TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

 $\Gamma(\pi^0 \rightarrow 3\gamma)/\Gamma_{total}$ η C-nonconserving decay parameters $\pi^+ \pi^- \pi^0$ left-right asymmetry $\pi^+\pi^-\pi^0$ sextant asymmetry $\pi^+\pi^-\pi^0$ quadrant asymmetry $\pi^+\pi^-\gamma$ left-right asymmetry $\pi^+ \pi^- \gamma$ parameter β (*D*-wave) $\Gamma(\eta \rightarrow \pi^0 \gamma) / \Gamma_{total}$ $\Gamma(\eta \rightarrow 2\pi^0 \gamma)/\Gamma_{total}$ $\Gamma(\eta \rightarrow 3\pi^0 \gamma)/\Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow 3\gamma)/\Gamma_{total}$ $\Gamma(\eta \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(\omega(782) \rightarrow \eta \pi^0) / \Gamma_{\text{total}}$ $\Gamma(\omega(782) \rightarrow 2\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\omega(782) \rightarrow 3\pi^0)/\Gamma_{\text{total}}$ $\eta'(958) \rightarrow \pi^+ \pi^- \gamma$ decay asymmetry parameter $\Gamma(\eta'(958) \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$ $\Gamma(\eta'(958) \rightarrow \pi^0 \rho^0) / \Gamma_{\text{total}}$ $\Gamma(\eta'(958) \rightarrow \eta e^+ e^-)/\Gamma_{total}$ $\Gamma(\eta'(958) \rightarrow 3\gamma)/\Gamma_{total}$ $\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}}$ $\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \eta) / \Gamma_{\text{total}}$ $\Gamma(J/\psi(1S) \rightarrow \gamma \gamma)/\Gamma_{\text{total}}$ $<1.4 \times 10^{-6}$, CL = 90% $\Gamma(J/\psi(1S) \rightarrow \gamma \phi)/\Gamma_{\text{total}}$

 $<3.1 \times 10^{-8}$, CL = 90% $\begin{array}{c}(0.09 \substack{+ \ 0.11 \\ - \ 0.12 \)} \times 10^{-2} \\ (0.12 \substack{+ \ 0.10 \\ - \ 0.11 \)} \times 10^{-2}\end{array}$ $(-0.09 \pm 0.09) \times 10^{-2}$ $(0.9 \pm 0.4) \times 10^{-2}$ -0.02 ± 0.07 (S = 1.3) $[a] < 9 \times 10^{-5}, CL = 90\%$ ${<}5 imes10^{-4}$, CL = 90% $<6 \times 10^{-5}$, CL = 90% ${<}1.6 imes10^{-5}$, CL = 90% [b] $< 8 \times 10^{-6}$, CL = 90% [b] $<5 \times 10^{-6}$, CL = 90% $<2.1 \times 10^{-4}$, CL = 90% $<2.2 \times 10^{-4}$, CL = 90% ${<}2.3\times10^{-4}$, CL=90% -0.03 ± 0.04 [b] $< 1.4 \times 10^{-3}$, CL = 90% $<4 \times 10^{-2}$, CL = 90% [b] $<2.4 \times 10^{-3}$, CL = 90% $< 1.0 \times 10^{-4}$, CL = 90% [b] $< 6.0 \times 10^{-5}$, CL = 90% [b] $< 1.5 \times 10^{-5}$, CL = 90%

 ${<}2.7\times10^{-7}$, ${\rm CL}=90\%$

PARITY (P) INVARIANCE

e electric dipole moment μ electric dipole moment |d| $\operatorname{Re}(d_{\tau} = \tau \text{ electric dipole moment})$ $\Gamma(\eta \rightarrow \pi^+ \pi^-)/\Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{total}$ $\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{total}$ $\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$ $a_P(B^0 \rightarrow p\overline{p}K^+\pi^-)$ $\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $\Gamma(\eta_c(1S) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$ $\Gamma(\eta_c(1S) \rightarrow K^+ K^-) / \Gamma_{\text{total}}$ $\Gamma(\eta_c(1S) \rightarrow \kappa_S^0 \kappa_S^0) / \Gamma_{\text{total}}$ p electric dipole moment n electric dipole moment Λ electric dipole moment $a_P(\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-)$ $a_P(\Lambda_b^{\bar{0}} \rightarrow pK^-\pi^+\pi^-)$ $a_P(\Lambda_b^0 \rightarrow pK^-K^+\pi^-)$ $a_P(\Lambda_h^0 \to pK^-K^+K^-)$ $a_P(\Lambda_b^{\tilde{0}} \rightarrow pK^-\mu^+\mu^-)$

 $<0.041 \times 10^{-28}$ ecm, CL = 90% $< 1.8 \times 10^{-19} \ e \, {\rm cm}, \, {\rm CL} = 95\%$ -0.185 to 0.061×10^{-16} ecm, CL = 95% $<4.4 \times 10^{-6}$, CL = 90% ${<}3.5\times10^{-4},~\text{CL}=90\%$ $< 6.9 \times 10^{-7}$, CL = 90% $<1.8 \times 10^{-5}$, CL = 90% $<4 \times 10^{-4}$, CL = 90% $(1.5 \pm 0.9)\%$ $< 1.3 \times 10^{-4}$, CL = 90% $< 4 \times 10^{-5}$, CL = 90% $< 7 \times 10^{-4}$, CL = 90% ${<}4\times10^{-4}\text{, }$ CL =90% ${<}0.021\times10^{-23}~\text{ecm}$ $< 0.18 \times 10^{-25} \text{ ecm, CL} = 90\%$ ${<}1.5\times10^{-16}$ ecm, CL =95% $(-4.0 \pm 0.7)\%$ $(-0.6 \pm 0.9)\%$ $(4 \pm 5)\%$ $(-1.6 \pm 1.5)\%$ $(-5 \pm 5)\%$

CONLAW=C

PAR=S009;DESIG=4 NODE=S014230 NODE=S014A1 NODE=S014AS NODE=S014AQ NODE=S014A2 NODE=S014BET PAR=S014;DESIG=104 PAR=S014;DESIG=103 PAR=S014;DESIG=106 PAR=S014;DESIG=18 PAR=S014;DESIG=5 PAR=S014;DESIG=14 PAR=M001:DESIG=9 PAR=M001;DESIG=193 PAR=M001;DESIG=16 NODE=M002A PAR=M002;DESIG=16 PAR=M002;DESIG=18 PAR=M002;DESIG=17 PAR=M002;DESIG=23 PAR=M002;DESIG=22 PAR=M002;DESIG=21 PAR=M070;DESIG=80

CONLAW=P

PAR=M070;DESIG=277

NODE=S003EDM NODE=S004EDM NODE=S035EDM PAR=S014;DESIG=15 PAR=S014;DESIG=21 PAR=S014;DESIG=24 PAR=M002;DESIG=111 PAR=M002;DESIG=25 NODE=S042A45 PAR=M026;DESIG=51 PAR=M026;DESIG=52 PAR=M026:DESIG=53 PAR=M026;DESIG=54 NODE=S016EDM NODE=S017EDM NODE=S018EDM NODE=S040A06 NODE=S040A16 NODE=S040A07 NODE=S040A17 NODE=S040A11

TIME REVERSAL (T) INVARIANCE

e electric dipole moment μ electric dipole moment |d| μ decay parameters transverse e^+ polarization normal to plane of μ spin, e^+ momentum α'/A β'/A $\operatorname{Re}(d_{\tau} = \tau \text{ electric dipole moment})$ P_T in $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$ P_T in $K^+ \rightarrow \mu^+ \nu_\mu \gamma$ Im(ξ) in $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$ decay (from transverse μ pol.) asymmetry A_T in $K^0 - \overline{K}^0$ mixing Im(ξ) in $K_{\mu3}^{0}$ decay (from transverse μ pol.) $A_T(D^{\pm} \rightarrow K^0_S K^{\pm} \pi^+ \pi^-)$ $A_T(D^0 \rightarrow K^+ K^- \pi^+ \pi^-)$ $A_T(D_s^{\pm} \rightarrow K_s^0 K^{\pm} \pi^+ \pi^-)$ $\Delta s_T^+ (s_{\ell^-, K_S^0}^- - s_{\ell^+, K_S^0}^+)$ $\Delta S_{T}^{-} (S_{\ell^{-}, K_{S}^{0}}^{+} - S_{\ell^{+}, K_{S}^{0}}^{-})$ $\Delta C_{T}^{+} (C_{\ell^{-}, K_{S}^{0}}^{-} - C_{\ell^{+}, K_{S}^{0}}^{+})$ $\Delta C_{T}^{-} (C_{\ell^{-}, K_{S}^{0}}^{+} - C_{\ell^{+}, K_{S}^{0}}^{-})$ p electric dipole moment n electric dipole moment $n \rightarrow p e^- \overline{\nu}_{e}$ decay parameters ϕ_{AV} , phase of g_A relative to g_V triple correlation coefficient Dtriple correlation coefficient R Λ electric dipole moment triple correlation coefficient D for $\Sigma^-
ightarrow$

 $ne^{-}\overline{\nu}_{e}$

CP INVARIANCE

 $\operatorname{Re}(d_{\tau}^{W})$ $Im(d_{-}^{W})$ δ (*CP* violating phase in neutrino mixing) $\eta
ightarrow \pi^+ \pi^- e^+ e^-$ decay-plane asymmetry $\Gamma(\eta \rightarrow \pi^+ \pi^-)/\Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{total}$ $\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$ $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$ rate difference/sum $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ rate difference/sum $\kappa^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ rate difference/sum ${\cal K}^{\pm}
ightarrow \pi^{\pm} \pi^{+} \pi^{-}$ rate difference/sum $\kappa^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ rate difference/sum $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} (g_{+} - g_{-}) / (g_{+} + g_{-})$ g_) ${\cal K}^{\pm}
ightarrow ~\pi^{\pm} \, \pi^{0} \, \pi^{0} \; (g_{+} \, - g_{-}) \; / \; (g_{+} \, + g_{-})$ $A_{S} = [\Gamma(K_{S}^{0} \rightarrow \pi^{-}e^{+}\nu_{e}) - \Gamma(K_{S}^{0} \rightarrow \pi^{-}e^{+}\nu_{e})]$ $\pi^+ e^- \overline{\nu}_e$)] / SUM

 $<0.041 \times 10^{-28}$ ecm, CL = 90% $< 1.8 \times 10^{-19} \ e \, {
m cm}, \, {
m CL} = 95\%$ $(-2 \pm 8) \times 10^{-3}$ $(-10 \pm 20) \times 10^{-3}$ $(2 \pm 7) \times 10^{-3}$ -0.185 to 0.061×10^{-16} ecm, CL = 95% $(-1.7 \pm 2.5) \times 10^{-3}$ $(-0.6 \pm 1.9) \times 10^{-2}$ -0.006 ± 0.008 $(6.6 \pm 1.6) \times 10^{-3}$ -0.007 ± 0.026 [c] $(-3 \pm 8) \times 10^{-3}$ (S = 1.1) [c] $(2.9 \pm 2.2) \times 10^{-3}$ [c] $(-8 \pm 6) \times 10^{-3}$ -1.37 ± 0.15 $1.17\,\pm\,0.21$ $0.10\,\pm\,0.16$ 0.04 ± 0.16 ${<}0.021\times10^{-23}~\text{ecm}$ $<0.18 \times 10^{-25} \ e\,{
m cm}, \ {
m CL}=90\%$ [d] $(180.017 \pm 0.026)^{\circ}$ [e] $(-1.2 \pm 2.0) \times 10^{-4}$ $[e] 0.004 \pm 0.013$ $< 1.5 \times 10^{-16}$ ecm, CL = 95% 0.11 ± 0.10

 $<0.50 imes 10^{-17} \ e\,{
m cm}, \ {
m CL}=95\%$

 ${<}1.1 imes10^{-17}$ ecm, CL = 95%

 $1.21^{+0.19}_{-0.22} \ \pi$ rad (S = 1.2)

 $<4.4 \times 10^{-6}$, CL = 90%

 $<3.5 \times 10^{-4}$, CL = 90%

 $< 6.9 \times 10^{-7}$, CL = 90%

 $<1.8 \times 10^{-5}$, CL = 90%

 $< 4 \times 10^{-4}$, CL = 90%

 $(-2.2 \pm 1.6) \times 10^{-2}$

 $(0.0 \pm 1.2) \times 10^{-3}$

 0.010 ± 0.023

 $(0.04 \pm 0.06)\%$

 $(-0.02 \pm 0.28)\%$

 $(-1.5 \pm 2.2) \times 10^{-4}$

 $(1.8\pm1.8)\times10^{-4}$

 $(-4 \pm 6) \times 10^{-3}$

 $(-0.6 \pm 3.1) \times 10^{-2}$

CONLAW=CP

NODE=S035WDM NODE=S035WDI NODE=S067DEL NODE=S014AET PAR=S014;DESIG=15 PAR=S014;DESIG=21 PAR=S014;DESIG=24 PAR=M002;DESIG=111 PAR=M002;DESIG=25 NODE=S010CPE NODE=S010CP NODE=S010CPG NODE=S010D2 NODE=S010D3 NODE=S010DG NODE=S010DG0

NODE=S010DG0

CONLAW=T

NODE=S003EDM

NODE=S004EDM

NODE=S004260

NODE=S004PT2

NODE=S004ALP

NODE=S004BTP

NODE=S035EDM

NODE=S010PTM

NODE=S010PT

NODE=S010IXI

NODE=S011AT

NODE=S013IXI

NODE=S031TV0

NODE=S032TV0

NODE=S034TV0

NODE=S042TVA

NODE=S042TVB

NODE=S042TVC

NODE=S042TVD

NODE=S016EDM

NODE=S017EDM

NODE=S017255

NODE=S017F

NODE=S017D1

NODE=S017TCC

NODE=S018EDM

NODE=S020TC

 $Im(\eta_{+-0}) = Im(A(K_{S}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}, CP))$ -0.002 ± 0.009 violating) / A($\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$)) Im(η_{000}) = Im(A($\mathcal{K}_{S}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0})/A(\mathcal{K}_{L}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0})$) -0.001 ± 0.016 $|\eta_{000}| = |A(\kappa_S^0 \rightarrow 3\pi^0)/A(\kappa_L^0 \rightarrow 3\pi^0)|$ < 0.0088, CL = 90%*CP* asymmetry *A* in $K^0_S \rightarrow \pi^+ \pi^- e^+ e^ (-0.4 \pm 0.8)\%$ $\Gamma(\kappa_S^0
ightarrow 3\pi^0)/\Gamma_{total}$ $<2.6 \times 10^{-8}$, CL = 90% linear coefficient *j* for $K_I^0 \rightarrow \pi^+ \pi^- \pi^0$ 0.0012 ± 0.0008 quadratic coefficient f for $K_I^0 \rightarrow \pi^+ \pi^- \pi^0$ 0.004 ± 0.006 $|\epsilon'_{+-\gamma}|/\epsilon$ for $K^0_L \to \pi^+ \pi^- \gamma$ <0.3, CL = 90% $|\mathbf{g}_{E1}|$ for $\mathcal{K}^{\mathbf{0}}_{L} \rightarrow \pi^{+}\pi^{-}\gamma$ <0.21, CL = 90% $\Gamma(\kappa_L^0 \to \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$ $[f] < 3.8 \times 10^{-10}, \text{ CL} = 90\%$ $\Gamma(\kappa_I^0 \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$ $[f] < 2.8 \times 10^{-10}, \text{ CL} = 90\%$ $\Gamma(K_I^0 \to \pi^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$ $[g] < 3.0 \times 10^{-9}, CL = 90\%$ $A_{CP}(D^{\pm} \rightarrow \mu^{\pm} \nu)$ $(8 \pm 8)\%$ $A_{CP}(D^{\pm} \rightarrow K_{I}^{0} e^{\pm} \nu)$ $(-0.6 \pm 1.6)\%$ $A_{CP}(D^{\pm} \rightarrow K_{S}^{0}\pi^{\pm})$ $(-0.41 \pm 0.09)\%$ $A_{CP}(D^{\pm} \rightarrow K^{\mp} 2\pi^{\pm})$ $(-0.18 \pm 0.16)\%$ $A_{CP}(D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{0})$ $(-0.3 \pm 0.7)\%$ $A_{CP}(D^\pm\to~\kappa^0_S\pi^\pm\pi^0)$ $(-0.1 \pm 0.7)\%$ $A_{CP}(D^{\pm} \rightarrow \kappa_{\varsigma}^{0}\pi^{\pm}\pi^{+}\pi^{-})$ $(0.0 \pm 1.2)\%$ $A_{CP}(D^{\pm} \rightarrow \pi^{\pm}\pi^{0})$ $(0.4 \pm 1.3)\%$ (S = 1.7) $A_{CP}(D^{\pm} \rightarrow \pi^{\pm} \eta)$ $(0.3\pm0.5)\%$ $A_{CP}(D^{\pm} \rightarrow \pi^{\pm} \eta'(958))$ $(0.41 \pm 0.23)\%$ (S = 1.2) $A_{CP}(D^{\pm} \rightarrow \overline{K}^0/K^0K^{\pm})$ $(0.11 \pm 0.17)\%$ $A_{CP}(D^{\pm}\rightarrow~\kappa^0_{\varsigma}\kappa^{\pm})$ $(-0.01 \pm 0.07)\%$ $A_{CP}(D^{\pm} \rightarrow K^+ K^- \pi^{\pm})$ $(0.37 \pm 0.29)\%$ $A_{CP}(D^{\pm} \rightarrow K^{\pm}K^{*0})$ $(-0.3 \pm 0.4)\%$ $A_{CP}(D^{\pm} \rightarrow \phi \pi^{\pm})$ $(0.01 \pm 0.09)\%$ (S = 1.8) $A_{CP}(D^{\pm} \rightarrow K^{\pm}K_{0}^{*}(1430)^{0})$ $(8^{+7}_{-6})\%$ $A_{CP}(D^{\pm} \rightarrow K^{\pm}K_{2}^{*}(1430)^{0})$ $(43^{+20}_{-26})\%$ $(-12^{+18}_{-13})\%$ $A_{CP}(D^{\pm} \rightarrow K^{\pm}K^{*}_{0}(700))$ $A_{CP}(D^{\pm} \rightarrow a_0(1450)^0 \pi^{\pm})$ $(-19^{+14}_{-16})\%$ $A_{CP}(D^{\pm} \rightarrow \phi(1680)\pi^{\pm})$ $(-9 \pm 26)\%$ $A_{CP}(D^{\pm} \rightarrow \pi^+ \pi^- \pi^{\pm})$ $(0.5 \pm 2.0)\%$ $A_{CP}^{}(D^{\pm} \rightarrow K_{S}^{0} K^{\pm} \pi^{+} \pi^{-})$ $(-4 \pm 7)\%$ $A_{CP}(D^{\pm} \rightarrow \kappa^{\pm} \pi^{0})$ $(-3 \pm 5)\%$ Local CPV in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ 78.1% Local CPV in $D^{\pm} \rightarrow K^+ K^- \pi^{\pm}$ 31% Local CPV in $D^{\pm} \rightarrow K^+ K^- K^{\pm}$ 31.6% |q/p| of $D^0 - \overline{D}^0$ mixing $0.995\,\pm\,0.016$ A_{Γ} of $D^0 - \overline{D}^0$ mixing $(0.89 \pm 1.13) \times 10^{-4}$ CP-even fraction in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ $(97.3 \pm 1.7)\%$ decavs CP-even fraction in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^ (74.6 \pm 0.8)\%$ decavs CP-even fraction in $D^0
ightarrow \ {\cal K}^+ \, {\cal K}^- \, \pi^0$ $(73 \pm 6)\%$ decays Where there is ambiguity, the *CP* test is labelled by the D^0 decay mode. $A_{CP}(D^0 \rightarrow K^+ K^-)$ $(4 \pm 5) \times 10^{-4}$ $A_{CP}(D^0 \rightarrow K^0_{\varsigma} K^0_{\varsigma})$ $(-1.1 \pm 1.9)\%$ (S = 2.0) $A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$ $(0.13 \pm 0.14)\%$ $A_{CP}(D^0 \rightarrow \pi^0 \pi^0)$ $(0.0 \pm 0.6)\%$ $A_{CP}(D^0 \rightarrow \rho \gamma)$ $(6 \pm 15) \times 10^{-2}$ $A_{CP}(D^0 \rightarrow \phi \gamma)$ $(-9 \pm 7) \times 10^{-2}$

NODE=S012E+ NODE=S012E0 NODE=S012AE0 NODE=S012DPA PAR=S012;DESIG=7 NODE=S013JT0 NODE=S013FT0 NODE=S013EPG NODE=S013GE1 PAR=S013;DESIG=16 PAR=S013;DESIG=20 PAR=S013;DESIG=43 NODE=S031A05 NODE=S031A16 NODE=S031A5 NODE=S031A01 NODE=S031A02 NODE=S031A03 NODE=S031A04 NODE=S031A11 NODE=S031A12 NODE=S031A13 NODE=S031A15 NODE=S031A6 NODE=S031A1 NODE=S031A2 NODE=S031A3 NODE=S031A06 NODE=S031A07 NODE=S031A08 NODE=S031A09 NODE=S031A10 NODE=S031A4 NODE=S031CPK NODE=S031A14 NODE=S031L01 $NODE=S031L02; \rightarrow UNCHECKED \leftarrow; OUR$ NODE=S031A28 $NODE=S032QP; \rightarrow UNCHECKED \leftarrow; OUR$ $VAL = S032AG; \rightarrow UNCHECKED \leftarrow; OUR$ NODE=S032EFP NODE=S032EFL NODE=S032EFK NODE=S032A1 NODE=S032A1 NODE=S032A8 NODE=S032A4 NODE=S032A7 NODE=S032A00

NODE=S032A83

$A_{CP}(D^0 \rightarrow K^*(892)^0 \gamma)$		$(-0.3 \pm 2.0) \times 10^{-2}$
$A_{CP}(D^0 \rightarrow \pi^+\pi^-\pi^0)$		$(0.4 \pm 0.4)\%$
$A_{CP}(D^0 \rightarrow \rho(770)^+ \pi^$	$\pi^{+}\pi^{-}\pi^{0}$ [b]	$(12 \pm 0.9)\%$
$A_{c} = (D^0) + \rho(170) \pi^0$	$(\pi^+ \pi^- \pi^0)$ [h]	$(1.2 \pm 0.3)/0$
$A_{CP}(D \rightarrow p(770)^{-} \rightarrow p(770$	(11)	(-3.1 ± 3.0) /6
$A_{CP}(D^{\bullet} \rightarrow \rho(110) \pi^{+} - 1)$	$(n) \rightarrow \pi^{+}\pi^{-}\pi^{-}$	$(-1.0 \pm 1.7)\%$
$A_{CP}(D^{\circ} \rightarrow \rho(1450) + \pi$	$\rightarrow \pi^{+}\pi^{-}\pi^{\circ}) \qquad [h]$	$(0 \pm 70)\%$
$A_{CP}(D^0 \rightarrow \rho(1450)^{\circ} \pi^{\circ} \rightarrow \rho(1450)^{\circ} \rightarrow \rho(1450)^{$	$(h] \qquad (h]$	$(-20 \pm 40)\%$
$A_{CP}(D^0 \rightarrow \rho(1450)^- \pi^+$	$\rightarrow \pi^+ \pi^- \pi^0) \qquad [h]$	$(6 \pm 9)\%$
$A_{CP}(D^0 \rightarrow \rho(1700)^+ \pi^-$	$\rightarrow \pi^+ \pi^- \pi^0) \qquad [h]$	$(-5 \pm 14)\%$
$A_{CP}(D^0 \rightarrow \rho(1700)^0 \pi^0 \rightarrow$	$\cdot \pi^+ \pi^- \pi^0) \qquad [h]$	$(13\pm9)\%$
$A_{CP}(D^0 \to \rho(1700)^- \pi^+ -$	$\rightarrow \pi^+ \pi^- \pi^0) \qquad [h]$	$(8 \pm 11)\%$
$A_{CP}(D^0 \rightarrow f_0(980)\pi^0 \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$ [<i>h</i>]	$(0 \pm 35)\%$
$A_{CP}(D^0 \rightarrow f_0(1370)\pi^0 \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$ [<i>h</i>]	$(25\pm18)\%$
$A_{CP}(D^0 \rightarrow f_0(1500)\pi^0 \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$ [<i>h</i>]	$(0 \pm 18)\%$
$A_{CP}(D^0 \rightarrow f_0(1710)\pi^0 \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$ [<i>h</i>]	$(0 \pm 24)\%$
$A_{CD}(D^0 \rightarrow f_2(1270)\pi^0 \rightarrow$	$\pi^{+}\pi^{-}\pi^{0}$ [h]	(-4+6)%
$A_{CP}(D^0 \rightarrow \sigma(400)\pi^0 \rightarrow c$	$\pi^{+}\pi^{-}\pi^{0}$ [h]	(6+8)%
$A_{\alpha P}(\text{ponsecond} t D^0 \rightarrow \pi^-)$	$(m_{\pi}^{-} \pi^{-} \pi^{0})$ [b]	(-13 + 23)%
$A_{CP}(\text{nonresonant } D \rightarrow \pi)$		$(-13 \pm 23)/6$
$A_{CP}(D^\circ, D^\circ \rightarrow 2\pi^+ 2\pi^-)$		$(0.5 \pm 1.2)\%$
$A_{CP}(D^{\circ} \rightarrow a_1(1260) + \pi^-)$	$\rightarrow 2\pi^+ 2\pi^-)$	$(5\pm 6)\%$
$A_{CP}(D^0 \to a_1(1260)^- \pi^+)$	$\rightarrow 2\pi^+ 2\pi^-)$	$(14 \pm 18)\%$
$A_{CP}(D^0 \rightarrow \pi(1300)^+\pi^-)$	$\rightarrow 2\pi^+ 2\pi^-)$	$(-2 \pm 15)\%$
$A_{CP}(D^0 \to \pi(1300)^- \pi^+)$	$\rightarrow 2\pi^+ 2\pi^-)$	$(-6 \pm 30)\%$
$A_{CP}(D^0 \rightarrow a_1(1640)^+ \pi^-)$	$\rightarrow 2\pi^+ 2\pi^-$)	$(9\pm26)\%$
$A_{CP}(D^0 \rightarrow \pi_2(1670)^+ \pi^-)$	$\rightarrow 2\pi^+ 2\pi^-$)	$(7 \pm 18)\%$
$A_{CP}(D^0 \rightarrow \sigma f_0(1370) \rightarrow$	$2\pi^+ 2\pi^-$)	$(-15 \pm 19)\%$
$A_{CP}(D^0 \rightarrow \sigma \rho(770)^0 \rightarrow 2$	$(2\pi^+ 2\pi^-)$	$(3 \pm 27)\%$
$A_{CP}(D^0 \rightarrow 2\rho(770)^0 \rightarrow 2$	$(\pi^+ 2\pi^-)$	$(-6 \pm 6)\%$
$A_{CP}(D^0 \rightarrow 2f_0(1270) \rightarrow 1)$	$2\pi^+ 2\pi^-$	(-28 + 24)%
$A_{GD}(D^0 \rightarrow \kappa^+ \kappa^- \pi^0)$		$(-1.0 \pm 1.7)\%$
$A_{CP}(D \rightarrow K^*(n_2)^+ K^-)$. [4]	$(-1.0 \pm 1.7)/6$
$A_{CP}(D^{2} \rightarrow \kappa^{-}(892) + \kappa)$	\rightarrow [n]	$(-0.9 \pm 1.3)\%$
$(0 \ k^* (1/10) + k^-)$	- \ [6]	$(21 \pm 24)\%$
$\kappa + \kappa - \pi^0$		(-21 ± 24)/0
$A_{a} = (D^0 \setminus (K^+ \pi^0) = K^-$	[4]	$(7 \pm 15)\%$
$ACP(D \rightarrow (R + \pi))SR$	\rightarrow 100	
$K^{+}K^{-}\pi^{0}$		(1 ± 15)/0
$K^+ K^- \pi^0$ $A_{CD}(D^0 \to \phi(1020) \pi^0 \to \phi(1020) \pi^0$	$K^+ K^- \pi^0$ [<i>h</i>]	(1.1 + 2.2)%
$K^+ K^- \pi^0)$ $A_{CP}(D^0 \to \phi(1020)\pi^0 \to \phi(1020)\pi^0 \to f_2(080)\pi^0 \to f_$	$K^+ K^- \pi^0$ [<i>h</i>] $K^+ K^- \pi^0$ [<i>h</i>]	$(1.1 \pm 2.2)\%$ $(-3 \pm 10)\%$
$K^+ K^- \pi^0)$ $A_{CP}(D^0 \to \phi(1020)\pi^0 \to A_{CP}(D^0 \to f_0(980)\pi^0 \to A_{CP}(D^0 \to A_{CP}(D^0$	$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \kappa^{+} \kappa^{-} - q^{0}) & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$
$K^+ K^- \pi^0)$ $A_{CP}(D^0 \to \phi(1020) \pi^0 \to A_{CP}(D^0 \to f_0(980) \pi^0 \to A_{CP}(D^0 \to a_0(980)^0 \pi^0 \to A_{CP}(D^0 \to a_0(980)^0 \pi^0 \to a_0(980)^0 \to a_0(980)^0 \pi^0 \to a_0(980)^0 \to a_0$	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0} & [h] \\ \kappa^{+} \kappa^{-} \pi^{0} & [h] \\ \kappa^{+} \kappa^{-} \pi^{0} & [h] \\ \kappa^{+} \kappa^{-} \pi^{0} & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \to \phi(1020) \pi^{0} \to A_{CP}(D^{0} \to f_{0}(980) \pi^{0} \to A_{CP}(D^{0} \to a_{0}(980)^{0} \pi^{0} \to A_{CP}(D^{0} \to f'_{2}(1525) \pi^{0} \to f'_{2}(1525) \pi^$	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \kappa^{+} \kappa^{-} \pi^{0}) & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$
$K^{+} K^{-} \pi^{0}$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+})$	$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} \kappa^{+} \kappa^{-} \pi^{0})$	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} K^{+} \kappa^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{+} K^{-} \pi^{0})$	$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{-} K^{-} \pi^{0})$	$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$
$K^{+}K^{-}\pi^{0})$ $A_{CP}(D^{0} \to \phi(1020)\pi^{0} \to A_{CP}(D^{0} \to f_{0}(980)\pi^{0} \to A_{CP}(D^{0} \to a_{0}(980)^{0}\pi^{0} \to A_{CP}(D^{0} \to f'_{2}(1525)\pi^{0} \to A_{CP}(D^{0} \to K^{*}(892)^{-}K^{+} \to K^{+}K^{-}\pi^{0})$ $A_{CP}(D^{0} \to K^{*}(1410)^{-}K^{-} \to K^{+}K^{-}\pi^{0})$ $A_{CP}(D^{0} \to (K^{-}\pi^{0})_{S-wo}(D^{0} \to K^{+}K^{-}\pi^{0})$	$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \rightarrow & [h] \\ \mu_{ve} \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow (K^{-} \pi^{0})_{S-w_{0}} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow (K^{-} \pi^{0})_{S-w_{0}} K^{+} K^{-} \pi^{0})$	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \xrightarrow{+} \rightarrow & [h] \\ \qquad \qquad$	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow (K^{-} \pi^{0})_{S-wa} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi^{0})$	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \overset{+}{\rightarrow} & [h] \\ \qquad \qquad$	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow (K^{-} \pi^{0})_{S-wa} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \eta)$	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \rightarrow & [h] \\ \mu_{ve} \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$
$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow (K^{-} \pi^{0})_{S-wo} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi) \\ A_{CP}(D^{0} \rightarrow K^{0}_{S} \eta) \\ A_{CP}(D^{0} \rightarrow K^{0}_{S} \eta') \end{array} $	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \rightarrow & [h] \\ \mu^{+} \rightarrow & [h] \\ ave \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$ $(1.0 \pm 0.7)\%$
$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{2}'(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(892)^{-} \kappa^{+} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow (\kappa^{-} \pi^{0})_{S-wa} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \pi) \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \eta') \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \eta') \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \phi) \end{array} $	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \rightarrow & [h] \\ \mu^{+} \rightarrow & [h] \\ \mu^{ve} \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$ $(1.0 \pm 0.7)\%$ $(-3 \pm 9)\%$
$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{2}'(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(892)^{-} \kappa^{+} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{0} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{0} \pi^{+}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+}) \end{array} $	$ \begin{array}{ccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \downarrow^{+} \rightarrow & [h] \\ \mu_{ve} \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$ $(1.0 \pm 0.7)\%$ $(-3 \pm 9)\%$ $(0.2 \pm 0.5)\%$
$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{2}'(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(892)^{-} \kappa^{+} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \eta) \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \eta) \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \eta) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+}) \\ A_{CP}(D^{0} \rightarrow \kappa^{+} \pi^{-}) \end{array} $	$ \begin{array}{cccc} \kappa^{+} \kappa^{-} \pi^{0} & [h] \\ \rightarrow & [h] \\ \downarrow^{+} \rightarrow & [h] \\ \qquad \qquad$	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$ $(1.0 \pm 0.7)\%$ $(-3 \pm 9)\%$ $(-0.9 \pm 1.4)\%$
$ \begin{array}{c} {}^{K^+ K^- \pi^0)} \\ A_{CP}(D^0 \to \phi(1020) \pi^0 \to \\ A_{CP}(D^0 \to f_0(980) \pi^0 \to \\ A_{CP}(D^0 \to f_0(125) \pi^0 \to \\ A_{CP}(D^0 \to f_2'(1525) \pi^0 \to \\ A_{CP}(D^0 \to K^*(892)^- K^+ \\ K^+ K^- \pi^0) \\ A_{CP}(D^0 \to K^*(1410)^- K^- \\ K^+ K^- \pi^0) \\ A_{CP}(D^0 \to (K^- \pi^0)_{S-we} \\ K^+ K^- \pi^0) \\ A_{CP}(D^0 \to K^0_S \pi^0) \\ A_{CP}(D^0 \to K^0_S \pi^0) \\ A_{CP}(D^0 \to K^0_S \eta) \\ A_{CP}(D^0 \to K^- \pi^+) \\ A_{CP}(D^0 \to K^+ \pi^-) \\ A_{CP}(D^0 \to K^+ \pi^-) \\ A_{CP}(D^0 \to K^+ \pi^+) \\ A_{CP}(D^0 \to K^+ \pi^+) \\ A_{CP}(D^0 \to K^+ \pi^-) \\ A_{CP}(D^0 \to K^+ \pi^+) \\ A_{CP}(D^0 \to K^+ \pi^-) \\ A_{CP}(D^0 \to K^+ \pi^+) \\ A_{$	$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \end{array} $ $ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \mu^{+} \rightarrow & [h] \\ \mu^{+} \mu$	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$ $(1.0 \pm 0.7)\%$ $(-3 \pm 9)\%$ $(0.2 \pm 0.5)\%$ $(-0.9 \pm 1.4)\%$ $(13.1 \pm 1.0)\%$
$K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow a_{0}(980)^{0} \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow f'_{2}(1525) \pi^{0} \rightarrow A_{CP}(D^{0} \rightarrow K^{*}(892)^{-} K^{+} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-} K^{-} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow (K^{-} \pi^{0})_{S-wa} K^{+} K^{-} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi^{0})$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi)$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi)$ $A_{CP}(D^{0} \rightarrow K^{0}_{S} \pi)$ $A_{CP}(D^{0} \rightarrow K^{-} \pi^{+})$ $A_{CP}(D^{0} \rightarrow K^{+} \pi^{-})$ $A_{CP}(D^{0} \rightarrow K^{+} \pi^{-})$	$K^{+} K^{-} \pi^{0}) \qquad [h]$ $\to \qquad [h]$ $K^{+} \to \qquad [h]$ $K^{+} \to \qquad [h]$ $K^{+} \to \qquad [h]$	$(1.1 \pm 2.2)\%$ $(-3 \pm 19)\%$ $(-5 \pm 16)\%$ $(0 \pm 160)\%$ $(-5 \pm 4)\%$ $(-17 \pm 29)\%$ $(-10 \pm 40)\%$ $(-0.20 \pm 0.17)\%$ $(0.5 \pm 0.5)\%$ $(1.0 \pm 0.7)\%$ $(-3 \pm 9)\%$ $(0.2 \pm 0.5)\%$ $(-0.9 \pm 1.4)\%$ $(13.1 \pm 1.0)\%$ $(0.1 \pm 0.5)\%$
$ \begin{array}{c} {}^{K^+ K^- \pi^0)} \\ A_{CP}(D^0 \to \phi(1020) \pi^0 \to \\ A_{CP}(D^0 \to f_0(980) \pi^0 \to \\ A_{CP}(D^0 \to f_0(980)^0 \pi^0 \to \\ A_{CP}(D^0 \to f_2'(1525) \pi^0 \to \\ A_{CP}(D^0 \to K^*(892)^- K^+ \\ K^+ K^- \pi^0) \\ A_{CP}(D^0 \to K^*(1410)^- K^- \\ K^+ K^- \pi^0) \\ A_{CP}(D^0 \to (K^- \pi^0)_{S-wa} \\ K^+ K^- \pi^0) \\ A_{CP}(D^0 \to K^0_S \pi^0) \\ A_{CP}(D^0 \to K^0_S \pi^0) \\ A_{CP}(D^0 \to K^0_S \eta) \\ A_{CP}(D^0 \to K^0_S \eta) \\ A_{CP}(D^0 \to K^0_S \eta) \\ A_{CP}(D^0 \to K^- \pi^+) \\ A_{CP}(D^0 \to K^- \pi^+) \\ A_{CP}(D^0 \to K^- \pi^+ \pi^0) \\ A_{CP}(D^0 \to K^- \pi^0 + \pi^0) \\$	$ \begin{array}{cccc} \kappa^{+} \kappa^{-} \pi^{0}) & [h] \\ \rightarrow & [h] \\ \downarrow^{+} \rightarrow & [h] \\ \mu_{ve} \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\% (-3 \pm 19)\% (-5 \pm 16)\% (0 \pm 160)\% (-5 \pm 4)\% (-17 \pm 29)\% (-10 \pm 40)\% (-0.20 \pm 0.17)\% (0.5 \pm 0.5)\% (1.0 \pm 0.7)\% (-3 \pm 9)\% (0.2 \pm 0.5)\% (-0.9 \pm 1.4)\% (13.1 \pm 1.0)\% (0.1 \pm 0.5)\% (0 + 5)\% (0 + 5)\% (0 + 5)\% (-3 + 10)\% (0 + 5)\% (-10 + 10)\% (-10 + $
$ \begin{array}{c} \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \phi(1020) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{0}(980)^{0} \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow f_{2}'(1525) \pi^{0} \rightarrow \\ A_{CP}(D^{0} \rightarrow \kappa'(892)^{-} \kappa^{+} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{*}(1410)^{-} \kappa^{-} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow (\kappa^{-} \pi^{0})_{S-wa} \\ \kappa^{+} \kappa^{-} \pi^{0} \\ A_{CP}(D^{0} \rightarrow \kappa^{0}_{S} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{+} \pi^{0}) \\ A_{CP}(D^{0} \rightarrow \kappa^{-} \pi^{-} \pi^{-} \pi^{-} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0$	$ \begin{array}{cccc} \kappa^{+} \kappa^{-} \pi^{0} & [h] \\ \rightarrow & [h] \\ \rightarrow & [h] \\ \mu_{ve} \kappa^{+} \rightarrow & [h] \\ \mu_{ve} \kappa^{+} \rightarrow & [h] \end{array} $	$(1.1 \pm 2.2)\% (-3 \pm 19)\% (-5 \pm 16)\% (0 \pm 160)\% (-5 \pm 4)\% (-17 \pm 29)\% (-10 \pm 40)\% (-0.20 \pm 0.17)\% (0.5 \pm 0.5)\% (1.0 \pm 0.7)\% (-3 \pm 9)\% (0.2 \pm 0.5)\% (-0.9 \pm 1.4)\% (13.1 \pm 1.0)\% (0 \pm 5)\% (-0.1 \pm 2.2)\% (-0.1 \pm 0.2)\% (-0.1 \pm 0.2)\% $

NODE=S032A84
$NODE{=}S032A12$
NODE = S032A25
NODE=S032A26
NODE=S032A27
NODE=S032A28
NODE=S032A29
NODE=S032A30
NODE=S032A31
NODE=S032A32
NODE=S032A33
NODE=S032A34
NODE=S032A35
NODE=S032A36
NODE=S032A37
NODE=S032A38
NODE=S032A39
NODE=S032A40
NODE=S032A71
NODE=S032A85
NODE=S032A86
NODE=S032A87
NODE=S032A88
NODE=S032A89
NODE=S032A91
NODE=S032A92
NODE=S032A93
NODE=S032A94
NODE=S032A95
NODE=S032A41
NODE=S032A42
NODE=S032A43
NODE=5032A44
NODE=\$032A45
NODE=\$032A46
NODE=\$032A47
NODE=5032A48
10002-3032/(45
NODE=S032A50
NODE=5052A51
NODE=S032A3
NODE=S032A52
NODE=S032A53
NODE=S032A2
NODE=S032A23
NODE=S032A5
NODE=S032A72
NODE=503246
NODE = S032A0

$A_{CP}(D^0 \to K^*(892)^- \pi^+ \to K^0_S \pi^+ \pi^-)$	$(0.4 \pm 0.5)\%$	NODE=S032A13
$A_{CP}(D^0 \to K^*(892)^+ \pi^- \to K_{S}^{\bar{0}} \pi^+ \pi^-)$	$(1\pm 6)\%$	NODE=S032A14
$A_{CP}(D^0 \rightarrow \kappa^0_{S} \rho^0 \rightarrow \kappa^0_{S} \pi^+ \pi^-)$	$(-0.1\pm 0.5)\%$	NODE=S032A15
$A_{CP}(D^0 \rightarrow K^0_c \omega \rightarrow K^0_c \pi^+ \pi^-)$	$(-13 \pm 7)\%$	NODE=S032A16
$A_{CD}(D^0 \to K^0_0 f_0(980) \to K^0_0 \pi^+ \pi^-)$	(-0.4 + 2.7)%	NODE=\$032A17
$A_{\alpha \mathcal{P}}(D^0 \to K^0 f_2(1270) \to K^0 \pi^+ \pi^-)$	$(-4+5)^{0/2}$	NODE-5032418
$A = (D^0 \times K^0 f (1270) \times K^0 \pi^+ \pi^-)$	$(-1 \pm 0)\%$	NODE-5032410
$A_{CP}(D^{*} \rightarrow K_{S}^{*})^{(1370)} \rightarrow K_{S}^{*} \pi^{*} \pi^{*})$	$(-1 \pm 9)/8$	
$A_{CP}(D^{\circ} \rightarrow K^{\circ} \rho^{\circ}(1450) \rightarrow K_{S}^{\circ} \pi^{+} \pi^{-})$	$(-4 \pm 10)\%$	NODE=S032A55
$A_{CP}(D^{\circ} \rightarrow K^{\circ} f_{0}(600) \rightarrow K^{\circ} \pi^{+} \pi^{-})$	$(-3 \pm 5)\%$	NODE=S032A56
$\begin{array}{ccc} A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-}\pi^{+} \rightarrow \\ K^{0}_{S}\pi^{+}\pi^{-}) \end{array}$	$(-2 \pm 9)\%$	NODE=S032A54
$\begin{array}{c} A_{CP}(D^{0} \to K_{0}^{*}(1430)^{-}\pi^{+} \to \\ K_{c}^{0}\pi^{+}\pi^{-}) \end{array}$	$(4 \pm 4)\%$	NODE=S032A20
$A_{CP}(D^{0} \rightarrow K_{0}^{*}(1430)^{-}\pi^{+} \rightarrow K_{0$	$(12 \pm 15)\%$	NODE=S032A58
$A_{CP}(D^0 \rightarrow K_2^*(1430)^- \pi^+ \rightarrow$	$(3\pm 6)\%$	NODE=S032A21
$K_{S}^{0}\pi^{+}\pi^{-})$ $A_{CP}(D^{0} \rightarrow K_{2}^{*}(1430)^{+}\pi^{-} \rightarrow$	$(-10 \pm 32)\%$	NODE=S032A59
$\kappa_{S}^{0}\pi^{+}\pi^{-})$		
$A_{CP}(D^{\circ} \rightarrow K \pi^{+}\pi^{+}\pi^{-})$	$(0.2 \pm 0.5)\%$	NODE=5032A24
$A_{CP}(D^{\circ} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{-})$	$(-2 \pm 4)\%$	
$A_{CP}(D^2 \rightarrow K^+ K^- \pi^+ \pi^-)$	$(1.3 \pm 1.7)\%$	
$\begin{array}{ccc} A_{CP}(D^{\circ} \rightarrow K_{1}(1270) + K \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}) \end{array}$	$(-2.3 \pm 1.7)\%$	NODE=S032A97
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to K^{*0} \pi^+ K^-)$	$(-1\pm10)\%$	NODE=S032A60
$A_{CP}(D^{0} \rightarrow \kappa_{1}^{*}(1270)^{-} \kappa^{+} \rightarrow \overline{\kappa}^{*0} \pi^{-} \kappa^{+})$	$(-10 \pm 32)\%$	NODE=S032A61
$A_{CP}(D^{0} \rightarrow K_{1}^{*}(1270)^{-}K^{+} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-})$	$(1.7 \pm 3.5)\%$	NODE=S032A98
$A_{CP}(D^{0} \rightarrow K_{1}^{*}(1270)^{+} K^{-} \rightarrow 0 K^{+} K^{-})$	$(-7 \pm 17)\%$	NODE=S032A62
$A_{CP}(D^{0} \rightarrow K_{1}^{*}(1270)^{-} K^{+} \rightarrow 0^{0} K^{-} K^{+})$	$(10 \pm 13)\%$	NODE=S032A63
$A_{CP}(D^{0} \rightarrow K_{1}(1400)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-})$	$(-4.4 \pm 2.1)\%$	NODE=S032A99
$A_{CP}(D^{0} \rightarrow K^{*}(1410)^{+} K^{-} \rightarrow K^{*0} \pi^{+} K^{-})$	$(-20\pm17)\%$	NODE=S032A64
$A_{CP}(D^{0} \rightarrow K^{*}(1410)^{-}K^{+} \rightarrow \overline{K^{*0}}\pi^{-}K^{+})$	$(-1 \pm 14)\%$	NODE=S032A65
$\begin{array}{ccc} A_{CP}(D^{0} \rightarrow \kappa^{*}(1680)^{+}\kappa^{-} \rightarrow \\ \kappa^{+}\kappa^{-}\pi^{+}\pi^{-}) \end{array}$	$(-17 \pm 29)\%$	NODE=S032C00
$A_{CP}(K^{*0}\overline{K}^{*0})$ in $D^{0}, \overline{D}^{0} \to K^{*0}\overline{K}^{*0}$	$(-5 \pm 14)\%$	NODE=S032C07
$A_{CP}(D^0 \rightarrow K^{*0}\overline{K}^{*0} S$ -wave)	$(-3.9 \pm 2.2)\%$	NODE=S032A66
$A_{CP}(\phi \rho^0)$ in $D^0, \overline{D}^0 \to \phi \rho^0$	$(1 \pm 9)\%$	NODE=S032C08
$A_{CP}(D^0 \rightarrow \phi \rho^0 \text{ S-wave})$	$(-3 \pm 5)\%$	NODE=S032A67
$A_{CP}(D^0 \rightarrow \phi \rho^0 D$ -wave)	$(-37 \pm 19)\%$	NODE=S032A68
$A_{CP}(D^0 \rightarrow \phi(\pi^+\pi^-)_{S-wave})$	$(6\pm6)\%$	NODE=S032A69
$A_{CP}(D^0 \to K^*(892)^0 (K^- \pi^+)_{S-max})$	$(-10 \pm 40)\%$	NODE=S032C09
$A_{CP}(D^0 \rightarrow K^+ K^- \pi^+ \pi^- \text{ non-resonant})$	$(8 \pm 20)\%$	NODE=S032C75
$A_{CP}((K^{-}\pi^{+})_{P_{-}})_{R_{-}} (K^{+}\pi^{-})_{C_{-}})_{R_{-}}$	$(3 \pm 11)\%$	NODE=S032A70
local CPV p-value in $D^0 \overline{D^0} \rightarrow \pi^+ \pi^- \pi^0$	10.6%	NODE=S032L01· \rightarrow UNCHECKED \leftarrow ·OUR
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 \rightarrow$	$(0.6 \pm 0.2)\%$	NODE=S032L02
$\begin{array}{c} \pi^+ \pi^- \pi^+ \pi^- \\ \text{Local } CPV \text{ p-value in } D^0, \ \overline{D}{}^0 \rightarrow \\ \kappa^0_S \pi^+ \pi^- \end{array}$	96%	NODE=S032L03

4/21/2025 15:39 Page 6

Local *CPV* p-value in D^0 , $\overline{D}^0 \rightarrow$ $K^+K^-\pi^0$ Local CPV p-value in $D^0, \overline{D}^0 \rightarrow$ $\begin{matrix} \kappa^+ \kappa^- \, \pi^+ \, \pi^- \\ A_{CP}(D^\pm_{{\color{red} {s}}} \rightarrow \ \mu^\pm \, \nu) \end{matrix}$ $A_{CP}(D_s^{\pm} \rightarrow K^{\pm}K_S^0)$ $A_{CP}(D_{s}^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm})$ $A_{CP}(D_{S}^{\pm} \rightarrow \phi \pi^{\pm})$ $A_{CP}(D_s^{\pm} \rightarrow K^{\pm}K_S^0\pi^0)$ $A_{CP}(D_{S}^{\pm} \rightarrow 2K_{S}^{0}\pi^{\pm})$ $A_{CP}(D_s^{\pm} \rightarrow K^+ K^- \pi^{\pm} \pi^0)$ $A_{CP}(D_s^{\pm} \rightarrow K^{\pm}K_s^0\pi^+\pi^-)$ $A_{CP}(D_{S}^{\pm} \rightarrow K_{S}^{0} K^{\mp} 2\pi^{\pm})$ $A_{CP}(D_s^{\pm} \rightarrow \pi^+ \pi^- \pi^{\pm})$ $A_{CP}(D_{\epsilon}^{\pm} \rightarrow \pi^{\pm}\eta)$ $A_{CP}(D_{s}^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}\eta)$ $A_{CP}(D_{\epsilon}^{\pm} \rightarrow \pi^{\pm} \eta')$ $A_{CP}(D_{s}^{\pm} \rightarrow \eta \pi^{\pm} \pi^{0})$ $A_{CP}(D_{\epsilon}^{\pm} \rightarrow \eta' \pi^{\pm} \pi^{0})$ $A_{CP}(D_{\epsilon}^{\pm} \rightarrow K^{\pm}\pi^{0})$ $A_{CP}(D_{s}^{\pm} \rightarrow \overline{K}^{0}/K^{0}\pi^{\pm})$ $A_{CP}(D_{\varsigma}^{\pm} \rightarrow K_{\varsigma}^{0}\pi^{\pm})$ $A_{CP}(D_{S}^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-})$ $A_{CP}(D_{s}^{\pm} \rightarrow K^{\pm}\eta)$ $A_{CP}(D_{s}^{\pm} \rightarrow K^{\pm}\eta'(958))$ $A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$ $A_{CP}(B^+ \rightarrow J/\psi(1S)\pi^+)$ $A_{CP}(B^+ \rightarrow J/\psi \rho^+)$ $A_{CP}(B^+ \rightarrow J/\psi K^*(892)^+)$ $A_{CP}(B^+ \rightarrow \eta_c K^+)$ $A_{CP}(B^+ \rightarrow \psi(2S)\pi^+)$ $A_{CP}(B^+ \rightarrow \psi(2S)K^+)$ $A_{CP}(B^+ \rightarrow \psi(2S)K^*(892)^+)$ $A_{CP}(B^+ \rightarrow \chi_{c1}(1P)\pi^+)$ $A_{CP}(B^+ \rightarrow \chi_{c0} K^+)$ $A_{CP}(B^+ \rightarrow \chi_{c1}K^+)$ $A_{CP}(B^+ \rightarrow \chi_{c1} K^*(892)^+)$ $A_{CP}(B^+ \rightarrow \overline{D}^0 \pi^+)$ $A_{CP}(B^+ \rightarrow D_{CP(+1)}\pi^+)$ $A_{CP}(B^+ \rightarrow D_{CP(-1)}\pi^+)$ $A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+})$ $A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D K^+)$ $A_{CP}(B^+ \rightarrow [\pi^+ \pi^- \pi^+ \pi^-]_D K^*(892)^+)$ $A_{CP}(B^+ \to [K^+ K^- \pi^+ \pi^-]_D K^+)$ $A_{CP}(B^+ \to [K^+ K^- \pi^+ \pi^-]_D \pi^+)$ $A_{CP}(B^+ \rightarrow \overline{D}{}^0K^+)$ $A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+})$ $A_{CP}(B^+ \rightarrow [\pi^+ \pi^+ \pi^- \pi^-]_D \pi^+)$ $A_{CP}(B^+ \rightarrow [K^- \pi^+]_D K^+)$ $A_{CP}(B^+ \rightarrow [K^- \pi^+ \pi^0]_D K^+)$ $A_{CP}(B^+ \rightarrow \ [K^+ \pi^- \pi^0]_D K^+)$ $A_{CP}(B^+ \rightarrow [K^+ K^- \pi^0]_D K^+)$ $A_{CP}(B^+ \to [\pi^+ \pi^- \pi^0]_D K^+)$ $A_{CP}(B^+ \rightarrow \overline{D}^0 K^*(892)^+)$ $A_{CP}(B^+ \rightarrow [K^- \pi^+ \pi^- \pi^+]_{\overline{D}} K^*(892)^+)$

16.6% 9.1% $(-0.2 \pm 2.5)\%$ $(0.07 \pm 0.24)\%$ $(0.35 \pm 0.34)\%$ $(-0.38 \pm 0.27)\%$ $(-0.9 \pm 1.9)\%$ $(1.3 \pm 1.6)\%$ $(-0.6 \pm 0.9)\%$ $(0.7 \pm 2.9)\%$ (S = 1.3) $(0.7 \pm 1.8)\%$ (S = 1.3) $(-0.9 \pm 1.1)\%$ $(0.24 \pm 0.29)\%$ $(2.4 \pm 3.0)\%$ $(-0.08 \pm 0.17)\%$ (S = 1.2) $(0.9 \pm 1.5)\%$ $(-1.5 \pm 2.5)\%$ $(2 \pm 4)\%$ (S = 1.2) $(0.4 \pm 0.5)\%$ $(0.20 \pm 0.18)\%$ $(2.2 \pm 1.9)\%$ $(1.8 \pm 1.9)\%$ $(6\pm19)\%$ $(1.8 \pm 3.0) \times 10^{-3} (S = 1.5)$ $(1.8 \pm 1.2) \times 10^{-2} (S = 1.3)$ -0.05 ± 0.05 -0.048 ± 0.033 $0.01 \pm 0.07 \ (S = 2.2)$ $0.03\,\pm\,0.06$ 0.012 ± 0.020 (S = 1.5) $0.08\,\pm\,0.21$ $0.07\,\pm\,0.18$ -0.20 ± 0.18 (S = 1.5) -0.009 ± 0.033 $0.5\,\pm\,0.5$ $(-3.2 \pm 3.5) \times 10^{-3}$ -0.0088 ± 0.0024 $-0.003\,\pm\,0.012$ $0.070\,\pm\,0.020$ 0.061 ± 0.013 0.02 ± 0.11 0.095 ± 0.023 $-\,0.009\,\pm\,0.006$ -0.018 ± 0.004 -0.32 ± 0.04 $(-8.2 \pm 3.2) \times 10^{-3}$ -0.58 ± 0.21 -0.27 ± 0.27 (S = 2.4) $-0.024\,\pm\,0.013$ $0.07\,\pm\,0.07$ $0.11\,\pm\,0.04$ $-0.007\,\pm\,0.019$ -0.45 ± 0.25

NODE=S032L04 NODE=S032L05 NODE=S034A13 NODE=S034A05 NODE=S034A06 NODE=S034A20 NODE=S034A15 NODE=S034A16 NODE=S034A07 NODE=S034A14 NODE=S034A08 NODE=S034A09 NODE=S034A10 NODE=S034A48 NODE=S034A11 NODE=S034A19 NODE=S034A17 NODE=S034A01 NODE=S034A21 NODE=S034A02 NODE=S034A12 NODE=S034A03 NODE=S034A04 NODE=S041AX1 NODE=S041AX9 NODE=S041AC5 NODE=S041AW1 NODE=S041ABE NODE=S041AZ2 NODE=S041AX2 NODE=S041AW2 NODE=S041AW5 NODE=S041CQ9 NODE=S041AW3 NODE=S041AW4 NODE=S041AD2 NODE=S041AD3 NODE=S041AD4 NODE=S041AYA NODE=S041A00 NODE=S041A08 NODE=S041A69 NODE=S041A70 NODE=S041AY2 NODE=S041AYB NODE=S041A01 NODE=S041AC0 NODE=S041AK2 NODE=S041A65 NODE=S041AG0 NODE=S041AG1 NODE=S041A09 NODE=S041A07

$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+)$
$A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D \pi^+)$
$A_{CP}(B^+ \rightarrow [K^+ K^- \pi^0]_D \pi^+)$
$A_{CP}(B^+ \to [\pi^+ \pi^- \pi^0]_D \pi^+)$
$A_{CP}(B^+ \to [K^- \pi^+]_{(D\pi)}\pi^+)$
$A_{CP}(B^+ \rightarrow [K^- \pi^+]_{(D\gamma)}\pi^+)$
$A_{CP}(B^+ \rightarrow [K^- \pi^+](D\pi)K^+)$
$A_{CP}(B^+ \rightarrow [K^- \pi^+]_{(D_{N})} K^+)$
$A \qquad (P^+) \qquad [\pi^+ \pi^- \pi^0] \qquad (K^+)$
$A_{CP}(B^+ \rightarrow [\pi^+\pi^-\pi^-]_{DK^+})$
$A_{CP}(B^+ \rightarrow [\kappa_S^{N+m}]_D^{N+m})$
$A_{CP}(B^+ \rightarrow [\kappa_{S}^{0}\kappa^{-} + 1]_{D}\kappa^{+})$
$A_{CP}(B^+ \rightarrow [\kappa_{S}^{0}\kappa_{\pi^{+}}]_{D^{\pi^{+}}})$
$A_{CP}(B^+ \rightarrow [\kappa_{S}^*\kappa^+\pi^-]_D\pi^+)$
$A_{CP}(B^+ \rightarrow [K^*(892) + K^-]_D K^+)$
$A_{CP}(B^+ \rightarrow [K^*(892)^+ K^-]_D K^+)$
$A_{CP}(B^+ \rightarrow [K^*(892)^+ K^-]_D \pi^+)$
$A_{CP}(B^+ \rightarrow [\kappa^{+}(892) \ \kappa^{+}]_{D}\pi^{+})$
$A_{ADS}(B^+ \rightarrow DK^+)$
$A_{ADS}(B^+ \to D\pi^+)$ $A_{ADS}(B^+ \to D\pi^+)$
$A_{ADS}(B^+ \rightarrow [D\gamma]_{D^*}K^+)$
$A_{ADS}(B^+ \rightarrow [D\pi^*]_{D^*}K^+)$
$A_{ADS}(B^{+} \rightarrow [D\gamma]_{D^{*}}\pi^{+})$
$A_{ADS}(B^+ \to [D\pi^0]_{D^*}\pi^+)$
$A_{ADS}(B^+ \rightarrow [K^- \pi^+]_D K^+ \pi^- \pi^+)$
$A_{ADS}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+)$
$A_{CP}(B^+ \rightarrow D_{CP(-1)}K^+)$
$A_{CP}(B^+ \to [K^+ K^-]_D K^+ \pi^- \pi^+)$
$A_{CP}(B^+ \rightarrow [\pi^+\pi^-]_D K^+\pi^-\pi^+)$
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$
$A_{CP}(B^+ \to [K^+ K^-]_D \pi^+ \pi^- \pi^+)$
$A_{CP}(B^+ \rightarrow [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)$
$A_{CP}(B' \rightarrow [K \pi']_D \pi' \pi \pi')$
$A_{CP}(B^+ \rightarrow [D^*\pi^+]_{\overline{D}^*}\pi^+)$
$A_{CP}(B^+ \to [D^\circ \pi^\circ]_{D^{*0}_{CP(+1)}} \pi^+)$
$A_{CP}(B^+ \rightarrow [\overline{D}{}^0 \pi^0]_{D^{*0}} \pi^+)$
$D_{CP(-1)}$
$A_{CP}(B^+ \to [D^\circ \pi^\circ]_{\overline{D}^{*0}} K^+)$
$A_{CP}(B^+ \to [D^0 \pi^0]_{D^{*0}_{CP(+1)}} K^+)$
$A_{CP}(B^+ \rightarrow [D^0 \pi^0]_{D^{*0}} K^+)$
$D_{CP(-1)}$
$A_{CP}(B^+ \rightarrow D_{CP(+1)} \land (092)^+)$
$A_{CP}(B^+ \rightarrow D_{CP}(-1)^{K^+(892)^+})$
$A_{CP}(B^+ \to D_s^+ \phi)$
$A_{CP}(B^+ \rightarrow D_s^+ D^0)$
$A_{CP}(B^+ \rightarrow D_s^{*+}D^0)$
$A_{CP}(B^+ \rightarrow D_s^+ D^{*0})$
$A_{CP}(B^+ \rightarrow D^{*+}\overline{D}^{*0})$
$A_{CP}(B^+ \rightarrow D^{*+}\overline{D}^{U})$
$A_{CP}(B^+ \rightarrow D^+ \overline{D}^{*0})$
$A_{CP}(B^+ \rightarrow D^+ D^{\cup})$
$A_{CP}(B^+ \rightarrow K_{S}^{o}\pi^+)$
$A_{CP}(B^+ \rightarrow K^+ \pi^0)$
$A_{CD}(B^+ \rightarrow n'K^+)$

0.00 ± 0.09
0.08 ± 0.09
-0.001 ± 0.019
0.001 ± 0.010
-0.09 ± 0.27
-0.7 ± 0.6
0.8 ± 0.4
0.4 ± 1.0
-0.02 ± 0.15
$0.00 \pm 0.09~(S = 1.4)$
0.00 ± 0.07
-0.003 ± 0.014
-0.016 ± 0.025 (S = 1.5)
0.08 ± 0.05
0.07 ± 0.09
0.007 ± 0.016
-0.013 ± 0.020 (S = 1.9)
-0.451 ± 0.026 ($3 = 1.5$)
0.129 ± 0.014
-0.6 ± 1.3
0.72 ± 0.29
0.08 ± 0.13
0.00 ± 0.13
-0.14 ± 0.00
-0.33 ± 0.35
-0.01 ± 0.09
-0.14 ± 0.05
-0.04 ± 0.06
-0.05 ± 0.10
0.013 ± 0.023
-0.019 ± 0.013
-0.013 ± 0.019 0.002 \pm 0.011
-0.002 ± 0.011 0.0007 + 0.0022
0.0007 ± 0.0022
0.012 ± 0.008
-0.09 ± 0.05
0.017 ± 0.007
-0.115 ± 0.020
0.07 ± 0.10
0.08 ± 0.06
-0.23 ± 0.22
0.0 ± 0.4
$(0.5 \pm 0.6)\%$
$(-0.5 \pm 1.5) \times 10^{-2}$
$(11 + 11) \times 10^{-2}$
$(1.3 \pm 2.6) \times 10^{-2}$
$(1.3 \pm 2.0) \times 10^{-2}$
$(0.0 + 2.4) \times 10^{-2}$
$(2.4 + 1.1) \times 10^{-2}$
-0.003 + 0.015 (S = 1.1)
0.027 ± 0.012
0.004 ± 0.011
··· — ··· = -

NODE=S041AC1 NODE=S041AP2 NODE=S041AG2 NODE=S041AG3 NODE=S041AC6 NODE=S041AC7 NODE=S041AC8 NODE=S041AC9 NODE=S041AC2 NODE=S041AC3 NODE=S041ACA NODE=S041ACB NODE=S041ACC NODE=S041ACD NODE=S041ACE NODE=S041ACF NODE=S041ACG NODE=S041AA1 NODE=S041AA2 NODE=S041A45 NODE=S041A46 NODE=S041A47 NODE=S041A48 NODE=S041AA3 NODE=S041AA4 NODE=S041AY4 NODE=S041AA5 NODE=S041AA6 NODE=S041AA7 NODE=S041AA8 NODE=S041AA9 NODE=S041AA0 NODE=S041AD5 NODE=S041AD6 NODE=S041AD7 NODE=S041AD8 NODE=S041AC+ NODE=S041AD1 NODE=S041AD+ NODE=S041AD-NODE=S041ADP NODE=S041A10 NODE=S041D14 NODE=S041D15 NODE=S041AS1 NODE=S041AS2 NODE=S041AS3 NODE=S041AS4 NODE=S041AX4 NODE=S041AX3 NODE=S041AX5

$A_{CD}(B^+ \rightarrow$	$n' K^{*}(892)^{+})$	-0.26 ± 0.27
$A_{CP}(B^+ \rightarrow$	$n' K^*(1430)^+)$	0.06 ± 0.20
$A_{\alpha P}(B^+ \rightarrow$	$n' K^*(1430)^+)$	0.00 ± 0.20 0.15 ± 0.13
$\Lambda_{CP}(B^+)$	$m (*(902)^{+})$	0.13 ± 0.13
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$\eta \wedge (892)^{+})$	0.02 ± 0.00
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$(1430)^+)$	0.05 ± 0.15
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$\eta \kappa_{2}(1430)$	-0.45 ± 0.30
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$\omega R'$	-0.02 ± 0.04
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$\omega \kappa^{-1}$	0.29 ± 0.35
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$\omega(\kappa\pi)_0^+)$	-0.10 ± 0.09
$A_{CP}(B^+ \rightarrow$	$\omega K_{2}^{*}(1430)^{+})$	0.14 ± 0.15
$A_{CP}(B^+ \rightarrow$	$K^{*0}\pi^+$	-0.021 ± 0.0
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+\pi^0)$	-0.39 ± 0.21
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$K^+ \pi^- \pi^+)$	0.015 ± 0.006
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	K + K - K + nonresonant	0.06 ± 0.05
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	f (980)° K +)	-0.08 ± 0.09
$A_{CP}(B^+ \rightarrow A_{CP}(B^+ \rightarrow A_{$	$f_0(1500) K^{-1}$	0.28 ± 0.30
$A_{CP}(B^+ \rightarrow$	$f_{2}(1525)^{\circ}K^{+})$	-0.08 - 0.04
$A_{CP}(B^+ \rightarrow$	$K^{0}\pi^{+}\pi^{0}$	0.07 ± 0.06
$A_{CP}(B^+ \rightarrow$	$K_{0}^{+}(1430)^{\circ}\pi^{+})$	0.061 ± 0.032
$A_{CP}(B^+ \rightarrow$	$\kappa_0^*(1430)^+ \pi^0)$	0.26 + 0.16 - 0.14
$A_{CP}(B^+ \rightarrow$	$\kappa_2^*(1430)^0 \pi^+)$	0.05 + 0.29 - 0.24
$A_{CP}(B^+ \rightarrow$	$\kappa^+ \pi^0 \pi^0$)	-0.06 ± 0.07
$A_{CP}(B^+ \rightarrow$	$\kappa^0 \rho^+$)	-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$K^{*+}\pi^{+}\pi^{-})$	0.07 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\rho^0 \kappa^*(892)^+)$	0.31 ± 0.13
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+ f_0(980))$	-0.15 ± 0.12
$A_{CP}(B^+ \rightarrow$	$a_1^+ \kappa^0$)	0.12 ± 0.11
$A_{CP}(B^+ \rightarrow$	$b_1^+ \kappa^0$)	-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$\kappa^{*}(892)^{0}\rho^{+})$	-0.01 ± 0.16
$A_{CP}(B^+ \rightarrow$	<i>b</i> ₁ ⁰ <i>K</i> ⁺)	-0.46 ± 0.20
$A_{CP}(B^+ \rightarrow$	$\kappa^0 \kappa^+$)	0.04 ± 0.14
$A_{CP}(B^+ \rightarrow$	$\kappa_{S}^{0}\kappa^{+}$)	-0.21 ± 0.14
$A_{CP}(B^+ \rightarrow$	$\kappa^+ \kappa^0_{\mathcal{S}} \kappa^0_{\mathcal{S}})$	0.025 ± 0.031
$A_{CP}(B^+ \rightarrow$	$K^+ K^- \pi^+$ nonresonant)	-0.11 ± 0.06
$A_{CP}(B^+ \rightarrow$	$\pi^+ {\it K}^+ {\it K}^-$, $ {\it m}_{{\it K}^+ {\it K}^-} < 1.1$	-0.17 ± 0.07
GeV)		
$A_{CP}(B^+ \rightarrow$	$K^+\overline{K}^*(892)^0)$	0.04 ± 0.05
$A_{CP}(B^+ \rightarrow$	$K^+ \overline{K}^*_0(1430)^0)$	0.10 ± 0.17
$A_{CP}(B^+ \rightarrow$	$\phi \pi^+$)	0.1 ± 0.5
$A_{CP}(B^+ \rightarrow$	ϕK^+)	0.017 ± 0.017
$A_{CP}(B^+ \rightarrow$	$X_0(1550) K^+)$	-0.04 ± 0.07
$A_{CP}(B^+ \rightarrow$	$K^{*+}K^{+}K^{-})$	0.11 ± 0.09
$A_{CP}(B^+ \rightarrow$	$\phi K^*(892)^+)$	-0.01 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\phi(\kappa\pi)^{*+}_0$	0.04 ± 0.16
$A_{CP}(B^+ \rightarrow$	$\phi K_1(1270)^+)$	0.15 ± 0.20
$A_{CP}(B^+ \rightarrow$	$\phi \kappa_2^*(1430)^+)$	-0.23 ± 0.20
$A_{CP}(B^+ \rightarrow$	$K^+\phi\phi$)	-0.08 ± 0.07
$A_{CP}(B^+ \rightarrow$	$K^+[\phi\phi]_{\eta_c})$	0.10 ± 0.08
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+\gamma)$	0.014 ± 0.018
$A_{CP}(B^+ \rightarrow$	$X_{s}\gamma)$	0.028 ± 0.019
$A_{CP}(B^+ \rightarrow$	$\eta K^+ \gamma$)	-0.12 ± 0.07
$A_{CP}(B^+ \rightarrow$	$\phi K^+ \gamma$)	-0.13 ± 0.11
$A_{CP}(B^+ \rightarrow$	$\rho^+\gamma)$	-0.11 ± 0.33
$A_{CP}(B^+ \rightarrow$	$\pi^+\pi^0$)	-0.01 ± 0.04
$A_{CP}(B^+ \rightarrow$	$\pi^{+}\pi^{0}\pi^{0}$)	$(9\pm7) imes10^-$

1 ± 0.21
± 0.20
± 0.13
± 0.06
± 0.13
5 ± 0.30
P + 0.04
± 0.35
0 ± 0.09
± 0.15
21 + 0.032 (S = 1.5)
$0 \pm 0.21 (S = 1.6)$
$\pm 0.006 (S = 1.4)$
± 0.05
3 ± 0.09
± 0.30
$^{+0.05}_{-0.04}$
± 0.06
± 0.032
-0.18
-0.14 -0.29
- 0.24 S ± 0.07
3 ± 0.07 3 ± 0.15
+ 0.08
⊢ 0.13
5 + 0.12
± 0.11
3 + 0.15
+ 0.16
5 ± 0.20
+ 0.14
1 ± 0.14
± 0.031
+ 0.06
7 ± 0.07
± 0.05
± 0.17
0.5
\pm 0.017 (S = 1.8)
1 ± 0.07
± 0.09
1 ± 0.08
± 0.16
± 0.20
3 ± 0.20
3 ± 0.07
± 0.08
\pm 0.018
± 0.019
2 ± 0.07
$5 \pm 0.11 \ (5 = 1.1)$
1 ± 0.33
$1 \pm 0.04 (5 = 1.1)$ 7) $\times 10^{-2}$
1 / 10

NODE=S041CR7 NODE=S041CT7 NODE=S041CT8 NODE=S041CP1 NODE=S041CR5 NODE=S041CR6 NODE=S041AY1 NODE=S041CT0 NODE=S041CT2 NODE=S041CT3 NODE=S041CQ4 NODE=S041CP8 NODE=S041AY6 NODE=S041CU6 NODE=S041CU7 NODE=S041CS5 NODE=S041CQ5 NODE=S041A06 NODE=S041CQ7 NODE=S041A05 NODE=S041CS4 NODE=S041CU4 NODE=S041CR9 NODE=S041AKP NODE=S041AZ1 NODE=S041CR3 NODE=S041CS1 NODE=S041CS6 NODE=S041CR4 NODE=S041CS2 NODE=S041CQ8 NODE=S041CQA NODE=S041AY8 NODE=S041A18 NODE=S041A82 NODE=S041A12 NODE=S041A13 NODE=S041A14 NODE=S041AX7 NODE=S041CXK NODE=S041AKK NODE=S041AX8 NODE=S041CT1 NODE=S041CS8 NODE=S041CS9 NODE=S041CT9 NODE=S041CTB NODE=S041AKG NODE=S041A11 NODE=S041CQ3 NODE=S041APK NODE=S041CS7 NODE=S041AX0 NODE=S041A77

$A_{CP}(B^+ \rightarrow \rho^0 \pi^+)$	0
$A_{CP}(B^+ \to \rho^0(1450)\pi^+)$	_
$A_{CP}(B^+ \to \rho_3(1690)\pi^+)$	_
$A_{CP}(B^+ \rightarrow f_0(1370)\pi^+)$	0
$A_{CP}(B^+ ightarrow \pi^+ \pi^- \pi^+$ nonresonant)	_
$A_{CP}(B^+ \rightarrow \rho^+ \pi^0)$	0
$A_{CP}(B^+ \rightarrow X \pi^+, X \rightarrow \pi^0 \pi^0)$	0
$A_{CP}(B^+ \rightarrow \rho^+ \rho^0)$	-
$A_{CP}(B^+ \rightarrow \omega \pi^+)$	_
$A_{CP}(B^+ \rightarrow \omega \rho^+)$	_
$A_{CP}(B^+ \rightarrow \eta \pi^+)$	_
$A_{CP}(B^+ \to \eta \rho^+)$	0.
$A_{CP}(B^+ \to \eta' \pi^+)$	0.
$A_{CP}(B^+ \to \eta^{\prime} \rho^+)$	0.
$A_{CP}(B^+ \to b_1^{\circ}\pi^+)$	0.
$A_{CP}(B^+ \to p \overline{p} \pi^+)$	0.
$A_{CP}(B^+ \rightarrow ppK^+)$	0.
$A_{CP}(B^+ \to ppK^{+}(892)^{+})$	0.
$A_{CP}(B^+ \to p \pi \gamma)$ $A_{TP}(B^+ \to p \overline{A} \pi^0)$	0.
$A_{CP}(B^+ \to p \Lambda \pi^+)$ $A_{CP}(B^+ \to K^+ \ell^+ \ell^-)$	0.
$A_{CP}(B^+ \to K^+ e^+ e^-)$	0
$A_{CP}(B^+ \to K^+ \mu^+ \mu^-)$	0
$A_{CP}(B^+ \to \pi^+ \mu^+ \mu^-)$	_
$A_{CP}(B^+ \rightarrow K^{*+}\ell^+\ell^-)$	_
$A_{CP}(B^+ \rightarrow K^* e^+ e^-)$	_
$A_{CP}(B^+ \rightarrow K^* \mu^+ \mu^-)$	_
$\operatorname{Re}(\epsilon_{B0})/(1+ \epsilon_{B0} ^2)$	(-
$A_{T/CP}(B^0 \leftrightarrow \overline{B}^0)$	0
$A_{CP}(B^0 \to D^*(2010)^+ D^-)$	0.
$A_{CP}(B^0 \to \overline{D}{}^0 \pi^0)$	((
$A_{CP}(B^0 \to [K^+ K^-]_D K^*(892)^0)$	-
$A_{CP}(B^0 \to [K^+ \pi^-]_D K^*(892)^0)$	0
$A_{CP}(B^0 \to [K^+ \pi^- \pi^+ \pi^-]_D K^*(892)^0)$	_
$A_{CP}(B^0 \rightarrow [K^- \pi^+]_D K^*(892)^0)$	0
$A_{CP}(B^0 \to [K^- \pi^+ \pi^+ \pi^-]_D K^*(892)^0)$	_
$R_d^+(B^0 \to [\pi^\pm K^\mp]_D K^{*0})$	0
$R_d^-(\overline{B}^0 \to [\pi^{\mp} \kappa^{\pm}]_D \kappa^{*0})$	0
$A_{CP}(B^0 \to [\pi^+\pi^-]_D \kappa^*(892)^0)$	_
$A_{CP}(B^0 \to [\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^0)$	0
$R^+_d(B^0 \to [\pi^\pm \kappa^\mp \pi^\pm \pi^\mp]_D \kappa^{*0})$	0
$R_d^-(\overline{B}{}^0 \to [\pi^{\mp} \kappa^{\pm} \pi^{\pm} \pi^{\mp}]_D \kappa^{*0})$	0
$A_{CP}(B^0 \to \eta' K^*(892)^0)$	_
$A_{CP}(B^0 \rightarrow \eta' K_0^*(1430)^0)$	_
$A_{CP}(B^0 \rightarrow \eta' K_2^*(1430)^0)$	0
$A_{CP}(B^0 \to \eta K_0^{*}(1430)^0)$	0
$A_{CP}(B^0 \to \eta K_2^*(1430)^0)$	_
$A_{CP}(B^0 \rightarrow b_1 \bar{\kappa}^+)$	_
$A_{CP}(B^0 \rightarrow \omega K^{*0})$	0
$A_{CP}(B^0 \rightarrow \omega(K\pi)^{*0}_0)$	_
$A_{CP}(B^0 \rightarrow \omega \kappa_2^*(1430)^0)$	_
$A_{CP}(B^0 \rightarrow \kappa^+ \pi^- \pi^0)$	((
$A_{CP}(B^0 \rightarrow \rho^- \kappa^+)$	0.
$A_{CP}(B^0 \rightarrow \rho(1450)^- K^+)$	_
$A_{CP}(B^0 \rightarrow \rho(1700)^- K^+)$	_

0.003 ± 0.014
-0.11 ± 0.05
-0.80 ± 0.28
0.72 ± 0.22
$-0.14 \substack{+0.23 \\ -0.16}$
0.03 ± 0.10
0.18 ± 0.12
-0.05 ± 0.05
-0.04 ± 0.05
-0.20 ± 0.09
-0.14 ± 0.07 (S = 1.4)
0.11 ± 0.11
0.06 ± 0.16
0.26 ± 0.17
0.05 ± 0.16
0.00 ± 0.04
0.00 ± 0.04 (S = 2.2)
0.21 ± 0.16 (S = 1.4)
0.17 ± 0.17
0.01 ± 0.17
-0.02 ± 0.08
0.14 ± 0.14
0.011 ± 0.017
-0.11 ± 0.12
-0.09 ± 0.14
-0.14 ± 0.23
-0.12 ± 0.24
$-0.5 \pm 0.4) \times 10^{-3}$
0.005 ± 0.018
0.013 ± 0.014
$0.4 \pm 2.4) \times 10^{-2}$
-0.05 ± 0.06
0.031 ± 0.023
-0.012 ± 0.024
0.19 ± 0.19
-0.01 ± 0.24
0.069 ± 0.014
0.093 ± 0.014
-0.03 ± 0.10
0.02 ± 0.09
0.060 ± 0.015
0.038 ± 0.015
-0.07 ± 0.18
-0.19 ± 0.17
0.14 ± 0.18
0.06 ± 0.13
-0.07 ± 0.19
-0.07 ± 0.12
145 ± 0.25
-0.07 ± 0.09
-0.37 ± 0.17
$(0 + 6) \times 10^{-2}$
$0 \pm 0 + 0.11$
1.20 ± 0.11
-0.10 ± 0.33
-0.10 ± 0.33

NODE=S041CP4 NODE=S041CT4 NODE=S041A16 NODE=S041CT5 NODE=S041CT6 NODE=S041CP5 NODE=S041A85 NODE=S041AY9 NODE=S041AX6 NODE=S041CP9 NODE=S041CP2 NODE=S041CQ2 NODE=S041CQ1 NODE=S041CR8 NODE=S041CS3 NODE=S041CP6 NODE=S041CP7 NODE=S041AW6 NODE=S041CLG NODE=S041CS0 NODE=S041CR1 NODE=S041CU0 NODE=S041CU1 NODE=S041CU8 NODE=S041CR2 NODE=S041CU2 NODE=S041CU3 $\underset{\text{EVAL}}{\text{NODE}=}\text{S042EPS}; \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR}$ NODE=S042Y3 NODE=S042AC4 NODE=S042A42 NODE=S042AD3 NODE=S042AD4 NODE=S042A31 NODE=S042A32 NODE=S042A33 NODE=S042AD6 NODE=S042AD7 NODE=S042AD5 NODE=S042A28 NODE=S042A29 NODE=S042A30 NODE=S042CP4 NODE=S042CT2 NODE=S042CT3 NODE=S042AD1 NODE=S042AD2 NODE=S042CQ2 NODE=S042CQ8 NODE=S042CR0 NODE=S042CR1 NODE=S042AC7 NODE=S042AC6 NODE=S042CT4 NODE=S042CT5

$A_{CP}(B^0 \to K^+ \pi^- \pi^0 \text{ nonresonant})$	0.10 ± 0.18
$A_{CP}(B^0 \rightarrow \kappa^0 \pi^+ \pi^-)$	-0.01 ± 0.05
$A_{CP}(B^0 \to (K\pi)_0^{*+}\pi^-)$	0.02 ± 0.04
$A_{CP}(B^0 \to K_2^*(1430)^+ \pi^-)$	-0.29 ± 0.24
$A_{CP}(B^0 \to K^*(1680)^+ \pi^-)$	-0.07 ± 0.14
$A_{CP}(B^0 \rightarrow f_0(980) K_S^0)$	0.28 ± 0.31
$A_{CP}(B^0 \to (K\pi)_0^{*0} \pi^0)$	-0.15 ± 0.11
$A_{CP}(B^0 \rightarrow \kappa^{*0} \pi^0)$	-0.15 ± 0.13
$A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-)$	0.07 ± 0.05
$A_{CP}(B^0 \to K^*(892)^0 \rho^0)$	-0.06 ± 0.09
$A_{CP}(B^0 \to K^{*0} f_0(980))$	0.07 ± 0.10
$A_{CP}(B^0 \rightarrow K^{*+}\rho^-)$	0.21 ± 0.15
$A_{CP}(B^0 \rightarrow K^*(892)^0 K^+ K^-)$	0.01 ± 0.05
$A_{CP}(B^0 \rightarrow a_1^- K^+)$	-0.16 ± 0.12
$A_{CP}(B^0 \rightarrow \kappa^0 \kappa^0)$	-0.6 ± 0.7
$A_{CP}(B^0 \rightarrow K^*(892)^0 \phi)$	0.00 ± 0.04
$A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+)$	0.2 ± 0.4
$A_{CP}(B^0 \to \phi(K\pi)^{*0}_0)$	0.12 ± 0.08
$A_{CP}(B^0 \rightarrow \phi K_2^*(1430)^0)$	-0.11 ± 0.10
$A_{CP}(B^0 \rightarrow K^*(892)^0 \gamma)$	-0.006 ± 0.011
$A_{CP}(B^0 \rightarrow K_2^*(1430)^0 \gamma)$	-0.08 ± 0.15
$A_{CP}(B^0 \rightarrow X_s \gamma)$	-0.009 ± 0.018
$A_{CP}(B^0 \rightarrow \rho^+ \pi^-)$	$0.13 \pm 0.06 \; ({\sf S} = 1.1)$
$A_{CP}(B^0 \rightarrow \rho^- \pi^+)$	-0.08 ± 0.08
$A_{CP}(B^0 \to a_1(1260)^{\pm}\pi^{\mp})$	-0.07 ± 0.06
$A_{CP}(B^0 \to b_1^- \pi^+)$	-0.05 ± 0.10
$A_{CP}(B^0 \to p\overline{p}K^*(892)^0)$	0.05 ± 0.12
$A_{CP}(B^0 \to p\overline{\Lambda}\pi^-)$	0.04 ± 0.07
$A_{CP}(B^0 \to K^{*0}\ell^+\ell^-)$	-0.05 ± 0.10
$A_{CP}(B^0 \to K^{*0} e^+ e^-)$	-0.21 ± 0.19
$A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-)$	-0.034 ± 0.024
$C_{D^*(2010)^-D^+} (B^0 \to D^*(2010)^-D^+)$	-0.02 ± 0.08
$C_{D^*(2010)^+ D^-} (B^0 \to D^*(2010)^+ D^-)$	$-0.03\pm0.09\;({\rm S}=1.1)$
$C_{D^{*+}D^{*-}} (B^0 \to D^{*+}D^{*-})$	$0.01 \pm 0.09 \; ({\sf S} = 1.6)$
$C_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	$0.00 \pm 0.10~({ m S}=1.6)$
$C_{-} (B^{0} \rightarrow D^{*+} D^{*-})$	0.19 ± 0.31
$S_{-} (B^{0} \rightarrow D^{*+}D^{*-})$	-1.6 ± 0.5
$C (B^0 \rightarrow D^*(2010)^+ D^*(2010)^- K_c^0)$	0.01 ± 0.29
$S(B^0 \rightarrow D^*(2010)^+ D^*(2010)^- K_c^0)$	0.1 ± 0.4
$C_{D^+D^-} (B^0 \rightarrow D^+D^-)$	-0.06 ± 0.18 (S = 2.5)
$C_{J/J}(1S) \pi^0$	0.03 ± 0.17 (S = 1.5)
$J/\psi(15)\pi^{0}$	
$C(B^{\circ} \rightarrow J/\psi(1S)\rho^{\circ})$	-0.00 ± 0.00
$ D_{CP}^{(*)} h^0 \xrightarrow{(B^* \rightarrow D_{CP}^{(*)})} $	-0.02 ± 0.08
$S_{D_{CP}^{(*)} h^0} (B^0 o D_{CP}^{(*)} h^0)$	-0.66 ± 0.12
$C_{K^0 \pi^0} (B^0 \to K^0 \pi^0)$	0.00 ± 0.08
$C_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	-0.04 ± 0.20 (S = 2.5)
$S_{\eta'(958) K^0_S} (B^0 \rightarrow \eta'(958) K^0_S)$	$0.43 \pm 0.17 \; (S = 1.5)$
$C_{\eta' K^0} (B^0 \rightarrow \eta' K^0)$	$-0.08\pm 0.04~({\rm S}=1.1)$
$C_{\omega K_S^0} (B^0 \rightarrow \omega K_S^0)$	0.0 ± 0.4 (S = 3.0)
$S_{\omega \kappa_S^0} (B^0 \rightarrow \omega \kappa_S^0)$	0.70 ± 0.21
$C (B^{\bar{0}} \rightarrow \ \kappa^0_S \pi^0 \pi^0)$	-0.21 ± 0.20

NODE=S042CQ5
NODE=S042CQ9
NODE=S042CQ6
NODE=S042A09
NODE=S042A10
NODE=S042A11
NODE=S042CQ7
NODE=S042CQ4
NODE=S042CP6
NODE=S042AC9
NODE=S042AD0
NODE=S042CT6
NODE=S042CP7
NODE=S042CQ1
NODE=S042CP5
NODE=S042AC1
NODE=S042CP8
NODE=S042CP2
NODE=S042CP3
NODE=S042AKG
NODE=S042AC8
NODE=S042A12
NODE=S042AC5
NODE=S042AC0
NODE=S042AAP
NODE=S042CQ3
NODE=S042CQ0
NODE=S042CLP
NODE=S042CT1
NODE=S042CU0
NODE=S042CU1
NODE=S042CPJ
NODE=S042CPK
NODE=S042LD1
NODE=S042CD+
NODE=S042CD-
NODE=S042SD-
NODE=S042CDS
NODE=S042SDS
NODE=S042CPD
NODE=S042CPL
NODE=S042CPR
NODE=S042CDH
NODE=S042SDH
NODE=S042CKP
NODE=S042Y1
NODE=S042Y2
NODE=S042CEK
NODE=S042CW1
NODE=S042SW1
NODE=S042CK2

	NODE=S042SK2
)	NODE=S042CX7
	NODE=S042SX7
	NODE=S042CF1
ō	NODE=S042SF1
	NODE=S042SF2
	NODE=S042CF2
	NODE=S042SF3
	NODE=S042CF3
3	NODE=S042SF4
	NODE=S042CF4
= 1.4)	NODE=S042CKS
	NODE=S042SKS
	NODE=S042CX2
	NODE=S042CKK
2	NODE=S042CX1
	NODE=S042SX1
2	NODE=S042CX5
,	NODE=S042SX5
	NODE=S042CKG
	NODE=S042SKG
	NODE=S042CX4
7	NODE=S042SX4
= 1.4)	NODE=S042CEG
S = 1.2)	NODE=S042SEG
	NODE=S042CPG
	NODE=S042SPG
)	NODE=S042CKR
3	NODE=S042SKR
	NODE=S042CX8
	NODE=S042SX8
)	NODE=S042CX6
7 (S = 1.2)	NODE=S042CRP
	NODE=S042SRP
	NODE=S042SD1
	NODE=S042CRH
ł	NODE=S042SRH
	NODE=S042CAP
S = 3.2)	NODE=S042SAP
S = 1.3)	NODE=S042CDA
2	NODE=S042SDA
ŀ	NODE=S042CAQ
ł	NODE=S042SDB
	NODE=S042CX9

 $S_{\rho_{0}\rho_{0}}^{0} (B^{0} \rightarrow \rho^{0} \rho^{0})$ $C_{\rho\rho} (B^0 \rightarrow \rho^+ \rho^-)$ $S_{\rho\rho} (B^0 \rightarrow \rho^+ \rho^-)$ $|\lambda| (B^0 \rightarrow J/\psi K^*(892)^0)$ $\cos 2\beta \ (B^0 \rightarrow J/\psi \, K^*(892)^0)$ $\cos 2\beta \ (B^0 \rightarrow \ [K^0_S \pi^+ \pi^-]_{D^{(*)}} \ h^0)$ $(S_{+} + S_{-})/2 (B^{0} \rightarrow D^{*-}\pi^{+})$ $(S_{-} - S_{+})/2 (B^0 \rightarrow D^{*-} \pi^+)$ $(S_{+} + S_{-})/2 (B^{0} \rightarrow D^{-}\pi^{+})$ $(S_{-} - S_{+})/2 (B^0 \rightarrow D^{-} \pi^{+})$ $S_{\perp} (B^0 \rightarrow D^- \pi^+)$ $S_{-}(B^0 \rightarrow D^+\pi^-)$ $(S_{+} + S_{-})/2 \ (B^{0} \rightarrow D^{-} \rho^{+})$ $(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \rho^{+})$ $C_{\eta_c\,K^0_c}\,(B^0\to~\eta_c\,K^0_S)$ $C_{c \overline{c} K^{(*)0}} (B^0 \rightarrow c \overline{c} K^{(*)0})$ $C_{J/\psi(\mathrm{nS})\,K^0} (B^0 \rightarrow J/\psi(\mathrm{nS})\,K^0)$ $C_{J/\psi K^{*0}} (B^0 \to J/\psi K^{*0})$ $S_{J/\psi K^{*0}} (B^0 \to J/\psi K^{*0})$ $C_{\chi_{c0} \, K^0_S} \, (B^0 \rightarrow \, \chi_{c0} \, K^0_S)$ $S_{\chi_{c0} \kappa_S^0}(B^0 \rightarrow \chi_{c0} \kappa_S^0)$ $C_{\chi_{c1}K^0_S}(B^0\to~\chi_{c1}K^0_S)$ $\sin(2\beta_{\rm eff})(B^0 \rightarrow \phi K^0)$ $\sin(2\beta_{\rm eff})(B^0 \rightarrow \phi K^*_{\rm O}(1430)^0)$ $\sin(2\beta_{\rm eff})(B^0 \to [\kappa_S^0 \pi^+ \pi^-]_{D^{(*)}} h^0)$ $|\lambda| (B^0 \to [K_S^0 \pi^+ \pi^-]_{D^{(*)}} h^0)$ $|\sin(2\beta + \gamma)|$ $2\beta + \gamma$ $x_+(B^0 \rightarrow DK^{*0})$ $x_{B0} \rightarrow DK^{*0}$ $y_+(B^0 \rightarrow DK^{*0})$ $y_{-}(B^0 \rightarrow DK^{*0})$ $a_{CP}(B^0 \rightarrow p\overline{p}K^+\pi^-)$ $A_{CP}(B \rightarrow K^*(892)\gamma)$ $A_{CP}(B \rightarrow s\gamma)$ $A_{CP}(B \rightarrow (s+d)\gamma)$ $A_{CP}(B \rightarrow X_{s}\ell^{+}\ell^{-})$ $A_{CP}(B \rightarrow K^* e^+ e^-)$ $A_{CP}(B \rightarrow K^* \mu^+ \mu^-)$ $A_{CP}(B \rightarrow K^* \ell^+ \ell^-)$ $A_{CP}(B \rightarrow \eta \text{ anything})$ $\Delta A_{CP}(X_{s}\gamma) = A_{CP}(B^{\pm} \to X_{s}\gamma)$ $-A_{CP}(B^0 \rightarrow X_s \gamma)$ $\overline{A}_{CP}(B \to X_{s}\gamma) = (A_{CP}(B^{+} \to X_{s}\gamma) +$ $A_{CP}(B^0 \rightarrow X_s \gamma))/2$ $\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to K^{*+} \gamma)$ $+ A_{CP}(B^0 \rightarrow K^{*0}\gamma))/2$ $\operatorname{Re}(\epsilon_{B_{1}^{0}}) / (1 + |\epsilon_{B_{1}^{0}}|^{2})$ $S_{KK}(B_s^0 \rightarrow K^+ K^-)$ $\delta_B(B^0_s \to D^{\pm}_s K^{\mp} \pi^{\pm} \pi^{\mp})$ CP Violation phase β_s ($b \rightarrow c \overline{c} s$)

 $0.3\,\pm\,0.7$ $0.00\,\pm\,0.09$ $-0.14\,\pm\,0.13$ <0.25, CL = 95% $1.7^{+0.7}_{-0.9}$ (S = 1.6) $0.91\,\pm\,0.25$ $-0.039\,\pm\,0.011$ $-\,0.009\,\pm\,0.015$ $-0.046\,\pm\,0.023$ -0.022 ± 0.021 $0.058\,\pm\,0.023$ 0.038 ± 0.021 -0.024 ± 0.032 -0.10 ± 0.06 $0.08\,\pm\,0.13$ $(0.4 \pm 1.0) \times 10^{-2}$ $(0.2 \pm 1.0) \times 10^{-2}$ $0.03\,\pm\,0.10$ 0.60 ± 0.25 $-0.3^{+0.5}_{-0.4}$ -0.7 ± 0.5 $0.06\,\pm\,0.07$ $0.22\,\pm\,0.30$ $0.97 \substack{+0.03 \\ -0.52}$ $0.80\,\pm\,0.16$ $1.01\,\pm\,0.08$ >0.40, CL = 90% $(80 \pm 60)^{\circ}$ $0.07\,\pm\,0.08$ $-0.18\,\pm\,0.08$ $-0.35\,\pm\,0.10$ -0.03 ± 0.13 $(0.5 \pm 0.9)\%$ -0.003 ± 0.011 0.015 ± 0.011 $0.010\,\pm\,0.031$ $0.04\,\pm\,0.11$ -0.18 ± 0.15 -0.03 ± 0.13 -0.04 ± 0.07 $-0.13\substack{+\,0.04\\-\,0.05}$ $0.041\,\pm\,0.023$ 0.009 ± 0.012 -0.001 ± 0.014 $(-0.15 \pm 0.70) \times 10^{-3}$ $0.14 \pm 0.05 \ (S = 1.3)$ $(-6^{+10}_{-13})^{\circ}$ $(2.0 \pm 0.8) \times 10^{-2}$ rad

NODE=S042SX9 NODE=S042CRR NODE=S042SRR NODE=S042LD9 NODE=S042CJ1 NODE=S042CJ2 NODE=S042LD3 NODE=S042LD4 NODE=S042LD5 NODE=S042LD6 NODE=S042A06 NODE=S042A07 NODE=S042DR+ NODE=S042DR-NODE=S042CEC $NODE = S042CCC; \rightarrow UNCHECKED \leftarrow; OUR$ $\begin{array}{l} \text{NODE}{=}\text{S042CJK};{\rightarrow} \text{ UNCHECKED} \leftarrow;\text{OUR}\\ \text{EVAL} \end{array}$ NODE=S042CJS NODE=S042SJS NODE = S042CC2NODE=S042SC2 NODE=S042CC1 NODE=S042BTF NODE=S042BFK NODE=S042BTM NODE=S042LDH NODE=S042BGA NODE=S042BG0 NODE=S042XP NODE=S042XM NODE=S042YP NODE=S042YM NODE=S042A44 NODE=S049CP1 NODE=S049CP2 NODE=S049CP4 NODE=S049CP3 NODE=S049CP6 NODE=S049CP7 NODE=S049CP5 NODE=S049CP8 NODE=S049DA1 NODE=S049A06 NODE=S049A03 $\begin{array}{l} \mathsf{NODE}{=}\mathsf{S086EPS};{\rightarrow} \text{ UNCHECKED} \leftarrow; \mathsf{OUR} \\ \mathsf{EVAL} \end{array}$ NODE=S086SK1 NODE=S086A29 $\texttt{NQDE}{=}\texttt{S086PHS}{;}{\rightarrow} \texttt{UNCHECKED} \leftarrow {;}\texttt{OUR}$

 $A_{CP}^{L}(B_{s} \rightarrow J/\psi \overline{K}^{*}(892)^{0})$ $A_{CP}^{\parallel}(B_{s} \rightarrow J/\psi \overline{K}^{*}(892)^{0})$ $A_{CP}^{\perp}(B_s \rightarrow J/\psi \overline{K}^*(892)^0)$ $A_{CP}(B_{\epsilon}^{0} \rightarrow [K^{+}K^{-}]_{D}\overline{K}^{*}(892)^{0})$ $A_{CP}(B_{\epsilon}^{0} \to [\pi^{+} K^{-}]_{D} K^{*}(892)^{0})$ $A_{CP}(B_{5}^{0} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{*}(892)^{0})$ $S(B^0_{\epsilon} \rightarrow \phi \gamma)$ $C(B_{s}^{0} \rightarrow \phi \gamma)$ $\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $\Gamma(\eta_c(1S) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$ $\Gamma(\eta_c(1S) \rightarrow K^+ K^-) / \Gamma_{\text{total}}$ $\Gamma(\eta_c(1S) \rightarrow K^0_S K^0_S) / \Gamma_{\text{total}}$ *n* electric dipole moment $(\alpha_{-} + \alpha_{+})/(\alpha_{-} - \alpha_{+})$ in $\Lambda \rightarrow p\pi^{-}, \overline{\Lambda} \rightarrow$ $[\alpha(\overline{\Xi}^{-})\alpha_{-}(\Lambda) - \overline{\alpha}\overline{\Xi}^{+}\alpha_{+}(\overline{\Lambda})]$ $\overline{[\alpha(\Xi^{-})\alpha_{-}(\Lambda) + \overline{\alpha}\overline{\Xi}^{+}\alpha_{+}(\overline{\Lambda})]}$ $(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Omega^- \rightarrow \Lambda K^-$, $\overline{\Omega}^+ \rightarrow$ $\overline{\Lambda}K^+$ $(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda \pi^+, \overline{\Lambda}_c^- \to$ $\overline{\Lambda}\pi^{-}$ $(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda e^+ \nu_e, \overline{\Lambda}_c^- \to$ $\overline{\Lambda}e^{-}\overline{\nu}_{e}$ $A_{CP}(\Lambda_b \rightarrow p\pi^-)$ $A_{CP}(\Lambda_b \rightarrow pK^-)$ $A_{CP}(\Lambda_b \rightarrow D p K^-)$ $\Delta A_{CP}(pK^-/\pi^-)$ $A_{CP}(\Lambda_b \rightarrow p \overline{K}^0 \pi^-)$ $\Delta A_{CP}(J/\psi p \pi^-/K^-)$ $A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-)$ $A_{CP}(\Lambda_b \rightarrow \Lambda K^+ K^-)$ $\Delta A_{CP}(\Lambda_b^0 \to p K^- \mu^+ \mu^-)$ $\Delta A_{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)$ $\Delta A_{CP}(\Lambda_b^0 \to (p\pi^-\pi^+\pi^-)_{LBM})$ $\Delta A_{CP}(\Lambda_b^{\bar{0}} \rightarrow pa_1(1260)^-)$ $\begin{array}{l} \Delta A_{CP}(A_b^0 \rightarrow N(1520)^0 \rho(770)^0) \\ \Delta A_{CP}(A_b^0 \rightarrow \Delta(1232)^{++} \pi^- \pi^-) \end{array}$ $\Delta A_{CP}(\Lambda_b^0 \rightarrow p K^- \pi^+ \pi^-)$ $\Delta A_{CP}(\Lambda_b^0 \to (p K^- \pi^+ \pi^-)_{LBM})$ $\Delta A_{CP}(\Lambda_b^{\tilde{0}} \rightarrow N(1520)^0 \kappa^*(892)^0)$ $\Delta A_{CP}(\Lambda_b^0 \to \Lambda(1520)\,\rho(770)^0)$ $\Delta A_{CP}(\Lambda_b^0 \to \Delta(1232)^{++}\,\kappa^{-}\pi^{-})$ $\Delta A_{CP}(\Lambda_b^{\bar{0}} \rightarrow pK_1(1410)^-)$ $\Delta A_{CP}(\Lambda_b^0 \to pK^-K^+\pi^-)$ $\Delta A_{CP}(\Lambda_b^0 \rightarrow p K^- K^+ K^-)$ $\begin{array}{l} \Delta A_{CP}(\Lambda_b^0 \rightarrow \Lambda(1520) \, \phi(1020)) \\ \Delta A_{CP}(\Lambda_b^0 \rightarrow (\rho \, K^-)_{highmass} \, \phi(1020)) \end{array}$ $\Delta A_{CP}(\Lambda_b^0 \to (pK^-K^+K^-)_{LBM})$ $A_c(\Lambda)$ $A_{s}(\Lambda)$ $A_c(\phi)$ $A_s(\phi)$ $a_{CP}^{O}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)$ $a_{CP}^{O}(\Lambda_b^0 \to pK^-\pi^+\pi^-)$ $a_{CP}(\Lambda_b^0 \to pK^-K^+\pi^-)$ $a_{CP}(\Lambda_b^{\tilde{0}} \rightarrow pK^-K^+K^-)$ $a_{CP}(\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-)$

 -0.05 ± 0.06 $0.17\,\pm\,0.15$ -0.05 ± 0.10 $0.06\,\pm\,0.04$ $-0.009\,\pm\,0.023$ $0.00\,\pm\,0.06$ 0.43 ± 0.32 $0.11\,\pm\,0.31$ $< 1.3 \times 10^{-4}$, CL = 90% ${<}4\times10^{-5}\text{, }$ CL =90% $<7 \times 10^{-4}$, CL = 90% ${<}4\times10^{-4}\text{, }$ CL =90% $<0.18 \times 10^{-25}$ ecm, CL = 90% $(-0.3 \pm 0.4) \times 10^{-2}$ $(0 \pm 7) \times 10^{-4}$ -0.02 ± 0.13 $0.020\,\pm\,0.016$ $0.00\,\pm\,0.04$ -0.025 ± 0.029 (S = 1.2) $-0.025\,\pm\,0.022$ $0.12\,\pm\,0.09$ $0.014\,\pm\,0.024$ $0.22\,\pm\,0.13$ $(5.7 \pm 2.7) \times 10^{-2}$ -0.53 ± 0.25 -0.28 ± 0.12 $(-4 \pm 5) \times 10^{-2}$ $(1.1 \pm 2.6) \times 10^{-2}$ $(4 \pm 4) \times 10^{-2}$ $(-1\pm4)\times10^{-2}$ $(2 \pm 5) \times 10^{-2}$ $(0.1 \pm 3.3) \times 10^{-2}$ $(3.2 \pm 1.3) \times 10^{-2}$ $(3.5 \pm 1.6) \times 10^{-2}$ $(5.5 \pm 2.5) \times 10^{-2}$ $(1 \pm 6) \times 10^{-2}$ $(4.4 \pm 2.7) \times 10^{-2}$ $(5 \pm 4) \times 10^{-2}$ $(-7 \pm 5) \times 10^{-2}$ $(0.2 \pm 1.9) \times 10^{-2}$ $(4 \pm 6) \times 10^{-2}$ $(-0.7 \pm 3.4) \times 10^{-2}$ $(2.7 \pm 2.4) \times 10^{-2}$ -0.22 ± 0.13 0.13 ± 0.13 -0.01 ± 0.12 -0.07 ± 0.12 $(-0.7 \pm 0.7)\%$ $(-0.8 \pm 0.9)\%$ $(-1 \pm 5)\%$ $(1.1 \pm 1.5)\%$ $(1 \pm 5)\%$

NODE=S086PK4 NODE=S086PK5 NODE=S086PK6 NODE=S086CP2 NODE=S086CP3 NODE=S086CP4 NODE=S086A23 NODE=S086A24 PAR=M026;DESIG=51 PAR=M026;DESIG=52 PAR=M026;DESIG=53 PAR=M026;DESIG=54 NODE=S017EDM NODE=S018AL NODE=S022ACP NODE=S024ALD NODE=S033AC1 NODE=S033ACP NODE=S040CP1 NODE=S040CP2 NODE=S040A38 NODE=S040A19 NODE=S040CP3 NODE=S040DCP NODE=S040A00 NODE=S040A05 NODE=S040A10 NODE=S040A22 NODE=S040A23 NODE=S040A29 NODE=S040A30 NODE=S040A31 NODE=S040A24 NODE=S040A25 NODE=S040A32 NODE=S040A33 NODE=S040A34 NODE=S040A35 NODE=S040A26 NODE=S040A27 NODE=S040A36 NODE=S040A37 NODE=S040A28 NODE=S040TCL NODE=S040TSL NODE=S040TCP NODE=S040TSP NODE=S040A08 NODE=5040A14 NODE=S040A09 NODE=S040A15 NODE=S040A12

CP VIOLATION OBSERVED

$Re(\epsilon)$		$(1.596\pm 0.013)\times 10^{-3}$
charge asymmetry in ${\cal K}^0_{\ell 3}$ decays		
A_L = weighted average of $A_L(\mu)$ and $A_I(e)$		$(0.332 \pm 0.006)\%$
$A_{L}(\mu) = [\Gamma(\pi^{-}\mu^{+}\nu_{\mu})$		$(0.304 \pm 0.025)\%$
$- \left[\left(\pi^+ \mu^- \overline{\nu}_\mu \right) \right] / \text{sum}$		
$A_{L}(e) = [I(\pi^{-}e^{+}\nu_{e}) - \Gamma(\pi^{+}e^{-}\overline{\nu}_{e})]/\text{sum}$		$(0.334 \pm 0.007)\%$
parameters for ${\cal K}^{m 0}_{L} o ~2\pi$ decay		
$\begin{aligned} \eta_{00} &= A(\mathcal{K}_L^0 \to 2\pi^0) / \\ A(\mathcal{K}_S^0 \to 2\pi^0) \end{aligned}$		$(2.220 \pm 0.011) \times 10^{-3}$ (S
$ \eta_{+-} = A(K_L^0 \to \pi^+ \pi^-) / A(K_L^0 \to \pi^+ \pi^-) $		$(2.232 \pm 0.011) \times 10^{-3}$ (S
$ \epsilon = (2 n, + n_{00})/3$		$(2.228 \pm 0.011) \times 10^{-3}$ (S
$ c - (2 \eta_{+-} + \eta_{00})/3$	[/]	$(2.220 \pm 0.011) \times 10^{-10}$ (3)
''00/''+- $P_{2}(c'/c) = (1 m_{12}/m_{12})/3$	[/]	$(1.66 \pm 0.23) \times 10^{-3}$ (S =
(e / e) = (1 - / 00 / / 1 -) / 3	[']	$(1.00 \pm 0.23) \times 10$ (3 =
Assuming CPT		
ϕ_{+-} , phase of η_{+-}		$(43.51\pm 0.05)^\circ~({\sf S}=1.2)$
$\phi_{m{00}}$, phase of $\eta_{m{00}}$		$(43.52\pm0.05)^\circ$ (S = 1.2)
$\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$		$(43.52 \pm 0.04)^{\circ} (S = 1.2)$
Not assuming CPT		
ϕ_{\perp} , phase of η_{\perp}		$(43.4 \pm 0.5)^{\circ}$ (S = 1.2)
ϕ_{n} , phase of p_{n}		$(43.7 + 0.6)^{\circ}$ (S = 1.2)
$\phi_{-} = (2\phi_{+} + \phi_{00})/3$		$(43.5 \pm 0.5)^{\circ}$ (S = 1.3)
<i>CP</i> asymmetry <i>A</i> in $K_0^0 \rightarrow \pi^+\pi^-e^+e^-$		$(13.7 \pm 1.5)\%$
β_{CD} from $K^0 \rightarrow e^+ e^- e^+ e^-$		-0.19 ± 0.07
$\gamma_{CD} \text{ from } K_{L}^{0} \rightarrow e^{+}e^{-}e^{+}e^{-}$		0.01 ± 0.11 (S = 1.6)
parameters for $K^0 \rightarrow \pi^+ \pi^- \gamma$ decay		
$ m = \Lambda(K^0) \times \pi^+ \pi^- \alpha CP$		$(2.35 \pm 0.07) \times 10^{-3}$
$\frac{ \eta_{+-\gamma} - A(K_L \to \pi^+ \pi^- \gamma) }{\text{violating})/A(K_S^0 \to \pi^+ \pi^- \gamma) }$		$(2.33 \pm 0.07) \times 10$
$\phi_{+-\gamma}=$ phase of $\eta_{+-\gamma}$		$(44 \pm 4)^{\circ}$
$\Gamma(\kappa_L^0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$	[<i>j</i>]	$(1.967 \pm 0.010) \times 10^{-3}$ (S
$\Gamma(\kappa_I^0 \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$		(8.64 \pm 0.06) \times 10 $^{-4}$ (S =
$\Delta A_{CP}^{D^0} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$		$(-0.154 \pm 0.029)\%$
$A_{CP}(B^+ \to [K^- \pi^+]_{\overline{D}} K^*(892)^+)$		-0.75 ± 0.16
$A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$		$0.132 \pm 0.015~({ m S}=1.8)$
$A_{ADS}(B^+ \rightarrow DK^+)$		-0.451 ± 0.026
$A_{CP}(B^+ \to \eta K^+)$		-0.37 ± 0.08
$A_{CP}(B^+ \rightarrow K^+ \pi^- \pi^+)$		0.015 ± 0.006 (S = 1.4)
$A_{CP}(B^+ \to f_2(1270)K^+)$		$-0.68^{+0.19}_{-0.17}$
$A_{CP}(B^+ \to \rho^0 K^+)$		-0.17 0.160 ± 0.021
$A_{CP}(B^+ \rightarrow K^+ K^- \pi^+)$		-0.115 ± 0.008
$A_{CP}(B^+ \rightarrow \pi^+ (K^+ K^-)_{S-wave})$		-0.66 ± 0.04
$A_{CP}(B^+ \to K^+ K^- K^+)$		-0.036 ± 0.004
$A_{CP}(B^+ \to \pi^+ \pi^- \pi^+)$		$0.076 \pm 0.008~({\sf S}=1.5)$
$A_{CP}^{(B^+} \rightarrow f_2(1270)\pi^+)$		0.40 ± 0.06
γ		$(66.4 \substack{+2.8 \\ -3.0})^{\circ}$
$r_B(B^+ \rightarrow D^0 K^+)$		$(9.88 + 0.22) \times 10^{-2}$
$\delta_B(B^+ \rightarrow D^0 K^+)$		$(128.5 + 2.8)^{\circ}$
$r_B(B^+ \rightarrow D^0 K^{*+})$		-3.0° $0.101^{+0.016}$
$\delta_{P}(B^{+} \rightarrow D^{0}K^{*+})$		$(47 + 61)^{\circ}$
D' '		<u>\ -10'</u>

CONLAW=CPV NODE=S011REP NODE=S013310 NODE=S013AL NODE=S013A1 NODE=S013A2 NODE=S013315 11) $\times 10^{-3}$ (S = 1.8) NODE=S013E00 $(11) \times 10^{-3} (S = 1.8)$ NODE=S013E+- $(11) \times 10^{-3} (S = 1.8)$ NODE=S013EP NODE=S013ER $\times 10^{-3}$ (S = 1.6) NODE=S013EPS NODE=S013F+-NODE=S013F+-NODE=S013FOO NODE=S013EPH NODE=S013F+2 $NODE = S013F + 2; \rightarrow UNCHECKED \leftarrow; OUR$ EVAL EVAL NODE=S013FO2; \rightarrow UNCHECKED \leftarrow ;OUR EVAL NODE=S013FO2; \rightarrow UNCHECKED \leftarrow ;OUR EVAL NODE=S013DPA NODE=S013BCP NODE=S013GCP NODE=S013307 NODE=S013E+G NODE=S013P+G $10) \times 10^{-3}$ (S = 1.5) PAR=S013;DESIG=5 $\times 10^{-4}$ (S = 1.8) PAR=S013;DESIG=11 NODE=S032DCP NODE=S041AC4 NODE=S041AY3 NODE=S041AA1 NODE=S041CP3 NODE=S041AY6 NODE=S041CR0 NODE=S041CQ6 NODE=S041CKK NODE=S041A17 NODE=S041AY7 NODE=S041AY5 NODE=S041CQ0 $\underset{\text{EVAL}}{\text{NODE}} = \text{S041GGM}; \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR}$ $\underset{EVAL}{\text{NODE}} S041DRX; \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR}$ $\begin{array}{c} \text{NODE} = \text{S041ARZ}; \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR} \\ \text{EVAL} \end{array}$ $\begin{array}{c} \texttt{NODE} = \texttt{S041DRZ}; \rightarrow \texttt{UNCHECKED} \leftarrow; \texttt{OUR}\\ \texttt{EVAL} \end{array}$

```
0.103\substack{+\,0.010\\-\,0.011}
r_B(B^+ \rightarrow D^{*0}K^+)
                                                                                   (312.2^{+6.3}_{-7.1})^{\circ}
\delta_B(B^+ \rightarrow D^{*0}K^+)
A_{CP} (B^0 \rightarrow K^+ \pi^-)
                                                                                    -0.0831 \pm 0.0031
A_{CP}(B^0 \rightarrow \eta K^*(892)^0)
                                                                                   0.19\,\pm\,0.05
A_{CP}(B^0 \rightarrow K^*(892)^+ \pi^-)
                                                                                    -0.27 \pm 0.04
S_{D^*(2010)^-D^+}(B^0 \rightarrow D^*(2010)^-D^+)
                                                                                    -0.83\pm0.09
S_{D^*(2010)^+D^-} (B^0 \rightarrow D^*(2010)^+D^-)
                                                                                    -0.80 \pm 0.09
S_{D^{*+}D^{*-}}(B^0 \rightarrow D^{*+}D^{*-})
                                                                                    -0.59 \pm 0.14 (S = 1.8)
S_{+} (B^{0} \rightarrow D^{*+}D^{*-})
                                                                                   -0.73\pm0.09
S_{D^+D^-} (B^0 \rightarrow D^+D^-)
                                                                                   -0.64 \pm 0.09 (S = 1.3)
S_{J/\psi(1S) \pi^0}^{-} (B^0 \rightarrow J/\psi(1S) \pi^0)
                                                                                    -0.88 \pm 0.32 (S = 2.2)
S(B^0 \rightarrow J/\psi(1S)\rho^0)
                                                                                   -0.66^{+0.16}_{-0.12}
S_{K^0\pi^0} (B^0 \rightarrow K^0\pi^0)
                                                                                   0.64\,\pm\,0.13
S_{\eta' \, K^0} \ (B^0 \rightarrow \ \eta' \, K^0)
                                                                                   0.64\,\pm\,0.05
S_{K^{+}K^{-}K^{0}_{S}}^{'}(B^{0} \rightarrow K^{+}K^{-}K^{0}_{S}) nonresonant)
                                                                                    -0.66 \pm 0.11
S_{K^+K^-K^0_S} (B^0 \rightarrow K^+K^-K^0_S \text{ inclusive})
                                                                                    -0.65 \pm 0.12
C_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)
                                                                                    -0.314 \pm 0.030
S_{\pi\pi} (B^0 \rightarrow \pi^+ \pi^-)
                                                                                    -0.670 \pm 0.030
\Delta C_{\rho\pi} (B^0 \rightarrow \rho^+ \pi^-)
                                                                                   0.27\,\pm\,0.06
S_{\eta_c \, K^0_S} (B^0 \rightarrow \eta_c \, K^0_S)
                                                                                   0.93 \pm 0.17
\sin(2\beta) (B^0 \rightarrow J/\psi K^0_{\varsigma})
                                                                                   0.710\,\pm\,0.011
S_{J/\psi(nS) K^0} (B^0 \rightarrow J/\psi(nS) K^0)
                                                                                   0.711\pm0.011
S_{\chi_{c1}K_c^0} (B^0 \rightarrow \chi_{c1}K_S^0)
                                                                                   0.63\,\pm\,0.10
                                                                                   0.77\substack{+\,0.13\\-\,0.12}
\sin(2\beta_{\rm eff})(B^0 \rightarrow K^+ K^- K^0_S)
                                                                                   (84.1^{+4.5}_{-3.8})^{\circ}
α
r_{B^0}(B^0 \rightarrow DK^{*0})
                                                                                   0.250\,\pm\,0.022
\bar{\delta_{B^0}}(B^0 \rightarrow DK^{*0})
                                                                                   (202.8 + 10.3)^{\circ}
C_{KK}(B_s^0 \rightarrow K^+K^-)
                                                                                   0.162\pm0.035
                                                                                   0.37 \substack{+0.10 \\ -0.09}
r_B(B^0_s \rightarrow D^{\mp}_s K^{\pm})
r_B(B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp})
                                                                                   0.47\,\pm\,0.08
\delta_B(B^0_s \to D^{\pm}_s K^{\mp})
                                                                                    (358 \pm 14)^{\circ}
A_{CP}(B_s \rightarrow \pi^+ K^-)
                                                                                   0.224\,\pm\,0.012
```

 $\substack{\mathsf{NODE}=\mathsf{S041ARY};\to \mathsf{UNCHECKED} \leftarrow; \mathsf{OUR}\\\mathsf{EVAL}$ $\substack{\mathsf{NODE}=\mathsf{S041DRY};\to \mathsf{UNCHECKED} \leftarrow;\mathsf{OUR}\\\mathsf{EVAL}$ NODE=S042ACP NODE=S042CP1 NODE=S042AC3 NODE=S042SPJ NODE=S042SPK NODE=S042LD2 NODE=S042SD+ NODE=S042SPD NODE=S042SPL NODE=S042SPR NODE=S042SKP NODE=S042SEK NODE=S042SX2 NODE=S042SKK NODE=S042CPI NODE=S042SPI NODE=S042CDT NODE=S042SEC NODE=S042BET; \rightarrow UNCHECKED \leftarrow ; OUR $\begin{array}{l} \texttt{NODE}=\texttt{S042SJK}; \rightarrow \texttt{UNCHECKED} \leftarrow; \texttt{OUR}\\ \texttt{EVAL} \end{array}$ NODE=S042SC1 NODE=S042BTK $NODE = S042ALP; \rightarrow UNCHECKED \leftarrow; OUR$ $\begin{array}{l} \text{NODE}{=}\text{S042AR}; \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR} \\ \text{EVAL} \end{array}$ NODE=S042A00;→ UNCHECKED ←;OUR EVAL NODE=S086CK1 NODE=S086ARX NODE=S086A28 NODE=S086DRX NODE=S086CP1

4/21/2025 15:39

Page 15

CPT INVARIANCE

 $(m_{W^+} - m_{W^-}) / m_{\text{average}}$ $(m_{e^+} - m_{e^-}) / m_{\text{average}}$ $|q_{e^+} + q_{e^-}|/e$ $(g_{e^+} - g_{e^-}) / g_{average}$ $(\tau_{\mu^+} - \tau_{\mu^-}) / \tau_{\text{average}}$ $(g_{\mu^+} - g_{\mu^-}) / g_{average}$ $(m_{\tau^+} - m_{\tau^-})/m_{\text{average}}$ $\langle \Delta m^2_{21} - \Delta \overline{m}^2_{21}
angle$ in neutrino mixing $\left< \Delta m^2_{32} - \Delta \overline{m}^2_{32} \right>$ in neutrino mixing $m_t - m_{\overline{t}}$ $(m_{\pi^+} - m_{\pi^-}) / m_{\text{average}}$ $(\boldsymbol{\tau}_{\pi^+}~-~\boldsymbol{\tau}_{\pi^-}) \;/\; \boldsymbol{\tau}_{\text{average}}$ $(m_{K^+} - m_{K^-}) / m_{\text{average}}$ $(\tau_{K^+} - \tau_{K^-}) / \tau_{\text{average}}$ ${\cal K}^\pm
ightarrow \ \mu^\pm \,
u_\mu$ rate difference/sum $\kappa^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ rate difference/sum δ in $K^0 - \overline{K}^0$ mixing real part of δ imaginary part of δ Re(y), $K_{e,3}$ parameter $Re(x_{-})$, K_{e3} parameter $|m_{K^0} - m_{\overline{K}0}| / m_{\text{average}}$ $(\Gamma_{K^0} - \Gamma_{\overline{K}^0})/m_{\text{average}}$ phase difference $\phi_{00} - \phi_{+-}$ $\operatorname{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2}$ $A_{CPT}(D^0 \rightarrow \ K^- \pi^+)$ $\Delta S^{+}_{CPT} (S^{-}_{\ell^{+}, \mathcal{K}^{0}_{S}} - S^{+}_{\ell^{+}, \mathcal{K}^{0}_{S}})$ $\Delta S^{-}_{CPT} (S^{+}_{\ell^{+}, K^{0}_{S}} - S^{-}_{\ell^{+}, K^{0}_{S}})$ $\Delta C^+_{CPT} \left(C^-_{\ell^+, K^0_{c}} - C^+_{\ell^+, K^0_{c}} \right)$ $\Delta C_{CPT}^{-} (C_{\ell^{+}, K_{c}^{0}}^{+} - C_{\ell^{+}, K_{c}^{0}}^{-})$ $\frac{|m_p - m_{\overline{p}}|/m_p}{(\left|\frac{q_{\overline{p}}}{m_{\overline{p}}}\right| - \frac{q_p}{m_p})/\frac{q_p}{m_p}}$ $|q_p + q_{\overline{p}}|/e$ $(\mu_{p} + \mu_{\overline{p}}) / \mu_{p}$ $(m_n - m_{\overline{n}})/m_n$ $(m_{\Lambda} - m_{\overline{\Lambda}}) / m_{\Lambda}$ $(\tau_{\Lambda} - \tau_{\overline{\Lambda}}) / \tau_{\Lambda}$ $(\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+}$ $(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$ $(m_{\pm -} - m_{\pm +}) / m_{\pm -}$ $(\tau_{=-} - \tau_{=+}) / \tau_{=-}$ $(\mu_{=-} + \mu_{=+}) / |\mu_{=-}|$ $(m_{Q^-} - m_{\overline{Q}^+}) / m_{Q^-}$ $(\tau_{O^-} - \tau_{\overline{O}^+}) / \tau_{O^-}$

 $(-3.7 \pm 3.5) \times 10^{-4}$ $< 8 \times 10^{-9}$, CL = 90% $< 4 \times 10^{-8}$ $(-0.5 \pm 2.1) \times 10^{-12}$ $(2 \pm 8) \times 10^{-5}$ $(-0.11 \pm 0.12) \times 10^{-8}$ $<2.8 \times 10^{-4}$, CL = 90% $<1.1 \times 10^{-4} \text{ eV}^2$, CL = 99.7% $(-0.12 \pm 0.25) \times 10^{-3} \text{ eV}^2$ -0.15 ± 0.20 GeV (S = 1.1) $(2 \pm 5) \times 10^{-4}$ $(6 \pm 7) \times 10^{-4}$ $(-0.6 \pm 1.8) \times 10^{-4}$ $(0.10 \pm 0.09)\%$ (S = 1.2) $(-0.27 \pm 0.21)\%$ $[k] (0.4 \pm 0.6)\%$ $(2.5 \pm 2.3) \times 10^{-4}$ $(-1.5 \pm 1.6) \times 10^{-5}$ $(0.4 \pm 2.5) \times 10^{-3}$ $(-2.9 \pm 2.0) \times 10^{-3}$ [/] $<6 \times 10^{-19}$, CL = 90% $(8 \pm 8) \times 10^{-18}$ $(0.34 \pm 0.32)^{\circ}$ $(-3 \pm 35) \times 10^{-6}$ 0.16 ± 0.23 -0.03 ± 0.14 $0.14\,\pm\,0.17$ 0.03 ± 0.14 $[n] < 7 \times 10^{-10}, CL = 90\%$ $(0.3 \pm 1.6) \times 10^{-11}$ $[n] < 7 \times 10^{-10}, CL = 90\%$ $(0.002 \pm 0.004) \times 10^{-6}$ $(9 \pm 5) \times 10^{-5}$ $(-0.1 \pm 1.1) \times 10^{-5} (S = 1.6)$ $(0.9 \pm 3.2) \times 10^{-3}$ -0.0006 ± 0.0012 $0.014\,\pm\,0.015$

 $(-3 \pm 9) \times 10^{-5}$

 $(-1 \pm 8) \times 10^{-5}$

 -0.01 ± 0.07

 $+0.01\pm0.05$

 $0.00\,\pm\,0.05$

CONLAW=CPT NODE=S043MDA;OUR EVAL NODE=S003DM NODE=S003DQ NODE=S003MMR NODE=S004DTT;OUR EVAL NODE=S004MMR NODE=S035MDF NODE=S067CPT NODE=S067CP2 NODE=Q007CPT NODE=S008DM NODE=S008DT NODE=S010DMA;OUR EVAL NODE=S010DT NODE=S010D1 NODE=S010D4 NODE=S011DRE NODE=S011DRE NODE=S011DIM NODE=S011YRE NODE=S011XRM NODE=S011DMM NODE=S011DGM NODE=S013DF1; \rightarrow UNCHECKED \leftarrow ; OUR NODE=S013CPT NODE=S032CPT NODE=S042TVI NODE=S042TVJ NODE=S042TVK NODE=S042TVL NODE=S016DM $NODE=S016DMM; \rightarrow UNCHECKED \leftarrow; OUR$ NODE=S016DQ2 NODE=S016MMD NODE=S017DMM;→ UNCHECKED ←;OUR NODE=S018DM NODE=S018DT NODE=S019DT NODE=S019MMD NODE=S022DMM NODE=S022DT $NODE = S022MMD; \rightarrow UNCHECKED \leftarrow; OUR$ NODE=S024DMM $\begin{array}{l} \mathsf{NODE}{=}\mathsf{S024TD};{\rightarrow} \text{ UNCHECKED} \leftarrow; \mathsf{OUR} \\ \mathsf{FST} \end{array}$

TESTS OF NUMBER CONSERVATION LAWS

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of L_e, L_{\mu}, L_{\tau}.

$\Gamma(Z \rightarrow e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$	[0]	$<\!\!2.62 imes10^{-7}$, CL $=95\%$	PAR=S044;DESIG=5
$\Gamma(Z \rightarrow e^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$	[0]	${<}5.0{ imes}10^{-6}$, CL ${=}$ 95%	PAR=S044;DESIG=25
$\Gamma(Z \rightarrow \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$	[0]	${<}6.5 imes10^{-6}$, CL ${=}$ 95%	PAR=S044;DESIG=26
$\Gamma(H \rightarrow e\mu)/\Gamma_{total}$		${<}4.4 imes10^{-5}$, CL ${=}$ 95%	PAR=S126;DESIG=17
$\Gamma(H \rightarrow e\tau)/\Gamma_{\text{total}}$		${<}2.0 imes10^{-3}$, CL ${=}$ 95%	PAR=S126;DESIG=18
$\Gamma(H \rightarrow \mu \tau) / \Gamma_{\text{total}}$		${<}1.5 imes10^{-3}$, CL ${=}$ 95%	PAR=S126;DESIG=9
$\sigma(e^+e^- \rightarrow e^{\pm}\tau^{\mp}) / \sigma(e^+e^- \rightarrow$		${<}8.9 imes10^{-6}$, CL ${=}$ 95%	NODE=S003RET
$\mu^+\mu^-$)			
$\sigma(e^+e^- \rightarrow \ \mu^{\pm} \tau^{\mp}) \ / \ \sigma(e^+e^- \rightarrow$		${<}4.0 imes10^{-6}$, CL ${=}$ 95%	NODE=S003RMT
$\mu^+ \mu^-$)			
limit on $\mu^- \rightarrow e^-$ conversion			NODE=S004245
$\sigma(\mu^{-32}S \rightarrow e^{-32}S) / 22$		${<}7 imes10^{-11}$, CL ${=}$ 90%	NODE=S004RE
$\sigma(\mu^{-32}S \rightarrow \nu_{\mu}^{-32}P^*)$			
$\sigma(\mu^-{ m Ti} ightarrowe^-{ m Ti})$ /		$<$ 4.3 $ imes$ 10 $^{-12}$, CL $=$ 90%	NODE=S004RG
$\sigma(\mu^-{\sf Ti} ightarrow{\sf capture})$		11	
$\sigma(\mu^- Pb \rightarrow e^- Pb) /$		${<}4.6 imes 10^{-11}$, CL ${=}~90\%$	NODE=S004RH
$\sigma(\mu^- Pb \rightarrow capture)$			
$\sigma(\mu^- \operatorname{Au} \rightarrow e^- \operatorname{Au}) / (- e^- \operatorname{Au})$		$<7 \times 10^{-13}$, CL = 90%	NODE=S004RA
$\sigma(\mu Au \rightarrow capture)$		<0.0020 CL - 00%	
conversion $R_{\pi} = G_{C} / G_{\Gamma}$		< 0.0050, CL = 90%	NODE=3004IVIC
$\Gamma(u^{-}) \sim e^{-u \overline{u}} \sqrt{\Gamma}$	[6]	$<1.2 \times 10^{-2}$ CL = 00%	
$\Gamma(\mu \rightarrow e^{-\nu}e^{\nu}\mu)/\Gamma$ total	[P]	$(1.2 \times 10^{-13}, CL = 90\%)$	TAR=5004,DESIG=5
$\Gamma(\mu \to e \gamma)/\Gamma_{\text{total}}$		$<3.1 \times 10^{-12}$, $CL = 90\%$	PAR=S004;DESIG=4
$I(\mu^- \rightarrow e^- e^+ e^-)/I_{\text{total}}$		$<1.0 \times 10^{-12}$, CL = 90%	PAR=S004;DESIG=5
$\Gamma(\mu^- \rightarrow e^- 2\gamma)/\Gamma$ total		$<7.2 \times 10^{-11}$, CL = 90%	PAR=S004;DESIG=6
$I(\tau^- \rightarrow e^- \gamma)/I_{total}$		$<3.3 \times 10^{-6}$, CL = 90%	PAR=S035;DESIG=32
$\Gamma(\tau^- \rightarrow e^- \gamma \gamma) / \Gamma_{\text{total}}$		$<2.5 \times 10^{-4}, CL = 90\%$	PAR=S035;DESIG=355
$\Gamma(\tau^- \rightarrow \mu^- \gamma) / \Gamma_{\text{total}}$		$<4.2 \times 10^{-6}, CL = 90\%$	PAR=S035;DESIG=31
$\Gamma(\tau^- \rightarrow \mu^- \gamma \gamma) / \Gamma_{\text{total}}$		$<5.8 \times 10^{-4}$, CL = 90%	PAR=S035;DESIG=356
$\Gamma(\tau^- \rightarrow e^- \pi^0) / \Gamma_{\text{total}}$		$< 8.0 \times 10^{-8}, CL = 90\%$	PAR=S035;DESIG=40
$\Gamma(\tau^- \rightarrow \mu^- \pi^0) / \Gamma_{\text{total}}$		$<1.1 \times 10^{-7}$, CL = 90%	PAR=S035;DESIG=39
$\Gamma(\tau^- \rightarrow e^- \kappa_S^0) / \Gamma_{\text{total}}$		$< 2.6 imes 10^{-8}$, CL $= 90\%$	PAR=S035;DESIG=42
$\Gamma(\tau^- \rightarrow \mu^- \kappa^0_S) / \Gamma_{\text{total}}$		${<}2.3 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=41
$\Gamma(\tau^- \rightarrow e^- \eta) / \Gamma_{\text{total}}$		${<}9.2 imes 10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=67
$\Gamma(\tau^- \rightarrow \mu^- \eta) / \Gamma_{\text{total}}$		${<}6.5 imes10^{-8}$, CL $=90\%$	PAR=S035;DESIG=114
$\Gamma(\tau^- \rightarrow e^- \rho^0) / \Gamma_{\text{total}}$		${<}2.2 imes 10^{-8}$, CL $= 90\%$	PAR=S035;DESIG=44
$\Gamma(\tau^- \rightarrow \mu^- \rho^0) / \Gamma_{\text{total}}$		${<}1.7 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=43
$\Gamma(\tau^- \rightarrow e^- \omega) / \Gamma_{\text{total}}$		${<}2.4 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=305
$\Gamma(\tau^- \to \mu^- \omega) / \Gamma_{\text{total}}$		${<}3.9 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=306
$\Gamma(\tau^- \rightarrow e^- K^* (892)^0) / \Gamma_{\text{total}}$		${<}1.9 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=53
$\Gamma(\tau^- \rightarrow \mu^- K^* (892)^0) / \Gamma_{total}$		${<}2.9 imes 10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=54
$\Gamma(\tau^- \rightarrow e^- \overline{K}^* (892)^0) / \Gamma_{\text{total}}$		$< 1.7 imes 10^{-8}$, CL $= 90\%$	PAR=S035;DESIG=131
$\Gamma(\tau^- \to \mu^- \overline{K}^* (892)^0) / \Gamma_{total}$		$< 4.3 imes 10^{-8}$, CL $= 90\%$	PAR=S035;DESIG=132
$\Gamma(\tau^- \rightarrow e^- \eta'(958))/\Gamma_{total}$		$< 1.6 \times 10^{-7}$, CL = 90%	PAR=S035;DESIG=292
$\Gamma(\tau^- \rightarrow \mu^- \eta'(958))/\Gamma_{+o+ol}$		$< 1.3 \times 10^{-7}$, CL = 90%	PAR=S035;DESIG=293
$\Gamma(\tau^- \rightarrow e^- f_0(980) \rightarrow e^- \pi^+ \pi^-) / \Gamma_{+c+-1}$		$<3.2 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=307
$\Gamma(\tau^- \to \mu^- f_0(980) \to \mu^- \pi^+ \pi^-) / \Gamma_{\text{total}}$		$<3.4 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=308
$\Gamma(\tau^- \to e^- \phi)/\Gamma_{\text{total}}$		$<2.0 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=255
$\Gamma(\tau^- \rightarrow \mu^- \phi)/\Gamma_{\text{total}}$		$<2.3 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=256
			,

	$(2.7 \times 10^{-8} \text{ CL} - 00\%)$	
$\Gamma(\tau \rightarrow e e e e)/\Gamma_{\text{total}}$	$<2.7 \times 10^{-9}$, CL = 90%	
$\Gamma(\tau \rightarrow e \mu' \mu)/\Gamma_{\text{total}}$	$<2.7 \times 10^{-9}$, CL = 90%	PAR=S035;DESIG=30
$\Gamma(\tau \rightarrow e^+ \mu^- \mu^-)/\Gamma_{\text{total}}$	$<1.7 \times 10^{-9}$, $CL = 90\%$	PAR=S035;DESIG=55
$I(\tau \rightarrow \mu \ e' \ e) / I_{total}$	$<1.8 \times 10^{-6}$, CL = 90%	PAR=S035;DESIG=37
$\Gamma(\tau^- \rightarrow \mu^+ e^- e^-)/\Gamma_{\text{total}}$	$<1.5 \times 10^{-6}$, CL = 90%	PAR=S035;DESIG=56
$\Gamma(\tau^- \rightarrow \mu^- \mu^+ \mu^-) / \Gamma_{\text{total}}$	$<1.9 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=35
$\Gamma(\tau^- \rightarrow e^- \pi^+ \pi^-) / \Gamma_{\text{total}}$	$<2.3 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=45
$\Gamma(\tau^- \rightarrow \mu^- \pi^+ \pi^-) / \Gamma_{\text{total}}$	$<2.1 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=47
$\Gamma(\tau^- \rightarrow e^- \pi^+ K^-) / \Gamma_{\text{total}}$	$<3.7 \times 10^{-8}$, CL = 90%	PAR=S035;DESIG=49
$\Gamma(\tau^- \rightarrow e^- \pi^- \kappa^+) / \Gamma_{\text{total}}$	$< 3.1 imes 10^{-8}$, CL $= 90\%$	PAR=S035;DESIG=77
$\Gamma(au^- ightarrow e^- \kappa^0_S \kappa^0_S) / \Gamma_{ m total}$	${<}7.1 imes10^{-8}$, CL $=$ 90%	PAR=S035;DESIG=288
$\Gamma(\tau^- \rightarrow e^- K^+ K^-) / \Gamma_{\text{total}}$	${<}3.4 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=251
$\Gamma(\tau^- \rightarrow \mu^- \pi^+ K^-) / \Gamma_{\text{total}}$	${<}8.6 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=51
$\Gamma(\tau^- \rightarrow \mu^- \pi^- K^+) / \Gamma_{\text{total}}$	${<}4.5 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=78
$\Gamma(\tau^- \rightarrow \mu^- \kappa_S^0 \kappa_S^0) / \Gamma_{\text{total}}$	${<}8.0 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=289
$\Gamma(\tau^- \rightarrow \mu^- K^+ K^-) / \Gamma_{\text{total}}$	$<$ 4.4 $ imes$ 10 $^{-8}$, CL = 90%	PAR=S035;DESIG=253
$\Gamma(\tau^- \rightarrow e^- \pi^0 \pi^0) / \Gamma_{\text{total}}$	$< 6.5 \times 10^{-6}$. CL = 90%	PAR=S035:DESIG=224
$\Gamma(\tau^- \rightarrow \mu^- \pi^0 \pi^0) / \Gamma_{t+t+1}$	$<1.4 \times 10^{-5}$, CL = 90%	PAR=S035:DESIG=225
$\Gamma(\tau^- \rightarrow e^- nn)/\Gamma$	$<3.5 \times 10^{-5}$ Cl = 90%	PAR=\$035:DF\$IG=226
$\Gamma(\tau^- \rightarrow \mu^- nn)/\Gamma$	$< 6.0 \times 10^{-5}$ Cl = 90%	PAR-S035:DESIG-227
$\Gamma(\sigma^{-}) = \sigma^{-} \sigma^{0} \sigma^{0} / \Gamma$	$< 0.0 \times 10^{-5}$ Cl = 90%	DAR_\$035;DESIC_228
$\Gamma(\tau \rightarrow e^{-\tau} n)/\Gamma$	$<2.4 \times 10^{-5}$ CL = 90%	PAR_5035,DESIG_220
$\Gamma(\tau \rightarrow \mu \ \pi \ \eta)/\Gamma$ total	$<2.2 \times 10^{-4}$, $CL = 90\%$	PAP = S025, DESIC = 102
$\Gamma(\gamma \rightarrow e^{-1} \text{ light boson})/\Gamma \text{total}$	$<9 \times 10^{-4}$ CL = 93%	PAR = 5035, DESIG = 102
$\tau (\tau \rightarrow \mu \text{ light boson})/1 \text{ total}$	$<0 \times 10^{-1}$, CL = 93%	PAR = 5053; DESIG = 103 NODE = S067P12
LEPTON FAMILY NUMBER VIOLATION II		
$\sin^2(\theta_{12})$	0.307 ± 0.012	NODE=S067P12
Δm_{21}^2	$(7.50 \pm 0.19) imes 10^{-5} \ { m eV}^2$	NODE=S067DM3
$\sin^2(\theta_{22})$ (Inverted order)	0.537 ± 0.020 (S = 1.2)	NODE=S067P23
$\sin^2(\theta_{22})$ (Normal order)	0.534 ± 0.015	NODE=S067SM3:→ UNCHECKED ←:OUR
Δm^2 (Inverted order)	$(-2.527 \pm 0.024) \times 10^{-3} \text{ s}^{2}$ (S =	EVAL NODE-S067DM1
Δm_{32} (inverted order)	$(-2.527 \pm 0.054) \times 10^{-10}$ eV (5 = 1.2)	NODE-3007DIVIT
Δm_{22}^2 (Normal order)	$(2.451 \pm 0.026) imes 10^{-3} \ { m eV}^2$	$NODE = S067Q23; \rightarrow UNCHECKED \leftarrow; OUR$
32 \	, , , , , , , , , , , , , , , , , , ,	EVAL NODE-S067P13
$\sin^2(\theta_{12})$	$(2.16 \pm 0.06) \times 10^{-2}$ (S = 1.2)	
$\frac{\sin^2(\theta_{13})}{\Gamma(t \to e^{\pm} \mu^{\mp} c)/\Gamma}$	$(2.16 \pm 0.06) \times 10^{-2}$ (S = 1.2) <8.9 × 10 ⁻⁷ Cl = 95%	PAR=Q007 DESIG=15
$\sin^{2}(\theta_{13})$ $\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}$ $\Gamma(t \rightarrow e^{\pm}\mu^{\mp}\mu)/\Gamma_{total}$	$(2.16 \pm 0.06) \times 10^{-2}$ (S = 1.2) <8.9 × 10 ⁻⁷ , CL = 95% <7 × 10 ⁻⁸ CL = 95%	PAR=Q007; DESIG=15 PAR=Q007; DESIG=16
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{\text{total}}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)/\Gamma_{\text{total}}}$	$(2.16 \pm 0.06) \times 10^{-2}$ (S = 1.2) <8.9 × 10 ⁻⁷ , CL = 95% <7 × 10 ⁻⁸ , CL = 95% <8.7 × 10 ⁻⁷ CL = 95%	PAR=Q007; DESIG=15 $PAR=Q007; DESIG=16$ $PAR=Q007; DESIG=17$
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{\text{total}}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{\text{total}}}$ $\frac{\Gamma(\tau^{\pm} \rightarrow \mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[a] < 8.0 \times 10^{-3} CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008:DESIG=8
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{\text{total}}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{\text{total}}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma(\tau^{\pm} \rightarrow \mu^{-}e^{\pm}e^{\pm}u)/\Gamma_{\text{total}}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S008;DESIG=9
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \to e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \to e^{\pm}\mu^{\mp}u)}{\Gamma(t \to \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}}$ $\frac{\Gamma(t \to \mu^{\pm}\tau^{\mp}q)}{\Gamma(\tau^{+} \to \mu^{+}\nu_{e})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \to \mu^{-}e^{+}e^{+}\nu)}{\Gamma(\tau^{0} \to \mu^{+}e^{-})/\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S008;DESIG=9 PAR=S009;DESIG=14
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{-}e^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow \mu^{-}e^{-}e^{+})/\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S008;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=14
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(\tau^{+} \rightarrow \mu^{+}\nu_{e})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow \mu^{-}e^{+})/\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S008;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S000;DESIG=22
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(\tau^{+} \rightarrow \mu^{+}\nu_{e})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-})/\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}/\Gamma_{total}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S008;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=8 PAR=S014;DESIG=20
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma(\tau^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S008;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=8 PAR=S014;DESIG=20 PAR=M002;DESIG=27
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(total)}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma(\tau^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma(total)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}$ $\frac{\Gamma(\eta^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(\tau^{0}e^{\pm})}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu}{\Gamma(\tau^{0}e^{\pm})}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$ $< 4.7 \times 10^{-4}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=20 PAR=M002;DESIG=27 PAR=M002;DESIG=27
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(total)}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma(total)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma(total)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\eta^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma(total)}$ $\frac{\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})}{\Gamma(total)}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$ $< 4.7 \times 10^{-4}, CL = 90\%$ $< 2 \times 10^{-6}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=27 PAR=M002;DESIG=27 PAR=M004;DESIG=258 PAR=S014;DESIG=258
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma_{total}}$ $\frac{\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})}{\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$ $< 4.7 \times 10^{-4}, CL = 90\%$ $< 8.1 \times 10^{-11}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S014;DESIG=20 PAR=M002;DESIG=27 PAR=M004;DESIG=278 PAR=S010;DESIG=31
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta'(958) \rightarrow e\mu)}{\Gamma_{total}}$ $\frac{\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$ $< 4.7 \times 10^{-4}, CL = 90\%$ $< 8.1 \times 10^{-11}, CL = 90\%$ $< 8.1 \times 10^{-11}, CL = 90\%$ $< 10^{-3}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=8 PAR=S014;DESIG=20 PAR=M002;DESIG=27 PAR=M004;DESIG=27 PAR=M004;DESIG=258 PAR=S010;DESIG=31 PAR=S010;DESIG=34 PAR=S010;DESIG=34
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma_{total}}$ $\frac{\Gamma(\tau^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma_{total}}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma_{total}}$ $\frac{\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \pi^{+}\mu^{+}e^{-})}{\Gamma_{total}}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$ $< 4.7 \times 10^{-4}, CL = 90\%$ $< 8.1 \times 10^{-11}, CL = 90\%$ $< 1.3 \times 10^{-11}, CL = 90\%$ $< 1.3 \times 10^{-11}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=8 PAR=S014;DESIG=20 PAR=M002;DESIG=27 PAR=M004;DESIG=27 PAR=M004;DESIG=258 PAR=S010;DESIG=31 PAR=S010;DESIG=34 PAR=S010;DESIG=29 PAR=S010;DESIG=29
$\begin{aligned} \sin^{2}(\theta_{13}) \\ \Gamma(t \to e^{\pm}\mu^{\mp}c)/\Gamma_{total} \\ \Gamma(t \to e^{\pm}\mu^{\mp}u)/\Gamma_{total} \\ \Gamma(t \to \mu^{\pm}\tau^{\mp}q)/\Gamma_{total} \\ \Gamma(\pi^{+} \to \mu^{+}\nu_{e})/\Gamma_{total} \\ \Gamma(\pi^{+} \to \mu^{-}e^{+}e^{+}\nu)/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\eta \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\eta'(958) \to e\mu)/\Gamma_{total} \\ \Gamma(\phi(1020) \to e^{\pm}\mu^{\mp})/\Gamma_{total} \\ \Gamma(K^{+} \to \mu^{-}\nu e^{+}e^{+})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{+}\mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{+}e^{-})/\Gamma_{total} \end{aligned}$	$\begin{array}{rl} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ (8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.2 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 8.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ \end{array}$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=20 PAR=M002;DESIG=27 PAR=S010;DESIG=31 PAR=S010;DESIG=34 PAR=S010;DESIG=29 PAR=S010;DESIG=127
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(total)}$ $\frac{\Gamma(\tau \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(\tau^{\pm} \rightarrow \mu^{-}e^{+}e^{+}\nu)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma(\tau^{0} \rightarrow e^{\pm}\mu^{\mp})}$ $\frac{\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})}{\Gamma(\tau^{0} \rightarrow e^{\pm}e^{+})}$ $\frac{\Gamma(\kappa^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})}{\Gamma(\tau^{0} \rightarrow e^{\pm}e^{+})}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{+}\mu^{+}e^{-})}{\Gamma(\tau^{0} \rightarrow e^{\pm}\mu^{+}e^{-})}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{+}\mu^{-}e^{+})}{\Gamma(\tau^{0} \rightarrow e^{\pm}e^{+})}$	$\begin{array}{l} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ (\text{a} \times 10^{-7}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.2 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 2 \times 10^{-6}, \ \text{CL} = 90\% \\ < 8.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 6.6 \times 10^{-11}, \ \text{CL} = 90\% \\ < 6.6 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 6.6 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.0 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=20 PAR=M002;DESIG=27 PAR=S010;DESIG=31 PAR=S010;DESIG=34 PAR=S010;DESIG=29 PAR=S010;DESIG=25 PAR=S010;DESIG=25
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma(total)}$ $\frac{\Gamma(\tau^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma(total)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})}{\Gamma(total)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma(total)}$ $\frac{\Gamma(\eta^{\prime}(958) \rightarrow e\mu)}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{+}\mu^{+}e^{-})}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{+}\mu^{+}e^{-})}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{+}\mu^{-}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})}{\Gamma(total)}$ $\frac{\Gamma(\kappa^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})}{\Gamma(total)}$	$(2.16 \pm 0.06) \times 10^{-2} (S = 1.2)$ $< 8.9 \times 10^{-7}, CL = 95\%$ $< 7 \times 10^{-8}, CL = 95\%$ $< 8.7 \times 10^{-7}, CL = 95\%$ $[q] < 8.0 \times 10^{-3}, CL = 90\%$ $< 1.6 \times 10^{-6}, CL = 90\%$ $< 3.8 \times 10^{-10}, CL = 90\%$ $< 3.2 \times 10^{-10}, CL = 90\%$ $< 3.6 \times 10^{-10}, CL = 90\%$ $< 6 \times 10^{-6}, CL = 90\%$ $< 4.7 \times 10^{-4}, CL = 90\%$ $< 8.1 \times 10^{-11}, CL = 90\%$ $< 8.1 \times 10^{-11}, CL = 90\%$ $< 1.3 \times 10^{-11}, CL = 90\%$ $< 5.0 \times 10^{-10}, CL = 90\%$ $< 6.6 \times 10^{-10}, CL = 90\%$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=20 PAR=M002;DESIG=27 PAR=M004;DESIG=258 PAR=S010;DESIG=31 PAR=S010;DESIG=29 PAR=S010;DESIG=217 PAR=S010;DESIG=25 PAR=S010;DESIG=25 PAR=S010;DESIG=25
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\frac{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)}{\Gamma(total)}$ $\frac{\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)}{\Gamma_{total}}$ $\frac{\Gamma(\tau^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(\eta'(958) \rightarrow e\mu)}{\Gamma_{total}}$ $\frac{\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \mu^{+}\nu_{e})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \pi^{+}\mu^{+}e^{-})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \pi^{+}\mu^{+}e^{-})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \pi^{+}\mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(K^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})}{\Gamma_{total}}$ $\frac{\Gamma(K^{0} \rightarrow e^{\pm}\mu^{\mp})}{\Gamma_{total}}$	$\begin{array}{l} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 8.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline \\ \left[o \right] \ < 4.7 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline \end{array}$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S010;DESIG=20 PAR=M002;DESIG=20 PAR=M002;DESIG=20 PAR=M002;DESIG=217 PAR=S010;DESIG=31 PAR=S010;DESIG=29 PAR=S010;DESIG=25 PAR=S010;DESIG=25 PAR=S010;DESIG=126 PAR=S010;DESIG=126 PAR=S013;DESIG=8
$\begin{aligned} \sin^{2}(\theta_{13}) \\ \Gamma(t \to e^{\pm}\mu^{\mp}c)/\Gamma_{total} \\ \Gamma(t \to e^{\pm}\mu^{\mp}u)/\Gamma_{total} \\ \Gamma(t \to \mu^{\pm}\tau^{\mp}q)/\Gamma_{total} \\ \Gamma(\tau \to \mu^{\pm}\tau^{\mp}q)/\Gamma_{total} \\ \Gamma(\pi^{+} \to \mu^{-}e^{+}e^{+}\nu)/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\eta \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\eta'(958) \to e\mu)/\Gamma_{total} \\ \Gamma(\phi(1020) \to e^{\pm}\mu^{\mp})/\Gamma_{total} \\ \Gamma(K^{+} \to \mu^{-}\nu e^{+}e^{+})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(K^{0} \to e^{\pm}\mu^{\mp})/\Gamma_{total} \\ \Gamma(K^{0}_{L} \to e^{\pm}e^{\pm}\mu^{\mp}\mu^{-})/\Gamma_{total} \\ \Gamma(K^{0}_{L} \to e^{\pm}e^{\pm}\mu^{\mp}\mu^{-})/\Gamma_{total} \end{aligned}$	$\begin{array}{l} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 8.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline \\ (o) \ < 4.12 \times 10^{-11}, \ \text{CL} = 90\% \\ \hline \\ \end{array}$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=22 PAR=S010;DESIG=20 PAR=S010;DESIG=27 PAR=S010;DESIG=25 PAR=S010;DESIG=126 PAR=S010;DESIG=126 PAR=S013;DESIG=24
$\begin{aligned} \sin^{2}(\theta_{13}) \\ \Gamma(t \to e^{\pm}\mu^{\mp}c)/\Gamma_{total} \\ \Gamma(t \to e^{\pm}\mu^{\mp}u)/\Gamma_{total} \\ \Gamma(t \to \mu^{\pm}\tau^{\mp}q)/\Gamma_{total} \\ \Gamma(\pi^{+} \to \mu^{+}\nu_{e})/\Gamma_{total} \\ \Gamma(\pi^{+} \to \mu^{-}e^{+}e^{+}\nu)/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\pi^{0} \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\eta \to \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(\eta'(958) \to e\mu)/\Gamma_{total} \\ \Gamma(\phi(1020) \to e^{\pm}\mu^{\mp})/\Gamma_{total} \\ \Gamma(K^{+} \to \mu^{-}\nu e^{+}e^{+})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{+}\mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{+}e^{-})/\Gamma_{total} \\ \Gamma(K^{+} \to \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total} \\ \Gamma(K^{0} \to e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp})/\Gamma_{total} \\ \Gamma(K^{0}_{L} \to \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total} \\ \Gamma(K^{0}_{L} \to \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{to$	$\begin{array}{l} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.2 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 2 \times 10^{-6}, \ \text{CL} = 90\% \\ < 8.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline \\ (o) \ < 4.12 \times 10^{-11}, \ \text{CL} = 90\% \\ \hline \\ (o) \ < 7.6 \times 10^{-11}, \ \text{CL} = 90\% \\ \hline \end{cases}$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=20 PAR=M002;DESIG=27 PAR=S010;DESIG=27 PAR=S010;DESIG=24 PAR=S013;DESIG=24 PAR=S013;DESIG=36
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)/\Gamma_{total}$ $\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}$ $\Gamma(\tau \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}$ $\Gamma(\pi^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)/\Gamma_{total}$ $\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})/\Gamma_{total}$ $\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(\eta \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{+}\mu^{-}e^{-})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{+}\mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(K^{0} \rightarrow e^{\pm}e^{\pm}\mu^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$	$\begin{array}{l} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.2 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 2 \times 10^{-6}, \ \text{CL} = 90\% \\ < 8.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-10}, \ \text{CL} = 90\% \\ < 6.6 \times 10^{-11}, \ \text{CL} = 90\% \\ < 0 < < 4.7 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline [o] < 4.12 \times 10^{-11}, \ \text{CL} = 90\% \\ \hline [o] < 7.6 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.7 \times 10^{-10}, \ \text{CL} = 90\% \\ \end{cases}$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=8 PAR=S009;DESIG=9 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=21 PAR=S010;DESIG=20 PAR=M002;DESIG=20 PAR=M002;DESIG=21 PAR=M004;DESIG=258 PAR=S010;DESIG=31 PAR=S010;DESIG=31 PAR=S010;DESIG=24 PAR=S010;DESIG=127 PAR=S010;DESIG=126 PAR=S010;DESIG=126 PAR=S013;DESIG=24 PAR=S013;DESIG=36 PAR=S013;DESIG=53
$\frac{\sin^{2}(\theta_{13})}{\Gamma(t \rightarrow e^{\pm}\mu^{\mp}c)/\Gamma_{total}}$ $\Gamma(t \rightarrow e^{\pm}\mu^{\mp}u)/\Gamma_{total}$ $\Gamma(t \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}$ $\Gamma(\tau \rightarrow \mu^{\pm}\tau^{\mp}q)/\Gamma_{total}$ $\Gamma(\pi^{+} \rightarrow \mu^{-}e^{+}e^{+}\nu)/\Gamma_{total}$ $\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-})/\Gamma_{total}$ $\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(\pi^{0} \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(\eta \rightarrow \mu^{+}e^{-} + \mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(\eta'(958) \rightarrow e\mu)/\Gamma_{total}$ $\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \mu^{-}\nu e^{+}e^{+})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{+}\mu^{+}e^{-})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(K^{+} \rightarrow \pi^{0}\pi^{+}\mu^{-}e^{+})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow e^{\pm}\mu^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$ $\Gamma(K^{0}_{L} \rightarrow \pi^{0}\pi^{0}\mu^{\pm}e^{\mp})/\Gamma_{total}$	$\begin{array}{l} (2.16 \pm 0.06) \times 10^{-2} \ (\text{S} = 1.2) \\ < 8.9 \times 10^{-7}, \ \text{CL} = 95\% \\ < 7 \times 10^{-8}, \ \text{CL} = 95\% \\ < 8.7 \times 10^{-7}, \ \text{CL} = 90\% \\ < 8.0 \times 10^{-3}, \ \text{CL} = 90\% \\ < 1.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.8 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.2 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 3.6 \times 10^{-6}, \ \text{CL} = 90\% \\ < 4.7 \times 10^{-4}, \ \text{CL} = 90\% \\ < 2 \times 10^{-6}, \ \text{CL} = 90\% \\ < 2 \times 10^{-6}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.3 \times 10^{-11}, \ \text{CL} = 90\% \\ < 5.0 \times 10^{-10}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-11}, \ \text{CL} = 90\% \\ < 3.1 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline \\ (o) \ < 4.7 \times 10^{-12}, \ \text{CL} = 90\% \\ \hline \\ (o) \ < 7.6 \times 10^{-11}, \ \text{CL} = 90\% \\ < 1.7 \times 10^{-10}, \ \text{CL} = 90\% \\ < 2.1 \times 10^{-7}, \ \text{CL} = 90\% \\ \hline \\ < 2.1 \times 10^{-7}, \ \text{CL} = 90\% \\ \hline \\ < 2.1 \times 10^{-7}, \ \text{CL} = 90\% \\ \hline \\ \end{array}$	PAR=Q007;DESIG=15 PAR=Q007;DESIG=16 PAR=Q007;DESIG=17 PAR=S008;DESIG=9 PAR=S009;DESIG=14 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S009;DESIG=22 PAR=S010;DESIG=20 PAR=M002;DESIG=20 PAR=M002;DESIG=20 PAR=M002;DESIG=217 PAR=S010;DESIG=31 PAR=S010;DESIG=31 PAR=S010;DESIG=34 PAR=S010;DESIG=29 PAR=S010;DESIG=127 PAR=S010;DESIG=126 PAR=S010;DESIG=25 PAR=S010;DESIG=26 PAR=S013;DESIG=36 PAR=S013;DESIG=36 PAR=S013;DESIG=53 PAR=S031;DESIG=110

$\Gamma(D^+ \rightarrow \pi^+ e^- \mu^+) / \Gamma_{\text{total}}$
$\Gamma(D^+ \rightarrow K^+ e^+ \mu^-) / \Gamma_{\text{total}}$
$\Gamma(D^+ \rightarrow K^+ e^- \mu^+) / \Gamma_{total}$
$\Gamma(D^0 \rightarrow \mu^{\pm} e^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow \pi^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow \eta e^{\pm} \mu^{\mp}) / \Gamma_{total}$
$\Gamma(D^0 \rightarrow \pi^+ \pi^- e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow ho^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow \omega e^{\pm} \mu^{\mp}) / \Gamma_{total}$
$\Gamma(D^0 \rightarrow \kappa^- \kappa^+ e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow \phi e^{\pm} \mu^{\mp}) / \Gamma_{total}$
$\Gamma(D^0 \rightarrow \overline{K}^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow K^- \pi^+ e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D^0 \to \overline{K}^*(892)^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(D_s^+ \rightarrow \pi^+ e^+ \mu^-) / \Gamma_{\text{total}}$
$\Gamma(D_s^+ \rightarrow \pi^+ e^- \mu^+) / \Gamma_{\text{total}}$
$\Gamma(D_{s}^{+} \rightarrow K^{+} e^{+} \mu^{-}) / \Gamma_{\text{total}}$
$\Gamma(D_{+}^{+} \rightarrow K^{+}e^{-}\mu^{+})/\Gamma_{\text{total}}$
$\Gamma(B^+ \to \pi^+ e^+ \mu^-)/\Gamma_{\text{table}}$
$\Gamma(B^+ \rightarrow \pi^+ e^- \mu^+)/\Gamma_{\rm total}$
$\Gamma(B^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow \pi^+ e^+ \tau^-)/\Gamma_{\rm total}$
$\Gamma(B^+ \rightarrow \pi^+ e^- \tau^+)/\Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow \pi^+ e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow \pi^+ \mu^+ \tau^-) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow \pi^+ \mu^- \tau^+)/\Gamma_{\text{total}}$
$\Gamma(B^+ \to \pi^+ \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ e^+ \mu^-) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ e^- \mu^+) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ e^+ \tau^-) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ e^- \tau^+) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ e^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ \mu^+ \tau^-) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ \mu^- \tau^+) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^+ \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^+ \rightarrow K^*(892)^+ e^+ \mu^-)/\Gamma_{total}$
$\Gamma(B^+ \rightarrow K^*(892)^+ e^- \mu^+) / \Gamma_{total}$
$\Gamma(B^+ \rightarrow K^*(892)^+ e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^0 ightarrow e^{\pm} \mu^{\mp}) / \Gamma_{total}$
$\Gamma(B^0 \rightarrow \pi^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^0 \rightarrow \kappa^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^0 \rightarrow K^*(892)^0 e^+ \mu^-) / \Gamma_{\text{total}}$
$\Gamma(B^0 \rightarrow K^*(892)^0 e^- \mu^+) / \Gamma_{total}$
$\Gamma(B^0 \rightarrow \kappa^* (892)^0 e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^0 \to K^*(892)^0 \tau^+ \mu^-) / \Gamma_{\text{total}}$
$\Gamma(B^0 \rightarrow K^*(892)^0 \tau^- \mu^+) / \Gamma_{\text{total}}$
$\Gamma(B^0 \rightarrow e^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B^0 \rightarrow \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B \rightarrow s e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B \rightarrow \pi e^{\pm} \mu^{+}) / \Gamma_{\text{total}}$
$\Gamma(B \rightarrow \rho e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$
$\Gamma(B \rightarrow K e^{\pm} \mu^{+}) / \Gamma_{\text{total}}$
$\Gamma(B \to K^*(892) e^{\pm} \mu^+) / \Gamma_{\text{total}}$
$\Gamma(B_{s}^{U} \rightarrow e^{\pm}\mu^{+})/\Gamma_{total}$
$\Gamma(B_s^{U} \rightarrow e^{\pm} \tau^+) / \Gamma_{total}$

	10 0 10 ⁻⁷ CL 000/
	$<2.2 \times 10^{-7}$, CL = 90%
	$<7.5 \times 10^{-6}, CL = 90\%$
	$<1.0 \times 10^{-7}$, CL = 90%
[0]	$<1.3 \times 10^{-8}$, CL = 90%
[0]	$<$ 8.0 $ imes$ 10 $^{-7}$, CL $=$ 90%
[0]	$<2.25 imes10^{-6}$, CL = 90%
[0]	$<1.71 \times 10^{-6}$, CL = 90%
[0]	$< 5.0 \times 10^{-7}$, CL = 90%
[0]	$<1.71 \times 10^{-6}$. CL = 90%
[0]	$<1.00 \times 10^{-6}$ CL = 90%
[0]	$<5.1 \times 10^{-7}$ CL = 90%
[0]	$< 1.74 \times 10^{-6}$ Cl = 00%
[0]	$<1.74 \times 10^{-6}$ CL = 90%
	$<1.90 \times 10^{-6}$, $CL = 90\%$
[0]	$<1.25 \times 10^{-6}$, CL = 90%
	$<1.1 \times 10^{-6}, CL = 90\%$
	$< 9.4 imes 10^{-7}$, CL = 90%
	$<$ 7.9 $ imes$ 10 $^{-7}$, CL $=$ 90%
	${<}5.6 imes10^{-7}$, CL ${=}~90\%$
	$< 6.4 \times 10^{-3}$, CL = 90%
	$< 6.4 \times 10^{-3}$ CL = 90%
	$< 0.1 \times 10^{-7}$ CL = 00%
	$< 1.7 \times 10^{-5}$ CL = 90%
	$< 7.4 \times 10^{-5}$ CL = 90%
	$< 2.0 \times 10^{-5}$ CL = 90%
	$< 7.3 \times 10^{-5}$ CL = 90%
	$< 0.2 \times 10^{-5}$ CL = 90%
	$<4.3 \times 10^{-5}$ CL = 90%
	$< 7.2 \times 10^{-9}$ CL = 90%
	$< 7.0 \times 10^{-9}$ CL = 90%
	$< 0.4 \times 10^{-8}$ CL = 90%
	$<9.1 \times 10^{-5}$ Cl = 90%
	$<1.53 \times 10^{-5}$ CL = 90%
	$<1.5 \times 10^{-5}$ CL = 90%
	$< 2.45 \times 10^{-5}$ Cl $= 90\%$
	$<5.9 \times 10^{-6}$ CL = 90%
	$< 4.8 \times 10^{-5}$ CL = 90%
	$<1.2 \times 10^{-6}$ CL = 90%
	$< 1.3 \times 10^{-7}$, CL = 90%
	$<9.9 \times 10^{-6}$ CL = 90%
r - 1	$< 1.4 \times 10^{-9}$, CL = 90%
[0]	$<1.0 \times 10^{-7}$, CL = 90%
	$<1.4 \times 10^{-9}$, CL = 90%
	$<3.8 \times 10^{-9}$, CL = 90%
	$< 6.8 \times 10^{-9}$, CL = 90%
	$<5.7 \times 10^{-9}, CL = 90\%$
	$<1.01 \times 10^{-6}$, CL = 90%
	$<1.0 \times 10^{-5}, CL = 90\%$
	$< 8.2 \times 10^{-0}$, CL = 90%
[0]	$<1.6 \times 10^{-5}$, CL = 90%
[0]	$<1.4 \times 10^{-5}$, CL = 95%
[0]	$<2.2 \times 10^{-5}$, CL = 90%
	$< 9.2 \times 10^{-8}$, CL = 90%
	$<3.2 \times 10^{-6}$, CL = 90%
	$<3.8 \times 10^{-8}$, CL = 90%
	$<5.1 \times 10^{-7}$, CL = 90%
[0]	$<5.4 \times 10^{-9}$, CL = 90%
	${<}1.4 imes10^{-3}$, CL ${=}$ 90%

PAR=S031;DESIG=111
PAR=S031;DESIG=115
PAR=S031:DESIG=116
$PAR = S032 \cdot DESIG = 40$
PAR=S032;DESIG=234
PAR=S032;DESIG=235
PAR=S032;DESIG=268
PAR=S032;DESIG=236
PAR=S032:DESIG=237
PAR-5032 DESIG-270
PAR=S032;DESIG=238
PAR=S032;DESIG=239
PAR=S032;DESIG=269
PAR=S032;DESIG=240
PAR=S034;DESIG=156
PAR-S034-DESIG-157
TAI(=5054,DE51G=157
PAR=S034;DESIG=158
PAR=S034;DESIG=159
PAR=S041:DESIG=86
PAR-S011 DESIG-87
PAR=S041;DESIG=476
PAR=S041;DESIG=586
PAR=S041;DESIG=587
PAR=S041;DESIG=588
PAR=S041;DESIG=589
PAR=S041 DESIG=590
PAR-S041;DESIC-501
TAN_3041,DL310_391
PAR=S041;DESIG=89
PAR=S041;DESIG=89 PAR=S041;DESIG=90
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=596
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=8
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=8 PAR=S042;DESIG=8
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=8 PAR=S042;DESIG=383 PAR=S042;DESIG=383
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S042;DESIG=296 PAR=S042;DESIG=8 PAR=S042;DESIG=383 PAR=S042;DESIG=221
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=88 PAR=S042;DESIG=383 PAR=S042;DESIG=221 PAR=S042;DESIG=334
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=448 PAR=S042;DESIG=296 PAR=S042;DESIG=88 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=334 PAR=S042;DESIG=335
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=88 PAR=S042;DESIG=221 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=335
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=448 PAR=S041;DESIG=448 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=322 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=335
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=448 PAR=S041;DESIG=447 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=222 PAR=S042;DESIG=627 PAR=S042;DESIG=627
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=448 PAR=S041;DESIG=447 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=448 PAR=S041;DESIG=448 PAR=S042;DESIG=296 PAR=S042;DESIG=88 PAR=S042;DESIG=334 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=448 PAR=S041;DESIG=447 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=121 PAR=S042;DESIG=121 PAR=S042;DESIG=121
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=2448 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=335 PAR=S042;DESIG=322 PAR=S042;DESIG=627 PAR=S042;DESIG=628 PAR=S042;DESIG=628 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S042;DESIG=121
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=334 PAR=S042;DESIG=627 PAR=S042;DESIG=628 PAR=S042;DESIG=627 PAR=S042;DESIG=121 PAR=S042;DESIG=121 PAR=S042;DESIG=33 PAR=S042;DESIG=33 PAR=S042;DESIG=33 PAR=S042;DESIG=33 PAR=S042;DESIG=33
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=222 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=628 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S042;DESIG=33 PAR=S042;DESIG=33 PAR=S042;DESIG=33 PAR=S042;DESIG=33 PAR=S049;DESIG=243
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=333 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S042;DESIG=121 PAR=S042;DESIG=33 PAR=S049;DESIG=33 PAR=S049;DESIG=243 PAR=S049;DESIG=244
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=446 PAR=S041;DESIG=592 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=486 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=222 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=121 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S042;DESIG=121 PAR=S049;DESIG=243 PAR=S049;DESIG=244 PAR=S049;DESIG=244 PAR=S049;DESIG=241 PAR=S049;DESIG=241
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=334 PAR=S042;DESIG=222 PAR=S042;DESIG=233 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=222 PAR=S042;DESIG=224 PAR=S042;DESIG=243 PAR=S049;DESIG=244 PAR=S049;DESIG=241 PAR=S049;DESIG=241 PAR=S049;DESIG=242 PAR=S049;DESIG=242 PAR=S049;DESIG=242
PAR=S041;DESIG=89 PAR=S041;DESIG=90 PAR=S041;DESIG=90 PAR=S041;DESIG=591 PAR=S041;DESIG=593 PAR=S041;DESIG=594 PAR=S041;DESIG=595 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=596 PAR=S041;DESIG=447 PAR=S041;DESIG=448 PAR=S041;DESIG=448 PAR=S041;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=296 PAR=S042;DESIG=383 PAR=S042;DESIG=334 PAR=S042;DESIG=335 PAR=S042;DESIG=222 PAR=S042;DESIG=233 PAR=S042;DESIG=627 PAR=S042;DESIG=627 PAR=S042;DESIG=212 PAR=S042;DESIG=212 PAR=S042;DESIG=121 PAR=S042;DESIG=122 PAR=S049;DESIG=243 PAR=S049;DESIG=243 PAR=S049;DESIG=244 PAR=S049;DESIG=241 PAR=S049;DESIG=242 PAR=S049;DESIG=242 PAR=S049;DESIG=242

CONLAW=L

$\Gamma(B_{c}^{0} \rightarrow \mu^{\pm} \tau^{\mp}) / \Gamma_{total}$	${<}4.2 imes 10^{-5}$, CL $= 95\%$	PAR=S086;DESIG=149
$\Gamma(B_{\rm s}^0 \to \phi \mu^{\pm} e^{\mp}) / \Gamma_{\rm total}$	${<}1.6 imes10^{-8}$, CL ${=}$ 90%	PAR=S086;DESIG=176
$\Gamma(B_{s}^{0} \rightarrow \phi \mu^{\pm} \tau^{\mp}) / \Gamma_{total}$	${<}1.0 imes10^{-5}$, CL ${=}$ 90%	PAR=S086;DESIG=196
$\Gamma(J/\psi(1S) \rightarrow e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	${<}1.6 imes10^{-7}$, CL ${=}$ 90%	PAR=M070;DESIG=177
$\Gamma(J/\psi(1S) \rightarrow e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	${<}7.5 imes10^{-8}$, CL ${=}$ 90%	PAR=M070;DESIG=178
$\Gamma(J/\psi(1S) \rightarrow \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	${<}2.0 imes 10^{-6}$, CL ${=}$ 90%	PAR=M070;DESIG=179
$\Gamma(\Upsilon(1S) \rightarrow e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$	${<}3.9{ imes}10^{-7}$, CL ${=}$ 90%	PAR=M049;DESIG=196
$\Gamma(\Upsilon(1S) \rightarrow \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$	${<}2.7 imes 10^{-6}$, CL ${=}$ 90%	PAR=M049;DESIG=116
$\Gamma(\Upsilon(1S) ightarrow e^{\pm} au^{\mp}) / \Gamma_{ ext{total}}$	${<}2.7 imes10^{-6}$, CL ${=}$ 90%	PAR=M049;DESIG=197
$\Gamma(\Upsilon(1S) \rightarrow \gamma e^{\pm} \mu^{\mp}) / \Gamma_{\text{total}}$	${<}4.2 imes 10^{-7}$, CL $= 90\%$	PAR=M049;DESIG=198
$\Gamma(\Upsilon(1S) \rightarrow \gamma \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$	${<}6.1 imes 10^{-6}$, CL $= 90\%$	PAR=M049;DESIG=199
$\Gamma(\Upsilon(1S) \rightarrow \gamma e^{\pm} \tau^{\mp}) / \Gamma_{total}$	${<}6.5 imes10^{-6}$, CL $=90\%$	PAR=M049;DESIG=200
$\Gamma(\Upsilon(2S) ightarrow e^{\pm} au^{\mp}) / \Gamma_{ ext{total}}$	${<}1.12 imes10^{-6}$, CL ${=}$ 90%	PAR=M052;DESIG=107
$\Gamma(\Upsilon(2S) \rightarrow \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$	${<}2.3 imes10^{-7}$, CL ${=}$ 90%	PAR=M052;DESIG=104
$\Gamma(\Upsilon(3S) ightarrow e^{\pm} au^{\mp}) / \Gamma_{ ext{total}}$	${<}4.2 imes10^{-6}$, CL ${=}$ 90%	PAR=M048;DESIG=111
$\Gamma(\Upsilon(3S) ightarrow e^{\pm} \mu^{\mp}) / \Gamma_{total}$	${<}3.6 imes10^{-7}$, CL ${=}$ 90%	PAR=M048;DESIG=119
$\Gamma(\Upsilon(3S) \rightarrow \mu^{\pm} \tau^{\mp}) / \Gamma_{\text{total}}$	${<}3.1{ imes}10^{-6}$, CL ${=}$ 90%	PAR=M048;DESIG=105
$\Gamma(\Lambda_c^+ \rightarrow p e^+ \mu^-) / \Gamma_{\text{total}}$	${<}9.9{\times}10^{-6}$, CL ${=}$ 90%	PAR=S033;DESIG=109
$\Gamma(\Lambda_c^+ \rightarrow p e^- \mu^+) / \Gamma_{\text{total}}$	${<}1.9 imes10^{-5}$, CL ${=}$ 90%	PAR=S033;DESIG=110

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation of lepton family number conservation.

$\Gamma(Z \rightarrow pe)/\Gamma_{total}$	${<}1.8 imes 10^{-6}$, CL ${=}$ 95%	PAR=S044;DESIG=71
$\Gamma(Z \rightarrow p \mu) / \Gamma_{\text{total}}$	${<}1.8 imes10^{-6}$, CL ${=}$ 95%	PAR=S044;DESIG=72
limit on $\mu^- ightarrow e^+$ conversion		NODE=S004250
$\sigma(\mu^{-}{ m 32S} ightarrowe^{+}{ m 32Si^*})$ /	${<}9 imes10^{-10}$, CL ${=}$ 90%	NODE=S004RP1
$\sigma(\mu^{-}{}^{32}{ m S} ightarrow u_{\mu}{}^{32}{ m P}^{*})$		
$\sigma(\mu^{-127}$ l $ ightarrow e^{+127}$ Sb*) /	${<}3 imes10^{-10}$, CL ${=}$ 90%	NODE=S004RP2
$\sigma(\mu^{-}$ 127 l $ ightarrow$ anything)		
$\sigma(\mu^-{ m Ti} ightarrowe^+{ m Ca})$ /	${<}3.6 imes10^{-11}$, CL ${=}$ 90%	NODE=S004RP4
$\sigma(\mu^-{\sf Ti} ightarrow{\sf capture})$	0	
$\Gamma(\tau^- \rightarrow e^+ \pi^- \pi^-) / \Gamma_{\text{total}}$	$<2.0 imes 10^{-8}$, CL = 90%	PAR=S035;DESIG=46
$\Gamma(\tau^- \rightarrow \mu^+ \pi^- \pi^-) / \Gamma_{\text{total}}$	${<}3.9 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=48
$\Gamma(\tau^- \rightarrow e^+ \pi^- K^-) / \Gamma_{\text{total}}$	${<}3.2 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=50
$\Gamma(\tau^- \rightarrow e^+ K^- K^-) / \Gamma_{\text{total}}$	${<}3.3 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=252
$\Gamma(\tau^- \rightarrow \mu^+ \pi^- K^-) / \Gamma_{\text{total}}$	$<$ 4.8 $ imes$ 10 $^{-8}$, CL $=$ 90%	PAR=S035;DESIG=52
$\Gamma(\tau^- \rightarrow \mu^+ K^- K^-) / \Gamma_{\text{total}}$	${<}4.7 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=254
$\Gamma(\tau^- \rightarrow p e^- e^-) / \Gamma_{\text{total}}$	${<}3.0 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=351
$\Gamma(\tau^- \rightarrow \overline{p}e^+e^-)/\Gamma_{\rm total}$	${<}3.0 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=352
$\Gamma(\tau^- \to \overline{p}e^+\mu^-)/\Gamma_{\text{total}}$	${<}2.0 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=353
$\Gamma(\tau^- \to \overline{p}e^-\mu^+)/\Gamma_{\text{total}}$	${<}1.8 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=354
$\Gamma(\tau^- \rightarrow p \mu^- \mu^-) / \Gamma_{\text{total}}$	${<}4.0 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=334
$\Gamma(\tau^- \to \overline{p}\mu^+\mu^-)/\Gamma_{\text{total}}$	${<}1.8 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=335
$\Gamma(\tau^- \rightarrow \overline{p}\gamma)/\Gamma_{\text{total}}$	${<}3.5 imes10^{-6}$, CL ${=}$ 90%	PAR=S035;DESIG=104
$\Gamma(\tau^- \rightarrow \overline{p}\pi^0)/\Gamma_{total}$	${<}1.5 imes10^{-5}$, CL ${=}$ 90%	PAR=S035;DESIG=105
$\Gamma(\tau^- \rightarrow \overline{p} 2\pi^0) / \Gamma_{\text{total}}$	${<}3.3 imes10^{-5}$, CL ${=}$ 90%	PAR=S035;DESIG=268
$\Gamma(\tau^- \rightarrow \overline{p}\eta)/\Gamma_{\text{total}}$	${<}8.9 imes10^{-6}$, CL ${=}$ 90%	PAR=S035;DESIG=106
$\Gamma(\tau^- \to \overline{p} \pi^0 \eta) / \Gamma_{\text{total}}$	${<}2.7 imes10^{-5}$, CL ${=}$ 90%	PAR=S035;DESIG=269
$\Gamma(\tau^- \rightarrow \Lambda \pi^-) / \Gamma_{\text{total}}$	${<}4.7 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=297
$\Gamma(\tau^- \rightarrow \overline{\Lambda}\pi^-)/\Gamma_{\text{total}}$	${<}4.3 imes10^{-8}$, CL ${=}$ 90%	PAR=S035;DESIG=298
$t_{1/_2}(\ ^{76}{ m Ge}\ ightarrow\ ^{76}{ m Se}+2\ e^-$)	>9.0 $ imes$ 10 ²⁵ yr, CL = 90%	$NODE = S0760N1; \rightarrow UNCHECKED \leftarrow; OUR$
$t_{1/_2}^{1/_2}($ 136 Xe \rightarrow 136 Ba $+$ 2 e^-)	${>}10.7\times10^{25}$ yr, CL $=$ 90%	NODE=S0760N2;→ UNCHECKED ←;OUR
$t_{1/2}^{1/2}($ ¹³⁰ Te \rightarrow ¹³⁰ Xe + 2 e^-)	${>}1.5\times10^{25}$ yr, CL = 90%	$\begin{array}{c} \texttt{NODE}=\texttt{S0760N3;} \rightarrow \texttt{UNCHECKED} \leftarrow; \texttt{OUR}\\ \texttt{EVAL} \end{array}$

$\Gamma(\pi^+ \rightarrow$	$\mu^+ \overline{\nu}_e) / \Gamma_{\text{total}}$
$\Gamma(K^+ \rightarrow$	$\pi^{-}\mu^{+}e^{+})/\Gamma_{total}$
$\Gamma(K^+ \rightarrow$	$\pi^0 \pi^- \mu^+ e^+) / \Gamma_{total}$
$\Gamma(K^+ \rightarrow$	$\pi^- e^+ e^+) / \Gamma_{total}$
$\Gamma(K^+ \rightarrow$	$\pi^{-}\mu^{+}\mu^{+})/\Gamma_{total}$
$\Gamma(K^+ \rightarrow$	$\pi^{-}\pi^{0}e^{+}e^{+})/\Gamma_{total}$
$\Gamma(K^+ \rightarrow$	$\mu^+ \overline{\nu}_e) / \Gamma_{\text{total}}$
$\Gamma(K^+ \rightarrow$	$\pi^0 e^+ \overline{\nu}_e) / \Gamma_{\text{total}}$
$\Gamma(D^+ \rightarrow$	$\pi^{-}2e^{+})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\pi^{-}2\mu^{+})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\pi^- e^+ \mu^+) / \Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\rho^{-} 2\mu^{+})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$K^{-}2e^{+})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$K_{S}^{0}\pi^{-}2e^{+})/\Gamma_{\text{total}}$
$\Gamma(D^+ \rightarrow$	$K^{-}\pi^{0}2e^{+})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$K^{-}2\mu^{+})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$K^- e^+ \mu^+) / \Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$K^*(892)^- 2\mu^+)/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\Lambda e^+)/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\Lambda e^+)/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\sum e^{-0} e^{+} / \Gamma_{\text{total}}$
$\Gamma(D^+ \rightarrow 0)$	$\Sigma^0 e^+)/\Gamma_{total}$
$\Gamma(D^0 \rightarrow 0)$	$2\pi^{-}2e^{+})/\Gamma_{total}$
$\Gamma(D^0 \rightarrow 0)$	$2\pi^{-}2\mu^{+})/\Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow 0)$	$K^{-}\pi^{-}2e^{+})/\Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow D^0)$	$K^- \pi^- 2\mu^+)/\Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow 0)$	$2K^{-}2e^{+})/\Gamma_{total}$
$\Gamma(D^{\circ} \rightarrow$	$2K^{-}2\mu^{+})/\Gamma_{total}$
-i = 0	
$\Gamma(D^0 \rightarrow D^0)$	$\pi^-\pi^-e^+\mu^+)/\Gamma_{total}$
$\Gamma(D^0 \rightarrow \Gamma(D^0 \rightarrow \Gamma)))))))))))))))))))))))))))))))))))$	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $\kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$
$ \begin{array}{c} \Gamma(D^0 \rightarrow \\ \Gamma(D^0 \rightarrow \\ \Gamma(D^0 \rightarrow \\ \Gamma(D^0 \rightarrow \\ $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$
$ \begin{array}{l} \Gamma(D^0 \rightarrow \\ \Gamma(D^0 $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $\kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$
$ \begin{array}{c} \Gamma(D^0 \rightarrow \\ \Gamma(D^0 \rightarrow \\ $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $\kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$ $\overline{p}e^{+})/\Gamma_{\text{total}}$
$ \begin{array}{ccc} \Gamma(D^0 \rightarrow \\ \Gamma(D^0 \rightarrow \\ $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $\kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$ $p\mu^{-})/\Gamma_{\text{total}}$
$ \begin{array}{ccc} \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ \Gamma(D^0 \rightarrow & \\ $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$ $\overline{p}e^{+})/\Gamma_{\text{total}}$ $p\mu^{-})/\Gamma_{\text{total}}$ $\overline{p}\mu^{+})/\Gamma_{\text{total}}$
$ \begin{array}{c} \Gamma(D^{0} \rightarrow \\ \Gamma(D^{s} \rightarrow \\ \Gamma(D^{s}_{s} \rightarrow \\ \Gamma(D^{s$	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $\kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$ $\overline{p}e^{+})/\Gamma_{\text{total}}$ $p\mu^{-})/\Gamma_{\text{total}}$ $\pi^{-}2e^{+})/\Gamma_{\text{total}}$
$ \begin{array}{c} \Gamma(D^0 \rightarrow \\ \Gamma(D^+_s \rightarrow \\ $	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{-})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2\mu^{+})/\Gamma_{\text{total}} $
$\begin{array}{l} \Gamma(D^0 \rightarrow \\ \Gamma(D^+_s \rightarrow \\ \Gamma$	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ \overline{p}e^{+})/\Gamma_{\text{total}} $ $ \overline{p}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $
$ \begin{array}{l} \Gamma(D^0 \rightarrow \\ \Gamma(D^+_s \rightarrow \\ $	$ \begin{array}{l} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ p\mu^{-})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \end{array} $
$ \begin{array}{l} \Gamma(D^0 \rightarrow \\ \Gamma(D^+_s \rightarrow \\ $	$ \begin{array}{l} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2\mu^{+})/\Gamma_{\text{total}} \end{array} $
$ \begin{array}{c} \Gamma(D^0 \rightarrow \\ \Gamma(D^+_s \rightarrow \\ $	$ \begin{array}{l} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \end{array} $
$ \begin{array}{c} \Gamma(D^0 \rightarrow \\ \Gamma(D^+_s \rightarrow \\ $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$ $\overline{p}e^{+})/\Gamma_{\text{total}}$ $\overline{p}\mu^{+})/\Gamma_{\text{total}}$ $\pi^{-}2e^{+})/\Gamma_{\text{total}}$ $\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}2e^{+})/\Gamma_{\text{total}}$ $K^{-}2\mu^{+})/\Gamma_{\text{total}}$ $K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{*}(892)^{-}2\mu^{+})/\Gamma_{\text{total}}$
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & (D^+_s $	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ $	$\pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $2K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $pe^{-})/\Gamma_{\text{total}}$ $\overline{p}e^{+})/\Gamma_{\text{total}}$ $\overline{p}\mu^{+})/\Gamma_{\text{total}}$ $\pi^{-}2e^{+})/\Gamma_{\text{total}}$ $\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{-}2e^{+})/\Gamma_{\text{total}}$ $K^{-}2e^{+})/\Gamma_{\text{total}}$ $K^{-}2\mu^{+})/\Gamma_{\text{total}}$ $K^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ $K^{*}(892)^{-}2\mu^{+})/\Gamma_{\text{total}}$ $\pi^{-}e^{+}e^{+})/\Gamma_{\text{total}}$ $\pi^{-}e^{+}e^{+})/\Gamma_{\text{total}}$
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow $	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{+}(892)^{-}2\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ & (B^+$	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{*}(892)^{-}2\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ &$	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ &$	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ \overline{p}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \rho^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & (B^+ \rightarrow$	$ \begin{array}{l} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \mu^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+} \\ \kappa^{-}e^{+}e^{+} \\ \kappa^{$
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & \Gamma$	$\begin{aligned} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}2\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\mu^{+}\mu^{+})/\Gamma_{\text{total}} \end{aligned}$
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ &$	$ \begin{array}{l} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \mu^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \mu^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})$
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & \Gamma$	$ \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ pe^{-})/\Gamma_{\text{total}} $ $ p\mu^{-})/\Gamma_{\text{total}} $ $ \overline{p}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}2e^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}2e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} $ $ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} $ $ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} $
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & \Gamma$	$\begin{aligned} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{+}(892)^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}\mu^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}\mu^{+}\mu^{+})/\Gamma_{\text{total}} \end{aligned}$
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ &$	$\begin{aligned} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{+}(892)^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}($
$ \begin{split} & \Gamma(D^0 \rightarrow \\ & \Gamma(D^+_s \rightarrow \\ & \Gamma(B^+ \rightarrow \\ & \Gamma$	$\begin{aligned} \pi^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ 2\kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ pe^{-})/\Gamma_{\text{total}} \\ \overline{p}e^{+})/\Gamma_{\text{total}} \\ \overline{p}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}2e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}2e^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \pi^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \rho^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}e^{+}e^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}e^{+}\mu^{+})/\Gamma_{\text{total}} \\ \kappa^{*}(892)^{-}e^{+}\mu$

[q]	${<}1.5 imes10^{-3}$, CL ${=}$ 90%
	${<}4.2\times10^{-11}$, $CL=90\%$
	${<}2.9\times10^{-10}$, ${\rm CL}=90\%$
	${<}5.3\times10^{-11}$, $CL=90\%$
	${<}4.2\times10^{-11}\text{, }$ CL $=$ 90%
	${<}8.5\times10^{-10}\text{, }$ CL $=90\%$
[q]	${<}3.3 imes10^{-3}$, CL ${=}$ 90%
	${<}3 imes10^{-3}$, CL ${=}$ 90%
	${<}5.3 imes10^{-7}$, CL ${=}$ 90%
	${<}1.4 imes10^{-8}$, CL ${=}$ 90%
	${<}1.3 imes10^{-7}$, CL ${=}$ 90%
	${<}5.6 imes10^{-4}$, CL ${=}$ 90%
	$< 9 imes 10^{-7}$, CL $= 90\%$
	$<$ 3.3 $ imes$ 10 $^{-6}$, CL $=$ 90%
	${<}8.5 imes10^{-6}$, CL ${=}$ 90%
	${<}1.0 imes10^{-5}$, CL ${=}$ 90%
	${<}1.9 imes10^{-6}$, CL ${=}$ 90%
	${<}8.5 imes10^{-4}$, CL ${=}~90\%$
	${<}1.1 imes 10^{-6}$, CL $=$ 90%
	$<$ 6.5 $ imes$ 10 $^{-7}$, CL $=$ 90%
	${<}1.7 imes10^{-6}$, CL ${=}$ 90%
	${<}1.3 imes10^{-6}$, CL ${=}$ 90%
	${<}9.1 imes10^{-7}$, CL ${=}$ 90%
	$< 1.52 \times 10^{-6}$, CL = 90%
	${<}5.0 imes10^{-7}$, CL ${=}$ 90%
	${<}5.3 imes10^{-7}$, CL ${=}$ 90%
	$<3.4 \times 10^{-7}$, CL = 90%
	$< 1.0 imes 10^{-7}$, CL $= 90\%$
	-
	$<3.06 \times 10^{-6}$, CL = 90%
	$<3.06 \times 10^{-6}$, CL = 90% $<2.10 \times 10^{-6}$, CL = 90%
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \end{array} $
	$\begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \end{array}$
	$\begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \end{array}$
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 7.7 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 7.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ \end{array} $
	$<3.06 \times 10^{-6}, CL = 90\%$ $<2.10 \times 10^{-6}, CL = 90\%$ $<5.8 \times 10^{-7}, CL = 90\%$ $<5.5 \times 10^{-7}, CL = 90\%$ $<6.9 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<2.3 \times 10^{-8}, CL = 90\%$
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 7.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ < 2.3 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-9}, \mbox{ CL} = 95\% \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ < 2.3 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-9}, \mbox{ CL} = 95\% \\ < 1.5 \times 10^{-7}, \mbox{ CL} = 90\% \end{array} $
	$<3.06 \times 10^{-6}, CL = 90\%$ $<2.10 \times 10^{-6}, CL = 90\%$ $<5.8 \times 10^{-7}, CL = 90\%$ $<5.5 \times 10^{-7}, CL = 90\%$ $<6.9 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<8.6 \times 10^{-8}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ < 1.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.2 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.2 \times 10^{-7}, \mbox{ CL} = 90\% \\ \end{array} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 8.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 7.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-3}, \mbox{ CL} = 90\% \\ < 2.3 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-9}, \mbox{ CL} = 90\% \\ < 1.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.2 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ \end{cases} $
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.9 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.3 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-9}, \mbox{ CL} = 90\% \\ < 1.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.2 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 3.0 \times 10^{-8}, \mbox{ CL} = 90\% \\ \end{cases} $
	$<3.06 \times 10^{-6}, CL = 90\%$ $<2.10 \times 10^{-6}, CL = 90\%$ $<5.8 \times 10^{-7}, CL = 90\%$ $<5.5 \times 10^{-7}, CL = 90\%$ $<6.9 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$ $<4.2 \times 10^{-7}, CL = 90\%$ $<4.7 \times 10^{-7}, CL = 90\%$ $<4.7 \times 10^{-8}, CL = 90\%$ $<4.1 \times 10^{-8}, CL = 90\%$
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 3.4 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.3 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-9}, \mbox{ CL} = 90\% \\ < 1.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.2 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 3.0 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.1 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.6 \times 10^{-7}, \mb$
	$ \begin{array}{l} < 3.06 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 2.10 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 5.8 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.5 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 5.1 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 1.4 \times 10^{-6}, \mbox{ CL} = 90\% \\ < 6.3 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.6 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 2.3 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-9}, \mbox{ CL} = 90\% \\ < 4.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.7 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 3.0 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.1 \times 10^{-8}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mbox{ CL} = 90\% \\ < 4.0 \times 10^{-7}, \mb$
	$<3.06 \times 10^{-6}, CL = 90\%$ $<2.10 \times 10^{-6}, CL = 90\%$ $<5.8 \times 10^{-7}, CL = 90\%$ $<5.5 \times 10^{-7}, CL = 90\%$ $<6.9 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<7.7 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-8}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.4 \times 10^{-9}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$ $<4.7 \times 10^{-7}, CL = 90\%$ $<4.1 \times 10^{-8}, CL = 90\%$ $<1.6 \times 10^{-7}, CL = 90\%$ $<4.0 \times 10^{-7}, CL = 90\%$ $<4.0 \times 10^{-7}, CL = 90\%$ $<4.0 \times 10^{-7}, CL = 90\%$ $<5.9 \times 10^{-7}, CL = 90\%$
	$<3.06 \times 10^{-6}, CL = 90\%$ $<2.10 \times 10^{-6}, CL = 90\%$ $<5.8 \times 10^{-7}, CL = 90\%$ $<5.5 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.4 \times 10^{-9}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$ $<1.6 \times 10^{-7}, CL = 90\%$ $<1.6 \times 10^{-7}, CL = 90\%$ $<3.0 \times 10^{-7}, CL = 90\%$
	$<3.06 \times 10^{-6}, CL = 90\%$ $<2.10 \times 10^{-6}, CL = 90\%$ $<5.8 \times 10^{-7}, CL = 90\%$ $<5.5 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<5.1 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<1.4 \times 10^{-6}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<6.3 \times 10^{-7}, CL = 90\%$ $<2.6 \times 10^{-7}, CL = 90\%$ $<1.4 \times 10^{-3}, CL = 90\%$ $<1.4 \times 10^{-9}, CL = 90\%$ $<1.5 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$ $<1.7 \times 10^{-7}, CL = 90\%$ $<4.1 \times 10^{-8}, CL = 90\%$ $<1.6 \times 10^{-7}, CL = 90\%$ $<1.0 \times 10^{-7}, CL = 90\%$ $<3.0 \times 10^{-7}, CL = 90\%$

PAR=S008;DESIG=7
PAR=S010;DESIG=45
PAR=S010;DESIG=125
PAR=S010:DESIG=19
PAR=S010.DESIG=46
PAR-S010;DESIC-121
PAR=S010;DESIG=35
PAR=S010;DESIG=36
PAR=S031;DESIG=117
PAR=S031;DESIG=118
PAR=S031;DESIG=119
PAR=S031.DESIG=199
PAR-S031:DESIC-120
DAD C021 DECIG 202
PAR=5031;DE5IG=293
PAR=S031;DESIG=294
PAR=S031;DESIG=121
PAR=S031;DESIG=122
PAR=S031;DESIG=200
PAR=S031 DESIG=318
PAR-S031:DESIG-310
DAD_5031,DESIC_330
PAR=5051;DE5IG=520
PAR=S031;DESIG=321
PAR=S032;DESIG=253
PAR=S032;DESIG=254
PAR=S032;DESIG=255
PAR=S032;DESIG=256
PAR=S032:DESIG=257
PAR-\$032.DESIG-258
PAR=3032;DE3IG=259
PAR=S032;DESIG=260
PAR=S032;DESIG=261
PAR=S032;DESIG=387
PAR=S032;DESIG=388
PAR=S032;DESIG=591
PAR=S032;DESIG=592
PAR=S034:DESIG=97
DAR-S034-DESIC-76
PAR=S034;DESIG=98
PAR=S034;DESIG=99
PAR=S034;DESIG=77
PAR=S034:DESIG=100
PAR-S034:DESIG-78
TAR=3034,DE3IG=70
PAR=S041;DESIG=91
PAR=S041;DESIG=93
PAR=S041;DESIG=92
PAR=S041;DESIG=291
PAR=S041;DESIG=295
PAR=S041:DESIG=294
PAR_\$041 DESIC_04
FAR-3041,DESIG=90
PAR=S041;DESIG=95
PAR=S041;DESIG=290
PAR=S041;DESIG=292
PAR=S041;DESIG=293
PAR=S041;DESIG=572
PAR=S041;DESIG=573

$\Gamma(B^+ \rightarrow D^- \mu^+ \mu^+) / \Gamma_{\text{total}}$	${<}6.9 imes10^{-7}$, CL $=95\%$
$\Gamma(B^+ \rightarrow D^{*-} \mu^+ \mu^+) / \Gamma_{\text{total}}$	${<}2.4 \times 10^{-6}$, $CL=95\%$
$\Gamma(B^+ \rightarrow D_s^- \mu^+ \mu^+) / \Gamma_{total}$	${<}5.8 imes10^{-7}$, CL $=95\%$
$\Gamma(B^+ \to \overline{D}^{0} \pi^- \mu^+ \mu^+) / \Gamma_{\text{total}}$	${<}1.5 \times 10^{-6}$, $CL = 95\%$
$\Gamma(B^+ \rightarrow \Lambda^0 \mu^+) / \Gamma_{\text{total}}$	${<}6\times10^{-8}$, CL = 90%
$\Gamma(B^+ \rightarrow \Lambda^0 e^+) / \Gamma_{total}$	${<}3.2 \times 10^{-8}$, CL $=$ 90%
$\Gamma(B^+ \rightarrow \overline{\Lambda}{}^0 \mu^+) / \Gamma_{total}$	$<\!6 imes10^{-8}$, CL = 90%
$\Gamma(B^+ \rightarrow \overline{\Lambda}{}^0 e^+) / \Gamma_{total}$	$<\!8 imes10^{-8}$, CL $=90\%$
$\Gamma(B^0 \rightarrow \rho \mu^-) / \Gamma_{\text{total}}$	${<}2.6 imes10^{-9}$, CL ${=}$ 90%
$\Gamma(B^0 \rightarrow \Lambda_c^+ \mu^-) / \Gamma_{\text{total}}$	${<}1.4 imes10^{-6}$, CL ${=}$ 90%
$\Gamma(B^0 \rightarrow \Lambda_c^+ e^-) / \Gamma_{\text{total}}$	${<}4\times10^{-6}\text{, CL}=90\%$
$\Gamma(B_s^0 \to p\mu^-)/\Gamma_{\text{total}}$	${<}1.21\times10^{-8}\text{, }$ CL $=90\%$
$\Gamma(\Lambda \rightarrow \pi^+ e^-)/\Gamma_{total}$	$<\!6 imes10^{-7}$, CL = 90%
$\Gamma(\Lambda \rightarrow \pi^+ \mu^-) / \Gamma_{\text{total}}$	$<\!6 imes 10^{-7}$, CL $= 90\%$
$\Gamma(\Lambda \rightarrow \pi^- e^+) / \Gamma_{total}$	$<$ 4 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda \rightarrow \pi^- \mu^+) / \Gamma_{\text{total}}$	$<$ 6 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda \rightarrow K^+ e^-) / \Gamma_{total}$	$<2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \rightarrow K^+ \mu^-) / \Gamma_{\text{total}}$	$<3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \rightarrow K^- e^+) / \Gamma_{total}$	$<2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \rightarrow K^- \mu^+) / \Gamma_{\text{total}}$	$<3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to \kappa_S^0 \nu) / \Gamma_{\text{total}}$	$<\!\!2 imes 10^{-5}$, CL $= 90\%$
$\Gamma(\Sigma^- ightarrow \ p e^- e^-) / \Gamma_{ ext{total}}$	$<\!6.7 imes10^{-5}$, CL $=90\%$
$\Gamma(\Xi^- ightarrow p \mu^- \mu^-) / \Gamma_{total}$	$<$ 4 $ imes$ 10 $^{-8}$, CL $=$ 90%
$\Gamma(\Lambda_c^+ \rightarrow \overline{p}2e^+)/\Gamma_{\text{total}}$	$<$ 2.7 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Lambda_{c}^{+} \rightarrow \overline{p}2\mu^{+})/\Gamma_{\text{total}}$	$<$ 9.4 $ imes$ 10 $^{-6}$, CL = 90%
$\Gamma(\Lambda_{c}^{+} \rightarrow \overline{p}e^{+}\mu^{+})/\Gamma_{\text{total}}$	${<}1.6 imes10^{-5}$, CL ${=}$ 90%
$\Gamma(\Lambda_c^+ \rightarrow \Sigma^- \mu^+ \mu^+) / \Gamma_{\text{total}}$	${<}7.0\times10^{-4}$, CL = 90%

BARYON NUMBER

$\Gamma(Z \rightarrow p$	e)/Γ _{total}
$\Gamma(Z \rightarrow p$	$(\mu)/\Gamma_{total}$
$\Gamma(au^{-} \rightarrow$	$pe^{-}e^{-})/\Gamma_{total}$
$\Gamma(\tau^{-} \rightarrow$	$\overline{p}e^+e^-)/\Gamma_{total}$
$\Gamma(\tau^{-} \rightarrow$	$\overline{p}e^+\mu^-)/\Gamma_{\text{total}}$
$\Gamma(\tau^- \rightarrow$	$\overline{p}e^{-}\mu^{+})/\Gamma_{total}$
$\Gamma(\tau^- \rightarrow$	$p\mu^{-}\mu^{-})/\Gamma_{total}$
$\Gamma(\tau^- \rightarrow$	$\overline{p}\mu^+\mu^-)/\Gamma_{total}$
$\Gamma(\tau^- \rightarrow$	$\overline{p}\gamma)/\Gamma_{total}$
$\Gamma(\tau^- \rightarrow$	$\overline{p}\pi^0$)/ Γ_{total}
$\Gamma(\tau^- \rightarrow$	$\overline{\mu}2\pi^0$)/ Γ_{tatal}
$\Gamma(\tau^{-} \rightarrow$	\overline{p}_n / Γ_{r} , Γ_{r}
	-0
$\Gamma(\tau \rightarrow$	$p\pi^{\circ}\eta)/1$ total
$\Gamma(\tau^- \rightarrow$	$\Lambda\pi^{-})/\Gamma_{total}$
$\Gamma(\tau^{-} \rightarrow$	$\overline{\Lambda}\pi^{-})/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\Lambda e^+)/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\overline{\Lambda}e^+)/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\Sigma^0 e^+)/\Gamma_{total}$
$\Gamma(D^+ \rightarrow$	$\overline{\Sigma}^0 e^+)/\Gamma_{\text{total}}$
$\Gamma(D^0 \rightarrow$	$pe^{-})/\Gamma_{total}$
$\Gamma(D^0 \rightarrow$	$\overline{n}e^+)/\Gamma$
	-) / total
$\Gamma(D^{\circ} \rightarrow$	$p\mu$)/I total
$\Gamma(D^0 ightarrow$	$\overline{\rho}\mu^+)/\Gamma_{total}$
$\Gamma(B^+ \rightarrow$	$\Lambda^0 \mu^+)/\Gamma_{total}$
$\Gamma(B^+ \rightarrow$	$\Lambda^0 e^+)/\Gamma_{\rm total}$

${<}1.8 \times 10^{-6}\text{, }\text{CL} = 95\%$
${<}1.8 \times 10^{-6}\text{, CL} = 95\%$
${<}3.0 \times 10^{-8}, CL = 90\%$
${<}3.0 \times 10^{-8}, CL=90\%$
${<}2.0 \times 10^{-8}, CL = 90\%$
${<}1.8 \times 10^{-8},\text{CL} = 90\%$
${<}4.0 \times 10^{-8}, CL=90\%$
${<}1.8 \times 10^{-8}$, $CL=90\%$
${<}3.5 \times 10^{-6}\text{, }$ CL $=$ 90%
${<}1.5 \times 10^{-5}, \text{CL} = 90\%$
${<}3.3 \times 10^{-5},\text{CL} = 90\%$
${<}8.9\times10^{-6},\text{CL}=90\%$
${<}2.7\times10^{-5}\text{, }\text{CL}=90\%$
${<}4.7\times10^{-8}\text{, }\text{CL}=90\%$
${<}4.3 \times 10^{-8}\text{, }\text{CL} = 90\%$
${<}1.1 \times 10^{-6}\text{, CL} = 90\%$
${<}6.5 \times 10^{-7}$, $CL = 90\%$
${<}1.7 \times 10^{-6}$, $CL=90\%$
${<}1.3 \times 10^{-6}$, $CL=90\%$
${<}5.5 imes10^{-7}$, CL ${=}$ 90%
$<\!6.9 imes10^{-7}$, CL $=90\%$
${<}5.1 imes 10^{-7}$, CL = 90%
${<}6.3 \times 10^{-7}$, ${\rm CL}=90\%$
$< 6 imes 10^{-8}$, CL $= 90\%$
$<3.2 imes10^{-8}$, CL = 90%

PAR=S041;DESIG=574
PAR=S041;DESIG=604
PAR=S041;DESIG=605
PAR=S041;DESIG=606
PAR=S041;DESIG=567
PAR=S041;DESIG=568
PAR=S041;DESIG=569
PAR=S041;DESIG=570
PAR=S042;DESIG=624
PAR=S042;DESIG=491
PAR=S042;DESIG=492
PAR=S086;DESIG=179
PAR=S018;DESIG=7
PAR=S018;DESIG=8
PAR=S018;DESIG=9
PAR=S018;DESIG=10
PAR=S018;DESIG=11
PAR=S018;DESIG=12
PAR=S018;DESIG=13
PAR=S018;DESIG=14
PAR=S018;DESIG=15
PAR=S020;DESIG=192
PAR=S022;DESIG=14
PAR=S033;DESIG=111
PAR=S033;DESIG=112
PAR=S033;DESIG=113
PAR=S033;DESIG=61

CONLAW=B

PAR=S044;DESIG=71
PAR=S044;DESIG=72
PAR=S035;DESIG=351
PAR=S035;DESIG=352
PAR=S035;DESIG=353
PAR=S035;DESIG=354
PAR=S035;DESIG=334
PAR=S035;DESIG=335
PAR=S035;DESIG=104
PAR=S035;DESIG=105
PAR=S035;DESIG=268
PAR=S035;DESIG=106
PAR=S035;DESIG=269
PAR=S035;DESIG=297
PAR=S035;DESIG=298
PAR=S031;DESIG=318
PAR=S031;DESIG=319
PAR=S031;DESIG=320
PAR=S031;DESIG=321
PAR=S032;DESIG=387
PAR=S032;DESIG=388
PAR=S032;DESIG=591
PAR=S032;DESIG=592
PAR=S041;DESIG=567
PAR=S041;DESIG=568

$\Gamma(B^+ \rightarrow \overline{\Lambda}^0 \mu^+) / \Gamma_{\text{total}}$	$<\!\!6 imes 10^{-8}$, CL $= 90\%$
$\Gamma(B^+ \rightarrow \overline{\Lambda}^0 e^+) / \Gamma_{\text{total}}$	$<\!\!8 imes 10^{-8}$, CL $= 90\%$
$\Gamma(B^0 \rightarrow p \mu^-) / \Gamma_{total}$	${<}2.6 imes10^{-9}$, CL ${=}$ 90%
$\Gamma(B^0 \rightarrow \Lambda_c^+ \mu^-) / \Gamma_{\text{total}}$	${<}1.4 imes10^{-6}$, CL ${=}$ 90%
$\Gamma(B^0 \rightarrow \Lambda_c^+ e^-) / \Gamma_{\text{total}}$	$<$ 4 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(B_s^0 \to p\mu^-)/\Gamma_{\text{total}}$	${<}1.21 imes10^{-8}$, CL ${=}$ 90%
p mean life	$> 9 imes 10^{29}$ years, CL $= 90\%$

 $\tau(N \rightarrow e^+ \pi)$

 $\tau(N \rightarrow \mu^+ \pi)$

 $\tau(N \rightarrow e^+ K)$

 $\tau(N \rightarrow \mu^+ K)$

Mean $n\overline{n}$ -oscillation time (free n)

 $\Gamma(\Lambda \rightarrow \pi^+ e^-)/\Gamma_{\text{total}}$ $\Gamma(\Lambda \rightarrow \pi^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(\Lambda \rightarrow \pi^- e^+)/\Gamma_{\text{total}}$

 $\Gamma(\Lambda \rightarrow \pi^- \mu^+)/\Gamma_{\text{total}}$

 $\Gamma(\Lambda \rightarrow K^+ e^-)/\Gamma_{total}$

 $\Gamma(\Lambda \rightarrow K^+ \mu^-) / \Gamma_{\text{total}}$

 $\Gamma(\Lambda \rightarrow K^- e^+)/\Gamma_{total}$ $\Gamma(\Lambda \rightarrow K^- \mu^+)/\Gamma_{\text{total}}$

 $\Gamma(\Lambda \rightarrow K_{\rm S}^0 \nu) / \Gamma_{\rm total}$

 $\begin{array}{l} \Gamma(\Lambda \rightarrow \overline{p}\pi^{+})/\Gamma_{\text{total}} \\ \Gamma(\Lambda_{c}^{+} \rightarrow \overline{p}2e^{+})/\Gamma_{\text{total}} \\ \Gamma(\Lambda_{c}^{+} \rightarrow \overline{p}2\mu^{+})/\Gamma_{\text{total}} \\ \Gamma(\Lambda_{c}^{+} \rightarrow \overline{p}e^{+}\mu^{+})/\Gamma_{\text{total}} \end{array}$

Mean $n\overline{n}$ -oscillation time (bound n)

A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.

 $> 5300 (n), > 24000 (p) \times 10^{30}$ years, CL = 90%> 3500 (n), > 16000 (p) \times 10³⁰ years, CL = 90%> 17 (n), > 1000 (p) imes 10³⁰ years, CL = 90% $> 26 (n), > 4500 (p) \times 10^{30}$ years, CL = 90%>8.6 × 10⁷ s, CL = 90% $[r] > 4.7 \times 10^8 \text{ s, } CL = 90\%$ $<6 \times 10^{-7}, CL = 90\%$ $<6 \times 10^{-7}, CL = 90\%$ <4 \times 10 $^{-7}$, CL = 90% $< 6 \times 10^{-7}$, CL = 90% $< 2 \times 10^{-6}$, CL = 90% $<3 \times 10^{-6}$, CL = 90% $<2 \times 10^{-6}$, CL = 90% $<3 \times 10^{-6}$, CL = 90% $<2 \times 10^{-5}$, CL = 90% $< 9 \times 10^{-7}$, CL = 90% $<2.7 \times 10^{-6}$, CL = 90% $< 9.4 \times 10^{-6}$, CL = 90% ${<}1.6 \times 10^{-5}$, CL = 90%

ELECTRIC CHARGE (Q)

$\begin{aligned} \gamma & \text{charge (mixed)} \\ \gamma & \text{charge (single)} \\ e & \to \nu_e \gamma \text{ and astrophysical limits} \\ \gamma & \text{charge} \\ q_p + q_e /e \\ \eta & \text{charge} \\ \Gamma(n \to p\nu_e \overline{\nu}_e) / \Gamma_{\text{total}} \end{aligned}$	$ \begin{array}{l} <1 \times 10^{-46} \ e \\ <1 \times 10^{-35} \ e \end{array} \\ [s] > 6.6 \times 10^{28} \ \text{yr}, \ \text{CL} = 90\% \\ <4 \times 10^{-35} \ e, \ \text{CL} = 95\% \\ [t] <1 \times 10^{-21} \\ (-0.2 \pm 0.8) \times 10^{-21} \ e \\ <8 \times 10^{-27}, \ \text{CL} = 68\% \end{array} $	NODE=S000Q NODE=S000QM; \rightarrow UNCHECKED \leftarrow ;OUR NODE=S003T NODE=S066CHR NODE=S016DQ NODE=S017Q PAR=S017;DESIG=2
$(n \rightarrow p \nu_e \nu_e)/1$ total	$< 0 \times 10^{-1}$, $CL = 00\%$	PAR=5017;DESIG=2

$\Delta S = \Delta Q RULE$

Violations allowed in second-order weak interactions.

$\Gamma(K^+ \rightarrow \pi^+ \pi^+ e^- \overline{\nu}_e) / \Gamma_{\text{total}}$	$< 1.3 imes 10^{-8}$, CL = 90%
$\Gamma(K^+ \rightarrow \pi^+ \pi^+ \mu^- \overline{\nu}_{\mu}) / \Gamma_{\text{total}}$	${<}3.0\times10^{-6}\text{, CL}=95\%$
$Re(x_+)$, K_{e3} parameter	$(-0.9\pm 3.0) imes 10^{-3}$
$x = A(\overline{K}^0 \rightarrow \pi^- \ell^+ \nu) / A(K^0 \rightarrow \pi^- \ell^+ \nu) = A(\Delta S^0)$	$S = -\Delta Q) / A(\Delta S = \Delta Q)$
real part of x	-0.002 ± 0.006
imaginary part of x	0.0012 ± 0.0021
$\Gamma(\Sigma^+ \to n\ell^+ \nu) / \Gamma(\Sigma^- \to n\ell^- \overline{\nu}_{\ell})$	<0.043
$\Gamma(\Sigma^+ \rightarrow n e^+ \nu_e) / \Gamma_{\text{total}}$	${<}5 imes10^{-6}$, CL ${=}$ 90%
$\Gamma(\Sigma^+ \rightarrow n \mu^+ \nu_{\mu}) / \Gamma_{\text{total}}$	$< 3.0 imes 10^{-5}$, CL = 90%
$\Gamma(\Xi^0 ightarrow \Sigma^- e^+ u_e) / \Gamma_{total}$	$< 1.6 imes 10^{-4}$, CL $= 90\%$
$\Gamma(\Xi^0 ightarrow \Sigma^- \mu^+ u_\mu) / \Gamma_{total}$	$<$ 9 $ imes$ 10 $^{-4}$, CL $=$ 90%

PAR=S041;DESIG=569	
PAR=S041;DESIG=570	
PAR=S042;DESIG=624	
PAR=S042;DESIG=491	
PAR=S042;DESIG=492	
PAR=S086;DESIG=179	
NODE=S016T	
PAR=S016;DESIG=6	
$\begin{array}{l} PAR{=}S016; DESIG{=}6; \rightarrow UNCHECKED \leftarrow; \\ OUR \ LIM \end{array}$	
$\begin{array}{l} PAR{=}S016; DESIG{=}7; \rightarrow UNCHECKED \leftarrow; \\ OUR \ LIM \end{array}$	
$\begin{array}{l} PAR{=}S016; DESIG{=}8; \rightarrow UNCHECKED \leftarrow; \\ OUR LIM \end{array}$	
$\begin{array}{l} PAR{=}S016; DESIG{=}9; \rightarrow UNCHECKED \leftarrow; \\ OUR LIM \end{array}$	
NODE=S017NAN	
$NODE=S017NAX; \rightarrow UNCHECKED \leftarrow; OUF$	2
PAR S018; DESIG=7	
PAR=S018;DESIG=8	
PAR=S018;DESIG=9	
PAR=S018;DESIG=10	
PAR=S018;DESIG=11	
PAR=S018;DESIG=12	
PAR=S018;DESIG=13	
PAR=S018;DESIG=14	
PAR=S018;DESIG=15	
PAR=S018;DESIG=16	
PAR=S033;DESIG=111	
PAR=S033;DESIG=112	
PAR=S033;DESIG=113	

CONLAW=Q

NODE=S000Q
$NODE = S000QM; \rightarrow UNCHECKED \leftarrow; OUR$
NODE=S003T
NODE=S066CHR
NODE=S016DQ
NODE=S017Q
PAR=S017:DESIG=2

CONLAW=SQ

CONLAW=S2

CONLAW=S2M

CONLAW=C2M

CONLAW=B2M

$\Delta S = 2$ FORBIDDEN

Allowed in second-order weak interactions.

$\Gamma(\Xi^0 \rightarrow p \pi^-) / \Gamma_{\text{total}}$	$<\!8 imes10^{-6}$, CL $=90\%$	PAR=S023;DESIG=2
$\Gamma(\Xi^0 \rightarrow p e^- \overline{\nu}_e) / \Gamma_{\text{total}}$	$< 1.3 \times 10^{-3}$	PAR=S023;DESIG=3
$\Gamma(\Xi^0 ightarrow p \mu^- \overline{ u}_{\mu}) / \Gamma_{total}$	$< 1.3 \times 10^{-3}$	PAR=S023;DESIG=8
$\Gamma(\Xi^- ightarrow n\pi^-)/\Gamma_{total}$	${<}1.9 imes10^{-5}$, CL ${=}$ 90%	PAR=S022;DESIG=3
$\Gamma(\Xi^- \rightarrow ne^-\overline{ u}_e)/\Gamma_{total}$	${<}3.2 imes10^{-3}$, CL ${=}$ 90%	PAR=S022;DESIG=7
$\Gamma(\Xi^- ightarrow n\mu^- \overline{ u}_\mu)/\Gamma_{total}$	${<}1.5 imes10^{-2}$, CL ${=}$ 90%	PAR=S022;DESIG=8
$\Gamma(\Xi^- ightarrow p \pi^- \pi^-) / \Gamma_{\text{total}}$	${<}4 imes10^{-4}$, CL $=$ 90%	PAR=S022;DESIG=10
$\Gamma(\Xi^- ightarrow p\pi^- e^- \overline{ u}_e) / \Gamma_{\text{total}}$	${<}4 imes10^{-4}$, CL $=$ 90%	$PAR{=}S022{;}DESIG{=}11$
$\Gamma(\Xi^- ightarrow p \pi^- \mu^- \overline{ u}_\mu) / \Gamma_{total}$	${<}4 imes10^{-4}$, CL $=$ 90%	$PAR{=}S022{;}DESIG{=}12$
$\Gamma(\Omega^- \rightarrow \Lambda \pi^-)/\Gamma_{\text{total}}$	${<}2.9 imes10^{-6}$, CL ${=}$ 90%	PAR=S024;DESIG=4

$\Delta S = 2$ VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

$$\begin{array}{ll} m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}} & (0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ \mathrm{s}^{-1} \ (\mathrm{S} & \mathrm{NODE} = \mathrm{S013D} \\ & = 1.3) \\ m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}} & (3.484 \pm 0.006) \times 10^{-12} \ \mathrm{MeV} & \mathrm{NODE} = \mathrm{S013D1; OUR \ EVAL} \end{array}$$

$\Delta C = 2$ VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

$$\begin{split} |m_{D_1^0} - m_{D_2^0}| &= x\Gamma & (0.997 \pm 0.116) \times 10^{10} \ \hbar \ \mathrm{s}^{-1} & \mathsf{NODE} = \mathrm{S032D}; \rightarrow \ \mathsf{UNCHECKED} \leftarrow; \mathsf{OUR} \\ (\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma &= 2y & (1.394 \pm 0.056) \times 10^{-2} & \mathsf{NODE} = \mathrm{S032DT}; \rightarrow \ \mathsf{UNCHECKED} \leftarrow; \mathsf{OUR} \\ \mathsf{EVAL} \end{split}$$

$\Delta B = 2$ VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

$\chi_d (B^0 - \overline{B}^0 \text{ mixing probability})$	0.1860 ± 0.0011	NODE=S042CHD; \rightarrow UNCHECKED \leftarrow ;OUR
$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$	(0.5069 \pm 0.0019) \times 10^{12} \hbar s^{-1}	$\begin{array}{l} \overset{EVAL}{NODE=} S042D; \rightarrow UNCHECKED \leftarrow; OUR\\ \overset{EVAL}{EVAL} \end{array}$
$x_d = \Delta m_{B^0} / \Gamma_{B^0}$	0.7697 ± 0.0035	$\begin{array}{l} NODE=S042DG; \rightarrow UNCHECKED \leftarrow; OUR \\ FVAI \end{array}$
$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0}$	$(17.765 \pm 0.006) imes 10^{12} \ \hbar \ { m s}^{-1}$	$\begin{array}{l} \text{NODE}{=}\text{S086D}; \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR} \\ \text{EVAL} \end{array}$
$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0}$	26.93 ± 0.10	$\substack{NODE=S086DG;\to UNCHECKED \leftarrow; OUR\\EVAL}$
$\chi_s \ (B_s^0 - \overline{B}_s^0 \ { m mixing parameter})$	0.499314 ± 0.000005	$\underset{EVAL}{\text{NODE}=\text{S086CHS};} \rightarrow \text{UNCHECKED} \leftarrow; \text{OUR}$

$\Delta S = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma(K^+ \rightarrow \pi^+ e^+ e^-) / \Gamma_{total}$	$(3.00 \pm 0.09) imes 10^{-7}$	PAR=S010;DESIG=15
$\Gamma(K^+ \rightarrow \pi^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	$(9.17 \pm 0.14) imes 10^{-8}~({ m S}=1.8)$	PAR=S010;DESIG=16
$\Gamma(K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-) / \Gamma_{\text{total}}$	${<}1.4 imes10^{-8}$, CL ${=}$ 90%	PAR=S010;DESIG=123
$\Gamma(K^+ \rightarrow \pi^+ \nu \overline{\nu}) / \Gamma_{\text{total}}$	$(1.14 {+0.40 \atop -0.33}) imes 10^{-10}$	PAR=S010;DESIG=20
$\Gamma(K^+ \rightarrow \pi^+ \pi^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$	${<}4.3 imes10^{-5}$, CL ${=}$ 90%	PAR=S010;DESIG=50
$\Gamma(K_S^0 \rightarrow \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}2.1 imes 10^{-10}$, CL ${=}$ 90%	PAR=S012;DESIG=3
$\Gamma(\kappa_{S}^{0} \rightarrow e^{+}e^{-})/\Gamma_{total}$	${<}9 imes10^{-9}$, CL ${=}$ 90%	PAR=S012;DESIG=4
$\Gamma(\kappa_{S}^{0} \rightarrow \pi^{0} e^{+} e^{-}) / \Gamma_{\text{total}}$ [u	$] (3.0^{+1.5}_{-1.2}) \times 10^{-9}$	PAR=S012;DESIG=10
$\Gamma(\kappa_{S}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}) / \Gamma_{\text{total}}$	$(2.9^{+1.5}_{-1.2}) imes10^{-9}$	PAR=S012;DESIG=15
$\Gamma(\kappa_L^0 \to \mu^+ \mu^-) / \Gamma_{\text{total}}$	$(6.84 \pm 0.11) \times 10^{-9}$	PAR=S013;DESIG=6
$\Gamma(\kappa_L^0 \rightarrow e^+ e^-) / \Gamma_{\text{total}}$	$(9^{+6}_{-4}) \times 10^{-12}$	PAR=S013;DESIG=7
$\Gamma(\kappa_I^0 \to \pi^+ \pi^- e^+ e^-) / \Gamma_{\text{total}}$ [v] $(3.11 \pm 0.19) \times 10^{-7}$	PAR=S013;DESIG=17
$\Gamma(\kappa_L^0 \to \pi^0 \pi^0 e^+ e^-) / \Gamma_{\text{total}}$	${<}6.6 imes10^{-9}$, CL $=90\%$	PAR=S013;DESIG=48
$\Gamma(\kappa_I^{\bar{0}} \rightarrow \pi^0 \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}9.2 { imes}10^{-11}$, CL ${=}90\%$	PAR=S013;DESIG=54
$\Gamma(\kappa_I^{\bar{0}} \rightarrow \mu^+ \mu^- e^+ e^-) / \Gamma_{\text{total}}$	$(2.69 \pm 0.27) imes 10^{-9}$	PAR=S013;DESIG=21
$\Gamma(\kappa_I^{0} \rightarrow e^+ e^- e^+ e^-) / \Gamma_{\text{total}}$	$(3.56 \pm 0.21) imes 10^{-8}$	PAR=S013;DESIG=22
$\Gamma(\kappa_I^{\bar{0}} \rightarrow \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}3.8 imes 10^{-10}$, CL $= 90\%$	PAR=S013;DESIG=16
$\Gamma(\kappa_I^{0} \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$	${<}2.8 imes10^{-10}$, CL ${=}$ 90%	PAR=S013;DESIG=20
$\Gamma(K_I^{0} \to \pi^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$	${<}3.0 imes10^{-9}$, CL ${=}$ 90%	PAR=S013;DESIG=43
$\Gamma(\kappa_L^{\bar{0}} \to \pi^0 \pi^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$	${<}8.1 imes10^{-7}$, CL ${=}$ 90%	PAR=S013;DESIG=52
$\Gamma(\Sigma^{+} \rightarrow \rho e^{+} e^{-})/\Gamma_{total}$	$< 7 \times 10^{-6}$	PAR=S019;DESIG=8
$\Gamma(\Sigma^+ ightarrow p \mu^+ \mu^-) / \Gamma_{ m total}$	$(2.4^{+1.7}_{-1.3}) imes 10^{-8}$	PAR=S019;DESIG=9

$\Delta C = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma(D^+ \rightarrow \pi^+ e^+ e^-) / \Gamma_{\text{total}}$	${<}1.1 imes10^{-6}$, CL ${=}$ 90%	PAR=S031;DESIG=41
$\Gamma(D^+ \rightarrow \pi^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}6.7 imes10^{-8}$, CL ${=}$ 90%	PAR=S031;DESIG=42
$\Gamma(D^+ \rightarrow \rho^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}5.6 imes10^{-4}$, CL ${=}$ 90%	PAR=S031;DESIG=198
$\Gamma(D^0 \rightarrow \gamma \gamma) / \Gamma_{\text{total}}$	${<}8.5 imes10^{-7}$, CL ${=}$ 90%	PAR=S032;DESIG=45
$\Gamma(D^0 \rightarrow e^+ e^-) / \Gamma_{\text{total}}$	${<}7.9 imes10^{-8}$, CL ${=}$ 90%	PAR=S032;DESIG=39
$\Gamma(D^0 \rightarrow \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}3.1 imes10^{-9}$, CL ${=}$ 90%	PAR=S032;DESIG=28
$\Gamma(D^0 \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$	$<$ 4 $ imes$ 10 $^{-6}$, CL = 90%	PAR=S032;DESIG=225
$\Gamma(D^0 \rightarrow \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}1.8 imes10^{-4}$, CL ${=}$ 90%	PAR=S032;DESIG=216
$\Gamma(D^0 \rightarrow \eta e^+ e^-) / \Gamma_{\text{total}}$	$< 3 imes 10^{-6}$, CL = 90%	PAR=S032;DESIG=226
$\Gamma(D^0 \rightarrow \eta \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}5.3 imes10^{-4}$, CL ${=}$ 90%	PAR=S032;DESIG=227
$\Gamma(D^0 \rightarrow \pi^+ \pi^- e^+ e^-) / \Gamma_{\text{total}}$	$<7 imes 10^{-6}$, CL $= 90\%$	PAR=S032;DESIG=262
$\Gamma(D^0 \rightarrow \rho^0 e^+ e^-) / \Gamma_{\text{total}}$	${<}1.0 imes10^{-4}$, CL ${=}$ 90%	PAR=S032;DESIG=52
$\Gamma(D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-) / \Gamma_{\text{total}}$	$(9.6 \pm 1.2) imes 10^{-7}$	PAR=S032;DESIG=263
$\Gamma(D^0 \rightarrow \rho^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}2.2 imes10^{-5}$, CL ${=}$ 90%	PAR=S032;DESIG=53
$\Gamma(D^0 \rightarrow \omega e^+ e^-) / \Gamma_{\text{total}}$	$<\!\!6 imes 10^{-6}$, CL $= 90\%$	PAR=S032;DESIG=228
$\Gamma(D^0 \rightarrow \omega \mu^+ \mu^-) / \Gamma_{\text{total}}$	$<\!8.3 imes10^{-4}$, CL $=90\%$	PAR=S032;DESIG=229
$\Gamma(D^0 \rightarrow K^- K^+ e^+ e^-) / \Gamma_{\text{total}}$	${<}1.1 imes 10^{-5}$, CL $= 90\%$	PAR=S032;DESIG=266
$\Gamma(D^0 \rightarrow \phi e^+ e^-) / \Gamma_{\text{total}}$	${<}5.2 imes10^{-5}$, CL ${=}$ 90%	PAR=S032;DESIG=230
$\Gamma(D^0 \rightarrow K^- K^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	$(1.54 \pm 0.32) imes 10^{-7}$	PAR=S032;DESIG=267
$\Gamma(D^0 \rightarrow \phi \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}3.1 imes10^{-5}$, CL ${=}$ 90%	PAR=S032;DESIG=231
$\Gamma(D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}3.59 imes10^{-4}$, CL ${=}$ 90%	PAR=S032;DESIG=265
$\Gamma(D^0 \rightarrow \pi^+ \pi^- \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}8.1 imes10^{-4}$, CL ${=}~90\%$	PAR=S032;DESIG=218
$\Gamma(D_s^+ \rightarrow K^+ e^+ e^-) / \Gamma_{\text{total}}$	${<}3.7 imes10^{-6}$, CL ${=}$ 90%	PAR=S034;DESIG=94
$\Gamma(D_s^+ \rightarrow \kappa^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}1.4 imes10^{-7}$, CL $=90\%$	PAR=S034;DESIG=74

CONLAW=S1

CONLAW=C1

CONLAW=B1

$\Gamma(D_s^+ \rightarrow K^*(892)^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$	${<}1.4 imes10^{-3}$, CL ${=}$ 90%	PAR=S034;DESIG=75
$\Gamma(\Lambda_c^+ \rightarrow p e^+ e^-) / \Gamma_{\text{total}}$	${<}5.5 imes10^{-6}$, CL $=90\%$	PAR=S033;DESIG=108
$\Gamma(\Lambda_{c}^{+} \rightarrow p \mu^{+} \mu^{-} \text{ non-resonant}) / \Gamma_{\text{total}}$	${<}2.9 imes10^{-8}$, CL ${=}$ 90%	PAR=S033;DESIG=60

$\Delta B = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

 $\Gamma(B^+ \rightarrow \pi^+ \ell^+ \ell^-) / \Gamma_{\text{total}}$ $[x] < 4.9 \times 10^{-8}$, CL = 90% PAR=S041;DESIG=475 $\Gamma(B^+ \rightarrow \pi^+ e^+ e^-) / \Gamma_{\text{total}}$ $<5.4 \times 10^{-8}$, CL = 90% PAR=S041;DESIG=85 $\Gamma(B^+ \rightarrow \pi^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$ $(1.78 \pm 0.23) \times 10^{-8}$ PAR=S041;DESIG=88 $\Gamma(B^+ \rightarrow \rho(770)^+ e^+ e^-) / \Gamma_{\text{total}}$ $<4.67 \times 10^{-7}$, CL = 90% PAR=S041;DESIG=818 $\Gamma(B^+ \rightarrow \rho(770)^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$ $< 3.81 \times 10^{-7}$, CL = 90% PAR=S041;DESIG=819 $\Gamma(B^+ \rightarrow \rho(770)^+ \ell^+ \ell^-) / \Gamma_{\text{total}}$ $<1.89 \times 10^{-7}$, CL = 90% PAR=S041;DESIG=820 $\Gamma(B^+ \rightarrow \pi^+ \nu \overline{\nu}) / \Gamma_{\text{total}}$ $< 1.4 \times 10^{-5}$, CL = 90% PAR=S041;DESIG=404 $\Gamma(B^+ \rightarrow K^+ \ell^+ \ell^-) / \Gamma_{\text{total}}$ [x] $(4.7 \pm 0.5) \times 10^{-7}$ (S = 2.3) PAR=S041;DESIG=345 $\Gamma(B^+ \rightarrow K^+ e^+ e^-) / \Gamma_{\text{total}}$ $(5.6 \pm 0.6) \times 10^{-7}$ PAR=S041;DESIG=11 $\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$ $(4.53 \pm 0.35) \times 10^{-7}$ (S = 1.8) PAR=S041;DESIG=10 $\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^- \text{nonresonant}) / \Gamma_{\text{total}}$ $(4.37 \pm 0.27) \times 10^{-7}$ PAR=S041;DESIG=704 $\Gamma(B^+ \rightarrow K^+ \tau^+ \tau^-) / \Gamma_{\text{total}}$ ${<}2.25\times10^{-3}\text{, }$ CL =90%PAR=S041;DESIG=690 $\Gamma(B^+ \rightarrow K^+ \overline{\nu} \nu) / \Gamma_{\text{total}}$ $(2.3 \pm 0.7) \times 10^{-5}$ PAR=S041;DESIG=273 $\Gamma(B^+ \rightarrow \rho^+ \nu \overline{\nu}) / \Gamma_{\text{total}}$ ${<}3.0\times10^{-5}$, CL=90%PAR=S041:DESIG=489 $\Gamma(B^+ \rightarrow K^*(892)^+ \ell^+ \ell^-) / \Gamma_{total}$ [x] $(1.01 \pm 0.11) \times 10^{-6}$ (S = 1.1) PAR=S041;DESIG=346 $(1.55^{+0.40}_{-0.31}) \times 10^{-6}$ $\Gamma(B^+ \rightarrow K^*(892)^+ e^+ e^-)/\Gamma_{total}$ PAR=S041;DESIG=161 $\Gamma(B^+ \rightarrow K^*(892)^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$ $(9.6 \pm 1.0) \times 10^{-7}$ PAR=S041;DESIG=162 $\Gamma(B^+ \rightarrow K^*(892)^+ \nu \overline{\nu}) / \Gamma_{\text{total}}$ ${<}4.0\times10^{-5}\text{, }$ CL =90%PAR=S041;DESIG=490 $\Gamma(B^+ \rightarrow K^+ \pi^+ \pi^- \mu^+ \mu^-) / \Gamma_{\text{total}}$ $(4.3 \pm 0.4) \times 10^{-7}$ PAR=S041;DESIG=632 $\Gamma(B^+ \rightarrow D_s^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$ $<2.4 \times 10^{-8}$, CL = 90% PAR=S041;DESIG=816 $(7.9^{+2.1}_{-1.7}) \times 10^{-8}$ $\Gamma(B^+ \rightarrow \phi K^+ \mu^+ \mu^-) / \Gamma_{\text{total}}$ PAR=S041:DESIG=633 $\Gamma(B^+ \rightarrow \overline{\Lambda} p \nu \overline{\nu}) / \Gamma_{\text{total}}$ $<3.0 \times 10^{-5}$, CL = 90% PAR=S041;DESIG=736 $\Gamma(B^0 \rightarrow \gamma \gamma) / \Gamma_{\text{total}}$ $< 6.4 \times 10^{-8}$, CL = 90% PAR=S042;DESIG=141 $\Gamma(B^0 \rightarrow \ e^+ \, e^-) / \Gamma_{total}$ $<2.5 \times 10^{-9}$, CL = 90% PAR=S042;DESIG=6 $\Gamma(B^0 \rightarrow e^+ e^- \gamma) / \Gamma_{total}$ $<1.2 \times 10^{-7}$, CL = 90% PAR=S042;DESIG=404 $\Gamma(B^0 \rightarrow \mu^+ \mu^-)/\Gamma_{total}$ $<1.5 \times 10^{-10}$, CL = 90% PAR=S042;DESIG=7 $\Gamma(B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-) / \Gamma_{\text{total}}$ $< 1.8 \times 10^{-10}$, CL = 95% PAR=S042;DESIG=521 $\Gamma(B^0 \rightarrow SP, S \rightarrow \mu^+ \mu^-, P \rightarrow$ $[y] < 6.0 \times 10^{-10}$, CL = 95% PAR=S042;DESIG=522 $\mu^+\mu^-)/\Gamma_{\rm total}$ $\Gamma(B^0 \rightarrow aa, a \rightarrow \mu^+ \mu^-) / \Gamma_{total}$ $<2.3 \times 10^{-10}$, CL = 95% PAR=S042;DESIG=618 $\Gamma(B^0 \rightarrow \tau^+ \tau^-) / \Gamma_{\text{total}}$ $<2.1 \times 10^{-3}$, CL = 95% PAR=S042;DESIG=336 $\Gamma(B^0 \rightarrow \pi^0 \ell^+ \ell^-) / \Gamma_{\text{total}}$ $[x] < 3.8 \times 10^{-8}$, CL = 90% PAR=S042;DESIG=382 $\Gamma(B^0 \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$ $<7.9 \times 10^{-8}$, CL = 90% PAR=S042;DESIG=380 $\Gamma(B^0 \rightarrow \pi^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$ $<5.9 \times 10^{-8}$, CL = 90% PAR=S042;DESIG=381 $\Gamma(B^0 \rightarrow \eta \ell^+ \ell^-) / \Gamma_{\text{total}}$ $[x] < 4.8 \times 10^{-8}$, CL = 90% PAR=S042;DESIG=518 $\Gamma(B^0 \rightarrow \eta e^+ e^-)/\Gamma_{total}$ $< 1.05 \times 10^{-7}$, CL = 90% PAR=S042;DESIG=519 $\Gamma(B^0 \rightarrow \eta \mu^+ \mu^-) / \Gamma_{\text{total}}$ $< 9.4 \times 10^{-8}$, CL = 90% PAR=S042:DESIG=520 $\Gamma(B^0 \rightarrow \rho(770)^0 e^+ e^-) / \Gamma_{\text{total}}$ $<4.55 \times 10^{-7}$, CL = 90% PAR=S042;DESIG=648 $\Gamma(B^0 \rightarrow \omega e^+ e^-)/\Gamma_{\text{total}}$ $< 3.07 imes 10^{-7}$, CL = 90% PAR=S042;DESIG=649 $\Gamma(B^0 \rightarrow \omega \mu^+ \mu^-)/\Gamma_{\text{total}}$ $<2.49 \times 10^{-7}$, CL = 90% PAR=S042;DESIG=650 $\Gamma(B^0 \rightarrow \omega \ell^+ \ell^-) / \Gamma_{\text{total}}$ $<2.20 \times 10^{-7}$, CL = 90% PAR=S042;DESIG=651 $\Gamma(B^0 \rightarrow \pi^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$ $< 9 imes 10^{-6}$, CL = 90% PAR=S042;DESIG=406 $\Gamma(B^0 \rightarrow \kappa^0 \ell^+ \ell^-) / \Gamma_{total}$ [x] $(3.3 \pm 0.6) \times 10^{-7}$ PAR=S042;DESIG=275 $\Gamma(B^0 \rightarrow K^0 e^+ e^-)/\Gamma_{total}$ $(2.5^{+1.1}_{-0.9}) \times 10^{-7} (S = 1.3)$ PAR=S042;DESIG=18 $\Gamma(B^0 \rightarrow \kappa^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$ $(3.39 \pm 0.35) \times 10^{-7}$ (S = 1.1) PAR=S042;DESIG=17 $\Gamma(B^0 \rightarrow \kappa^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$ $<2.6 \times 10^{-5}$, CL = 90% PAR=S042;DESIG=407 $\Gamma(B^0 \rightarrow \rho^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$ $<4.0 \times 10^{-5}$, CL = 90% PAR=S042;DESIG=408

 $\Gamma(B^0 \rightarrow \kappa^* (892)^0 \ell^+ \ell^-) / \Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow K^*(892)^0 e^+ e^-)/\Gamma_{total}$ $\Gamma(B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow K^*(892)^0 \tau^+ \tau^-)/\Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow \overline{D}^0 \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow K^*(892)^0 \nu \overline{\nu}) / \Gamma_{\text{total}}$ $\Gamma({\it B}^0 \rightarrow \mbox{ invisible})/\Gamma_{total}$ $\Gamma(B^0 \rightarrow \nu \overline{\nu} \gamma) / \Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow \phi \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B^0 \rightarrow \phi \nu \overline{\nu}) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow se^+e^-)/\Gamma_{total}$ $\Gamma(B \rightarrow s \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow s \ell^+ \ell^-) / \Gamma_{\text{total}}$ [× $\Gamma(B \rightarrow \pi \ell^+ \ell^-) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow \pi e^+ e^-)/\Gamma_{\text{total}}$ $\Gamma(B \rightarrow \pi \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow K e^+ e^-) / \Gamma_{total}$ $\Gamma(B \rightarrow K^*(892)e^+e^-)/\Gamma_{total}$ $\Gamma(B \rightarrow K \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow K^*(892) \mu^+ \mu^-) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow K \ell^+ \ell^-) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow K^*(892)\ell^+\ell^-)/\Gamma_{total}$ $\Gamma(B \rightarrow K \nu \overline{\nu}) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow K^* \nu \overline{\nu}) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow \pi \nu \overline{\nu}) / \Gamma_{\text{total}}$ $\Gamma(B \rightarrow \rho \nu \overline{\nu}) / \Gamma_{\text{total}}$ $\Gamma(\overline{b} \rightarrow \overline{s}\overline{\nu}\nu)/\Gamma_{\text{total}}$ $\Gamma(\overline{b} \rightarrow \mu^+ \mu^- \text{ anything}) / \Gamma_{\text{total}}$ $\Gamma(B_c^0 \rightarrow \gamma \gamma) / \Gamma_{\text{total}}$ $\Gamma(B_{c}^{0} \rightarrow \phi \gamma) / \Gamma_{\text{total}}$ $\Gamma(B_{c}^{0} \rightarrow f_{2}(1270)\gamma)/\Gamma_{total}$ $\Gamma(B_{c}^{0} \rightarrow f_{2}^{\prime}(1525)\gamma)/\Gamma_{total}$ $\Gamma(B_{c}^{0} \rightarrow \phi(1680)\gamma, \phi \rightarrow K^{+}K^{-})/\Gamma_{total}$ $\Gamma(B_s^0 \rightarrow \phi_3(1850)\gamma, \phi_3 \rightarrow$ $K^+K^-)/\Gamma_{total}$ $\Gamma(B^0_s \rightarrow f_2(2010)\gamma, f_2 \rightarrow$ $\kappa^+ \kappa^-)/\Gamma_{total}$ $\Gamma(B_c^0 \rightarrow \mu^+ \mu^-)/\Gamma_{total}$ $\Gamma(B_{c}^{0} \rightarrow e^{+}e^{-})/\Gamma_{total}$ $\Gamma(B_c^0 \rightarrow \tau^+ \tau^-)/\Gamma_{\text{total}}$ $\Gamma(B_{2}^{0} \rightarrow \mu^{+}\mu^{-}\gamma)/\Gamma_{\text{total}}$ $\Gamma(B_{c}^{0} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-})/\Gamma_{total}$ $\Gamma(B^0_s \rightarrow SP, S \rightarrow \mu^+\mu^-, P \rightarrow$ [) $\mu^+ \mu^-)/\Gamma_{total}$ $\Gamma(B_{c}^{0}
ightarrow aa, a
ightarrow \mu^{+}\mu^{-})/\Gamma_{
m total}$ $\Gamma(B_{\epsilon}^{\bar{0}} \rightarrow \phi(1020) \mu^{+} \mu^{-}) / \Gamma_{\text{total}}$ $\Gamma(B_{c}^{0} \rightarrow f_{2}^{\prime}(1525)\mu^{+}\mu^{-})/\Gamma_{\text{total}}$ $\Gamma(B_{2}^{0} \rightarrow \overline{K}^{*}(892)^{0}\mu^{+}\mu^{-})/\Gamma_{\text{total}}$ $\Gamma(B_{2}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-})/\Gamma_{\text{total}}$ $\Gamma(B_{2}^{0} \rightarrow \overline{D}^{0} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$ $\Gamma(B_{c}^{0} \rightarrow \phi \nu \overline{\nu}) / \Gamma_{\text{total}}$

$$\begin{bmatrix} x \end{bmatrix} (9.9 + \frac{1}{1:1}) \times 10^{-7} \\ (1.03 + 0.19) \times 10^{-6} \\ (9.4 \pm 0.5) \times 10^{-7} \\ < 3.1 \times 10^{-3}, CL = 90\% \\ < 4.0 \times 10^{-8}, CL = 90\% \\ < 2.1 \pm 0.5) \times 10^{-8} \\ < 1.8 \times 10^{-5}, CL = 90\% \\ < 2.4 \times 10^{-5}, CL = 90\% \\ < 2.4 \times 10^{-5}, CL = 90\% \\ < 1.6 \times 10^{-5}, CL = 90\% \\ < 3.2 \times 10^{-9}, CL = 90\% \\ < 1.6 \times 10^{-7}, CL = 90\% \\ < 1.27 \times 10^{-4}, CL = 90\% \\ < 1.27 \times 10^{-4}, CL = 90\% \\ < 1.10 \times 10^{-7}, CL = 90\% \\ < 5.9 \times 10^{-8}, CL = 90\% \\ < 1.10 \times 10^{-7}, CL = 90\% \\ < 5.0 \times 10^{-8}, CL = 90\% \\ < 4.4 \pm 0.6) \times 10^{-7} \\ (1.19 \pm 0.20) \times 10^{-6} (S = 1.2) \\ (4.4 \pm 0.4) \times 10^{-7} \\ (1.06 \pm 0.09) \times 10^{-6} \\ < 4.8 \pm 0.4) \times 10^{-7} \\ (1.05 \pm 0.10) \times 10^{-6} \\ < 1.6 \times 10^{-5}, CL = 90\% \\ < 2.7 \times 10^{-5}, CL = 90\% \\ < 2.8 \times 10^{-6}, CL = 90\% \\ < 3.2 \times 10^{-4}, CL = 90\% \\ < 3.1 \times 10^{-6}, CL = 90\% \\ < 3.4 \pm 0.4) \times 10^{-5} \\ (9 + \frac{4}{-5}) \times 10^{-6} \\ (1.0 + 0.7) \times 10^{-7} \\ (1.34 \pm 0.27) \times 10^{-9} \\ < 9.4 \times 10^{-9}, CL = 90\% \\ < 6.8 \times 10^{-3}, CL = 95\% \\ < 8.6 \times 10^{-10}, CL = 95\% \\ < 8.6 \times 10^{-10}, CL = 95\% \\ < 8.4 \pm 1.7) \times 10^{-8} \\ < 1.2 \times 10^{-7}, CL = 90\% \\ < 5.4 \times 10^{-3}, CL = 90\% \\ < 5.4 \times 10^{-7}, CL = 90\% \\ < 5.4 \times 10^{-$$

PAR=S042;DESIG=276 PAR=S042;DESIG=82 PAR=S042;DESIG=71 PAR=S042;DESIG=629 PAR=S042;DESIG=647 PAR=S042;DESIG=550 PAR=S042;DESIG=152 PAR=S042:DESIG=284 PAR=S042;DESIG=285 PAR=S042;DESIG=614 PAR=S042;DESIG=409 PAR=S049;DESIG=103 PAR=S049;DESIG=104 PAR=S049;DESIG=59 PAR=S049;DESIG=266 PAR=S049;DESIG=283 PAR=S049;DESIG=284 PAR=S049;DESIG=234 PAR=S049;DESIG=235 PAR=S049;DESIG=236 PAR=S049;DESIG=237 PAR=S049;DESIG=238 PAR=S049;DESIG=239 PAR=S049;DESIG=275 PAR=S049;DESIG=269 PAR=S049;DESIG=287 PAR=S049;DESIG=288 PAR=S051:DESIG=65 PAR=S051;DESIG=104 PAR=S086;DESIG=11 PAR=S086;DESIG=18 PAR=S086;DESIG=191 PAR=S086;DESIG=192 PAR=S086;DESIG=193 PAR=S086;DESIG=194 PAR=S086:DESIG=195 PAR=S086;DESIG=15 PAR=S086;DESIG=20 PAR=S086;DESIG=130 PAR=S086;DESIG=170 PAR=S086;DESIG=59 PAR=S086;DESIG=64 PAR=S086;DESIG=167 PAR=S086;DESIG=31 PAR=S086;DESIG=164 PAR=S086;DESIG=137 PAR=S086;DESIG=117 PAR=S086;DESIG=182 PAR=S086;DESIG=19

$\Delta T = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$\Gamma(t ightarrow$	$Zq(q=u,c))/\Gamma_{total}$	[z]	${<}1.2 imes10^{-4}$, CL ${=}$ 95%	PAR=Q007;DESIG=2
$\Gamma(t ightarrow$	$Hu)/\Gamma_{total}$		${<}1.9 imes10^{-4}$, CL ${=}$ 95%	PAR=Q007;DESIG=12
$\Gamma(t ightarrow$	$Hc)/\Gamma_{total}$		${<}3.4 imes10^{-4}$, CL ${=}$ 95%	PAR=Q007;DESIG=13
$\Gamma(t ightarrow$	$\ell^+ \overline{q q'}(q=d,s,b; q'=u,c))/\Gamma_{total}$		${<}1.6 imes10^{-3}$, CL ${=}$ 95%	PAR=Q007;DESIG=8
	NOTES	S		

[a] Forbidden by angular momentum conservation.

- [b] C parity forbids this to occur as a single-photon process.
- [c] See the Particle Listings for the (complicated) definition of this quantity.
- [d] Time-reversal invariance requires this to be 0° or 180° .
- [e] This coefficient is zero if time invariance is not violated.
- [f] Allowed by higher-order electroweak interactions.

[g]	Violates CP in leading order. Test of direct CP violation since the in-
	direct CP-violating and CP-conserving contributions are expected to be
	suppressed.

- [*h*] In the 2010 *Review*, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [*i*] $\operatorname{Re}(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [j] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $\mathcal{K}_L^0 \to \pi^+ \pi^- \gamma(\text{DE})$.
- [k] Neglecting photon channels. See, *e.g.*, A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [/] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_C^0}$, as described in the introduction to "Tests of Conservation Laws."
- [n] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [*o*] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [p] A test of additive vs. multiplicative lepton family number conservation.
- [q] Derived from an analysis of neutrino-oscillation experiments.
- [r] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [s] This is the best limit for the mode $e^- \rightarrow \nu \gamma$.
- [t] The limit is from neutrality-of-matter experiments; it assumes $q_n = q_p + q_e$. See also the charge of the neutron.
- [*u*] See the \mathcal{K}_{S}^{0} Particle Listings for the energy limits used in this measurement.
- [v] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [x] An ℓ indicates an *e* or a μ mode, not a sum over these modes.
- [y] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c² and 214.3 MeV/c², respectively.
- [z] This limit is for $\Gamma(t \rightarrow Zq)/\Gamma(t \rightarrow Wb)$.

CONLAW=T1

LINKAGE=JV

LINKAGE=CS

LINKAGE=DEF

LINKAGE=CR

LINKAGE=TVC

LINKAGE=CE LINKAGE=CD

LINKAGE=MVL

LINKAGE=SAA

LINKAGE=IBR

LINKAGE=CH

LINKAGE=CG

LINKAGE=MQ

LINKAGE=SG

LINKAGE=CK

LINKAGE=CL

LINKAGE=SNN

LINKAGE=EML

LINKAGE=KDS

LINKAGE=KDL

LINKAGE=DX

LINKAGE=BSP

LINKAGE=TD2

LINKAGE=SS