7/16/2025 11:39

NODE=M010

Page 1

See also our review under the $a_1(1260)$ in PDG 06, Journal of Physics G33 1 (2006). a₁(1260) T-MATRIX POLE \sqrt{s}

Note that $\Gamma = -2 \operatorname{Im}(\sqrt{s})$.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
$(1209^{+13}_{-10}) - i(288^{+45}_{-12})$ OUR ESTIN	ATE		

 $I^{G}(J^{PC}) = 1^{-}(1^{++})$

 $(1209 \pm 4^{+12}_{-9}) - i (288 \pm 6^{+45}_{-10})$ MIKHASENKO 18 RVUE $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$

a1(1260) MASS

VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	COMMENT	NODE=M010M
1230	±40	OUR ES	TIMA	TE				ightarrow UNCHECKED
1299	+12		46M	¹ AGHASYAN	18B	СОМР	190 $\pi^- p \rightarrow$	
	-20						$\pi^{-}\pi^{+}\pi^{-}p$	
• • •	We do 1	not use the	e follov	ving data for averages	, fits,	limits, e	tc. • • •	
1195.0	$5\pm$ 1.0	$5\pm$ 6.33	894k	AAIJ	18AI	LHCB	$D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$	
1225	\pm 9	± 20	7k	² DARGENT	17	RVUE	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$	
1255	± 6	$^{+}_{-17}$	420k	³ ALEKSEEV	10	COMP	$190 \begin{array}{c} \pi^{-} Pb \rightarrow \\ \pi^{-} \pi^{-} \pi^{+} Pb' \end{array}$	
1243	± 12	± 20		⁴ AUBERT	07 AU	BABR	$10.6 e^+ e^- \rightarrow \rho^0 \rho^\pm \pi^\pm \gamma$	
1230-1	L270		6360	⁵ LINK	07A	FOCS	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$	
1203	\pm 3			⁶ GOMEZ-DUM.	04	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu_{\tau}$	
1330	± 24		90k	SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$	
1331	± 10	\pm 3	37k	⁷ ASNER	00	CLE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1255	\pm 7	\pm 6	5904	⁸ ABREU	98 G	DLPH	e ⁺ e ⁻	
1207	\pm 5	\pm 8	5904	⁹ ABREU	98 G	DLPH	e ⁺ e ⁻	OCCUR=2
1196	\pm 4	\pm 5	5904	^{10,11} ABREU	98 G	DLPH	e ⁺ e ⁻	OCCUR=3
1240	± 10			BARBERIS	98 B		450 $pp \rightarrow$	
1262	± 9	± 7		^{8,12} ACKERSTAFF	97 R	OPAL	$p_f \pi^+ \pi^- \pi^0 p_s$ $E_{cm}^{ee} = 88-94, \tau \rightarrow$	
1210	\pm 7	\pm 2		^{9,12} ACKERSTAFF	97 R	OPAL	$E_{cm}^{ee} = 88-94, \tau \rightarrow 3\pi\nu$	OCCUR=2
1211	\pm 7	$^{+50}_{-0}$		⁹ ALBRECHT	93 C	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$	
1121	\pm 8			¹³ ANDO	92	SPEC	$8 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 n$	
1242	± 37			¹⁴ IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$	
1260	± 14			¹⁵ IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$	OCCUR=2
1250	\pm 9			¹⁶ IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$	OCCUR=3
1208	± 15			ARMSTRONG	90	OMEG	$300.0pp \rightarrow$	
1220	+15			17 ISGUR	89	RVUE	$pp\pi \cdot \pi \pi^{+}$ $\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \nu$	
1260	+25			¹⁸ BOWLER	88	RVUE		
1166	+18	+11		BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$	
1164	± 41	± 23		BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^0 \pi^0 \nu$	OCCUR=2
1250	±40			¹⁷ TORNQVIST	87	RVUE		
1046	± 11			ALBRECHT	86 B	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$	
1056	± 20	± 15		RUCKSTUHL	86	DLCO	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$	
1194	± 14	± 10		SCHMIDKE	86	MRK2	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$	
1255	± 23			BELLINI	85	SPEC	40 $\pi^{-}A \rightarrow$	
1240	+80				81	SPEC	$\pi^{-}\pi^{+}\pi^{-}A$ 8 45 $\pi^{-}p \rightarrow p^{3}\pi$	
1280	+30			¹⁹ DAUM	81R	CNTR	$63.94 \pi^{-} p \rightarrow p3\pi$	
1041	+13			20 GAVILLET	77	HBC	$42 K^{-} p \rightarrow \Sigma^{3\pi}$	
1041	- 1 3			O/WILLLI		. IDC	p / 20	

$a_1(1260)$

NODE=M010

NODE=M010PP

NODE=M010PP

NODE=M010PP

 \rightarrow UNCHECKED \leftarrow

NODE=M010M

 $\rightarrow c$

- ¹Statistical error negligible.
- ²Reanalysis of CLEO data using Breit-Wigner parameterization.
- ³Superseded by AGHASYAN 2018B.
- ⁴ The $\rho^{\pm}\pi^{\mp}$ state can be also due to the $\pi(1300)$.
- ⁵Using the Breit-Wigner parameterization; strong correlation between mass and width. ⁶Using the data of BARATE 98R.
- ⁷ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.
- ⁸Uses the model of KUHN 90.
- ⁹Uses the model of ISGUR 89.
- ¹⁰ Includes the effect of a possible a'_1 state.
- 11 Uses the model of FEINDT 90.
- ¹² Supersedes AKERS 95P.
- 13 Average and spread of values using 2 variants of the model of BOWLER 75.
- ¹⁴ Reanalysis of RUCKSTUHL 86.
- ¹⁵ Reanalysis of SCHMIDKE 86.
- ¹⁶ Reanalysis of ALBRECHT 86B.
- ¹⁷ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.
- $^{18}\,\mathrm{From}$ a combined reanalysis of ALBRECHT 86B and DAUM 81B.
- ¹⁹Uses the model of BOWLER 75.

405

 \pm 75

 \pm 25

BAND

87

²⁰ Produced in K^- backward scattering.

a1(1260) WIDTH

VALUE	E (Me	eV)			EVTS	_	DOCUMENT ID		TECN	COMMENT	NODE=M0
250 380	to ±	80 80	00	REST	46M	1	AGHASYAN	18 B	COMP	190 $\pi^- p \rightarrow$	\rightarrow UNCHE
										$\pi^-\pi^+\pi^-p$	
• • •	We	e do i	not i	use the	follow	ing da	ta for averages,	fits, l	imits, et	ic. ● ● ●	
422.0	$1\pm$	2.1	$0\pm$	12.72	894k		AAIJ	18AI	LHCB	$D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$	
430	\pm	24	\pm	31		2	DARGENT	17	RVUE	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$	
367	±	9	+	28 25	420k	3	ALEKSEEV	10	COMP	$190 \ \pi^{-}Pb \rightarrow \\ \pi^{-}\pi^{-}\pi^{+}Pb'$	
410	±	31	±	30		4	AUBERT	07 AU	BABR	$10.6 e^+ e^- \rightarrow 0 e^\pm \pi^\pm \gamma$	
520-6	580				6360	5	LINK	07A	FOCS	$D^0 \xrightarrow{\rho \ \rho} \pi^- \pi^+ \pi^- \pi^+$	
480	±	20				6	GOMEZ-DUM.	.04	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu_{\tau}$	
580	±	41			90k		SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$	
460	±	85			205	7	DRUTSKOY	02	BELL	$B \rightarrow D^{(*)} K^- K^{*0}$	
814	\pm	36	±	13	37k	8	ASNER	00	CLE2	10.6 $e^+e^- \rightarrow$	
										$\begin{array}{c} \tau^+ au^-, au^- ightarrow \ \pi^- \pi^0 \pi^0 u_ au \end{array}$	
450	\pm	50			22k	9	AKHMETSHIN	99E	CMD2	$1.05-1.38 \ e^+ e^0 \rightarrow$	
570	±	10				10	BONDAR	99	RVUE	$e^+e^- \xrightarrow{\pi^-\pi^-} 4\pi, \tau \rightarrow 3\pi\nu$	
587	±	27	±	21	5904	11	ABREU	98 G	DLPH	e^+e^-	
478	\pm	3	±	15	5904	12	ABREU	98 G	DLPH	e ⁺ e ⁻	OCCUR=2
425	\pm	14	±	8	5904	13,14	ABREU	98 G	DLPH	e ⁺ e ⁻	OCCUR=3
400	\pm	35					BARBERIS	98 B		450 pp \rightarrow	
										$p_{f} \pi^{+} \pi^{-} \pi^{0} p_{s}$	
621	\pm	32	\pm	58		11,15	ACKERSTAFF	97 R	OPAL	$E_{\rm cm}^{ee}$ = 88–94, $\tau \rightarrow$	
457	±	15	±	17		12,15	ACKERSTAFF	97 R	OPAL	$E_{cm}^{ee} = 88-94, \tau \rightarrow 2\pi v$	OCCUR=2
446	±	21	+:	140		12	ALBRECHT	93C	ARG	$\tau^+ \to \pi^+ \pi^+ \pi^- \nu$	
239	±	11		0			ANDO	92	SPEC	$8 \pi^- p \rightarrow$	
						16				$\pi^+\pi^-\pi^0$ n	
266	±	13	±	4		10	ANDO	92	SPEC	$8 \pi^- p \rightarrow + - 0$	OCCUR=3
465	+	228 143				17	IVANOV	91	RVUE	$ \begin{array}{ccc} \pi^{+}\pi^{-}\pi^{0}n \\ \tau \rightarrow \pi^{+}\pi^{+}\pi^{-}\nu \end{array} $	
298	+	40 34				18	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$	OCCUR=2
488	+	32				19	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$	OCCUR=3
430	±	50					ARMSTRONG	90	OMEG	$300.0pp \rightarrow$	
										$pp\pi^+\pi^-\pi^0$	
420	\pm	40				20	ISGUR	89	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$	
396	\pm	43				21	BOWLER	88	RVUE		

MAC $\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$

NODE=M010M;LINKAGE=Q NODE=M010M;LINKAGE=V NODE=M010M;LINKAGE=R NODE=M010M;LINKAGE=AU NODE=M010M;LINKAGE=LI NODE=M010M;LINKAGE=GO NODE=M010M;LINKAGE=B6 NODE=M010M;LINKAGE=KS NODE=M010M;LINKAGE=IM NODE=M010M;LINKAGE=A1 NODE=M010M;LINKAGE=F1 NODE=M010M;LINKAGE=X NODE=M010M;LINKAGE=P NODE=M010M;LINKAGE=I NODE=M010M;LINKAGE=L NODE=M010M;LINKAGE=M NODE=M010M;LINKAGE=K NODE=M010M;LINKAGE=G NODE=M010M;LINKAGE=D

NODE=M010M;LINKAGE=F

NODE=M010W

M010W $HECKED \leftarrow$

OCCUR=2

419	± 108	\pm 57	BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^0 \pi^0 \nu$
521	\pm 27		ALBRECHT	86 B	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
476	$^{+132}_{-120}$	\pm 54	RUCKSTUHL	86	DLCO	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
462	\pm 56	\pm 30	SCHMIDKE	86	MRK2	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
292	\pm 40		BELLINI	85	SPEC	40 $\pi^{-}A \rightarrow$
380 300 230	${\pm100}\ {\pm50}\ {\pm50}$		²² DANKOWY ²² DAUM ²³ GAVILLET	81 81в 77	SPEC CNTR HBC	$\pi^{-}\pi^{+}\pi^{-}A$ 8.45 $\pi^{-}p \rightarrow n3\pi$ 63,94 $\pi^{-}p \rightarrow p3\pi$ 4.2 $K^{-}p \rightarrow \Sigma 3\pi$

¹Statistical error negligible.

 $\frac{2}{2}$ Reanalysis of CLEO data using Breit-Wigner parameterization.

³Superseded by AGHASYAN 2018B.

⁴ The $\rho^{\pm}\pi^{\mp}$ state can be also due to the $\pi(1300)$.

 $\frac{5}{2}$ Using the Breit-Wigner parameterization; strong correlation between mass and width.

⁶ Using the data of BARATE 98R. ⁷ From a fit of the $K^- K^{*0}$ distribution assuming $m_{a_1} = 1230$ MeV and purely resonant production of the $K^- K^{*0}$ system. ⁸ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.

 9 Using the $a_{1}(1260)$ mass of 1230 MeV.

 10 From AKHMETSHIN 99E and ASNER 00 data using the $a_1(1260)$ mass of 1230 MeV. ¹¹Uses the model of KUHN 90. ¹²Uses the model of ISGUR 89. ¹³Includes the effect of a possible a'_1 state.

¹⁴ Uses the model of FEINDT 90.
¹⁵ Supersedes AKERS 95P.
¹⁶ Average and spread of values using 2 variants of the model of BOWLER 75.
¹⁷ Reanalysis of RUCKSTUHL 86.
¹⁸ Reanalysis of SCHMIDKE 86.

¹⁹ Reanalysis of ALBRECHT 86B.

²⁰ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.

 $^{21}\,\rm From$ a combined reanalysis of ALBRECHT 86B and DAUM 81B.

 22 Uses the model of BOWLER 75. 23 Produced in K^- backward scattering.

a1(1260) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Г1	3π	seen
Γ2	$(ho \pi)_{{f S}-{f wave}},\ ho o \ \pi \pi$	seen
Г3	$(ho \pi)_{D-{ m wave}},~ ho o ~\pi \pi$	seen
Г ₄	$(ho(1450)\pi)_{{\cal S}-{\sf wave}},~ ho ightarrow~\pi\pi$	seen
Γ ₅	$(ho(1450)\pi)_{D- ext{wave}}, \ ho o \ \pi \pi$	seen
Γ ₆	$f_0(500)\pi$, $f_0 ightarrow \pi\pi$	seen
Γ ₇	$f_0(980)\pi, f_0 \to \pi\pi$	seen
Г ₈	$f_0(1370)\pi$, $f_0 ightarrow \pi\pi$	seen
Г۹	$f_2(1270)\pi$, $f_2 \rightarrow \pi\pi$	seen
Γ ₁₀	$\pi^{+}\pi^{-}\pi^{0}$	seen
Γ_{11}	$\pi^0 \pi^0 \pi^0$	not seen
Γ_{12}	$KK\pi$	seen
Γ ₁₃	K*(892)K	seen
Γ_{14}	$\pi\gamma$	seen

a₁(1260) PARTIAL WIDTHS

$\Gamma(\pi\gamma)$					Γ ₁₄
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
640±246	ZIELINSKI	84C	SPEC	$200 \ \pi^+ \mathrm{Z} \rightarrow \ \mathrm{Z} 3\pi$	

D-wave/S-wave AMPLITUDE RATIO IN DECAY OF $a_1(1260) \rightarrow \rho \pi$

VALUE	DOCUMENT ID	TE	ECN <u>COMMENT</u>	
-0.062 ± 0.020 OUR AVERA	GE Error includes	scale fac	ctor of 2.3. See the ideogram	
below.				
$-0.043\!\pm\!0.009\!\pm\!0.005$	LINK	07A FC	OCS $D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$	
$-0.14 \pm 0.04 \pm 0.07$	¹ CHUNG	02 B8	852 18.3 $\pi^- p \to \pi^+ \pi^- \pi^-$	p
$-0.10\ \pm 0.02\ \pm 0.02$	^{2,3} ACKERSTAFF	97R O	PAL $E_{cm}^{ee} = 88-94, \tau \rightarrow 3\pi\nu$,
-0.11 ± 0.02	² ALBRECHT	93c Al	$RG \tau^+ \to \ \pi^+ \pi^+ \pi^- \nu$	

NODE=M010W;LINKAGE=Q NODE=M010W;LINKAGE=V NODE=M010W;LINKAGE=R NODE=M010W;LINKAGE=AU NODE=M010W;LINKAGE=LI NODE=M010W;LINKAGE=GO

NODE=M010W;LINKAGE=DR

NODE=M010W;LINKAGE=B6 NODE=M010W;LINKAGE=WE NODE=M010W;LINKAGE=WB NODE=M010W;LINKAGE=KS NODE=M010W;LINKAGE=IM NODE=M010W;LINKAGE=A1 NODE=M010W;LINKAGE=F1 NODE=M010W;LINKAGE=X NODE=M010W;LINKAGE=P NODE=M010W;LINKAGE=I NODE=M010W;LINKAGE=L NODE=M010W;LINKAGE=M NODE=M010W;LINKAGE=K NODE=M010W;LINKAGE=G NODE=M010W;LINKAGE=D NODE=M010W;LINKAGE=F

NODE=M010215;NODE=M010

DESIG=17;OUR EST;→ UNCHECKED ← $\mathsf{DESIG}{=}\mathsf{7}; \mathsf{OUR}\;\mathsf{EST}; \rightarrow \mathsf{UNCHECKED} \leftarrow$ DESIG=8;OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=9;OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=10;OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=16;OUR EST;→ UNCHECKED ← DESIG=11 DESIG=12;OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=13; OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=22 DESIG=23; OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=18; OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=14;OUR EST;→ UNCHECKED ← DESIG=4;OUR EST; \rightarrow UNCHECKED \leftarrow

NODE=M010220

NODE=M010W4 NODE=M010W4

NODE=M010DS

NODE=M010DS

NODE=M010DS;LINKAGE=C

NODE=M010DS;LINKAGE=IM

NODE=M010DS;LINKAGE=X

¹ Deck-type background not subtracted. ² Uses the model of ISGUR 89. ³ Supersedes AKERS 95P.

> WEIGHTED AVERAGE -0.062±0.020 (Error scaled by 2.3) 07A FOCS LINK CHUNG 02 B852 ACKERSTAFF 97R OPAL 1.8 ALBRECHT 93C ARG 5.8 11.0 (Confidence Level = 0.0041) -0.25 -0.2 -0.05 0.05 -0.15 -0.1 0

D-wave/S-wave AMPLITUDE RATIO IN DECAY OF a_1(1260) $ightarrow
ho \pi$

a1(1260) BRANCHING RATIOS

 $\begin{array}{c|c} \Gamma((\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi)/\Gamma_{\text{total}} & \Gamma_2/\Gamma \\ \hline \\ \hline \\ \underline{VALUE \ (\text{units } 10^{-2})} & \underline{EVTS} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet & \text{We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \bullet \\ \hline \\ 60.19 & 37k & {}^1\text{ ASNER} & 00 & \text{CLE2} & 10.6 \ e^+e^- \to \tau^+\tau^-, \\ \tau^- \to \pi^-\pi^0\pi^0\nu_{\tau} \end{array}$

¹From a fit to the Dalitz plot.

$\Gamma((\rho\pi)_{D-\text{wave}}, \rho \rightarrow \pi\pi)/\Gamma_{\text{total}}$

 $\begin{array}{c|cccc} \underline{VALUE \ (units \ 10^{-2})} & \underline{EVTS} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet & We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \ \bullet \\ 1.30 \pm 0.60 \pm 0.22 & 37k & {}^{1} \ ASNER & 00 & CLE2 & 10.6 \ e^{+} \ e^{-} \rightarrow \ \tau^{+} \ \tau^{-}, \\ \tau^{-} \rightarrow & \pi^{-} \ \pi^{0} \ \pi^{0} \ \nu_{\tau} \end{array}$

¹ From a fit to the Dalitz plot.

$\Gamma((\rho(1450)\pi)_{S-wave}, \rho \rightarrow \pi\pi)/\Gamma_{total}$

 $\begin{array}{c|cccc} \underline{VALUE \ (units \ 10^{-2})} & \underline{EVTS} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet & We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \bullet \\ 0.56 \pm 0.84 \pm 0.32 & 37k & {}^{1,2} \ ASNER & 00 & CLE2 & {}^{10.6} \ e^+ e^- \rightarrow \tau^+ \tau^-, \\ \tau^- \rightarrow & \pi^- \pi^0 \pi^0 \nu_{\tau} \end{array}$

¹ From a fit to the Dalitz plot.

²Assuming for ρ (1450) mass and width of 1370 and 386 MeV respectively.

$\Gamma((ho(1450)\pi)_{D-wave}, ho o \pi\pi)/\Gamma_{total}$						
VALUE (units 10 ⁻²)	EVTS	DOCUMENT	ID	TECN	COMMENT	
• • • We do not use t	he followin	g data for avera	ges, fits,	limits, e	etc. • • •	
$2.04 \pm 1.20 \pm 0.28$	37k	^{1,2} ASNER	00	CLE2	10.6 e ⁺ e ⁻ -	$\rightarrow \tau^+ \tau^-$,
					$\tau \rightarrow \pi$	$\pi^{\circ}\pi^{\circ}\nu_{\tau}$

¹ From a fit to the Dalitz plot.

 $^2 \, {\rm Assuming}$ for $\rho(1450)$ mass and width of 1370 and 386 MeV respectively.

NODE=M010225

NODE=M010R5 NODE=M010R5

NODE=M010R5;LINKAGE=B1

NODE=M010R6 NODE=M010R6

 Γ_3/Γ

 Γ_4/Γ

NODE=M010R6;LINKAGE=B1

NODE=M010R7 NODE=M010R7

NODE=M010R7;LINKAGE=B1 NODE=M010R7;LINKAGE=B2

NODE=M010R8 NODE=M010R8

NODE=M010R8;LINKAGE=B1 NODE=M010R8;LINKAGE=B2

 $\Gamma(f_0(500)\pi, f_0 \rightarrow \pi\pi)/\Gamma_{\text{total}}$ Γ₆/Γ NODE=M010R9 NODE=M010R9 VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • CHUNG B852 02 18.3 $\pi^- p \rightarrow$ seen $\pi^+\pi^-\pi^-$ ⁻ p 1,2 ASNER $18.76 \pm 4.29 \pm 1.48$ 37k 00 CLE2 10.6 e e \rightarrow $\pi^{0}\pi^{0}\nu_{\pi}$ ¹ From a fit to the Dalitz plot. NODE=M010R9;LINKAGE=B1 ²Assuming for $f_0(500)$ (σ) mass and width of 860 and 880 MeV respectively. NODE=M010R9:LINKAGE=B3 $\Gamma(f_0(500)\pi, f_0 \to \pi\pi) / [\Gamma((\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi) + \Gamma((\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi) + \Gamma(\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi) / [\Gamma(\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi) + \Gamma(\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi) / [\Gamma(\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi) + \Gamma(\rho\pi)_{S-\text{wave}}, \rho \to \pi\pi)$ $\Gamma_6/(\Gamma_2+\Gamma_2)$ $\pi\pi$) NODE=M010R4 NODE=M010R4 <u>EVTS</u> DOCUMENT ID VALUE TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • OBLX $\overline{p}p \rightarrow 2\pi^+ 2\pi^ 0.06 \pm 0.05$ 90k SALVINI 04 AKHMETSHIN 99E CMD2 1.05–1.38 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^ \sim 0.3$ 28k ¹LONGACRE RVUE 0.003 ± 0.003 82 ¹Uses multichannel Aitchison-Bowler model (BOWLER 75). Uses data from GAVIL-NODE=M010R4;LINKAGE=E LET 77, DAUM 80, and DANKOWYCH 81. $\Gamma(f_0(980)\pi, f_0 \rightarrow \pi\pi)/\Gamma_{\text{total}}$ Γ_7/Γ NODE=M010R10 NODE=M010R10 VALUE DOCUMENT ID TECN COMMENT EVTS ¹ ALEXEEV 21 COMP $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ seen • • We do not use the following data for averages, fits, limits, etc. CLE2 ASNER not seen 37k 00 10.6 $e^+e^- \rightarrow \tau^+\tau^-$, $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_ ^1$ The $a_1(1260)^-
ightarrow f_0(980)\pi^-$ decay mode via the Triangle Singularity mechanism NODE=M010R10;LINKAGE=A from MIKHASENKO 15 and ACETI 16 explains the $a_1(1420)^-$ signal observed by ADOLPH 15c. $\Gamma(f_0(1370)\pi, f_0 \rightarrow \pi\pi)/\Gamma_{\text{total}}$ Γ_8/Γ NODE=M010R11 NODE=M010R11 VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • ^{1,2} ASNER 37k 00 CLE2 10.6 $e^+e^- \rightarrow \tau^+\tau^-$, $7.40\!\pm\!2.71\!\pm\!1.26$ $\rightarrow \pi^{-}\pi^{0}\pi^{0}\nu_{-}$ ¹ From a fit to the Dalitz plot. NODE=M010R11;LINKAGE=B1 ²Assuming for $f_0(1370)$ mass and width of 1186 and 350 MeV respectively. NODE=M010R11;LINKAGE=B4 $\Gamma(f_2(1270)\pi, f_2 \rightarrow \pi\pi)/\Gamma_{\text{total}}$ Γ_9/Γ NODE=M010R12 NODE=M010R12 VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ^{1,2} ASNER 37k 10.6 $e^+e^- \rightarrow \tau^+\tau^-$. $1.19\!\pm\!0.49\!\pm\!0.17$ 00 CLE2 $\rightarrow \pi^{-}\pi^{0}\pi^{0}\nu_{\pi}$ ¹From a fit to the Dalitz plot. NODE=M010R12;LINKAGE=B1 ²Assuming for $f_2(1270)$ mass and width of 1275 and 185 MeV respectively. NODE=M010R12;LINKAGE=B5 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ Γ_{10}/Γ NODE=M010R00 VALUE DOCUMENT ID COMMENT NODE=M010R00 BARBERIS 98B 450 $pp \rightarrow p_f \pi^+ \pi^- \pi^0 p_c$ seen $\Gamma(\pi^{0}\pi^{0}\pi^{0})/\Gamma(\pi^{+}\pi^{-}\pi^{0})$ Γ_{11}/Γ_{10} NODE=M010R15 NODE=M010R15 CL% DOCUMENT ID COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BARBERIS ۹N < 0.008 01 450 $pp \to p_f 3\pi^0 p_c$ ¹Inconsistent with observations of $\sigma \pi$, $f_0(1370)\pi$, and $f_2(1270)\pi$ decay modes. NODE=M010R15;LINKAGE=RB

NODE=M010R13 NODE=M010R13

$\Gamma(K^*(892)K)/\Gamma_t$	otal				Г ₁₃ /Г
VALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the followin	g data for average	s, fits,	limits, e	etc. • • •
$2.2 {\pm} 0.5$	2255	¹ COAN	04	CLEO	$\tau^- \rightarrow K^- \pi^- K^+ \nu_{\tau}$
8 to 15	205	² DRUTSKOY	02	BELL	$B \rightarrow D^{(*)} K^- K^{*0}$
$3.3 \pm 0.5 \pm 0.1$	37k	³ ASNER	00	CLE2	10.6 $e^+e^- \rightarrow \tau^+\tau^-$,
					$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$
2.6 ± 0.3		⁴ BARATE	99 R	ALEP	$\tau \rightarrow K\overline{K}\pi\nu_{\tau}$
¹ Using structure	functions	from KUHN 92	and	DECKE	ER 93A and B $(au^- o$
$K^- \pi^- K^+ \nu_{\tau}) =$	$=$ (0.155 \pm 0	$0.006\pm0.009)\%$ f	rom B	RIERE ()3.

² From a comparison to ALAM 94 assuming purely resonant production of the $K^- K^{*0}$

 $\Gamma(K^*(892)K)/\Gamma_{total}$

system. ³ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.

⁴Assuming $a_1(1260)$ dominance and taking B($\tau \rightarrow a_1(1260)\nu_{\tau}$) from BUSKULIC 96.

a1(1260) REFERENCES

ALEXEEV AAIJ AGHASYAN MIKHASENKO DARGENT ACETI ADOLPH MIKHASENKO	21 18AI 18B 18 17 16 15C 15	PRL 127 082501 EPJ C78 443 PR D98 092003 PR D98 096021 JHEP 1705 143 PR D94 096015 PRL 115 082001 PR D91 094015	G.D. Alexeev et al. R. Aaij et al. M. Aghasyan et al. M. Mikhasenko et al. P. dArgent et al. F. Aceti, L.R. Dai, E. Oset C. Adolph et al. M. Mikhasenko, B. Ketzer,	(COMPASS Collab.) (LHCb Collab.) (COMPASS Collab.) (JPAC Collab.) (HEID, BRIS) (IFIC, LNUDA) (COMPASS Collab.) A. Sarantsev (BONN+)
ALEKSEEV	10	PRL 104 241803	M.G. Alekseev et al.	(COMPASS Collab.)
	07AU	PR D70 092005	B. Aubert <i>et al.</i>	(BABAR Collab.)
PDG	07A	IP G33 1	W-M Yao et al	(FINAL FOCUS Collab.)
COAN	04	PRI 92 232001	TE Coan et al	(CLEO, Collab.)
GOMEZ-DUM	. 04	PR D69 073002	D. Gomez Dumm, A. Pich,	J. Portoles
SALVINI	04	EPJ C35 21	P. Salvini et al.	(OBELIX Collab.)
BRIERE	03	PRL 90 181802	R. A. Briere et al.	(CLEO Collab.)
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL E852 Collab.)
DRUTSKOY	02	PL B542 171	A. Drutskoy et al.	(BELLE Collab.)
BARBERIS	01	PL B507 14	D. Barberis <i>et al.</i>	
ASNER	00	PR D61 012002	D.M. Asner <i>et al.</i>	(CLEO Collab.)
AKHMEISHIN	99E	PL B466 392	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
BARATE	99R	EPJ CII 599	R. Barate <i>et al.</i>	(ALEPH Collab.)
	99	PL D400 405	A.E. Dondar et al.	(NOVOSIDITSK CIVID-2 COILAD.)
RARATE	98G 98R	FE 6420 411	R Barate et al	(ALEPH Collab.)
BARBERIS	98B	PL B422 399	D. Barberis <i>et al.</i>	(WA 102 Collab.)
ACKERSTAFF	97R	ZPHY C75 593	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BUSKULIC	96	ZPHY C70 579	D. Buskulic et al.	(ALEPH Collab.)
AKERS	95P	ZPHY C67 45	R. Akers et al.	(OPAL Collab.)
ALAM	94	PR D50 43	M.S. Alam <i>et al.</i>	(CLEO Collab.)
ALBRECHT	93C	ZPHY C58 61	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
DECKER	93A	ZPHY C58 445	R. Decker <i>et al.</i>	
ANDO	92	PL B291 496	A. Ando <i>et al.</i> (KEK, KYOT, NIRS, SAGA+)
	92	ZPHY C50 001	J.H. Kunn, E. Mirkes	
	91	ZPHY C49 505	T.A. Armstrong M. Bonov	VI.K. VOIKOV (JINK)
FFINDT	90	ZPHY C48 681	M Feindt	(HAMB)
KUHN	90	ZPHY C48 445	J.H. Kuhn <i>et al.</i>	(MPIM)
ISGUR	89	PR D39 1357	N. Isgur, C. Morningstar, C	. Reader (TNTO)
BOWLER	88	PL B209 99	M.G. Bowler	(OXF)
BAND	87	PL B198 297	H.R. Band <i>et al.</i>	(MAC Collab.)
TORNQVIST	87	ZPHY C36 695	N.A. Tornqvist	(HELS)
ALBRECHT	86B	ZPHY C33 7	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
RUCKSTUHL	86	PRL 56 2132	W. Ruckstuhl <i>et al.</i>	(DELCO Collab.)
DELLINI	80 0F	PRL 57 527	VV.B. Schmidke et al.	(IVIARK II COIIAD.)
DELLINI	00	Translated from VAE 11	D. Dellini <i>et al.</i> 1223	
ZIELINSKI	84C	PRL 52 1195	M. Zielinski <i>et al.</i>	(ROCH. MINN. FNAL)
LONGACRE	82	PR D26 82	R.S. Longacre	(BNL)
DANKOWY	81	PRL 46 580	J.A. Dankowych <i>et al.</i>	(TNTO, BNL, $\dot{CARL+)}$
DAUM	81B	NP B182 269	C. Daum et al. (Al	MST, CERN, CRAC, MPIM+)
DAUM	80	PL 89B 281	C. Daum <i>et al.</i> (Al	MSI, CERN, CRAC, MPIM+) JP
GAVILLEI	(7 75	PL 69B 119	P. Gavillet <i>et al.</i>	(AMST, CERN, NIJM+) JP
DOWLER	15	NF D9/ 22/	IVI.G. DOWIER et al.	(UXFIP, DARE)

NODE=M010R13;LINKAGE=CO

NODE=M010R13;LINKAGE=DR

NODE=M010R13;LINKAGE=B6 NODE=M010R13;LINKAGE=BA

NODE=M010

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		629 559 552 552 552 552 552 552 552 552 5	008 $187$ $1471$ $1015$ $0945$ $1720$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $1000$ $10$
R R R R R R R R R R R	ID= ID= ID= ID= ID=	47 20 20 20 20 20 20	<ul> <li>490</li> <li>882</li> <li>878</li> <li>572</li> <li>872</li> <li>868</li> <li>852</li> <li>571</li> </ul>