow D^0 K^{*0}$ modes. The corresponding 95% CL interval is 77° < γ < 247°. A 180 degree ambiguity is implied.
- ²² Uses Dalitz plot analysis of $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}^0 \to K_S^0 K^+ K^-$ decays coming from $B^{\pm} \to D^{(*)}_{-} K^{(*)\pm}$ modes. The corresponding two standard deviation interval is $29^{\circ} < \gamma < 122^{\circ}$.
- ²³Uses a Dalitz plot analysis of the $\overline{D}^0 \rightarrow K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes. The corresponding two standard deviations interval for gamma is $8^\circ < \gamma < 111^\circ.$
- 24 Uses a Dalitz plot analysis of neutral $D \rightarrow ~\kappa^0_S \pi^+\pi^-$ decays coming from $B^\pm \rightarrow$ DK^{\pm} and $B^{\pm} \rightarrow D^{*0}K^{\pm}$ followed by $D^{*0} \rightarrow D\pi^{0}$, $D\gamma$. The corresponding two standard deviations interval for gamma is $12^{\circ} < \gamma < 137^{\circ}$. AUBERT, B 05Y also reports the amplitude ratios and the strong phases.
- ²⁵ Uses a Dalitz plot analysis of the 3-body $D \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^{\pm} \rightarrow$ DK^{\pm} and $B^{\pm} \rightarrow D^*K^{\pm}$ followed by $D^* \rightarrow D\pi^0$; here we use D to denote that the neutral D meson produced in the decay is an admixture of D^0 and \overline{D}^0 . The corresponding two standard deviations interval for γ is 26° < γ < 126°. POLUEKTOV 04 also reports the amplitude ratios and the strong phases.

B^{\pm} REFERENCES

	AAIJ	18AD	JHEP 1808 176	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59138
	Also		JHEP 1810 107 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59352
	AAIJ	18U	JHEP 1803 059	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59090
OUR PAPER	AAIJ	18Z	JHEP 1806 084	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59118
	AAIJ	16AA	JHEP 1608 137	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=57349
	AAIJ	16AQ	JHEP 1612 087	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=57665
	AAIJ	16Z	JHEP 1606 131	R. Aaij et al.	(LHCb_Collab.)	REFID=57338
	AAIJ	15BC	PR D92 112005	R. Aaij et al.	(LHCb_Collab.)	REFID=57012
	AAIJ	15K	PL B741 1	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=56383
	AAIJ	14BA	JHEP 1410 097	R. Aaij et al.	(LHCb_Collab.)	REFID=56167
	AAIJ	14BE	NP B888 169	R. Aaij et al.	(LHCb_Collab.)	REFID=56187
	AAIJ	14BF	JHEP 1411 060	R. Aaij et al.	(LHCb_Collab.)	REFID=56197
	AAIJ	13AK	PL B726 151	R. Aaij et al.	(LHCb_Collab.)	REFID=55097
	AAIJ	13AR	PR D87 112010	R. Aaij et al.	(LHCb_Collab.)	REFID=55159
	LEES	13B	PR D87 052015	J.P. Lees et al.	(BÀBAR Collab.)	REFID=54948
	AAIJ	12AQ	PL B718 43	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=54594
	AIHARA	12	PR D85 112014	H. Aihara <i>et al.</i>	(BELLE Collab.)	REFID=54412
	DEL-AMO-SA	10F	PRL 105 121801	P. del Amo Sanchez et al.	(BABAR Collab.)	REFID=53413
	DEL-AMO-SA	10G	PR D82 072004	P. del Amo Sanchez et al.	(BABAR Collab.)	REFID=53455
	LIBBY	10	PR D82 112006	J. Libby et al.	(CLEO Collab.)	REFID=53583
	POLUEKTOV	10	PR D81 112002	A. Poluektov <i>et al.</i>	(BELLE Collab.)	REFID=53340
	AUBERT	09R	PR D79 072003	B. Aubert et al.	(BABAR Collab.)	REFID=52798
	AUBERT	08AL	PR D78 034023	B. Aubert <i>et al.</i>	(BABAR Collab.)	REFID=52361
	POLUEKTOV	06	PR D73 112009	A. Poluektov <i>et al.</i>	(BELLE Collab.)	REFID=51287
	AUBERT,B	05Y	PRL 95 121802	B. Aubert <i>et al.</i>	(BABAR Collab.)	REFID=50919
	POLUEKTOV	04	PR D70 072003	A. Poluektov <i>et al.</i>	(BELLE Collab.)	REFID=50223
						NODE=S042

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are guark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B^0_s/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " $B^0-\overline{B}^0$ Mixing" near the end of the B^0 Particle Listings.

CP VIOLATION PARAMETERS

	$S_+ (B^{\circ} \rightarrow D^- \pi^+)$ VALUE	DOCUMENT ID	TECN	COMMENT		NODE=S042A06 NODE=S042A06
YOUR DATA	0.058±0.020±0.011	¹ AAIJ	18z LHCB	<i>pp</i> at 7, 8 TeV		
YOUR NOTE	¹ Measured in the simultaneo statistical (systematic) corre	a →	NODE=S042A06;LINKAGE=			
	$D^{+}\pi^{-}$).					

NODE=S042229

NODE=S042

=A

YOUR DATA YOUR NOTE	$S_{-}(B^{0} \rightarrow D^{+})$ <u>VALUE</u> $0.038 \pm 0.020 \pm 0.00$ ¹ Measured in the statistical (system of the	π [—]) 07 e simultaneou ematic) correla	DOCUMENT II 1 AAIJ Is analysis of B ⁰ ation of 0.6 (-0.4	$\begin{array}{c} \underline{D} & \underline{TEC} \\ 18z & LHC \\ \overline{D} & \overline{D} & \pi^{\pm} \\ 11 \end{array}$ with the	<u>CB</u> CB dec mea:	<u>COMMENT</u> pp at 7, 8 TeV ays. AAIJ 18Z reports sured value of S ₊ (B^0 -	 a →	NODE=S042A07 NODE=S042A07 NODE=S042A07;LINKAGE=A
	$ \sin(2\beta+\gamma) $							NODE=S042BGA
	eta (ϕ_1) and γ (ϕ_3) are angles of CKM unitarity triangle, see the review on "CP						P	NODE=S042BGA
	Violation" in VALUE	the Reviews s	Bection.) TEC	CN	COMMENT		NODE=S042BGA
	>0.40	90	¹ AUBERT	06Y BAI	BR	$e^+e^- \rightarrow \Upsilon(4S)$		
	$\bullet \bullet \bullet$ We do not u	se the followir	ng data for averag	ges, fits, limit	ts, e	tc. • • •		
YOUR DATA	>0.77	68	² AAIJ	18z LH(СВ	<i>pp</i> at 7, 8 TeV		
	>0.13	95	³ RONGA	06 BEI	LL	$e^+ e^- ightarrow ~\Upsilon(4S)$		
	>0.07	95	³ RONGA	06 BEI	LL	$e^+e^- \rightarrow \Upsilon(4S)$		OCCUR=2
	>0.35	90	⁴ AUBERT	05z BAI	BR	$e^+e^- \rightarrow \Upsilon(4S)$		
	>0.69	68	⁵ AUBERT	04v BAI	BR	$e^+ e^- \rightarrow \Upsilon(4S)$		
	>0.58	95	⁰ AUBERT	04w BAI	BR	Repl. by AUBERT 052	<u></u>	
	¹ Uses fully reconstructed $B^0 \rightarrow D^{(*)\pm}\pi^{\mp}$ and $D^{\pm}\rho^{\mp}$ decays and some theoretical assumptions.						al	NODE=S042BGA;LINKAGE=AE
YOUR NOTE	TE ² Uses a time dependent CP violation measurement in $B^0 \rightarrow D^{\mp} \pi^{\pm}$ decays with external input and some theoretical assumptions. ³ Combines the results from fully reconstructed and partially reconstructed $D^{(*)}\pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated					al	NODE=S042BGA;LINKAGE=A	
						ts rs	NODE=S042BGA;LINKAGE=RO	
	⁴ Uses partially reconstructed $B^0 \rightarrow D^{*\pm}\pi^{\mp}$ decays and some theoretical assumptions.						s.	NODE=S042BGA:LINKAGE=AP
	⁵ Uses fully reconstructed $B^0 \rightarrow D^{(*)\pm}\pi^{\mp}$ decays and some theoretical assumptions, such as the SU(3) symmetry relation.					s,	NODE=S042BGA;LINKAGE=AU	
	⁶ Combining this measurement with the results from AUBERT 04V for fully reconstructed					ed	NODE=S042BGA;LINKAGE=AB	
	$B^{U} \rightarrow D^{(*)\pm}\pi^{\mp}$ and some theoretical assumptions, such as the SU(3) symmetry					ry		
	relation.							

4/5/2019 10:34

NODE=S042

REFID=59118 REFID=51275 REFID=51307 REFID=50665 REFID=49986 REFID=49987 Page 177

B⁰ REFERENCES

PAPER	AAIJ	18Z	JHEP 1806 084	R. Aaij <i>et al.</i>	(LHCb Collab.)
	AUBERT	06Y	PR D73 111101	B. Aubert et al.	(BABAR Collab.)
	RONGA	06	PR D73 092003	F.J. Ronga <i>et al.</i>	(BELLE Collab.)
	AUBERT	05Z	PR D71 112003	B. Aubert et al.	(BABAR Collab.)
	AUBERT	04V	PRL 92 251801	B. Aubert <i>et al.</i>	(BABAR Collab.)
	AUBERT	04W	PRL 92 251802	B. Aubert <i>et al.</i>	(BABAR Collab.)
					. ,

YOUR

= AAIJ 18AB; JHEP 1807 020 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

NODE=MXXX046

NODE=MXXX046

NODE=S086

NODE=S086

NODE=S086230

NODE=S086P36 NODE=S086P36

NODE=S086P36;LINKAGE=B

NODE=S086

REFID=59133

$\Gamma(\overline{K}^*(892)^0\mu^+\mu^-)/\Gamma_{total}$ Γ_{132}/Γ DOCUMENT ID ТЕСЛ COMMENT 1 ААІЈ 18АВ LHCB pp at 7, 8, 13 TeV VALUE (units 10⁻⁸) YOUR DATA **2.9±1.0±0.4** ¹Normalizes to B($B^0 \rightarrow J/\psi \kappa^{*0}$) = 1.19 ± 0.01 ± 0.08% and B($J/\psi \rightarrow \mu^+ \mu^-$) = 5.96 ± 0.03%, and uses f_s/f_d = 0.259 ± 0.015. YOUR NOTE **B**⁰ **REFERENCES**

YOUR PAPER AAIJ

 B_s^0

model predictions.

(LHCb Collab.)

 $I(J^P) = 0(0^-)$

18AB JHEP 1807 020

R. Aaij et al.

BOTTOM, STRANGE MESONS

 $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}b, \ \text{ similarly for } B_s^*$'s

I, J, P need confirmation. Quantum numbers shown are quark-

B⁰_s BRANCHING RATIOS

= AAIJ 18AC; JHEP 1808 191 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov
NODE=MXXX046

NODE=MXXX046

NODE=S086

NODE=S086

NODE=S086M

B⁰_c MASS NODE=S086M VALUE (MeV) DOCUMENT ID TECN COMMENT EVTS 5366.84 ± 0.21 OUR AVERAGE NEW $[5366.84 \pm 0.30$ MeV OUR 2018 AVERAGE Scale factor = 1.2] 1 AAIJ 18AC LHCB pp at 7, 8, 13 TeV I YOUR DATA $5366.83 \pm \ 0.25 \pm 0.27$ ² AAIJ $5367.08 \pm 0.38 \pm 0.15$ 128 160 LHCB *pp* at 7, 8 TeV ³ AAIJ $5366.90 \pm 0.28 \pm 0.23$ 12E LHCB pp at 7 TeV LOUVOT 09 BELL $e^+e^- \rightarrow \Upsilon(5S)$ 5364.4 \pm 1.3 \pm 0.7 ⁴ ACOSTA $p\overline{p}$ at 1.96 TeV $5366.01 \pm \ 0.73 \pm 0.33$ 06 CDF ⁵ ABE $5369.9 \pm 2.3 \pm 1.3$ 32 96B CDF $p\overline{p}$ at 1.8 TeV 3 ABREU 94D DLPH $e^+e^- \rightarrow Z$ $5374 \pm 16 \pm 2$ ⁵ AKERS 5359 ±19 ±7 1 94J OPAL $e^+e^- \rightarrow Z$ $5368.6~\pm~5.6~\pm1.5$ 2 BUSKULIC 93G ALEP $e^+e^- \rightarrow Z$ \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 5370 ± 1 DRUTSKOY 07A BELL Repl. by LOUVOT 09 ± 3 ⁶ AKERS 5370 ±40 94J OPAL $e^+e^- \rightarrow Z$ OCCUR=2 6 Repl. by ABE 96B 5383.3 \pm 4.5 ± 5.0 14 ABE 93F CDF ¹Uses $B_s \rightarrow \chi_{c1} K^+ K^-$ mode. YOUR NOTE NODE=S086M;LINKAGE=D ² Uses $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$ decays, and observes 128 \pm 13 events of $B_{\varsigma}^0 \rightarrow$ NODE=S086M;LINKAGE=C $J/\psi\phi\phi$ ³Uses $B_s^0 \rightarrow J/\psi \phi$ fully reconstructed decays. NODE=S086M;LINKAGE=AA ⁴Uses exclusively reconstructed final states containing a $J/\psi
ightarrow \ \mu^+ \mu^-$ decays. 5 From the decay $B_{s} \rightarrow J/\psi(1S)\phi$. NODE=S086M;LINKAGE=A ⁶ From the decay $B_s \rightarrow D_s^- \pi^+$. NODE=S086M;LINKAGE=B

 $I(J^P) = 0(0^-)$

B⁰ BRANCHING RATIOS

BOTTOM, STRANGE MESONS

 $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s} b, \quad \text{similarly for } B_s^*\text{'s}$

I, J, P need confirmation. Quantum numbers shown are quark-

 B_s^0

model predictions.

	$\Gamma(\chi_{c2} K^+ K^-) / \Gamma(\chi_{c1} K^+$	κ -)		Г ₈₈ /Г ₈₇
	VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
YOUR DATA	17.1±3.1±1.0	¹ AAIJ	18AC LHCB	<i>pp</i> at 7, 8, 13 TeV
YOUR NOTE	1 Measures the ratio for ± 15	MeV window around	l ϕ mass.	

B⁰_s REFERENCES

YOUR PAPER	AAIJ AAIJ AAIJ LOUVOT DRUTSKOY ACOSTA ABE ABE ABE AKERS ABE	18AC 16U 12E 09 07A 06 96B 94D 94J 93F	JHEP 1808 191 JHEP 1603 040 PL B708 241 PRL 102 021801 PR D76 012002 PRL 96 202001 PR D53 3496 PL B324 500 PL B337 196 PRL 71 1685	R. Aaij et al. R. Aaij et al. R. Aaij et al. R. Louvot et al. A. Drutskoy et al. D. Acosta et al. F. Abe et al. R. Akers et al. F. Abe et al.	(LHCb Collab.) (LHCb Collab.) (EHCb Collab.) (BELLE Collab.) (BELLE Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (OPAL Collab.) (CDF Collab.)
	BUSKULIC	93G	PL B311 425	D. Buskulic <i>et al.</i>	(ALEPH Collab.)

NODE=S086M;LINKAGE=AT

NODE=S086230

NODE=S086P37 NODE=S086P37

NODE=S086P37;LINKAGE=A

NODE=S086

I

REFID=59136
REFID=57321
REFID=54043
REFID=52646
REFID=51852
REFID=51231
REFID=44688
REFID=43729
REFID=44014
REFID=43508
REFID=43439

= AAIJ 18AD; JHEP 1808 176 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

BOTTTOM MESONS
$$(B = \pm 1)$$
NODE=MXXX055Colspan="2">NODE=MXXX055 $(B = u\bar{b}, B^0 = d\bar{b}, B^0 = \bar{d}, B^0 = \bar{d}, B^- = u\bar{b}, similarly for B^+s$ NODE=MXXX055NODE=MXXX055MULTIONNODE=SO11DODE=SO1120MULTIONNODE=SO1120 A_{CP} is defined asNODE=SO1120 $A_{CP} = A_{CP} - B_{CP}^{-1} - C_{CP}^{-1}$ NODE=SO1120NODE=SO1120NODE=SO1120 $A_{CP} = A_{CP}^{-1} - B_{CP}^{-1} - C_{CP}^{-1} -$

77.3	$3^{+15.1}_{-14.9}\pm$ 5.9		^{16,17} AIHARA	12	BELL	$e^+e^- ightarrow ~\Upsilon(4S)$
68	± 14 \pm 5		¹⁸ DEL-AMO-SA	.10F	BABR	Repl. by LEES 13B
7	to 173	95	¹⁹ DEL-AMO-SA	. 10 G	BABR	$e^+e^- ightarrow~argama(4S)$
78.4	$4^{+10.8}_{-11.6}\pm$ 9.6		²⁰ POLUEKTOV	10	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
162	± 56		²¹ AUBERT	09 R	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
76	$^{+22}_{-23}$ \pm 7.1		²² AUBERT	08AL	BABR	Repl. by DEL-AMO- SANCHEZ 10F
53	$^{+15}_{-18}$ ± 10		²³ POLUEKTOV	06	BELL	Repl. by POLUEKTOV 10
70	±31 $^{+18}_{-15}$		²⁴ AUBERT,B	05Y	BABR	Repl. by AUBERT 08AL
77	$^{+17}_{-19}$ ± 17		²⁵ POLUEKTOV	04	BELL	Repl. by POLUEKTOV 06

YOUR NOTE

- ¹Uses binned Dalitz plot analysis of D \rightarrow $K^0_S \pi^+ \pi^-$ and $K^0_S K^+ K^-$ from $B^\pm \rightarrow$ $D \, {\cal K}^{\pm}$ modes. Strong phase measurements from CLEO-c of the D decay over the Dalitz plot are used as input.
- 2 Measured in $B^0_S \to ~D^\mp_S {\cal K}^\pm$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s =$ 0.030 ± 0.033 from HFLAV. The value is modulo $180^\circ.$
- 3 AAIJ 18Z reports the intervals (5–86) $^\circ$ or (185–266) $^\circ$ at 68% C.L. The extraction uses the time dependent CP violation measurement in $B^0 \rightarrow D^{\mp} \pi^{\pm}$ decays with external input and some theoretical assumptions.
- ⁴Uses Dalitz plot analysis of $D \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow DK^*(892)^0$ modes. Measures $r_{B^0}=0.39\pm0.13$, and $\delta_{B^0}=197^{+24}_{-20}$ degrees.
- 5 A combination of measurements from analyses of time-integrated $B^+ o ~ D \, {\cal K}^+$, $B^0 o$ $DK^{(*)0}$, $B^0 \rightarrow DK^+\pi^-$, and $B^+ \rightarrow DK^+\pi^+\pi^-$ tree-level decays. In addition, results from a time-dependent analysis of $B_s^0 \rightarrow D_s K$ decays are included.
- ⁶A model-independent binned Dalitz plot analysis of the decays $B^0 \rightarrow DK^{*0}$, with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $D \rightarrow K_S^0 K^+ K^-$. The results cannot be combined with the model-dependent analysis of the same dataset reported in AAIJ 16AA.
- ⁷ Angle γ required to satisfy 0 < γ < 180 degrees.
- 8 Obtained by measuring time-dependent CP asymmetry in $B^0_{S} o K^+ K^-$ and using a U-spin relation between $B_s^0 \rightarrow K^+ K^-$ and $B^0 \rightarrow \pi^+ \pi^-$
- 9 Results are also presented using additional inputs on $B^0 o \ \pi^0 \pi^0$ and $B^+ o \ \pi^+ \pi^0$ decays from other experiments and isospin symmetry assumptions. The dependence of the results on the maximum allowed amount of U-spin breaking up to 50% is also included.
- ¹⁰Uses binned Dalitz plot analysis of $B^+ \rightarrow DK^+$ decays, with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $D \rightarrow K^0_{\varsigma} K^+ K^-$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input. Solution that satisfies 0 $<\gamma<$ 180 is chosen.
- ¹¹AAIJ 14BE uses model-dependent analysis of $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10F.
- ¹² Measured in $B_s^0 \to D_s^{\mp} K^{\pm}$ decays, constraining $-2\beta_s$ by the measurement of $\phi_s =$
- $0.01\pm0.07\pm0.0$ from AAIJ 13AR. The value is modulo 180° at 68% CL. 13 Presents a confidence region $55.4^\circ<\gamma<82.3^\circ$ at 68% CL with best fit value 72.6° and includes both statistical and systematic uncertainties. The corresponding 95% CL is 40.2 $^{\circ}~<~\gamma~<$ 92.7°. The value is determined from combination of measuremets using D meson decaying to K^+K^- , $\pi^+\pi^-$, $K^\pm\pi^\mp$, $K^0_S\pi^+\pi^-$, $K^0_SK^+K^-$, and $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$. Combines $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pm}$
- ¹⁴ Reports combination of published measurements using GGSZ, GLW, and ADS methods. Reports also 2σ range of 41–102° and a 5.9 σ significance for $\gamma(B^+ \rightarrow D^{(*)0} \kappa^{(*)+})$ \neq 0 hypothesis.

- 17 We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and $\overline{D}{}^0$ amplitudes.
- ¹⁸Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^ D^{(*)} {\it K}^+$, $D {\it K}^{*+}$ modes. The corresponding two standard deviation interval for γ is $39^{\circ} < \gamma < 98^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- 19 Reports confidence intervals for the CKM angle γ from the measured values of the GLW parameters using $B^{\pm} \rightarrow DK^{\pm}$ decays with D mesons decaying to non- $CP(K\pi)$, CPeven (K^+K^- , $\pi^+\pi^-$), and *CP*-odd ($K^0_{\varsigma}\pi^0$, $K^0_{\varsigma}\omega$) states.

NODE=S041GGM;LINKAGE=I

NODE=S041GGM:LINKAGE=J

NODE=S041GGM;LINKAGE=K

NODE=S041GGM;LINKAGE=C

NODE=S041GGM;LINKAGE=B

NODE=S041GGM;LINKAGE=E

NODE=S041GGM;LINKAGE=F NODE=S041GGM;LINKAGE=H

NODE=S041GGM;LINKAGE=IH

NODE=S041GGM;LINKAGE=A

NODE=S041GGM;LINKAGE=IA

NODE=S041GGM;LINKAGE=G

NODE=S041GGM;LINKAGE=AJ

NODE=S041GGM;LINKAGE=LE

NODE=S041GGM;LINKAGE=AA NODE=S041GGM;LINKAGE=AH

NODE=S041GGM;LINKAGE=AI

NODE=S041GGM;LINKAGE=DE

NODE=S041GGM;LINKAGE=DA

NODE=S041GGM;LINKAGE=PU

NODE=S041GGM;LINKAGE=D

NODE=S041GGM;LINKAGE=AB

NODE=S041GGM;LINKAGE=PL

NODE=S041GGM;LINKAGE=AU

NODE=S041GGM;LINKAGE=PO

NODE=S041ARX

NODE=S041ARX

- ²⁰ Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays from $B^+ \rightarrow D^{(*)} K^+$ modes. The corresponding two standard deviation interval for γ is 54.2° $< \gamma < 100.5^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- ²¹ Uses Dalitz plot analysis of $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow D^0 K^{*0}$ modes. The corresponding 95% CL interval is 77° < γ < 247°. A 180 degree ambiguity is implied.
- ²² Uses Dalitz plot analysis of $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}^0 \to K_S^0 K^+ K^-$ decays coming from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes. The corresponding two standard deviation interval is $29^\circ < \gamma < 122^\circ$.
- ²³ Uses a Dalitz plot analysis of the $\overline{D}^0 \to K_5^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes. The corresponding two standard deviations interval for gamma is $8^\circ < \gamma < 111^\circ$.
- ²⁴Uses a Dalitz plot analysis of neutral $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ decays coming from $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D^{*0}K^{\pm}$ followed by $D^{*0} \rightarrow D\pi^{0}$, $D\gamma$. The corresponding two standard deviations interval for gamma is $12^{\circ} < \gamma < 137^{\circ}$. AUBERT, B 05Y also reports the amplitude ratios and the strong phases.
- ²⁵ Uses a Dalitz plot analysis of the 3-body $D \to K_S^0 \pi^+ \pi^-$ decays coming from $B^\pm \to DK^\pm$ and $B^\pm \to D^* K^\pm$ followed by $D^* \to D\pi^0$; here we use D to denote that the neutral D meson produced in the decay is an admixture of D^0 and \overline{D}^0 . The corresponding two standard deviations interval for γ is 26° < γ < 126°. POLUEKTOV 04 also reports the amplitude ratios and the strong phases.

$r_B(B^+ \rightarrow D^0 K^+)$

 r_B and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A(B^+ \rightarrow D^0 K^+)$ and $A(B^+ \rightarrow \overline{D}^0 K^+)$,

	VALUE 0.103±0.005 OUR EV	<u>CL%</u> ALUAT	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT	N 	ODE=S041ARX → UNCHECKED ←
	$[0.095 \pm 0.008 \text{ OUR } 201]$	8 AVER	AGE]				N	EVV
YOUR DATA	$0.086 \substack{+0.013 \\ -0.014}$		¹ AAIJ	18 AC	LHCB	pp at 13 TeV	l	
	$0.080\substack{+0.019\\-0.021}$		² AAIJ	14BA	LHCB	<i>pp</i> at 7, 8 TeV		
	$0.097 \!\pm\! 0.011$		³ AAIJ	13AE	LHCB	pp at 7 TeV		
	$0.092\substack{+0.013\\-0.012}$		⁴ LEES	13 B	BABR	$e^+e^- \rightarrow \Upsilon(4S)$		
	$0.160 \substack{+0.040 + 0.051 \\ -0.038 - 0.015}$		⁵ POLUEKTOV	10	BELL	$e^+e^- \rightarrow \Upsilon(4S)$		
	• • • We do not use the	followi	ng data for average	s, fits,	limits,	etc. • • •		
	$\begin{array}{c} 0.06 \pm 0.04 \\ 0.07 \pm 0.04 \\ 0.145 \pm 0.030 \pm 0.015 \\ < 0.12 \end{array}$	00	⁶ AAIJ 7,8 AAIJ ^{8,9} AIHARA 10 LEES	14BE 12AQ 12	LHCB LHCB BELL	Repl. by AAIJ 14BA pp at 7 TeV $e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \chi \Upsilon(4S)$		
	< 0.13 0.096+0.029+0.006	90	¹¹ DFL-AMO-SA	10F	BABR	Repl by LEES 13B		
	$0.095 \substack{+0.051 \\ -0.041}$		¹² DEL-AMO-SA	10н	BABR	Repl. by LEES 13B		
	$0.086\!\pm\!0.032\!\pm\!0.015$		¹³ AUBERT	08AL	BABR	Repl. by DEL-AMO-		
	<0.19	90	HORII	80	BELL	$e^+e^- \rightarrow \Upsilon(4S)$		
	$0.159^{+0.054}_{-0.050}{\pm}0.050$		¹⁴ POLUEKTOV	06	BELL	Repl. by POLUEK- TOV 10		
	$0.12 \ \pm 0.08 \ \pm 0.05$		¹⁵ AUBERT,B	05Y	BABR	Repl. by AUBERT 08AL		
YOUR NOTE	1 Uses binned Dalitz μ DK^\pm modes. Strong	olot ana g phase	lysis of $D o extsf{K}_S^0$ measurements from	$\pi^+\pi$	[—] and D-c of th	${\mathcal K}^0_{{\mathcal S}}{\mathcal K}^+{\mathcal K}^-$ from ${\mathcal B}^\pm o$ ne D decay over the Dalitz	N	ODE=S041ARX;LINKAGE=B
	plot are used as inpu	t.		z+		(+, -)		
	$D \rightarrow K^0_S K^+ K^$	Strong	phase measurement	its fro	m CLE	D-c (LIBBY 10) of the D	N	ODE=S041ARX;LINKAGE=A
	decay over the Dalitz	plot ar	e used as input.					
	³ Uses $B^{\pm} \rightarrow [K^{\pm}\pi^{\pm}$	$+\pi^{+}\pi^{-}$	$[]_D h^{\pm}$ mode.				N	ODE=S041ARX;LINKAGE=AJ
	⁴ Reports combination	of publi	shed measurements 0	s using	g GGSZ,	GLW, and ADS methods.	N	ODE=S041ARX;LINKAGE=LS
	corresponding two st	andard (deviation interval is	ecays 0.084	rom B < rB <	$v \rightarrow D^{*}K^{*}$ modes. The $< 0.239.$	N	ODE=S041ARX;LINKAGE=PU
	⁶ AAIJ 14BE uses moo	lel-depe	ndent analysis of D	$\rightarrow k$	$S_{S}^{0}\pi^{+}\pi$	[—] amplitudes. The model	N	ODE=S041ARX;LINKAGE=IA
	⁷ Reports combined st	L-AIVIO- atistical	and systematic unc	ertain	ties.		N	
	⁸ Uses binned Dalitz pl	ot of \overline{D}^{0}	$\rightarrow K^0_{\varsigma} \pi^+ \pi^- \det$	ays fr	om B+	$\rightarrow \overline{D}{}^0 \kappa^+$. Measurement	N	
	of strong phases in \overline{L}	$\bar{p}^0 \rightarrow P$	$\zeta_{S}^{0}\pi^{+}\pi^{-}$ Dalitz pl	ot fro	m LIBB	Y 10 is used as input.		

```
^{9}\mathrm{We} combined the systematics in quadrature. The authors report separately the contri-
bution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and \overline{D}^0 amplitudes.

<sup>10</sup>Uses decays of neutral D to K^-\pi^+\pi^0.

<sup>11</sup>Uses Dalitz plot analysis of \overline{D}^0 \rightarrow K_S^0\pi^+\pi^-, K_S^0K^+K^- decays from B^+ \rightarrow
```

- $D^{(st)}\kappa^{(st)+}$ modes. The corresponding two standard deviation interval is 0.037 <r_B <0.155.
- ¹² Uses the Cabibbo suppressed decay of $B^+ \to \overline{D}K^+$ followed by $\overline{D} \to K^-\pi^+$. ¹³ Uses Dalitz plot analysis of $\overline{D}^0 \to K^0_S \pi^+\pi^-$ and $\overline{D}^0 \to K^0_S K^+K^-$ decays coming
- from $B^{\pm} \rightarrow D^{(*)} \kappa^{(*)\pm}$ modes. ¹⁴ Uses a Dalitz plot analysis of the $\overline{D}^0 \rightarrow \kappa^0_S \pi^+ \pi^-$ decays; Combines the $D \kappa^+$, $D^* \kappa^+$
- and DK^{*+} modes. 15 Uses a Dalitz analysis of neutral D decays to $K_S^0 \pi^+ \pi^-$ in the processes $B^\pm \rightarrow$ $D^{(*)} K^{\pm}, D^* \rightarrow D \pi^0, D \gamma.$

```
\delta_B(B^+ \rightarrow D^0 K^+)
```

VALUE ($^{\circ}$)

134 + 14 - 15

 $105 + 16 \\ -17$

YOUR NOTE

 $136.7^{+13.0}_{-15.8}\pm23.2$

DOCUMENT ID TECN COMMENT

⁴ POLUEKTOV 10 BELL $e^+e^- \rightarrow \Upsilon(4S)$

14BA LHCB pp at 7, 8 TeV

13B BABR $e^+e^- \rightarrow \Upsilon(4S)$

136.9⁺ 4.6 OUR EVALUATION

 2 AAIJ

³ LEES

113 \pm **9 OUR AVERAGE** Error includes scale factor of 1.2. [(123 \pm 10)^o OUR 2018 AVERAGE] YOUR DATA 101 \pm 11 1 AAIJ 18AD LHCB pp at 13 TeV

I

• • • We do not u	se the following data	a for averages,	fits, limits, etc. • • •		
$\begin{array}{ccc} 115 & +41 \\ & -51 \end{array}$	⁵ AAIJ	14BE LHCB	Repl. by AAIJ 14BA		
$137 \begin{array}{r} +35 \\ -46 \end{array}$	6,7 AAIJ	12AQ LHCB	pp at 7 TeV		
$129.9\!\pm\!15.0\!\pm~6.0$	^{7,8} AIHARA	12 BELL	$e^+e^- ightarrow ~\Upsilon(4S)$		
$119 \begin{array}{c} +19 \\ -20 \end{array} \pm 4$	⁹ DEL-AMO-SA	10F BABR	Repl. by LEES 13B		
$109 \begin{array}{r} +27 \\ -30 \end{array} \pm 8$	¹⁰ AUBERT	08AL BABR	Repl. by DEL-AMO-SANCHEZ 10F		
$145.7^{+19.0}_{-19.7}{\pm}23.1$	¹¹ POLUEKTOV	06 BELL	Repl. by POLUEKTOV 10		
$104 \pm 45 {+23 \atop -32}$	¹² AUBERT,B	05Y BABR	Repl. by AUBERT 08AL		
1 Uses binned D	alitz plot analysis o	$f D \rightarrow K_S^0 \pi$	$\kappa^+\pi^-$ and $K^0_S K^+ K^-$ from $B^\pm o \pi^+$	NODE=S041DRX;L	INKAGE=B
DK^{\pm} modes. S	Strong phase measu	rements from (CLEO-c of the D decay over the Dalitz		
plot are used as	s input.			I	
	hitz plot analysis of	$B^{+} \rightarrow DK$	decays, with $D \rightarrow K_{S}^{*}\pi^{+}\pi^{-}$ and	NODE=S041DRX;L	INKAGE=A
$D \rightarrow K_{S}^{0}K^{+}$	K ⁻ . Strong phase	measurements	s from CLEO-c (LIBBY 10) of the D		
³ Reports combin	Dalitz plot are used	as input.	using CCS7 CLW and ADS methods		
⁴ Uses Dalitz plot	analysis of $\overline{D}^0 \rightarrow$	$K^0_{\pi}\pi^+\pi^-$ dec	caves from $B^+ \rightarrow \overline{D}{}^0 K^+$ modes. The	NODE=5041DRX;L	INKAGE=LE
corresponding t	wo standard deviation	on interval is 1	$02.2^{\circ} < \delta_{P} < 162.3^{\circ}$.	NODE=S041DRX;L	INKAGE=PU
⁵ AALL 14BE use	s model-dependent a	analysis of D -	$\rightarrow K^0_0 \pi^+ \pi^-$ amplitudes The model		
is the same as i	n DEL-AMO-SANC	HEZ 10F.		NODE=S041DRX;L	INKAGE=IA
⁶ Reports combin	ed statistical and sy	stematic unce	rtainties.	NODE=S041DRX;L	INKAGE=AA
⁷ Uses binned Da	litz plot of $\overline{D}^0 \to K$	$S^{0}\pi^{+}\pi^{-}$ decay	ys from $B^+ o \overline{D}{}^0 {\cal K}^+$. Measurement	NODE=S041DRX:L	INKAGE=AH
of strong phase	s in $\overline{D}^0 \rightarrow K^0_{S} \pi^+$	π^- Dalitz plot	t from LIBBY 10 is used as input.	· · · · ,	_
⁸ We combined t	he systematics in qu	uadrature. The	e authors report separately the contri-	NODE=S041DRX;L	INKAGE=AI

- due to the uncertainty on the bin-averaged strong bution to the systematic ui ertaint phase difference between D^0 and \overline{D}^0 amplitudes. ⁹Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \rightarrow$
- $D^{(*)} \kappa^{(*)+}$ modes. The corresponding two standard deviation interval is 75 $^\circ$ < $\delta_B < 157^\circ$.
- ¹⁰ Uses Dalitz plot analysis of $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$ and $\overline{D}^0 \rightarrow K_S^0 K^+ K^-$ decays coming
- from $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ modes. ¹¹Uses a Dalitz plot analysis of the $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes.

NODE=S041ARX;LINKAGE=AI

NODE=S041ARX;LINKAGE=LE NODE=S041ARX;LINKAGE=DE

NODE=S041ARX;LINKAGE=DL NODE=S041ARX;LINKAGE=AB

NODE=S041ARX:LINKAGE=PO

NODE=S041ARX;LINKAGE=AU

NODE=S041DRX;LINKAGE=DE

NODE=S041DRX;LINKAGE=AB

NODE=S041DRX;LINKAGE=PO

NODE=S041DRX NODE=S041DRX

 \rightarrow UNCHECKED \leftarrow NFW

NODE=S041DRX;LINKAGE=AU

¹²Uses a Dalitz analysis of neutral D decays to $K_S^0 \pi^+ \pi^-$ in the processes $B^{\pm} \rightarrow D^{(*)} K^{\pm}$, $D^* \rightarrow D\pi^0$, $D\gamma$.

			B	E REFERENCES		
YOUR PAPER	AAIJ	18AD	JHEP 1808 176	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	Also		JHEP 1810 107 (errat) R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	18U	JHEP 1803 059 `	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	18Z	JHEP 1806 084	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	16AA	JHEP 1608 137	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	16AQ	JHEP 1612 087	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	16Z	JHEP 1606 131	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	15BC	PR D92 112005	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	15K	PL B741 1	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	14BA	JHEP 1410 097	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	14BE	NP B888 169	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	14BF	JHEP 1411 060	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	13AE	PL B723 44	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	13AK	PL B726 151	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AAIJ	13AR	PR D87 112010	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	LEES	13B	PR D87 052015	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
	AAIJ	12AQ	PL B718 43	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	AIHARA	12	PR D85 112014	H. Aihara <i>et al.</i>	(BELLE	Collab.)
	LEES	11D	PR D84 012002	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
	DEL-AMO-SA	10F	PRL 105 121801	P. del Amo Sanchez <i>et al.</i>	(BABAR	Collab.)
	DEL-AMO-SA	10G	PR D82 072004	P. del Amo Sanchez et al.	(BABAR	Collab.)
	DEL-AMO-SA	10H	PR D82 072006	P. del Amo Sanchez et al.	(BABAR	Collab.)
	LIBBY	10	PR D82 112006	J. Libby <i>et al.</i>	(CLEO	Collab.)
	POLUEKTOV	10	PR D81 112002	A. Poluektov et al.	(BELLE	Collab.)
	AUBERT	09R	PR D79 072003	B. Aubert <i>et al.</i>	(BABAR	Collab.)
	AUBERT	08AL	PR D78 034023	B. Aubert <i>et al.</i>	(BABAR	Collab.)
	HORII	08	PR D78 071901	Y. Horii <i>et al.</i>	(BELLE	Collab.)
	POLUEKTOV	06	PR D73 112009	A. Poluektov et al.	(BELLE	Collab.)
	AUBERT,B	05Y	PRL 95 121802	B. Aubert <i>et al.</i>	(BABAR	Collab.)
	POLUEKTOV	04	PR D70 072003	A. Poluektov et al.	(BELLE	Collab.)

NODE=S041

DEEID_E0120
KELID=20120
DEEID_50252
REFID=39332
REFID-50000
KETID=39090
REFID=59118
RFFID = 57349
REFID = 5(005)
REFID=5/338
DEEID_57010
REFID=57012
REFID-56383
ILL ID = 30303
REFID=56167
REFID = 56187
REFID=50197
PEEID-55082
KLTID=33002
REFID=55097
REFID=55159
PEEID-54048
KLIID-J4940
REFID=54594
REFID-54412
REFID=53/51
DEEID_52412
KEFID=55415
RFFID=53455
REFID = 50 100
REFID=53456
DEEID_52502
KEFID=55565
REFID=53340
REFID=52798
DEEID_52261
NEFID-52501
RFFID=52533
KEFID=51287
PEEID -50010
NELID-20919
REFID=50223

Dear Colleague,

= AAIJ 18AF; JHEP 1808 131 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

= AAIJ 18AG; JHEP 1808 039 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

$$\begin{aligned} \begin{array}{c} & \text{BOTTOM BARYONS} \\ (\beta = -1) \\ \lambda_{0}^{b} = udb, \Xi_{0}^{b} = usb, \Xi_{0}^{-} = dsb, \Omega_{0}^{-} = ssb \\ \hline \\ & \text{NODE}_{abs} \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{Status: } * * * * \\ \\ & \text{In the quark model, a } A_{0}^{b} \text{ is an isospin-0} udb \text{ state. The lowest } A_{0}^{b} \\ & \text{ough to have } \beta^{B} = 1/2^{+}. \text{ None of } I, J \text{ or } P \text{ have actually been} \\ \\ & \text{measured} \\ \hline \\ & \text{DOE}_{abs} \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{ Status: } * * * * \\ \\ & \text{In the quark model, a } A_{0}^{b} \text{ is an isospin-0} udb \text{ state. The lowest } A_{0}^{b} \\ & \text{ough to have } \beta^{B} = 1/2^{+}. \text{ None of } I, J \text{ or } P \text{ have actually been} \\ \\ & \text{measured} \\ \hline \\ & \text{DOE}_{abs} \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{ Status: } * * * * \\ \\ & \text{Acp } P \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{ Status: } * not \\ \hline \\ & \text{Acp } P \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{ Status: } * not \\ \hline \\ & \text{Acp } P \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{ and } A_{0}^{b} \text{ deax}, \\ \hline \\ & \text{Acp } P \left(l(\beta^{B}) - 0(\frac{1}{2}^{+}) \right) \text{ and } A_{0}^{b} \text{ deax}, \\ \hline \\ & \text{Acp } P \left(l(\beta^{B} - 0) \right) \text{ and } A_{0}^{b} \text{ deax}, \\ \hline \\ & \text{Acp } P \left(l(\beta^{B} - 0) \right) \text{ and } A_{0}^{b} \text{ which is sensitive } \\ \hline \\ & \text{YOUR DATA} \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{YOUR DATA} \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{YOUR DATA} \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{YOUR DATA} \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase space of the deay. \\ \hline \\ & \text{Adsumed over full plase spa$$

4/5/2019 10:34 Page 192

	$a_P(\Xi_b^0 \rightarrow pK^-K^-\pi^+)$ Observable calculated as a sensitive to parity violation. <u>VALUE (%)</u>	verage of the triple products for <u>DOCUMENT ID</u> <u>TECN</u>	or Ξ_b^0 and Ξ_b^0 , which is	NODE=S060A01 NODE=S060A01 NODE=S060A01
YOUR DATA	$-3.04\pm5.19\pm0.36$	¹ AAIJ 18AG LHCB	<i>pp</i> at 7, 8 TeV	
YOUR NOTE	1 Measured over full phase spac	e of the decay.		NODE=S060A01;LINKAGE=A
	$a_{CP}(\varXi_b^0 \rightarrow pK^-K^-\pi^+)$ Observable calculated as hal which is sensitive to CP vio VALUE (%)	f of the difference between triple lation. <u>DOCUMENT ID</u> <u>TECN</u>	products for Ξ_b^0 and $\overline{\Xi}_b^0$, <u>COMMENT</u>	NODE=S060A02 NODE=S060A02 NODE=S060A02
YOUR DATA	$-3.58 {\pm} 5.19 {\pm} 0.36$	¹ AAIJ 18AG LHCB	<i>pp</i> at 7, 8 TeV	
YOUR NOTE	¹ Measured over full phase spac	e of the decay.		NODE=S060A02;LINKAGE=A
		<i>E_b</i> REFERENCES		NODE=S060
YOUR PAPER	AAIJ 18AG JHEP 1808 039	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59146

= AAIJ 18AJ; PRL 120 061801 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

4/5/2019 10:34 Page 194

 $^{11}{\rm SIRUNYAN}$ 18DU search for high mass diphoton resonance in $\it p\,p \rightarrow ~\gamma\gamma$ at 13 TeV using 35.9 fb⁻¹; no signal; limits placed on RS Graviton, LED, and clockwork. ¹²SIRUNYAN 18ED search for $pp \rightarrow V \rightarrow Wh$; $h \rightarrow b\overline{b}$; $W \rightarrow I\nu$ at 13 TeV with NODE=S015CS;LINKAGE=X 35.9 fb⁻¹; no signal; limits set on m(W')¿2.9 TeV. $^{13}\mathrm{AABOUD}$ 17B exclude m(W', Z') < 1.49–2.31 TeV depending on the couplings and NODE=S015CS;LINKAGE=I W'/Z' degeneracy assumptions via WH, ZH search in pp collisions at 13 TeV with ¹⁴AAIJ 17BR search for long-lived hidden valley pions from Higgs decay. Limits are set on NODE=S015CS;LINKAGE=J

the signal strength as a function of the mass and lifetime of the long-lived particle in their Fig. 4 and Tab. 4. 15 AAD 160 search for high E_T ℓ + (ℓs or jets) with 3.2 fb $^{-1}$ at 13 TeV; exclude micro

 $3.2 \, \text{fb}^{-1}$ of data.

- black holes mass < 8 TeV (Fig. 3) for models with two extra dimensions.
- 16 AAD 16R search for WW, WZ, ZZ resonance in 20.3 fb⁻¹ at 8 TeV data; limits placed on massive RS graviton (Fig. 4).
- 17 KRASZNAHORKAY 16 report $p Li \rightarrow Be \rightarrow e \overline{e} N 5 \sigma$ resonance at 16.7 MeV– possible evidence for nuclear interference or new light boson . However, such nuclear interference was ruled out already by ZANG 17.
- $^{18}\mathsf{LEES}$ 15E search for long-lived neutral particles produced in $e^+\,e^-$ collisions in the Upsilon region, which decays into e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , or $\pi^\pm K^\mp$. See their Fig. 2 for cross section limits.
- $^{19}\mathrm{ADAMS}$ 97B search for a hadron-like neutral particle produced in pN interactions, which decays into a ρ^0 and a weakly interacting massive particle. Upper limits are given for the ratio to K₁ production for the mass range 1.2-5 GeV and lifetime 10^{-9} - 10^{-4} s. See also our Light Gluino Section.
- $^{20}\,{\rm GALLAS}$ 95 limit is for a weakly interacting neutral particle produced in 800 GeV/c $p\,N$ interactions decaying with a lifetime of 10^{-4} - 10^{-8} s. See their Figs. 8 and 9. Similar limits are obtained for a stable particle with interaction cross section 10^{-29} – 10^{-33} cm². See Fig. 10.
- 21 AKESŠON 91 limit is from weakly interacting neutral long-lived particles produced in pN reaction at 450 GeV/c performed at CERN SPS. Bourquin-Gaillard formula is used as the production model. The above limit is for $au\,>\,10^{-7}\,{
 m s.}\,$ For $au\,>\,10^{-9}\,{
 m s.}\,$ $\sigma < 10^{-30} \, \mathrm{cm}^{-2}/\mathrm{nucleon}$ is obtained.
- $^{22}\,{\rm BADIER}$ 86 looked for long-lived particles at 300 GeV π^- beam dump. The limit applies for nonstrongly interacting neutral or charged particles with mass >2 GeV. The limit applies for particle modes, $\mu^+\pi^-$, $\mu^+\mu^-$, $\pi^+\pi^-X$, $\pi^+\pi^-\pi^\pm$ etc. See their figure 5 for the contours of limits in the mass- τ plane for each mode.
- 23 GUSTAFSON 76 is a 300 GeV FNAL experiment looking for heavy (m >2 GeV) longlived neutral hadrons in the M4 neutral beam. The above typical value is for m = 3GeV and assumes an interaction cross section of 1 mb. Values as a function of mass and interaction cross section are given in figure 2.

REFERENCES FOR Other Particle Searches

	AABOUD	18CJ	PR D98 052008	M. Aaboud et al.	(ATLAS	Collab.)
	AABOUD	18CM	PR D98 092008	M. Aaboud et al.	(ATLAS	Collab.)
YOUR PAPER	AAIJ	18AJ	PRL 120 061801	R. Aaij <i>et al.</i>	`(LHCb	Collab.)
	BANERJEE	18	PRL 120 231802	D. Banerjee <i>et al.</i>	(NA64	Collab.)
	BANERJEE	18A	PR D97 072002	D. Banerjee <i>et al.</i>	(NA64	Collab.)
	MARSICANO	18	PR D98 015031	L. Marsicano <i>et al.</i>		,
	SIRUNYAN	18BB	JHEP 1806 120	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DA	JHEP 1811 042	A.M. Sirunyan et al.	(CMS	Collab.)
	SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	18DR	JHEP 1811 161	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	SIRUNYAN	18ED	JHEP 1811 172	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
	AABOUD	17B	PL B765 32	M. Aaboud et al.	(ATLAS	Collab.)
	AAIJ	17BR	EPJ C77 812	R. Aaij <i>et al.</i>	(LHCb	Collab.)
	ZANG	17	PL B773 159	X. Zang, G.A. Miller		(WASH)
	AAD	160	PL B760 520	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	AAD	16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS	Collab.)
	KRASZNAHO	16	PRL 116 042501	A.J. Krasznahorkay <i>et al.</i>	(HINR,	ANIK+)
	LEES	15E	PRL 114 171801	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
	ADAMS	97B	PRL 79 4083	J. Adams <i>et al.</i>	(FNAL KTeV	Collab.)
	GALLAS	95	PR D52 6	E. Gallas <i>et al.</i>	(MSU, FNAL, MIT	, FLOR)
	AKESSON	91	ZPHY C52 219	T. Akesson <i>et al.</i>	(HELIOS	Collab.)
	BADIER	86	ZPHY C31 21	J. Badier <i>et al.</i>	(NA3	Collab.)
	GUSTAFSON	76	PRL 37 474	H.R. Gustafson et al.		(MICH)

NODE=S015

RFFIII = 50//1
NELID-39441
RFFID = 59474
DEEID _50100
IVEL ID - 39199
11E1 1D = 500000
DEEID_E0016
VELID=20210
REEID = 58967
11E1 1E = 50501
DEEID_60112
NELID=20117
REFID=59300
112112 00000
DEEID_60210
VELID=28210
RFFHIII=hHHHI
11EL 10 - 00001
REFID - 39409
REFID Paper
IVEL 1D=33300
DEEID E7706
REEID = 58366
11E1 1E = 300000
DEEID_60211
VELID=28211
REEID = h/IhY
11E1 1D - 51 105
DEEID_67170
REFID=3/1/2
REFID=59302
11EL 10 - 00002
DEEID_66/67
REFID=30407
REEID = 45777
R = 10 - 1/201
110-44291
DEEID 41720
KEFID = 41/39
REFIN=10622
110-10022
DEEID 10000
KEFID = 12580

NODE=S015CS;LINKAGE=G

NODE=S015CS;LINKAGE=H

NODE=S015CS;LINKAGE=Q

NODE=S015CS;LINKAGE=F

NODE=S015CS;LINKAGE=E

NODE=S015CS:LINKAGE=C

NODE=S015CS;LINKAGE=B

NODE=S015CS:LINKAGE=D

NODE=S015CS;LINKAGE=A

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

BOTTOM MESONS $(B=\pm 1)$

 $B^+ = u\overline{b}, \ B^0 = d\overline{b}, \ \overline{B}{}^0 = \overline{d} b, \ B^- = \overline{u} b,$ similarly for B^* 's

 $I(J^P) = \frac{1}{2}(0^-)$

Quantum numbers not measured. Values shown are quark-model

 B^0

predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^{\pm} Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing" near the end of the B^0 Particle Listings.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

	$\Gamma(\eta_c(1S)K^+\pi^-)/\Gamma_{\text{total}}$		TECH	601 <i>11</i> 15117	Г ₁₈₀ /Г	N	ODE=S042P28
	VALUE (units 10 +)	1 ΔΔΙΙ	18AN LHCB	COMMENT	and 13 TeV		5DE-50421 20
YOUR NOTE	¹ Measured relative to that of the η_{c} reconstructed in the $p\overline{p} \mod B(J/\psi \rightarrow p\overline{p}) = (2.121 \pm 0.02)$	e $B^0 \rightarrow J/\psi K$ e with B($B^0 \rightarrow$ 9) × 10 ⁻³ , and	$+\pi^{-}$ as norm $J/\psi K^{+}\pi^{-}$) $B(\eta_{c} \rightarrow p\overline{p})$	$p p at 7, 0$ $nalization wh$ $= (1.15 \pm 0)$ $= (1.52 \pm 0)$	here J/ψ and 0.05) × 10 ⁻³ , 0.16) × 10 ⁻³ .	N	DDE=S042P28;LINKAGE
	$\Gamma(\eta_c K^*(1410)^0, K^*(1410)^0 - VALUE (units 10^{-2})$	→ K ⁺ π ⁻)/Г(а DOCUMENT ID	η _c (15) K ⁺ π _{TECN}	COMMENT	$\Gamma_{181}/\Gamma_{180}$	N N	ODE=S042P32 ODE=S042P32
YOUR DATA	2.1±1.1±1.1	AAIJ	18AN LHCB	<i>pp</i> at 7, 8,	13 TeV	1	
	$\Gamma(\eta_c K^+ \pi^- (NR)) / \Gamma(\eta_c(1S) K)$ VALUE (units 10 ⁻²)	(+π ⁻) 	TECN	COMMENT	Γ ₁₈₂ /Γ ₁₈₀	N	ODE=S042P33 ODE=S042P33
YOUR DATA	$10.3 \pm 1.4^{+1.0}$	AAIJ	18AN LHCB	pp at 7, 8,	13 TeV	1	
YOUR DATA	$\Gamma(\eta_c K_0^*(1430)^0, K_0^*(1430)^0 - \frac{VALUE(units 10^{-2})}{25.3 \pm 3.5 + 3.5}$	K ⁺ π ⁻)/Γ(<u>DOCUMENT ID</u> AAIJ	η _c (1 <i>S</i>) <i>K</i> +π <u>TECN</u> 18AN LHCB	со ммент ррат 7, 8,	Γ₁₈₃/Γ₁₈₀ 13 TeV	N N	DDE=S042P34 DDE=S042P34
YOUR DATA	$\Gamma(\eta_c K_2^*(1430)^0, K_2^*(1430)^0 - \frac{VALUE (units 10^{-2})}{4.1 \pm 1.5 + 1.6}$	→ K ⁺ π ⁻)/Γ(<u>DOCUMENT ID</u> AAIJ	η _c(1<i>S</i>) Κ⁺ π <u>TECN</u> 18AN LHCB	<i>COMMENT</i> <i>pp</i> at 7, 8,	Γ₁₈₄/Γ₁₈₀ 13 TeV	N N	DDE=S042P35 DDE=S042P35
YOUR DATA	$\Gamma(\eta_c K^*(1680)^0, K^*(1680)^0 - \frac{VALUE \text{ (units } 10^{-2})}{2.2 \pm 2.0 + 1.5}$	K ⁺ π ⁻)/Γ(<u>document id</u> AAIJ	η _c (15) K ⁺ π <u>TECN</u> 18AN LHCB	-) <u>COMMENT</u> pp at 7, 8,	Γ₁₈₅/Γ₁₈₀ 13 TeV	N N	DDE=S042P36 DDE=S042P36
YOUR DATA	$\frac{\Gamma(\eta_c K_0^*(1950)^0, K_0^*(1950)^0 - V_{ALUE (units 10^{-2})})}{3.8 \pm 1.8 + 1.4}$	K ⁺ π ⁻)/Γ(<u>document id</u> AAIJ	η _c (1 <i>S</i>) K ⁺ π <u>TECN</u> 18AN LHCB	-) <u>COMMENT</u> pp at 7, 8,	Γ₁₈₆/Γ₁₈₀ 13 TeV	N N	DDE=S042P37 DDE=S042P37
YOUR DATA	$\Gamma(X(4100)^{-} K^{+}, X^{-} \to \eta_{c} \pi^{-})$ $\frac{VALUE \text{ (units } 10^{-2})}{3.3 \pm 1.1 + 1.2}$	⁻)/Г(η_с(15) <u>DOCUMENT ID</u> ААІЈ	(+π⁻) <u>TECN</u> 18AN LHCB	<u>COMMENT</u> pp at 7, 8,	Γ₁₈₇/Γ₁₈₀ 13 TeV	N N	DDE=S042P38 DDE=S042P38

NODE=MXXX045

NODE=MXXX045

NODE=S042

NODE=S042

NODE=S042220 NODE=S042220

E=A

	$\Gamma(\eta_c K^*(892)^0) / \Gamma_{ m total}$			Г ₁₈₈ /Г	NODE=S042B43
	VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN COMMENT		NODE=S042B43
	5.2 ±0.8 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. $[(0.69 \pm 0.09) \times 10^{-3}$ OUR 2018 AVERAGE]			m below.	NEW
YOUR DATA	$4.42 {\pm} 0.24 {+} 0.54 \\ {-} 0.66$	¹ AAIJ	18AN LHCB pp at 7, 8, 13	3 TeV	
	$6.7\ \pm 0.8\ \pm 0.5$	^{2,3} AUBERT	08AB BABR $e^+e^- ightarrow \gamma$	(45)	
	$\begin{array}{ccc} 6.8 & +2.1 \\ -1.9 & \pm 0.7 \end{array}$	^{4,5} AUBERT	07AV BABR $e^+e^- ightarrow \gamma$	(4 <i>S</i>)	
	$16.2\ \pm 3.2\ {}^{+5.5}_{-6.0}$	⁵ FANG	03 BELL $e^+e^- \rightarrow \gamma$	(4 <i>S</i>)	
YOUR NOTE	¹ AAIJ 18AN reports $B(B^{0})$ 0.16 ^{+0.36} _{-0.44})×10 ⁻⁴ using t	$0 \rightarrow \eta_{c} \kappa^{*}(892)^{0}$, the fitted Dalitz fraction	${\cal K}^*(892)^0 ightarrow {\cal K}^+\pi^-) =$ on of $0.541\pm 0.019 {+0.017 \atop -0.048}$ and	= (2.95 \pm d corrected	NODE=S042B43;LINKAGE=A
	for $B(K^*(892)^0 \rightarrow K^+\pi^-) = 2/3$. ² AUBERT 08AB reports $[\Gamma(B^0 \rightarrow \eta_c K^*(892)^0)/\Gamma_{total}] / [B(B^+ \rightarrow \eta_c K^+)] = 0.62 \pm 0.06 \pm 0.05$ which we multiply by our best value $B(B^+ \rightarrow \eta_c K^+) = (1.09 \pm 0.09) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic				NODE=S042B43;LINKAGE=AB
	³ Uses the production ratio of $(B^+B^-)/(B^0\overline{B}^0) = 1.026 \pm 0.032$ at $\Upsilon(4S)$. ⁴ AUBERT 07AV reports $[\Gamma(B^0 \rightarrow \eta_c K^*(892)^0)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \rightarrow p\overline{p})] = (1.03^{+}_{-0.24} \pm 0.17) \times 10^{-6}$ which we divide by our best value $B(\eta_c(1S) \rightarrow p\overline{p}) = (1.51 \pm 0.16) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.			$(p \overline{p})] =$ $(p \rightarrow p \overline{p})$ econd error	NODE=S042B43;LINKAGE=PR NODE=S042B43;LINKAGE=AU
	⁹ Assumes equal production	of B^+ and B^0 at the	ne $\Upsilon(4S)$.		NODE=S042B43;LINKAGE=EP
		B ⁰ REFEREN	ICES		NODE=S042

YOUR PAPER	AAIJ	18AN	EPJ C78 1019	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59335
	AUBERT	08AB	PR D78 012006	B. Aubert <i>et al.</i>	(BABAR Collab.)	REFID=52267
	AUBERT	07AV	PR D76 092004	B. Aubert <i>et al.</i>	(BABAR Collab.)	REFID=51990
	FANG	03	PRL 90 071801	F. Fang <i>et al.</i>	(BELLE Collab.)	REFID=49206

Reference Verifier code = AAIJ 18AO; JHEP 1809 145 (errat.) = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

= AAIJ 18AP; JHEP 1809 146 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

= AAIJ 18AY; PR D98 071103 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

4/5/2019	10:34	Page 209
1/0/2015	10.01	1 466 200

YOUR DATA	$\frac{\Gamma(\overline{D}^{*0}\phi)}{V_{ALUE}}/\Gamma_{total}$ (3.7±0.5±0.4) × 10 ⁻⁵	DOCUMENT ID TECN 1,2 AALJ 18AY LHCB	COMMENT	NODE=S086P3 NODE=S086P3	8 8
YOUR NOTE YOUR NOTE	¹ Measured from $B(B_s^0 \to \overline{D}^{*C})^2$ ² The second uncertainty including malization mode.	$\phi)/B(B^0 \to \bar{D}^0 \pi^+ \pi^-) = (4.2)$ es the uncertainty from the branches	$2 \pm 0.5 \pm 0.4$) aching fraction of the nor-	NODE=S086P3 NODE=S086P3	8;LINKAGE=A 8;LINKAGE=B
	POLA	RIZATION IN B_s^0 DECAY		NODE=S086233	3
	In decays involving two states in which meson are transverse and paral the parameters Γ_L/Γ , Γ decays involving two tendescribed by parameters $\phi_{\parallel 1}, \phi_{\parallel 2}, \phi_{\perp 1}, \phi_{\perp 2}$. S	NODE=S086233	3		
YOUR DATA	$ \begin{array}{c} \Gamma_L/\Gamma \text{ in } B^0_s \to \overline{D}^{*0}\phi \\ \underline{VALUE} \\ 0.73 \pm 0.15 \pm 0.04 \end{array} $	DOCUMENT ID TECN AAIJ 18AY LHCB	<u>COMMENT</u> pp at 7 and 8 TeV	NODE=S086A2 NODE=S086A2	2 2
		B ⁰ _s REFERENCES		NODE=S086	
YOUR PAPER	AAIJ 18AY PR D98 071103	R. Aaij <i>et al.</i>	(LHCb Collab.)	REFID=59452	

= AAIJ 18AZ; PR D98 072006 = LHCB

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

YOUR NOTE	¹ Uses B($B_s^0 \rightarrow \overline{D}^0 K^+ K^-$)/B by the same authors. ² AALL 1847 reports [$\Gamma(B^0 \rightarrow \overline{L})$]	$(B^{0} \rightarrow \overline{D}^{0} K^{+} K^{-}) = 0.930 \pm 100 K^{+} K^{-} + 100 K^{-} K^{-} + 100 K^{0} K^{+} K^{-} + 100 K^{0} K^{0} K^{-} + 100 K^{0} K$	0.089 ± 0.069 measured $\overline{D}^{0} \kappa^{+} \kappa^{-} = 0.030 + 1000$	NODE=S086R03;LINKAGE=A
YOUR NOTE	0.089 ± 0.069 which we multipl 10^{-5} . Our first error is their of error from using our best value	$K^{+}K^{-} = (6.1 \pm 0.6) \times$ d error is the systematic	NODE=S086R03;LINKAGE=E	
	³ AAIJ 12AM reports $[\Gamma(B_s^0 \rightarrow T_s^0)]$ 0.27 \pm 0.20 which we multiply 10^{-5} . Our first error is their of error from using our best value	$\overline{D}{}^0 K^+ K^-)] = 0.90 \pm$ $K^+ K^-) = (6.1 \pm 0.6) \times$ and error is the systematic	NODE=S086R03;LINKAGE=AA	
	⁴ Uses B($b \rightarrow B_{s}^{0}$)/B($b \rightarrow B_{s}^{0}$	the same authors.	NODE=S086R03;LINKAGE=AI	
		B_s^0 REFERENCES		NODE=S086
YOUR PAPER	AAIJ 18AZ PR D98 072006 AAIJ 12AM PRL 109 131801	R. Aaij et <i>al.</i> R. Aaij et <i>al.</i>	(LHCb Collab.) (LHCb Collab.)	REFID=59457 REFID=54590

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Matthew Charles

EMAIL: matthew.john.charles@cern.ch

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486-5449 FAX: 1-(510)-486-4799 EMAIL: wmyao@lbl.gov

		NODE=S026W-
	$\frac{VALUE (MeV)}{5.3 \pm 0.5 \text{ OUR AVERAGE}} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} COMMENT}$ $[4.9^{+3.3}_{-2.4} \text{ MeV OUR 2018 AVERAGE}]$	NEW
YOUR DATA	$1 - 2.4$ 7 $5.33 \pm 0.42 \pm 0.37$ 7 $4.9 + 3.1 - 2.1 \pm 1.1$ 7 8 AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV	I
YOUR NOTE	⁷ Measured using the fully reconstructed $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \to pK^-\pi^+$ decays. ⁸ Measured using the fully reconstructed $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \to K^-\pi^+$ decays.	NODE=S026W-;LINKAGE=A
	Σ _b REFERENCES	NODE=5026
YOUR PAPER	AAIJ 19A PRL 122 012001 R. Aaij et al. (LHCb Collab.) AALTONEN 12F PR D85 092011 T. Aaltonen et al. (CDF Collab.) AALTONEN 07K PRL 99 202001 T. Aaltonen et al. (CDF Collab.)	REFID=59550 REFID=54118 REFID=52023
	$\sum_{b}^{*} I(J^{P}) = 1(\frac{3}{2}^{+}) \text{ Status: } * * * \\ I, J, P \text{ need confirmation.}$	NODE=5002
	I, J, P need confirmation. Quantum numbers shown are quark-model predictions.	NODE=S062
	Σ_b^* MASS	NODE=S062205
	\$\Sigma_b^*\$ MASS Value (MeV) DOCUMENT ID TECN COMMENT 5830.32±0.27 OUR AVERAGE DOCUMENT ID TECN COMMENT	NODE=S062M+ NODE=S062M+ NEW
YOUR DATA	$[5832.1 \pm 1.9 \text{ MeV OUR 2018 AVERAGE}]$ $5830.28 \pm 0.14 \pm 0.24$ 1 AAIJ 19A LHCB pp at 7, 8 TeV $5832.1 \pm 0.7 + \frac{1.7}{1.8}$ 6 AALTONEN 12F CDF pp at 1.96 TeV	ERROR=3
YOUR NOTE	¹ Measured using the fully reconstructed $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \to pK^-\pi^+$ decays.	NODE=S062M+;LINKAGE=A
	Σ*- MASS VALUE (MeV) DOCUMENT ID TECN COMMENT 5834.74±0.30 OUR AVERAGE DOCUMENT ID TECN COMMENT	NODE=S062M- NODE=S062M- NEW
YOUR DATA	$[5835.1 \pm 1.9 \text{ MeV OUR 2018 AVERAGE}]$ $5834.73 \pm 0.17 \pm 0.25$ 2 AAIJ 19A LHCB pp at 7, 8 TeV $5835.1 \pm 0.6 \stackrel{+1.7}{-1.8}$ 6 AALTONEN 12F CDF pp at 1.96 TeV	I
YOUR NOTE	² Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays.	NODE=S062M-;LINKAGE=A
	$\begin{array}{c} m_{\boldsymbol{\Sigma}_{\boldsymbol{b}}^{*+}} - m_{\boldsymbol{\Sigma}_{\boldsymbol{b}}^{*-}} \\ \hline \\ VALUE (MeV) & DOCUMENT ID & TECN & COMMENT \end{array}$	NODE=S062DMI NODE=S062DMI
	=4.37±0.33 OUR AVERAGE Error includes scale factor of 1.6. $[-3.0^{+1.0}_{-0.9}]$ MeV OUR 2018 AVERAGE]	NEW
YOUR DATA	$-4.45 \pm 0.22 \pm 0.01$ 3 AAIJ 19A LHCB pp at 7, 8 TeV $-3.0 \ +1.0 \ -0.9 \ \pm 0.1$ 6 AALTONEN 12F CDF $p\overline{p}$ at 1.96 TeV	l
YOUR NOTE	³ Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays.	NODE=S062DMI;LINKAGE=A
	$ \begin{array}{c} m_{\Sigma_{b}^{*+}} - m_{\Sigma_{b}^{+}} \\ \hline m_{\Sigma_{b}^{*+}} - m_{\Sigma_{b}^{+}} \\ \hline m_{\Sigma_{b}^{*+}} \\ \hline m_{\Sigma_{b}^{*$	NODE=S062DMP NODE=S062DMP
YOUR NOTE	⁴ Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays.	NODE=S062DMP;LINKAGE=A
	$m_{\Sigma_{b}^{*-}} - m_{\Sigma_{b}^{-}}$ $\frac{DOCUMENT ID}{5} \frac{TECN}{100} COMMENT$	NODE=S062DMM NODE=S062DMM
YOUR DATA	⁵ Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow pK^- \pi^+$ decays. ⁶ Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow K^- \pi^+$ decays.	NODE=S062DMM;LINKAGE=A NODE=S062M;LINKAGE=AL

YOUR NOTE	¹ Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays.	I	NODE=B182M;LINKAGE=A
-----------	---	---	----------------------

Σ_b(6097)⁻ WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT ¹ AAIJ 19A LHCB pp at 7, 8 TeV YOUR DATA 28.9±4.2±0.9 ¹Measured using the fully reconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays. YOUR NOTE

$\Sigma_b(6097)^-$ REFERENCES

YOUR PAPER AAIJ

19A PRL 122 012001

R. Aaij *et al.*

(LHCb Collab.)

I

I

NODE=B182W

NODE=B182W

NODE=B182W;LINKAGE=A

NODE=B182 REFID=59550 = ALVIS 18; PRL 120 211804 = MASSARCZYK

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

R. Massarczyk

EMAIL: massarczyk@lanl.gov

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov April 5, 2019

REFERENCES FOR Other Particle Searches

		REFERENC
ALVIS	18	PRL 120 211804
AGNESE	15	PRL 114 111302
SAITO	90	PRL 65 2094
MINCER	85	PR D32 541
SAKUYAMA	83B	LNC 37 17
Also		LNC 36 389
Also		NC 78A 147
Also		NC 6C 371
BHAT	82	PR D25 2820
MARINI	82	PR D26 1777
YOCK	81	PR D23 1207
YOCK	80	PR D22 61
GOODMAN	79	PR D19 2572
BHAT	78	PRAM 10 115
BRIATORE	76	NC 31A 553
YOCK	75	NP B86 216
YOCK	74	NP B76 175
DARDO	72	NC 9A 319
TONWAR	72	JP A5 569
BJORNBOE	68	NC B53 241
JONES	67	PR 164 1584
	ALVIS AGNESE SAITO MINCER SAKUYAMA Also Also BHAT MARINI YOCK YOCK GOODMAN BHAT BRIATORE YOCK YOCK DARDO TONWAR BJORNBOE JONES	ALVIS 18 AGNESE 15 SAITO 90 MINCER 85 SAKUYAMA 83B Also Also BHAT 82 MARINI 82 YOCK 81 YOCK 81 YOCK 81 YOCK 81 YOCK 80 GOODMAN 79 BHAT 78 BRIATORE 76 YOCK 74 DARDO 72 TONWAR 72 BJORNBOE 68 JONES 67

)4	S.I. Alvis et al.	(MAJORANA Collab.)
2	R. Agnese et al.	(CDMS Collab.)
	T. Saito et al.	(ICRR, KOBE)
	A. Mincer et al.	(UMD, GMAS, NSF)
	H. Sakuyama, N. Suzuki	(MEIS)
	H. Sakuyama, K. Watanabe	(MEIS)
	H. Sakuyama, K. Watanabe	(MEIS)
	H. Sakuyama, K. Watanabe	(MEIS)
	P.N. Bhat <i>et al.</i>	(TATA)
	A. Marini et al. (FRAS,	LBL, NWES, STAN+)
	P.C.M. Yock	(AUCK)
	P.C.M. Yock	(AUCK)
	J.A. Goodman <i>et al.</i>	(UMD)
	P.N. Bhat, P.V. Ramana Murthy	(TATA)
	L. Briatore <i>et al.</i>	(LCGT, FRAS, FREIB)
	P.C.M. Yock	(AUCK, SLAC)
	P.C.M. Yock	(AUCK)
	M. Dardo <i>et al.</i>	(TORI)
	S.C. Tonwar, S. Naranan, B.V. Sr	eekantan (TATA)
	J. Bjornboe <i>et al.</i> (E	BOHR, TATA, BERN+)
	L.W. Jones (MICH, WISC,	LBL, UCLA, MINN+)

NODE=S015

REFID=58832
REFID=56445
REFID=41713
REFID=12660
REFID=12644
REFID=12645
REFID=12646
REFID=12647
REFID=12622
REFID=12625
REFID=12617
REFID=12611
REFID=12606
REFID=12591
REFID=12261
REFID=12575
REFID=12569
REFID=12281
REFID=12283
REFID=12303
REFID=12557

PORAYKO 18; PR D98 102002PPTA

Normally we send all verifications for one experiment to one person, usually the spokesperson or data-analysis coordinator, who then distributes them to the appropriate people. Please tell us if we should send the verifications for your experiment to someone else. PLEASE READ NOW

Nataliya Porayako

EMAIL: nporayko@mpifr-bonn.mpg.de

April 5, 2019

Dear Colleague,

- (1) Please check the results of your experiment carefully. They are marked.
- (2) Please reply within one week.
- (3) Please reply even if everything is correct.
- (4) IMPORTANT!! Please tell WHICH papers you are verifying. We have lots of requests out.
- (5) Feel free to make comments on our treatment of any of the results (not just yours) you see.

Thank you for helping us make the Review accurate and useful.

Sincerely,

Wei-Ming Yao Lawrence Berkeley National Lab. 1 Cyclotron Road Berkeley, CA 94720-8153 USA

PHONE: 1-(510)-486–5449 FAX: 1-(510)-486–4799 EMAIL: wmyao@lbl.gov

NODE=S015NPH;LINKAGE=CY

NODE=S015NPH;LINKAGE=DA

NODE=S015NPH;LINKAGE=AN

NODE=S015NPH;LINKAGE=CC

detected after the expected timing, in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 6.3 fb⁻¹. The data are consistent with the Standard Model expectation.

⁸ CHATRCHYAN 13 search for events with an opposite-sign lepton pair, jets, and missing E_T in *pp* collisions at $E_{cm} = 7$ TeV with L = 4.98 fb⁻¹.

⁹AAD 12C search for events with a $t\bar{t}$ pair and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 1.04 fb⁻¹.

¹⁰AALTONEN 12M search for events with a jet and missing E_T in $p\overline{p}$ collisions at E_{cm} = 1.96 TeV with L = 6.7 fb⁻¹.

¹¹CHATRCHYAN 12AP search for events with a jet and missing E_T in pp collisions at $E_{cm} = 7$ TeV with L = 5.0 fb⁻¹.

¹² CHATRCHYAN 12Q search for events with a Z, jets, and missing E_T in pp collisions at $E_{\rm cm} = 7$ TeV with L = 4.98 fb⁻¹.

¹³CHATRCHYAN 12T search for events with a photon and missing E_T in pp collisions at $E_{\rm cm} = 7$ TeV with L = 5.0 fb⁻¹.

- ¹⁴ AAD 11S search for events with one jet and missing E_T in *pp* collisions at $E_{cm} = 7$ TeV with $L = 33 \text{ pb}^{-1}$.
- ¹⁵AALTONEN 11AF search for high- p_T like-sign dileptons in $p\bar{p}$ collisions at $E_{\rm cm} = 1.96 \, {\rm TeV}$ with $L = 6.1 \, {\rm fb}^{-1}$.
- ¹⁶ CHATRCHYAN 11C search for events with an opposite-sign lepton pair, jets, and missing E_T in *pp* collisions at $E_{cm} = 7$ TeV with L = 34 pb⁻¹.
- ¹⁷ CHATRCHYAN 11U search for events with one jet and missing E_T in pp collisions at $E_{cm} = 7$ TeV with $L = 36 \text{ pb}^{-1}$.
- ¹⁸ AALTONEN 10AF search for $\gamma\gamma$ events with e, μ , τ , or missing E_T in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 1.1-2.0 fb⁻¹.
- ¹⁹AALTONEN 09AF search for $\ell \gamma b$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 1.9 fb⁻¹. The observed events are compatible with Standard Model expectation including $t\overline{t}\gamma$ production.
- ²⁰AALTONEN 09G search for $\mu\mu\mu$ and $\mu\mu e$ events with missing E_T in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV with L = 976 pb⁻¹.

REFERENCES FOR Other Particle Searches

YOUR PAPER	PORAYKO	18	PR D98 102002	N.K. Porayako <i>et al.</i>	(PPTA	Collab.)
	AAD	15AT	EPJ C75 79	G. Aad et al.	(ÀTLAS	Collab.)
	KHACHATRY	15F	PRL 114 101801	V. Khachatryan <i>et al.</i>	(CMS	Collab.)
	AALTONEN	14J	PR D89 092001	T. Aaltonen et al.	(CDF	Collab.)
	AAD	13A	PL B718 860	G. Aad et al.	(ATLAS	Collab.)
	AAD	13C	PRL 110 011802	G. Aad et al.	ATLAS	Collab.)
	AALTONEN	131	PR D88 031103	T. Aaltonen <i>et al.</i>	CDF	Collab.)
	CHATRCHYAN	13	PL B718 815	S. Chatrchyan <i>et al.</i>	(CMS	Collab.)
	AAD	12C	PRL 108 041805	G. Aad et al.	(ATLAS	Collab.)
	AALTONEN	12M	PRL 108 211804	T. Aaltonen <i>et al.</i>	CDF	Collab.)
	CHATRCHYAN	12AP	JHEP 1209 094	S. Chatrchyan <i>et al.</i>	(CMS	Collab.)
	CHATRCHYAN	12Q	PL B716 260	S. Chatrchyan et al.	(CMS	Collab.)
	CHATRCHYAN	12T	PRL 108 261803	S. Chatrchyan et al.	(CMS	Collab.)
	AAD	11S	PL B705 294	G. Aad et al.	(ATLAS	Collab.)
	AALTONEN	11AF	PRL 107 181801	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	CHATRCHYAN	11C	JHEP 1106 026	S. Chatychyan <i>et al.</i>	(CMS	Collab.)
	CHATRCHYAN	11U	PRL 107 201804	S. Chatychyan et al.	(CMS	Collab.)
	AALTONEN	10AF	PR D82 052005	T. Aaltonen et al.	(CDF	Collab.)
	AALTONEN	09AF	PR D80 011102	T. Aaltonen <i>et al.</i>	(CDF	Collab.)
	AALTONEN	09G	PR D79 052004	T. Aaltonen <i>et al.</i>	(CDF	Collab.)

NODE=S015NPH;LINKAGE=CT

NODE=S015NPH;LINKAGE=CR

NODE=S015NPH;LINKAGE=AD

NODE=S015NPH;LINKAGE=AO

NODE=S015NPH;LINKAGE=CA

NODE=S015NPH;LINKAGE=CH

NODE=S015NPH;LINKAGE=AT

NODE=S015NPH;LINKAGE=AL

NODE=S015NPH;LINKAGE=AA

NODE=S015

REFID=59488 REFID=56661 REFID=56466 REFID=54789 REFID=54789 REFID=54769 REFID=54769 REFID=54769 REFID=54769 REFID=54720 REFID=54184 REFID=53833 REFID=53831 REFID=53840 REFID=53618 REFID=52948 REFID=52801