NODE=M026

 $\eta_c(1S)$

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

 $\eta_c(1S)$ MASS

							$\eta_c(1S)$ MA	SS			NODE=M026M
VALUE (MeV	′)			<u>EVTS</u>		DOCUMENT ID		TECN	COMMENT	NODE=M026M
2984.1	±	0.4	0	ur a	/ERAGE		Error includes se	cale fa	actor of	1.2.	
2985.01	±	0.17	'±	0.89	35k	1	AAIJ	23AH	LHCB	$B^+ \rightarrow K^+ (K_S^0 K \pi)$	
2983.9	±	0.7	±	0.1	1705	1		20H		$pp \rightarrow bX \rightarrow p\overline{p}X$	
2985.9	± +	0.7	± +	2.1	2673			19AV	BE33 BELL	$J/\psi \rightarrow \gamma \omega \omega$	
2904.0	-	0.7	-	2.2	111	2		1740		$e^+e^-\eta'\pi^+\pi^-$	
2900.7	т	0.5	т	0.9	IIK	2	AAIJ	ITAL	LITCB	$p \overrightarrow{p} \rightarrow B^+ \chi \rightarrow p \overrightarrow{p} K^+ \chi$	
2982.8	±	1.0	±	0.5	6.4k	3	AAIJ	17bb	LHCB	$pp ightarrow bbX ightarrow 2(K^+K^-)X$	
2982.2	±	1.5	± ⊥	0.1 1.6	2.0k	4	AAIJ	15BI	LHCB	$pp \rightarrow \eta_c(1S)X$	
2983.5	±	1.4	_	3.6		5 6 7	ANASHIN	14	KEDR	$J/\psi \rightarrow \gamma \eta_c$	
2979.8	±	0.8	±	3.5	4.5k	0,1 7 8	LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^0$	
2984.1	± ⊥	1.1	± ⊥	2.1	900 0,	.10		14E	BABK	$\gamma \gamma \rightarrow \kappa \cdot \kappa \eta$	OCCOR=2
2904.5	王 十(1	1 16	工 上	0.0	833	6		12F	BE23	$\psi(2S) \rightarrow \gamma \eta_c$	
2982.7	+ ±	1.10	+ ±	0.52 2.2	486		ZHANG	12N	BELL	$e^+e^- \rightarrow$	
2984.5	±	0.8	±	3.1	11k		DEL-AMO-SA.	.11M	BABR	$e^+ e^- \eta' \pi^+ \pi^-$ $\gamma \gamma \rightarrow$ $w^+ w^- + - 0$	
2985.4	±	1.5	+	0.5	920	10	VINOKUROVA	11	BELL	$B^{\pm} \rightarrow K^{\pm} (K^{0}_{\varsigma} K^{\pm} \pi^{\mp})$	
2982.2	±	0.4	±	1.6	14k	11	LEES	10	BABR	$10.6 \ e^+ e^- \rightarrow e^+ e^- \kappa_{\mu}^0 \ \kappa^{\pm} \pi^{\mp}$	
2985.8	±	1.5	±	3.1	0.9k		AUBERT	08 AB	BABR	$B \to \eta_c(1S) \kappa^{(*)} \to \kappa \overline{\kappa} \pi \kappa^{(*)}$	
2986.1	\pm	1.0	\pm	2.5	7.5k		UEHARA	08	BELL	$\gamma \gamma \rightarrow \eta_c \rightarrow$ hadrons	
2970	±	5	\pm	6	501	12	ABE	07	BELL	$e^+ e^- \rightarrow J/\psi(c \overline{c})$	
2971	\pm	3	+	2 1	195		WU	06	BELL	$B^+ \rightarrow p \overline{p} K^+$	
2974	±	7	+	2 1	20		WU	06	BELL	$B^+ \rightarrow \Lambda \overline{\Lambda} K^+$	OCCUR=2
2981.8	±	1.3	±	1.5	592		ASNER	04	CLEO	$\begin{array}{ccc} \gamma \gamma \rightarrow & \eta_c' \rightarrow \\ & \kappa_c^0 \kappa^{\pm} \pi^{\mp} \end{array}$	
2984.1	±	2.1	\pm	1.0	190	13	AMBROGIANI	03	E835	$\overline{p}p \rightarrow \eta_{C} \rightarrow \gamma\gamma$	
• • • \	/Ve	do n	ot	use th	e tollowi	ing 14	data for average	es, fit	s, limits,	etc. • • • • • • • • • • • • • • • • • • •	
2982.5	±	0.4	±	1.4	12K	15	DEL-AMO-SA.	.11M	BABR	$\gamma \gamma \rightarrow \kappa S \kappa^{\pm} \pi^{+}$	OCCOR=2
2982.2	±	0.6			070	16		09	CLEO	$e \cdot e \rightarrow \gamma X$	
2982 2082 F	±	5 1 1		0.0	270	17		00E	DADR	$B^{+} \rightarrow K^{+} X_{C\overline{C}}$	
2962.5	± +	1.1	±	0.9	2.5k 15	,18	RAI	040	BABK	$\gamma \gamma \rightarrow \gamma_{C}(13) \rightarrow KK\pi$	
2979.6	±	2.3	±	1.6	180	19	FANG	03	BELL	$B \rightarrow n_c K$	
2976.3	±	2.3		1.2	15	,20	BAI	00F	BES	$J/\psi, \psi(2S) \rightarrow \gamma \eta_c$	
2976.6	\pm	2.9	\pm	1.3	140^{15}	,21	BAI	00F	BES	$J/\psi \rightarrow \gamma \eta_c$	OCCUR=2
2980.4	±	2.3	±	0.6		22	BRANDENB	00 B	CLE2	$\begin{array}{ccc} \gamma \gamma \rightarrow & \eta_c \rightarrow \\ \kappa^{\pm} \kappa_{c}^{0} \pi^{\mp} \end{array}$	
2975.8	±	3.9	\pm	1.2		21	BAI	99 B	BES	Sup. by BAI 00F	
2999	±	8			25		ABREU	98 0	DLPH	$e^+e^- ightarrow e^+e^-$ +hadrons	
2988.3	+ -	3.3 3.1			15	22	ARMSTRONG	95F	E760	$\overline{p} p \rightarrow \gamma \gamma$	
2974.4	±	1.9			15	,23 15	BISELLO	91	DM2	$J/\psi \rightarrow \eta_{c} \gamma$	
2969	±	4	±	4	80	15	BAI	90B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$	
2956	±:	12 2.7	±	12		10	RAI	90B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K_S^0 K_L^0$	OCCUR=3
2982.6	_	2.3			12	~~	BAGLIN	87B	SPEC	$pp \rightarrow \gamma \gamma$	
2980.2 2984	$\pm \pm$	1.6 2.3	±	4.0	15	,23 15	BALTRUSAIT. GAISER	.86 86	MRK3 CBAL	$J/\psi \rightarrow \eta_{c} \gamma$ $J/\psi \rightarrow \gamma X, \psi(2S) \rightarrow$	
					15	24	D 41 - D			γΧ	
29/6	±	8 о			10	,24 25	BALIRUSAIT.	84	MRK3	$J/\psi \rightarrow 2\phi\gamma$	
2982	т ±	9			10	25	PARTRIDGE	оов 80в	CBAL	e^+e^-	

Page 1

NODE=M026M;LINKAGE=H

NODE=M026M;LINKAGE=F

NODE=M026M;LINKAGE=G

NODE=M026M;LINKAGE=D

- 1 AAIJ 20H report $m_{J/\psi}-m_{\eta_c}(1S)=113.0\pm0.7\pm0.1$ MeV. We use the current value $m_{J/\psi}=3096.900\pm0.006$ MeV to obtain the quoted mass.
- ²AAIJ 17AD report $m_{J/\psi} m_{\eta_c(1S)} = 110.2 \pm 0.5 \pm 0.9$ MeV. We use the current value $m_{J/\psi} = 3096.900 \pm 0.006$ MeV to obtain the quoted mass.

³ From a fit of the $\phi \phi$ invariant mass with the mass and width of $\eta_c(1S)$ as free parameters. ⁴ AAIJ 15BI reports $m_{J/\psi} - m_{\eta_c(1S)} = 114.7 \pm 1.5 \pm 0.1$ MeV from a sample of $\eta_c(1S)$ and J/ψ produced in *b*-hadron decays. We have used current value of $m_{J/\psi} = 3096.900 \pm 0.006$ MeV to arrive at the quoted $m_{\eta_c(1S)}$ result.

- ⁵ Taking into account an asymmetric photon lineshape.
- ⁶With floating width.

 7 Ignoring possible interference with the non-resonant 0 $^{-}$ amplitude.

⁸Using both, $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays.

⁹ From a simultaneous fit to six decay modes of the η_c .

 10 Accounts for interference with non-resonant continuum.

¹¹Taking into account interference with the non-resonant $J^P = 0^-$ amplitude.

 12 From a fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.

¹³Using mass of $\psi(2S) = 3686.00$ MeV.

 14 Not independent from the measurements reported by LEES 10.

¹⁵MITCHELL 09 observes a significant asymmetry in the lineshapes of $\psi(2S) \rightarrow \gamma \eta_c$ and $J/\psi \rightarrow \gamma \eta_c$ transitions. If ignored, this asymmetry could lead to significant bias whenever the mass and width are measured in $\psi(2S)$ or J/ψ radiative decays.

 $^{16}\,\mathrm{From}$ the fit of the kaon momentum spectrum. Systematic errors not evaluated.

¹⁷Superseded by LEES 10.

¹⁸ From a simultaneous fit of five decay modes of the η_c .

¹⁹Superseded by VINOKUROVA 11.

 20 Weighted average of the $\psi(2S)$ and $J/\psi(1S)$ samples. Using an η_c width of 13.2 MeV.

 21 Average of several decay modes. Using an η_c width of 13.2 MeV.

²²Superseded by ASNER 04.

²³ Average of several decay modes.

EVTS

30.5± 0.5 OUR FIT Error includes scale factor of 1.2.

 $^{24}\eta_{C}\rightarrow \ \phi\phi.$

VALUE (MeV)

 25 Mass adjusted by us to correspond to $J/\psi(1S)$ mass = 3097 MeV.

$\eta_c(1S)$ WIDTH

DOCUMENT ID

NODE=M026M;LINKAGE=E
NODE=M026M;LINKAGE=AL
NODE=M026M;LINKAGE=LS
NODE=M026M;LINKAGE=EL
NODE=M026M;LINKAGE=BL
NODE=M026M;LINKAGE=VA
NODE=M026M;LINKAGE=LE
NODE=M026M;LINKAGE=EB
NODE=M026M;LINKAGE=BG

NODE=M026M;LINKAGE=DE

NODE=M026M;LINKAGE=MI

NODE=M026M;LINKAGE=AU NODE=M026M;LINKAGE=UB NODE=M026M;LINKAGE=AK NODE=M026M;LINKAGE=FA NODE=M026M;LINKAGE=C1 NODE=M026M;LINKAGE=NN NODE=M026M;LINKAGE=A NODE=M026M;LINKAGE=B NODE=M026M;LINKAGE=M

NODE=M026W

NODE=M026W

30.5± 0.5 OUR AVERAGE Error includes scale factor of 1.1. 23AH LHCB $B^+ \rightarrow K^+ (K^0_S K \pi)$ $29.7 \pm \ 0.5 \pm 0.2$ 35k AAIJ 19AV BES3 $J/\psi \rightarrow \gamma \omega \omega$ $33.8 \pm 1.6 \pm 4.1$ 1705 ABLIKIM $30.8^+_ ^{2.3}_{2.2}\pm2.9$ BELL $e^+e^- \rightarrow e^+e^- \eta' \pi^+\pi^-$ 2673 ХU 18 17AD LHCB $pp \rightarrow B^+ X \rightarrow p\overline{p}K^+ X$ $34.0 \pm 1.9 \pm 1.3$ 11k AAIJ $^1\,\mathrm{AAIJ}$ 17BB LHCB $pp \rightarrow b\overline{b}X \rightarrow$ $31.4 \pm \ 3.5 \pm 2.0$ 6.4k $2(K^{+}K^{-})X$ $27.2 \pm 3.1^{+5.4}_{-2.6}$ ² ANASHIN KEDR $J/\psi \rightarrow \gamma \eta_{c}$ 14 ^{3,4} LEES 14E BABR $\gamma \gamma \rightarrow K^+ K^- \pi^0$ $25.2 \pm \ 2.6 \pm 2.4$ 4.5k 900 ^{3,4,5} LEES 14E BABR $\gamma \gamma \rightarrow K^+ K^- \eta$ OCCUR=2 $34.8 \pm 3.1 \pm 4.0$ 12F BES3 $\psi(2S) \rightarrow \gamma \eta_{c}$ 12N BES3 $\psi(2S) \rightarrow \pi^{0} \gamma$ hadrons $32.0 \pm \ 1.2 \pm 1.0$ 6,7 ABLIKIM ³ ABLIKIM $36.4 \pm \ 3.2 \pm 1.7$ 832 37.8^+_{-} $\begin{array}{c} 5.8\\ 5.3 \\ \pm 3.1 \end{array}$ BELL $e^+e^- \rightarrow e^+e^- \eta' \pi^+ \pi^-$ 486 ZHANG 12A DEL-AMO-SA..11M BABR $\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$ $36.2\pm~2.8\pm3.0$ 11k $35.1\pm \ 3.1^{+1.0}_{-1.6}$ ⁷ VINOKUROVA 11 BELL $B^{\pm} \rightarrow K^{\pm}(K^{0}_{\varsigma}K^{\pm}\pi^{\mp})$ 920 $31.7 \pm 1.2 \pm 0.8$ ⁸ LEES BABR 10.6 $e^+e^- \rightarrow e^+e^- K_S^0 \kappa^{\pm}\pi^{\mp}$ 14k 10 $36.3^{+}_{-}3.7_{-}\pm 4.4$ 08AB BABR $B \rightarrow \eta_{c}(1S) \kappa^{(*)} \rightarrow$ 0.9kAUBERT $K\overline{K}\pi K^{(*)}$ $28.1 \pm 3.2 \pm 2.2$ 7.5k UEHARA 08 $\mathsf{BELL} \quad \gamma \gamma \rightarrow \ \eta_{\textit{C}} \rightarrow \ \mathsf{hadrons}$ $48 \begin{array}{c} + 8 \\ - 7 \end{array} \pm 5$ BELL $B^+ \rightarrow p \overline{p} K^+$ 195 WU 06 BELL $B^+ \rightarrow \Lambda \overline{\Lambda} K^+$ $40 \pm 19 \pm 5$ OCCUR=2 20 WU 06 CLEO $\gamma \gamma \rightarrow \eta'_{c} \rightarrow \kappa^{0}_{S} \kappa^{\pm} \pi^{\mp}$ $24.8 \pm 3.4 \pm 3.5$ ASNER 592 04 20.4^{+}_{-} $\begin{array}{c} 7.7\\ 6.7 \\ \pm 2.0 \end{array}$ 190 AMBROGIANI 03 E835 $\overline{p}p \rightarrow \eta_C \rightarrow \gamma\gamma$ $23.9^{+12.6}_{-7.1}$ ARMSTRONG 95F E760 $\overline{p}p \rightarrow \gamma \gamma$

TECN

COMMENT

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$32.1\pm$	1.1 ± 1.3	12k	⁹ DEL-AMO-SA.	.11M	BABR	$\gamma\gamma \rightarrow K^0_S K^{\pm} \pi^{\mp}$	
$34.3\pm$	2.3 ± 0.9	2.5k	¹⁰ AUBERT	0 4D	BABR	$\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow K\overline{K}\pi$	
$17.0\pm$	3.7 ± 7.4		¹¹ BAI	03	BES	$J/\psi \rightarrow \gamma \eta_{c}$	
$29 \pm$	8 ±6	180	¹² FANG	03	BELL	$B \rightarrow \eta_{c} K$	
$11.0\pm$	8.1 ± 4.1		¹³ BAI	00F	BES	$J/\psi \rightarrow \gamma \eta_{c}$ and $\psi(2S) \rightarrow 0$	
			14			$\gamma \eta_c$	
$27.0\pm$	5.8 ± 1.4		¹⁴ BRANDENB	00 B	CLE2	$\gamma \gamma \rightarrow \eta_c \rightarrow K^{\pm} K^0_S \pi^+$	
7.0^+	7.5 7.0	12	BAGLIN	87 B	SPEC	$\overline{p} p ightarrow \gamma \gamma$	
10.1 + 3	3.0 8.2	23	¹⁵ BALTRUSAIT.	.86	MRK3	$J/\psi \rightarrow \gamma p \overline{p}$	
$11.5\pm$	4.5		GAISER	86	CBAL	$J/\psi ightarrow \gamma X$, $\psi(2S) ightarrow \gamma X$	
< 40	90% CL	18	HIMEL	80 B	MRK2	e ⁺ e ⁻	
< 20	90% CL		PARTRIDGE	80 B	CBAL	e ⁺ e ⁻	
1 From a fit of the $\phi\phi$ invariant mass with the mass and width of $\eta_{\sf C}(1S)$ as free parameters.							

 2 Taking into account an asymmetric photon lineshape.

³With floating mass.

⁴ Ignoring possible interference with the non-resonant 0⁻ amplitude. ⁵ Using both, $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays.

⁶ From a simultaneous fit to six decay modes of the η_c .

 7 Accounts for interference with non-resonant continuum. 8 Taking into account interference with the non-resonant $J^P=0^-$ amplitude.

⁹Not independent from the measurements reported by LEES 10.

¹⁰Superseded by LEES 10.

 $^{11}\,{\rm From}$ a simultaneous fit of five decay modes of the $\eta_{\rm C}.$

¹²Superseded by VINOKUROVA 11.

¹³ From a fit to the 4-prong invariant mass in $\psi(2S) \rightarrow \gamma \eta_c$ and $J/\psi(1S) \rightarrow \gamma \eta_c$ decays. 14 Superseded by ASNER 04.

 $^{15}\operatorname{Positive}$ and negative errors correspond to 90% confidence level.

$\eta_c(1S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
_	Decays involving	hadronic resonances	
I_1	$\eta'(958) \pi \pi_{-}$	$(2.0 \pm 0.4)\%$	S=1.4
Γ2	η'(958) K K	(1.73±0.35) %	
Γ3	$\eta'(958)\eta\eta$	(3.4 ± 0.6) $ imes$ 1	.0 ⁻³
Γ ₄	ρρ	(1.8 \pm 0.4) %	
Γ ₅	$K^{*}(892)^{0}K^{-}\pi^{+}+$ c.c.	(1.8 ± 0.5)%	
Г ₆	$K^{*}(892)\overline{K}^{*}(892)$	(7.0 ± 1.2) $ imes 1$	0-3
Γ ₇	$K^{*}(892)^{0}\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-}$	(1.4 ± 0.6)%	
Γ ₈	$\phi K^+ K^-$	(3.3 $^{+1.2}_{-1.1}$) $ imes$ 1	.0 ⁻³
Г۹	$\phi \phi$	(1.8 \pm 0.4) $ imes$ 1	.0 ⁻³ S=2.3
Γ ₁₀	$\phi 2(\pi^{+}\pi^{-})$	< 4 × 1	0^{-3} CL=90%
Γ_{11}	$a_0(980)\pi$	seen	
Γ_{12}	$a_2(1320)\pi$	seen	
Γ_{13}	$K^*(892)\overline{K}+ ext{ c.c.}$	< 1.28 %	CL=90%
Γ_{14}	$f_2(1270)\eta$	seen	
Γ_{15}	$f_2(1270)\eta'$	seen	
Γ_{16}	$\omega\omega$	(2.7 ± 0.9) $ imes 1$.0 ⁻³ S=2.1
Γ_{17}	$\omega\phi$	$<$ 2.5 \times 1	0^{-4} CL=90%
Γ_{18}	$f_2(1270) f_2(1270)$	(1.08±0.27) %	
Γ ₁₉	$f_2(1270) f'_2(1525)$	(9.7 ± 3.2) $ imes 1$	0-3
Γ_{20}	$f_0(500)\eta^{-1}$	seen	
Γ_{21}^{-1}	$f_0(500) \eta'$	seen	
$\Gamma_{22}^{}$	$f_0(980)\eta$	seen	
Γ ₂₃	$f_0(980)\eta'$	seen	
Γ ₂₄	$f_0(1500)\eta$	seen	

OCCUR=2

NODE=M026W;LINKAGE=B NODE=M026W;LINKAGE=A NODE=M026W;LINKAGE=AL NODE=M026W;LINKAGE=LS NODE=M026W;LINKAGE=EL NODE=M026W;LINKAGE=BL NODE=M026W;LINKAGE=VA NODE=M026W;LINKAGE=LE NODE=M026W;LINKAGE=DE NODE=M026W;LINKAGE=UB NODE=M026W;LINKAGE=AK NODE=M026W;LINKAGE=FA NODE=M026W:LINKAGE=KZ NODE=M026W;LINKAGE=NN NODE=M026W;LINKAGE=L

NODE=M026215;NODE=M026

NODE=M026;CLUMP=A DESIG=24 DESIG=85 DESIG=93 DESIG=19 DESIG=26 DESIG=18 DESIG=57 DESIG=28 DESIG=17 DESIG=58 DESIG=21 DESIG=22 DESIG=40 DESIG=23 DESIG=92 DESIG=20 DESIG=47 DESIG=46 DESIG=59 DESIG=86 DESIG=87

DESIG=70 DESIG=88 DESIG=71

8/21/2025	13:25	Page 4
DESIG=90		

$ \begin{array}{c} \Gamma_{25} \\ \Gamma_{26} \\ \Gamma_{27} \\ \Gamma_{28} \\ \Gamma_{29} \\ \Gamma_{30} \end{array} $	$f_{0}(1710) \eta' f_{0}(2100) \eta' f_{0}(2200) \eta a_{0}(1320) \pi a_{0}(1450) \pi a_{2}(1700) \pi$	seen seen seen seen seen		DESIG=90 DESIG=91 DESIG=72 DESIG=74 DESIG=75 DESIG=94
I 31	$a_0(1710)\pi$	seen		DESIG=97
I 32	$a_0(1950)\pi$	seen		DESIG=79
I 33	$K_0(1430)K + c.c.$	seen		DESIG=76
I 34	$K_{2}(1430)K + c.c.$	seen		DESIG=77
I 35	$K_0^*(1950)K + c.c.$	seen		DESIG=78
Г ₃₆	<i>K</i> [*] ₀ (2600) <i>K</i> + c.c.	seen		DESIG=95
	Decays	into stable hadrons		NODE=M026-CLUMP=B
Γ ₃₇	$K\overline{K}\pi$	(7.1 \pm 0.4)%	S=1.1	DESIG=14
Γ ₃₈	$\kappa \overline{\kappa} \eta$	(1.32±0.15) %		DESIG=25
Γ ₃₉	$\eta \pi^+ \pi^-$	(1.6 ± 0.4) %		DESIG=16
Γ ₄₀	$\eta 2(\pi^{+}\pi^{-})$	(4.3 ± 1.3) %		DESIG=61
Γ_{41}	$K^+K^-\pi^+\pi^-$	(8.3 ± 1.8) $ imes 10^{-3}$	S=1.9	DESIG=15
Γ ₄₂	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.4 ± 0.6) %		DESIG=60
Γ ₄₃	$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.4 ± 1.5) %		DESIG=62
Γ ₄₄	$K^+ K^- 2(\pi^+ \pi^-)$	(8.4 \pm 2.4) $ imes$ 10 $^{-3}$		DESIG=55
Γ ₄₅	$2(K^+K^-)$	(1.4 \pm 0.4) $ imes$ 10 $^{-3}$	S=1.4	DESIG=27
Γ ₄₆	$\pi^+\pi^-\pi^0$	$< 4 \times 10^{-4}$	CL=90%	DESIG=81
Γ ₄₇	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.6 ± 1.0) %		DESIG=63
Γ ₄₈	$2(\pi^{+}\pi^{-})$	(9.6 ± 1.5) $ imes 10^{-3}$	S=1.4	DESIG=11
Γ ₄₉	$2(\pi^+\pi^-\pi^0)$	(15.9 ± 2.0) %		DESIG=64
Γ ₅₀	$3(\pi^+\pi^-)$	(1.89±0.34) %		DESIG=56
Γ ₅₁	pp	(1.33 ± 0.11) $ imes 10^{-3}$	S=1.1	DESIG=12
Γ ₅₂	$p \overline{p} \pi^0$	(3.4 ± 1.3) $ imes 10^{-3}$		DESIG=65
Γ ₅₃	$p \overline{p} \pi^+ \pi^-$	(3.7 ± 0.5) $ imes 10^{-3}$		DESIG=13
Γ ₅₄	$\overline{\Lambda}\overline{\Lambda}$	$(1.10\pm0.28) imes10^{-3}$	S=1.5	DESIG=45
Γ ₅₅	$\underline{K}^+ \overline{p} \Lambda + \text{c.c.}$	$(2.5 \pm 0.4) \times 10^{-3}$		DESIG=82
Γ ₅₆	$\Lambda(1520)\Lambda$ + c.c.	$(3.0 \pm 1.3) \times 10^{-3}$		DESIG=83
Γ ₅₇	$\Sigma^+\Sigma^-$	$(2.6 \pm 0.5) \times 10^{-3}$		DESIG=66
Γ ₅₈	<u>=</u> - <u>=</u> +	$(1.07\pm0.24) imes10^{-3}$		DESIG=67
	Ra	adiative decays		NODE=M026·CLUMP=C
Γ ₅₉	$\gamma \gamma$	$(1.66\pm0.13)\times10^{-4}$	S=1.2	DESIG=31
	Charge con	(C) Parity (D)		
	Lenton Family n	umber (IF) violating modes		NODE=M026;CLUMP=D
Гса	$\pi^+\pi^-$	$P CP < 1.2 \times 10^{-4}$	CI	
і 60 Гал	$\pi^{0}\pi^{0}$	$P C P < A \qquad \qquad$	CL = 90%	
' 61 Гса	$\kappa^{+}\kappa^{-}$	$P C P < 7 \qquad \qquad \times 10^{-4}$	CL = 90%	DESIG-52 DESIG-53
' 62 Гса	K0 K0	$P C P < A \qquad \qquad \times 10^{-4}$	CL = 90%	
63	<u>`````````````````````````````````````</u>	r, Cr < 4 × 10	CL-90%	DE31G-34

FIT INFORMATION

A multiparticle fit to $\eta_c(1S)$, $J/\psi(1S)$, $\psi(2S)$, $h_c(1P)$, and B^{\pm} with the total width, 10 combinations of partial widths obtained from integrated cross section, and 38 branching ratios uses 113 measurements to determine 19 parameters. The overall fit has a $\chi^2 = 184.6$ for 94 degrees of freedom.

The following *off-diagonal* array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

ī

×6	14									
xg	11	13								
×16	7	8	8							
×18	9	11	11	7						
×37	25	25	22	12	17					
x ₃₈	13	13	11	6	9	51				
×41	7	7	6	4	5	15	8			
×45	5	5	5	2	3	12	6	4		
×48	13	17	17	10	15	26	13	8	5	
×51	19	20	20	11	16	39	20	11	11	24
×53	7	7	8	4	5	22	11	5	10	8
×54	5	7	7	4	6	12	6	3	4	10
×59	-38	-35	-27	-16	-22	-63	-32	-17	-12	-31
Г	-1	$^{-1}$	-1	0	-1	-2	$^{-1}$	0	0	-1
	<i>x</i> ₁	×6	xg	×16	×18	×37	×38	×41	×45	×48
×53	21									
×54	13	9								
×59	-47	-17	-11							
Г	1	0	0	-20						
	×51	×53	×54	×59						

$\eta_c(1S)$ PARTIAL WIDTHS

 $\Gamma(\gamma\gamma)$ Γ₅₉ VALUE (keV) EVTS DOCUMENT ID TECN COMMENT 5.1± 0.4 OUR FIT Error includes scale factor of 1.2. • • • We do not use the following data for averages, fits, limits, etc. • • • 12A BELL $e^+e^- \rightarrow e^+e^- \eta' \pi^+\pi^-$ 06E BABR $B^{\pm} \rightarrow K^{\pm} X_{c \overline{c}}$ ¹ ZHANG $5.8\pm$ 1.1 486 ^{2,3} AUBERT $5.2\pm$ 1.2 273 ± 43 ⁴ KUO 05 BELL $\gamma \gamma \rightarrow p \overline{p}$ 04 CLEO $\gamma \gamma \rightarrow \eta'_{c} \rightarrow K^{0}_{S} K^{\pm} \pi^{\mp}$ $5.5 \pm \ 1.2 \pm \ 1.8 \ \ 157 \pm 33$ ⁵ ASNER $7.4 \pm 0.4 \pm 2.3$ $13.9 \pm \ 2.0 \pm \ 3.0$ ⁶ ABDALLAH 03J DLPH $\gamma \gamma \rightarrow \eta_c$ 41 $3.8^+_- \ \begin{array}{c} 1.1+ \ 1.9\\ - \ 1.0- \ 1.0 \end{array}$ ⁷ AMBROGIANI 03 E835 $\overline{p} p \rightarrow \ \eta_{\rm C} \rightarrow \ \gamma \gamma$ 190 $\gamma\gamma \rightarrow \eta_c \rightarrow \kappa^{\pm}\kappa^0_S \pi^{\mp}$ 5,8 BRANDENB... 00B CLE2 $7.6 \pm \ 0.8 \pm \ 2.3$ ⁹ ACCIARRI $e^+e^- \rightarrow e^+e^-\eta_c$ $6.9 \pm 1.7 \pm 2.1$ 99⊤ L3 76 ⁵ SHIRAI $27 \quad \pm 16 \quad \pm 10 \quad$ 98 AMY 58 e^+e^- 5 $6.7^+_{-} \begin{array}{c} 2.4 \\ 1.7 \pm \end{array}$ 2.3 ⁴ ARMSTRONG 95F E760 $\overline{p} p \rightarrow \gamma \gamma$ ¹⁰ ALBRECHT $e^+e^- \rightarrow e^+e^-\eta_c$ $11.3\pm$ 4.2 94H ARG ¹¹ ADRIANI $e^+e^- \rightarrow e^+e^-\eta_c$ $8.0\pm~2.3\pm~2.4$ 17 93N L3 $5.9^+_{-} \begin{array}{c} 2.1 \\ 1.8 \pm \end{array} 1.9$ ⁷ CHEN 90B CLEO $e^+e^- \rightarrow e^+e^-\eta_c$ $6.4^+_{-3.4}$ ¹² AIHARA 88D TPC $e^+e^- \rightarrow e^+e^- X$ $4.3^+_{-3.7}\pm 2.4$ ⁴ BAGLIN 87B SPEC $\overline{p}p \rightarrow \gamma\gamma$ 5,13 BERGER 28 ± 15 86 PLUT $\gamma \gamma \rightarrow K \overline{K} \pi$

NODE=M026217

NODE=M026W1 NODE=M026W1

¹Assuming there is no interference with the non-resonant background. NODE=M026W1;LINKAGE=ZH ²Calculated by us using $\Gamma(\eta_c \rightarrow K\overline{K}\pi) \times \Gamma(\eta_c \rightarrow \gamma\gamma) / \Gamma = 0.44 \pm 0.05$ keV from NODE=M026W1;LINKAGE=AU PDG 06 and B($\eta_c \rightarrow K\overline{K}\pi$) = (8.5 ± 1.8)% from AUBERT 06E. 3 Systematic errors not evaluated. NODE=M026W1;LINKAGE=NS ⁴Normalized to B($\eta_c \rightarrow p\overline{p}$)= (1.3 ± 0.4) × 10⁻³. NODE=M026W1;LINKAGE=N3 ⁵Normalized to $B(\eta_c \rightarrow K^{\pm} K_S^0 \pi^{\mp}).$ NODE=M026W1;LINKAGE=N2 ⁶ Average of $K_{S}^{0}K^{\pm}\pi^{\mp}$, $\pi^{+}\pi^{-}K^{+}K^{-}$, and $2(K^{+}K^{-})$ decay modes. NODE=M026W;LINKAGE=FF NODE=M026W1;LINKAGE=N6 $2\pi^+ 2\pi^-$). $^{\rm 8}\,{\rm Superseded}$ by ASNER 04. NODE=M026W1;LINKAGE=NN ⁹Normalized to the sum of 9 branching ratios. NODE=M026W1;LINKAGE=N1 ¹⁰Normalized to the sum of $B(\eta_c \rightarrow \kappa^{\pm} \kappa_S^0 \pi^{\mp})$, $B(\eta_c \rightarrow \phi \phi)$, BNODE=M026W1;LINKAGE=N5 $K^+ K^- \pi^+ \pi^-$), and $B(\eta_C \to 2\pi^+ 2\pi^-)$. $^{11}\,\rm{Superseded}$ by ACCIARRI 99T. NODE=M026W1:LINKAGE=WD NODE=M026W1;LINKAGE=N4 $K^+ K^- \pi^+ \pi^-$), and $B(\eta_c \to 2\pi^+ 2\pi^-)$. ¹³Re-evaluated by AIHARA 88D. NODE=M026W1;LINKAGE=A $\eta_c(1S) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(\text{total})$ NODE=M026220 $\Gamma(\eta'(958)\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_{59}/\Gamma$ NODE=M026G10 NODE=M026G10 VALUE (eV) DOCUMENT ID EVTS TECN COMMENT **102 ±18 OUR FIT** Error includes scale factor of 1.5. 98.1± 3.9±11.7 2673 ΧU 18 BELL $e^+e^- \rightarrow e^+e^-\eta'\pi^+\pi^-$ • • • We do not use the following data for averages, fits, limits, etc. • • $75.8^+_{-}6.3_{\pm}8.4$ ¹ ZHANG 486 12A BELL $e^+e^- \rightarrow e^+e^- \eta' \pi^+\pi^-$ ¹Superseded by XU 18. NODE=M026G10;LINKAGE=A $\Gamma(\rho\rho) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_4\Gamma_{59}/\Gamma$ NODE=M026G09 NODE=M026G09 ____<u>CL%___</u>__EVTS DOCUMENT ID VALUE (eV) TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <39 90 < 1556 UEHARA 80 BELL $\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$ $\Gamma(K^*(892)\overline{K}^*(892)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_6\Gamma_{59}/\Gamma$ NODE=M026G08 NODE=M026G08 VALUE (eV) DOCUMENT ID TECN COMMENT EVTS 35 ±6 OUR FIT 08 BELL $\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^ 32.4 \pm 4.2 \pm 5.8$ $882\,\pm\,115$ UEHARA $\Gamma(\phi\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_9\Gamma_{59}/\Gamma$ NODE=M026G07 NODE=M026G07 VALUE (eV) EVTS DOCUMENT ID TECN COMMENT 9.2 ±2.2 OUR FIT Error includes scale factor of 2.7. 1 LIU $7.75 \pm 0.66 \pm 0.62$ $386\,\pm\,31$ 12B BELL $\gamma \gamma \rightarrow 2(K^+K^-)$ • • • We do not use the following data for averages, fits, limits, etc. • • • UEHARA 08 BELL $\gamma \gamma \rightarrow 2(K^+K^-)$ $6.8 \pm 1.2 \pm 1.3$ 132 ± 23 ¹Supersedes UEHARA 08. Using B($\phi \rightarrow K^+K^-$) = (48.9 ± 0.5)%. NODE=M026G07;LINKAGE=LI $\Gamma(\omega\omega) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{16}\Gamma_{59}/\Gamma$ NODE=M026G03 NODE=M026G03 VALUE (eV) EVTS DOCUMENT ID TECN COMMENT **13** \pm **5 OUR FIT** Error includes scale factor of 2.2. 1 LIU $8.67 \pm 2.86 \pm 0.96$ 85 ± 29 12B BELL $\gamma \gamma \rightarrow 2(\pi^+ \pi^- \pi^0)$ ¹ Using B($\omega \rightarrow \pi^+ \pi^- \pi^0$) = (89.2 ± 0.7)%. NODE=M026G03;LINKAGE=LI $\Gamma(\omega\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{17}\Gamma_{59}/\Gamma$ NODE=M026G04 NODE=M026G04 TECN COMMENT VALUE (eV) DOCUMENT ID CL% • • • We do not use the following data for averages, fits, limits, etc. • • • 12B BELL $\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$ 1 LIU< 0.49 90 ¹Using B($\phi \rightarrow K^+K^-$) = (48.9 ± 0.5)% and B($\omega \rightarrow \pi^+\pi^-\pi^0$) = (89.2 ± 0.7)%. NODE=M026G04;LINKAGE=LI $\Gamma(f_2(1270) f_2(1270)) \times \Gamma(\gamma \gamma) / \Gamma_{\text{total}}$ $\Gamma_{18}\Gamma_{59}/\Gamma$ NODE=M026G19 NODE=M026G19 DOCUMENT ID VALUE (eV) EVTS TECN COMMENT

55±14 OUR FIT 69±17±12

 3182 ± 766

UEHARA

08 BELL $\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$

VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	NODE=M026G20
49±9±13	1128 ± 206	UEHARA	08 BELL	$\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-$	
$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma$	$(\gamma)/\Gamma_{total}$			Г ₃₇ Г ₅₉ /Г	NODE=M026G14
VALUE (keV)	<u>CL% EVTS</u>	DOCUMENT ID	TECN	COMMENT	NODE=M026G14
0.300±0.022 OUR	AVERAGE	cludes scale factor of	1.5.		
$0.386 \pm 0.008 \pm 0.02$	21 12k	DEL-AMO-SA.	.11M BABR	$\gamma \gamma \rightarrow K^0_c K^{\pm} \pi^{\mp}$	
$0.374 \pm 0.009 \pm 0.03$	31 14k	¹ LEES	10 BABR	10.6 $e^+e^- \rightarrow$	
		0.0		$e^+e^-K^0_SK^{\pm}\pi^{\mp}$	
$0.407 \pm 0.022 \pm 0.02$	28	^{2,3} ASNER	04 CLEO	$\begin{array}{ccc} \gamma \gamma \to & \eta'_{c} \to \\ \kappa_{S}^{0} \kappa^{\pm} \pi^{\mp} \end{array}$	
$0.60 \pm 0.12 \pm 0.09$	9 41	^{3,4} ABDALLAH	03J DLPH	$\gamma \gamma \rightarrow K^0_S K^{\pm} \pi^{\mp}$	
$1.47 \ \pm 0.87 \ \pm 0.27$,	³ SHIRAI	98 AMY	$\gamma \gamma \rightarrow \eta_{c} \rightarrow$	
		<u>,</u>		$K^{\pm}K^{0}_{S}\pi^{\mp}$	
0.84 ± 0.21		³ ALBRECHT	94h ARG	$\gamma \gamma \rightarrow K^{\pm} K^0_S \pi^{\mp}$	
$0.60 \begin{array}{c} +0.23 \\ -0.20 \end{array}$		³ CHEN	90B CLEO	$\gamma \gamma \rightarrow \eta_c K^{\pm} K^0_S \pi^{\mp}$	
$1.06 \pm 0.41 \pm 0.27$	' 11	³ BRAUNSCH	89 TASS	$\gamma \gamma \rightarrow K\overline{K}\pi$	
$1.5 \begin{array}{c} +0.60\\ 0.45 \end{array} \pm 0.3$	7	³ BERGER	86 PLUT	$\gamma \gamma \rightarrow K \overline{K} \pi$	
● ● We do not us	se the following	g data for averages, f	its, limits, et	.C. ● ● ●	
$0.418 \pm 0.044 \pm 0.02$	2	^{3,5} BRANDENB	00B CLE2	$\gamma \gamma \rightarrow \eta_c \rightarrow$	
				$\kappa^{\pm}\kappa^{0}_{c}\pi^{\mp}$	
<0.63	95	³ BEHREND	89 CELL	$\gamma\gamma \rightarrow \kappa_{c}^{0}\kappa^{\pm}\pi^{\mp}$	
<4.4	95	ALTHOFF	85b TASS	$\gamma \gamma \rightarrow K \frac{5}{K} \pi$	
¹ From the correct ² Calculated by u $= 5.5 \pm 1.7\%$	tted and unfold is from the value $r_{\rm c} = r_{\rm c} + r_{\rm c} 0$	led mass spectrum. ue reported in ASNE	R 04 that as	ssumes $B(\eta_{C} \to \ K\overline{K}\pi)$	NODE=M026G14;LINKAGE=LE NODE=M026G14;LINKAGE=AA
⁴ Calculated by $\kappa_{S}^{0}\kappa^{\pm}\pi^{\mp}) =$	us from the value $(1.5 \pm 0.4)\%$.	⁺ measurement by 3 alue reported in AB	to obtain K DALLAH 03	$\kappa \pi$. 8J, which uses $B(\eta_{\mathcal{C}} \rightarrow$	NODE=M026G14;LINKAGE=C NODE=M026G;LINKAGE=BB
⁵ Superseded by <i>i</i>	ASNER 04.				NODE=M026G14;LINKAGE=NN
$\Gamma(K^+K^-\pi^+\pi^-)$) × Γ(~~)/	/ Г		Γαι Γεο /Γ	
$\frac{VALUE (eV)}{42 \pm 9} OUR$	<u>EVTS</u> FIT Error inc	<u>DOCUMENT ID</u>	2.1. TECN	<u>COMMENT</u>	NODE=M026G15 NODE=M026G15
$25.7 \pm 3.2 \pm 4.9$	2019 ± 248	UFHARA	08 BELL	$\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-$	
$280 \pm 100 \pm 60$	42	¹ ABDALLAH	03J DLPH	$\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-$	
$170 ~\pm~ 80 ~\pm 20$	13.9 ± 6.6	ALBRECHT	94h ARG	$\gamma \gamma \rightarrow \pi^+ \pi^- K^+ K^-$	
1 Calculated by $\pi^+\pi^ {\it K}^+$ ${\it K}^-$	us from the value (2.0 ± 0.7)	alue reported in AB)%.	DALLAH 03	BJ, which uses $B(\eta_{\mathcal{C}} ightarrow$	NODE=M026G;LINKAGE=CC
$\Gamma(K^+K^-\pi^+\pi^-$	π^0) × $\Gamma(\gamma \gamma$	y)/[ΓαρΓεο/Γ	
VALUE (keV)	EVTS	DOCUMENT ID	TECN CC	• 42• 59/ • DMMENT	NODE=M026G02 NODE=M026G02
0.190±0.006±0.02	28 11k	DEL-AMO-SA11M	- <u> </u>	$\gamma \rightarrow \kappa^+ \kappa^- \pi^+ \pi^- \pi^0$	
$F(\alpha(u \pm u - \lambda))$				/-	
$1(2(K^+K^-)) \times$	$(\gamma \gamma)/ _{tot}$	tal		I 45I 59/I	
VALUE (eV) 7.2+ 2.1 OUR F	EVIS	<u>DOCUMENT IL</u> udes scale factor of 1	5 <u>1ECN</u>	I <u>COMMENT</u>	NODE=M026G27
5.8± 1.9 OUR A	VERAGE				
$5.6\pm~1.1\pm~1.6$	216 ± 42	2 UEHARA	08 BEL	L $\gamma \gamma \rightarrow 2(K^+K^-)$	
$350 \pm 90 \pm 60$	46	¹ ABDALLAH	03J DLP	$H \gamma \gamma \rightarrow 2(K^+K^-)$	
$231 \pm 90 \pm 23$	9.1 ± 3.3	ALBRECHT	94H ARG	$\gamma \gamma \rightarrow 2(K^+ K^-)$	
¹ Calculated by ι	is from the va	lue reported in ABD	DALLAH 03J	, which uses $B(\eta_{m{\mathcal{C}}} ightarrow$)	NODE=M026G;LINKAGE=DD
$2(\kappa + \kappa) = ($ ² Includes all top	2.1 ± 1.2)%.	except $n \rightarrow \phi \phi$			
					NODE=MU20G;LINKAGE=EE
$\Gamma(2(\pi^+\pi^-)) \times$	$\Gamma(\gamma\gamma)/\Gamma_{\text{tota}}$	al de la companya de		Г ₄₈ Г ₅₉ /Г	NODE=M026G11
VALUE (eV)		DOCUMENT	ID TEC	N COMMENT	NODE=M026G11
$40 \pm 7 \text{ UUR}$	VERAGE	udes scale factor of]			

 40.7 ± 3.7 ± 5.3
 5381 ± 492
 UEHARA
 08
 BELL
 $\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$

 180 ± 70 ± 20
 21.4 ± 8.6
 ALBRECHT
 94H ARG
 $\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$

Page 8	
--------	--

NODE=M026G01 NODE=M026G01

$\Gamma(p\overline{p}) \times \Gamma(\gamma\gamma)/\Gamma$	total			Г ₅₁ Г ₅₉ /Г
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT
6.7 ±0.6 OUR FIT	Error includes s	scale factor of 1.1.		
6.2 $^{+1.1}_{-1.0}$ OUR AVE	RAGE Error ind	cludes scale factor	of 1.1.	
$7.20 {\pm} 1.53 {+} 0.67 \\ -0.75$	157 ± 33	¹ KUO	05 BELL	$\gamma \gamma \rightarrow \ p \overline{p}$
4.6 $^{+1.3}_{-1.1}$ ± 0.4	190	AMBROGIANI	03 E835	$\overline{p} p ightarrow \gamma \gamma$
$8.1 \begin{array}{c} +2.9 \\ -2.0 \end{array}$		ARMSTRONG	95F E760	$\overline{p} p ightarrow \gamma \gamma$
¹ Not independent f	rom the ${\sf \Gamma}_{\gamma\gamma}$ rep	ported by the same	experiment	

$\eta_c(1S)$ BRANCHING RATIOS

- HADRONIC DECAYS -

$\Gamma(\eta'(958) \overline{K}) / \Gamma(\eta'(958) \pi \pi)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
0.859±0.052±0.043	¹ LEES	21A	BABR	$\gamma \gamma \rightarrow \eta' \kappa^+ \kappa^-,$		
				$\eta' \pi^+ \pi^-$		

 $^1\,{\rm Based}$ on Dalitz-plot analysis of the $\eta_{\rm C} \to~\eta^\prime\,{\rm K}^+\,{\rm K}^-$, $\eta^\prime\,\pi^+\,\pi^-$ final states where the fit fractions and relative phases are determined for numerous two-body intermediate states.

$\Gamma(\eta'(958)\eta\eta)/\Gamma_{\text{total}}$				Г ₃ /Г
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT
$3.4 \pm 0.5 \pm 0.3$	1 ABLIKIM	21C	BES3	$J/\psi(1S) ightarrow \gamma \eta \eta \eta'$

¹ ABLIKIM 21C reports [$\Gamma(\eta_c(1S) \rightarrow \eta'(958)\eta\eta)/\Gamma_{\text{total}}$] × [B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$)] = (4.86 ± 0.62 ± 0.45)×10⁻⁵ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$) $= (1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\rho\rho)/\Gamma_{\text{total}}$

VALUE (units 10 ⁻²	²) <u>CL%</u>	EVTS	DOCUMENT ID		TECN	COMMEN	IT
• • • We do no	ot use the	e follov	ving data for average	s, fits	, limits,	etc. • •	•
$1.1\!\pm\!0.5\!\pm\!0.1$		72	¹ ABLIKIM	05L	BES2	$J/\psi ightarrow$	$\pi^+\pi^-\pi^+\pi^-\gamma$
$2.3 \pm 0.5 \pm 0.2$		113	^{2,3} BISELLO	91	DM2	$J/\psi \rightarrow$	$\gamma \rho^{0} \rho^{0}$
$2.1\!\pm\!1.0\!\pm\!0.2$		32	^{4,5} BISELLO	91	DM2	$J/\psi \rightarrow$	$\gamma \rho^+ \rho^-$
<14	90		⁶ BALTRUSAIT.	. 86	MRK3	$J/\psi ightarrow$	$\eta_{c}\gamma$
							-

¹ABLIKIM 05L reports $[\Gamma(\eta_c(1S) \rightarrow \rho \rho) / \Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] = (1.6 \pm 1.6 \pm 1.6$ 0.6 \pm 0.4) \times 10⁻⁴ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = $(1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

²BISELLO 91 reports [$\Gamma(\eta_c(1S) \rightarrow \rho \rho) / \Gamma_{\text{total}}$] × [B($J/\psi(1S) \rightarrow \gamma \eta_c(1S)$)] = (3.30 ± 0.30 \pm 0.60) \times 10^{-4} which we divide by our best value B(J/\psi(1S) \rightarrow ~\gamma\eta_{\it C}(1S)) = $(1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 3 The value reported by BISELLO 91 has been multiplied by 3 to account for isospin symmetry.

⁴BISELLO 91 reports [$\Gamma(\eta_c(1S) \rightarrow \rho \rho) / \Gamma_{total}$] × [B($J/\psi(1S) \rightarrow \gamma \eta_c(1S)$)] = (3.0 ± $1.3 \pm 0.6) \times 10^{-4}$ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma \eta_c(1S)$) = $(1.41\pm0.14) imes10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 5 The value reported by BISELLO 91 has been multiplied by 3/2 to account for isospin symmetry.

DOCUMENT ID

 6 Using B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 ± 0.0036.

$\Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_5/Γ

Г₄/Г

VALUE (units 10^{-2}) EVTS TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

63 ¹ BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ $1.8\!\pm\!0.4\!\pm\!0.2$

¹BALTRUSAITIS 86 reports $[\Gamma(\eta_c(1S) \rightarrow K^*(892)^0 K^- \pi^+ + \text{ c.c.})/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] = (2.6 \pm 0.6) \times 10^{-4}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = (1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

NODE=M026G01;LINKAGE=GG

NODE=M026225

NODE=M026305

NODE=M026R55 NODE=M026R55

NODE=M026R55;LINKAGE=A

NODE=M026R63 NODE=M026R63

NODE=M026R63;LINKAGE=A

NODE=M026R9 NODE=M026R9

OCCUR=2

NODE=M026R9;LINKAGE=F

NODE=M026R9;LINKAGE=A

NODE=M026R9:LINKAGE=B

NODE=M026R9;LINKAGE=C

NODE=M026R9;LINKAGE=D

NODE=M026R9;LINKAGE=G

NODE=M026R16 NODE=M026R16

NODE=M026R16;LINKAGE=A

$\Gamma(K^{*}(892)^{0}\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

45

EVTS

¹ABLIKIM 06A reports $[\Gamma(\eta_{c}(1S) \rightarrow$

VALUE (units 10⁻⁴) EVTS

 $\Gamma(\phi K^+ K^-) / \Gamma_{\text{total}}$

VALUE (units 10^{-3})

 $135 \pm 57 \pm 13$

 Γ_7/Γ

 Γ_8/Γ

 Γ_{11}/Γ

 Γ_{12}/Γ

 Γ_{12}/Γ

Γ14/Γ

NODE=M026R25;LINKAGE=AB

NODE=M026R21 NODE=M026R21

NODE=M026R25 NODE=M026R25

NODE=M026R;LINKAGE=BB

NODE=M026R21;LINKAGE=A

NODE=M026R26 NODE=M026R26

NODE=M026R26;LINKAGE=AB

NODE=M026R11 NODE=M026R11

NODE=M026R11;LINKAGE=E NODE=M026R11;LINKAGE=F

NODE=M026R12 NODE=M026R12

NODE=M026R12;LINKAGE=E

NODE=M026R17 NODE=M026R17

OCCUR=2

NODE=M026R17;LINKAGE=E

NODE=M026R13 NODE=M026R13

NODE=M026R13;LINKAGE=E

NODE=M026R60 NODE=M026R60

$\Gamma(\phi 2(\pi^+\pi^-))/$	Γ _{total}			Г ₁₀ /Г
² Not used since quantity includ	the same ex ed elsewhere	perimental measu in the fit.	rement has been	used in another related
$K\overline{K}\pi) = (5.5)$	$\pm 1.7) \times 10^{-1}$	-2.	12) ~ 10	P_{i}
¹ Using B(B^+ –	$\rightarrow n_{-}K^{+}) =$	$(1.25 \pm 0.12^{\pm 0})$	$(10) \times 10^{-3}$ from	FANG 0.3 and $B(n_{-} \rightarrow$
$2.9^{+0.9}_{-0.8}{\pm}1.1$	$14.1^{+4.4}_{-3.7}$	^{1,2} HUANG	03 BELL <i>E</i>	$B^+ \to (\phi K^+ K^-) K^+$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

DOCUMENT ID

 $[B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S))] = (1.91 \pm 0.64 \pm 0.48) \times 10^{-4}$ which we divide by our best value B(J/ $\psi(1S) \rightarrow \gamma \eta_c(1S)$) = (1.41 ± 0.14) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ABLIKIM

TECN COMMENT

06A BES2 $J/\psi \rightarrow \kappa^{*0} \overline{\kappa}^{*0} \pi^+ \pi^- \gamma$

 $\kappa^{*}(892)^{0}\overline{\kappa}^{*}(892)^{0}\pi^{+}\pi^{-})/\Gamma_{total}]$ ×

TECN COMMENT

	lotai					10/
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<40	90	¹ ABLIKIM	06A	BES2	$J/\psi \rightarrow \phi 2(\pi^+)$	$\pi^{-})\gamma$
1	- / .			_		

¹ ABLIKIM 06A reports $[\Gamma(\eta_c(1S) \rightarrow \phi_2(\pi^+\pi^-))/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))]$ $<~0.603 \times 10^{-4}$ which we divide by our best value B(J/\psi(1S) \rightarrow~\gamma\eta_{\rm C}(1S)) = 1.41 \times 10⁻².

$\Gamma(a_0(980)\pi)/\Gamma_{total}$

	· · · · /·				
VA	ALUE	<u>CL%</u> <u>DOCUMENT ID</u>		TECN	COMMENT
	seen	AAIJ	23AF	I LHCB	$B^+ \rightarrow K^+ (K^0_S K \pi)$
	seen	LEES	21A	BABR	Dalitz anal. of $\eta_c \rightarrow \pi^+ \pi^- \eta$
	seen	LEES	14E	BABR	Dalitz anal. of $\eta_c \rightarrow K^+ K^- \pi^0$
•	• • We do not	t use the following data f	or ave	rages, fit	ts, limits, etc. • •

 1,2 BALTRUSAIT...86 MRK3 $J/\psi
ightarrow \eta_{\it c} \gamma$ < 0.02 90

¹The quoted branching ratio uses B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036. ²We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$.

$\Gamma(a_2(1320)\pi)/\Gamma_{total}$

VALUE <u>____CL%</u> DOCUMENT ID ____<u>TECN</u>___COMMENT **LEES** 21A BABR Dalitz anal. of $\eta_{\it C} \rightarrow$ seen $\pi^+\pi^-\eta$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_{c} \gamma$ 90 < 0.02

¹The quoted branching ratio uses B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 ± 0.0036.

$\Gamma(K^*(892)\overline{K} + c.c.)/\Gamma_{total}$

(() -					±9/
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.0128	90	BISELLO	91	DM2	$J/\psi \rightarrow \gamma \kappa^0_S \kappa^\pm \pi^\mp$
<0.0132	90	¹ BISELLO	91	DM2	$J/\psi \rightarrow \gamma \kappa^{+} \kappa^{-} \pi^{0}$
1 The quoted b	ranching ratios us	se B $(J/\psi(1S) ightarrow$	$\gamma \eta_{c}$	(1S)) =	$0.0127 \pm 0.0036.$

$\Gamma(f_2(1270)n)/\Gamma_{total}$

(-(<i>/ ///</i> cocal					-	•••
VALUE		CL%	DOCUMENT ID		TECN	COMMENT	
seen			LEES	21A	BABR	Dalitz anal. of η_c -	\rightarrow
						$\pi^+\pi^-\eta$	
• • • We	do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
<0.011		90	¹ BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{C} \gamma$	

¹The quoted branching ratio uses B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 ± 0.0036.

$\Gamma(f_2(1270)\eta')/\Gamma_{\text{total}}$

VALUE	
seen	

			₁₅ /
 DOCUMENT ID		TECN	COMMENT
LEES	21A	BABR	Dalitz anal. of
			$\eta_{c} \rightarrow \pi^{+}\pi^{-}\eta';$
			$\kappa^+ \kappa^- \eta'$

$\Gamma(\omega\phi)/\Gamma_{\text{total}}$		Γ ₁₇ /Γ	NODE=M026R22
$\frac{VALUE}{< 25 \times 10^{-4}}$ 90	$\frac{1}{4} \text{ABLIKIM} \qquad 17P \text{ BES3} \qquad \frac{1}{2} $	$\pi^{-}\pi^{0}\kappa^{+}\kappa^{-}\gamma$	NODE=M020R22
• • • We do not use the	following data for averages, fits, limits, etc. •	•	
$< 17 \times 10^{-4}$ 90	² ABLIKIM 05L BES2 $J/\psi \rightarrow \pi^+$	$\pi^{-}\pi^{0}\kappa^{+}\kappa^{-}\gamma$	
¹ Using B($J/\psi \rightarrow \gamma \eta_{c}$	$(2) = 0.017 \pm 0.004.$		NODE=M026R22:LINKAGE=A
² The quoted branching	g ratio uses B $(J/\psi(1S) ightarrow \ \gamma \eta_{m{c}}(1S)) = 0.0127$ H	± 0.0036.	NODE=M026R22;LINKAGE=E
$\Gamma(f_0(500)n)/\Gamma_{total}$			
	DOCUMENT ID TECN COMMENT	• 20/ •	NODE = M026R57 $NODE = M026R57$
seen	LEES 21A BABR Dalitz anal. of η_c	$\rightarrow \pi^+\pi^-\eta$	
$\Gamma(f_0(500)\eta')/\Gamma_{total}$		Гэ1 /Г	
<u>VALUE</u> <u>DO</u>	DCUMENT ID TECN COMMENT	- 21/ -	NODE = M026R58 $NODE = M026R58$
seen LE	EES 21A BABR Dalitz anal. of $\eta_{\mathcal{C}}(1S)$	5) $\rightarrow \pi^+ \pi^- \eta'$	
$\Gamma(f_0(980)n)/\Gamma_{table}$		Eas/E	
	DOCUMENT ID TECN COMMENT	- 22/ -	NODE = M026R41 $NODE = M026R41$
seen	LEES 21A BABR Dalitz anal. of <i>i</i>	$\eta_c \rightarrow \pi^+ \pi^- \eta$	
seen	LEES 14E BABR Dalitz anal. of <i>r</i>	$\eta_{c} \rightarrow K^{+} K^{-} \eta$	
$\Gamma(f_0(980)\eta')/\Gamma_{total}$		Г ₂₃ /Г	
VALUE	DOCUMENT ID TECN COMME	NT	NODE=M020R50 NODE=M026R56
seen	LEES 21A BABR Dalitz a	anal. of $\pi^+ \pi^- \pi'$	
	$\eta_c - \kappa^+$	$\rightarrow \pi^{+}\pi^{-}\eta$, $K^{-}n'$	
		- · · ·	
$(f_0(1500)\eta)/(total)$	DOCUMENT ID TECH COMMENT	l <u>2</u> 4/l	NODE=M026R42
seen	LEES 21A BABR Dalitz anal of a	$n_{-} \rightarrow \pi^{+}\pi^{-}n$	NODE-10201142
seen	LEES 14E BABR Dalitz anal. of <i>i</i>	$\eta_c \rightarrow K^+ K^- \eta$	
$\Gamma(f_{1}(1710)m')/\Gamma$		Гад /Г	
VALUE	DOCUMENT ID TECN COMMENT	1 25/1	NODE=M026R59 NODE=M026R59
seen	LEES 21A BABR Dalitz anal. of η_c	$\rightarrow K^+ K^- \eta'$	
F(f(0100)~/)/F		F /F	
$(n_0(2100)\eta)/(total)$	DOCUMENT ID TECN COMMENT	1 26/1	NODE= $M026R61$ NODE= $M026R61$
seen	LEES 21A BABR Dalitz anal. of η_c	$\rightarrow \pi^+\pi^-\eta$	
		- /-	
$(f_0(2200)\eta)/(t_{total})$	DOCUMENT ID TECH COMMENT	l 27/l	NODE=M026R43
seen	LEES 14E BABR Dalitz anal. of r	$n_c \rightarrow K^+ K^- \eta$	NODE-1020145
F((1000)) /F			
$(a_0(1320)\pi)/(total)$		I <u>28</u> /I	NODE=M026R45
seen	AAIJ 23AH LHCB $B^+ \rightarrow K^+ (K^0_{C})$	<i>Κ</i> π)	NODE-1020143
seen	LEES 14E BABR Dalitz anal. of η_c	$\rightarrow K^+ K^- \pi^0$	
$\Gamma(a_{1450}) = 1/\Gamma$		F / F	
$(a_0(1450)\pi)/(total)$	DOCUMENT ID TECN COMMENT	1 29/1	NODE=M026R46
seen	AAIJ 23AH LHCB $B^+ \rightarrow K^+ (K_c^0)$	Κπ)	
seen	LEES 21A BABR Dalitz anal. of η_c	$\rightarrow \pi^+\pi^-\eta$	
seen	LEES 14E BABR Dalitz anal. of η_c	$\rightarrow K^+ K^- \pi^0$	
$\Gamma(a_2(1700)\pi)/\Gamma_{total}$		[30/[
VALUE	DOCUMENT ID TECN COMMENT	- 30/ -	NODE = M026P10 $NODE = M026P10$
seen	AAIJ 23AH LHCB $B^+ \rightarrow K$	$^{+}(\kappa_{S}^{0}\kappa\pi)$	
$\Gamma(a_{n}(1710)\pi)/\Gamma$			
· (≝U(±·±♥) *)/ ' total VALUE	DOCUMENT ID TECN COMMENT	' 31/'	NODE=M026P13 NODE=M026P13
seen	AAIJ 23AH LHCB $B^+ \rightarrow K^+ (K^0)$	$S^{0}K\pi)$	
seen	LEES 21A BABR Dalitz anal. of <i>r</i>	$\eta_c \rightarrow \pi^+ \pi^- \eta'$	

$\Gamma(a_0(1950)\pi)$	/Γ _{total}				Г ₃₂ /Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
seen		LEES	21A	BABR	Dalitz anal. of $\eta_{\mathcal{C}}(1S) ightarrow$
seen	12k	¹ LEES	16A	BABR	$\begin{array}{c} \pi^{+}\pi^{-}\eta'\\ \gamma\gamma \rightarrow \eta_{c}(1S) \rightarrow \ K\overline{K}\pi \end{array}$
1					

¹ From a model-independant partial wave analysis. × .--

$\Gamma(K_0^*(1430)\overline{K} + \text{c.c.})/\Gamma_{\text{total}} \qquad \Gamma_{33}$								
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT			
seen	12k	¹ LEES	16A	BABR	$\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow K\overline{K}\pi$			
seen		LEES	14E	BABR	Dalitz anal. of $\eta_{c} \rightarrow$			
					$K^+ K^- n/\pi^0$			

¹ From a model-independant partial wave analysis.

$\Gamma(K_2^*(1430)K + c.c.))$	/Γ _{total}			Г ₃₄ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
seen	AAIJ	23A⊦	I LHCB	$B^+ \rightarrow K^+ (K^0_S K \pi)$
seen	LEES	21A	BABR	Dalitz anal. of $\eta_c \rightarrow K^+ K^- \eta'$
seen	LEES	14E	BABR	Dalitz anal. of $\eta_c \rightarrow K^+ K^- \pi^0$

$\Gamma(K_0^*(1950)\overline{K} + c.c.)/\Gamma_{total}$ Γ_{35}/Γ VALUE EVTS DOCUMENT ID TECN COMMENT 23AH LHCB $B^+ \rightarrow K^+ (K^0_S K \pi)$ AAI.J seen 21A BABR Dalitz anal. of $\eta_{c} \rightarrow$ LEES seen $K^+ K^- \eta'$ ¹ LEES 16A BABR $\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow K\overline{K}\pi$ 12k seen 14E BABR Dalitz anal. of $\eta_{\it C} \rightarrow$ LEES seen $K^+ K^- \eta/\pi^0$

¹From a Dalitz plot analysis using an isobar model.

$\Gamma(K_0^*(2600)\overline{K}+\text{c.c.})/\Gamma_{\text{total}}$			Г ₃₆ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
seen	AAIJ	23AH LHCB	$B^+ \rightarrow K^+ (K^0_S K \pi)$

$\Gamma(K\overline{K}\pi)/\Gamma_{\text{total}}$	I				Г ₃₇ /Г	NODE=M026
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=M026
7.1±0.4 OUR FI	T Eri	ror includes scale factor	of 1.1			
7.4±0.6 OUR A	/ERAG	ie in the second se				
$6.9\!\pm\!0.7\!\pm\!0.6$	146	¹ ABLIKIM	19 AP	BES3	$h_{c} \rightarrow \gamma \eta_{c}$	
$7.8\!\pm\!0.6\!\pm\!0.6$	267	² ABLIKIM	19 AP	BES3	$h_c \rightarrow \gamma \eta_c$	OCCUR=2
$\bullet \bullet \bullet$ We do not	use the	e following data for avera	ages, f	its, limi	ts, etc. ● ●	
$6.1\!\pm\!1.2\!\pm\!0.6$	55	^{3,4,5} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma K^+ K^- \pi^0$	
$7.6\!\pm\!1.3\!\pm\!0.8$	107	^{5,6,7} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \kappa^0_S \kappa^{\mp} \pi^{\pm}$	OCCUR=2
8.5 ± 1.8		^{5,8} AUBERT	06E	BABR	$B^{\pm} \rightarrow K^{\pm} X_{C\overline{C}}$	
$4.7\!\pm\!1.2\!\pm\!0.5$	0.6k	5,9,10 _{BAI}	04	BES	$J/\psi \rightarrow \gamma \kappa^{\pm} \pi^{\mp} \kappa_{S}^{0}$	
$6.2\!\pm\!1.7\!\pm\!0.6$	33	5,11,12 BISELLO	91	DM2	$J/\psi \rightarrow \gamma \kappa^+ \kappa^- \pi^{0}$	
$4.9\!\pm\!1.2\!\pm\!0.5$	68	5,13,14 BISELLO	91	DM2	$J/\psi \rightarrow \gamma \kappa^{\pm} \pi^{\mp} \kappa_{S}^{0}$	OCCUR=2
4.8 ± 1.7	95	^{5,15,16} BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$	
$5.5\!\pm\!2.1\!\pm\!0.5$	32	^{5,17,18} BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$	OCCUR=2
$4.0\!\pm\!1.1\!\pm\!0.4$	63	^{5,19,20} BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \gamma \kappa^{\pm} \pi^{\mp} \kappa^0_S$	OCCUR=3
$13 \begin{array}{c} +7 \\ -5 \end{array} \pm 2$		^{5,21} HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_{C} \gamma$	
< 10.7 90%		¹⁶ PARTRIDGE	80 B	CBAL	$J/\psi \rightarrow \eta_{C} \gamma$	

¹ABLIKIM 19AP quotes $B(\eta_c \rightarrow K^+ K^- \pi^0) = (1.15 \pm 0.12 \pm 0.10) \times 10^{-2}$ which we multiply by 6 to account for isospin symmetry. ²ABLIKIM 19AP quotes $B(\eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}) = (2.60 \pm 0.21 \pm 0.20) \times 10^{-2}$ which we multiply by 3 to account for isospin symmetry. ³ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K^+ K^- \pi^0) = (4.54 \pm 0.76 \pm 0.48) \times 10^{-6}$ which we multiply by 6 to account for isospin symmetry. ⁴ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow K\overline{K}\pi)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (27.24 \pm 4.56 \pm 2.88) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ $(60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

NODE=M026R00 NODE=M026R00

NODE=M026R00;LINKAGE=A

NODE=M026R47 NODE=M026R47

NODE=M026R47;LINKAGE=A

NODE=M026R48 NODE=M026R48

NODE=M026R49 NODE=M026R49

NODE=M026R49;LINKAGE=A

NODE=M026P11 NODE=M026P11

R4 R4

NODE=M026R4;LINKAGE=C NODE=M026R4;LINKAGE=F NODE=M026R4;LINKAGE=BK

NODE=M026R4;LINKAGE=CK

$$\begin{aligned} & ^{5} \text{for two d use the same experimental measurement has been used in another related grantly include determines in the fit. \\ & ^{6} \text{ABLKMM 129 quotes B(c(25) + s(h_{2}) + B(r_{2} - \gamma r_{2}) + B(r_{2} - K_{2}^{B}) + K_{2}^{T} - T_{2} - B(r_{2} - K_{2}^{B}) + K_{2}^{T} - T_{2} - B(r_{2} - K_{2}^{B}) + K_{2}^{T} - T_{2} - K_{2}^{B}) + K_{2}^{T} - T_{2} - K_{2}^{B} + K_{2}^{T} - T_{2}^{B} - K_{2}^{B} + K_{2}^{B} + T_{2}^{B} - T_{2}^{B} + K_{2}^{B} + T_{2}^{B} - T_{2}^{B} + K_{2}^{B} + T_{2}^{B} - T_{2}^{B} + T_{2}^{B} + K_{2}^{B} + T_{2}^{B} - T_{2}^{B} + T_{2}^{B} + T_{2}^{B} - T_{2}^{B} + T_{2}^{$$

 $^1\,\mathrm{Not}$ used since the same experimental measurement has been used in another related quantity included elsewhere in the fit.

²ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow \kappa^+ \kappa^- \eta) =$ $(2.11\pm1.01\pm0.32)\times10^{-6}$ which we multiply by 2 to account for isospin symmetry. ³ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \kappa \overline{\kappa} \eta) / \Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] \times$ $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (4.22 \pm 2.02 \pm 0.64) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_{c}(1P)\pi^{0}) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_{c}(1P) \rightarrow \gamma \eta_{c}(1S)) =$ $(60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

⁴ The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$.

$\Gamma(\overline{K}\overline{K}\eta)/\Gamma(\overline{K}\overline{K}\pi)$					Г ₃₈ /Г ₃₇
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.186 {\pm} 0.018 \text{ OUR FIT}$					
$0.190 \pm 0.008 \pm 0.017$	5.4k	¹ LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \eta / \pi^0$

¹LEES 14E reports $B(\eta_c(1S) \to K^+ K^- \eta)/B(\eta_c(1S) \to K^+ K^- \pi^0) = 0.571 \pm 0.025 \pm 0.025 \pm 0.025 \pm 0.001 \pm 0.001$ 0.051, which we divide by 3 to account for isospin symmetry. It uses both $\eta \to \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays.

$\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.6 \pm 0.4 \pm 0.2$	33	¹ ABLIKIM	12N	BES3	$\overline{\psi(2S)} \rightarrow \pi^0 \gamma \eta \pi^+ \pi^-$
• • • We do not use t	he followi	ng data for averag	es, fits	, limits,	etc. • • •
5.4 ± 2.0	75	^{2,3} BALTRUSAIT	86	MRK3	$J/\psi \rightarrow \eta_C \gamma$
$3.7 \pm 1.3 \pm 2.0$	18	^{2,3} PARTRIDGE	80 B	CBAL	$J/\psi \rightarrow \eta \pi^+ \pi^- \gamma$

¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \eta \pi^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)]$ × $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (7.22 \pm 1.47 \pm 1.11) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ (60 \pm 4) \times 10 $^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $^2\,{\rm Not}$ used since the same experimental measurement has been used in another related quantity.

³The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

TECN COMMENT

12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma \eta 2(\pi^+ \pi^-)$

$\Gamma(\eta 2(\pi^+\pi^-))/\Gamma_{\text{total}}$

VALUE (units 10^{-2})

 Γ_{40}/Γ

 π^{0} FL-

 Γ_{39}/Γ

 $4.3 \pm 1.2 \pm 0.4$ 39

FVTS

¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \eta_2(\pi^+\pi^-))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)]$ × $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (19.17 \pm 3.77 \pm 3.72) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) = 0$ (60 \pm 4) \times 10 $^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

DOCUMENT ID

¹ ABLIKIM

$\Gamma(K^+K^-\pi^+\pi^-\pi^0$	°)/Г(∦	$(\overline{K}\pi)$		Γ ₄₂ /Γ ₃₇
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.477±0.017±0.070	11k	¹ DEL-AMO-SA11M	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$
1 We have multiplied	d the va	lue of $\Gamma(K^+K^-\pi^+\pi^-\pi^-)$	⁰)/Г(<i>К</i>	$S_{S}^{0} \kappa^{\pm} \pi^{\mp}$) reported in DEL-
			· · · · · · · ·	\pm - 0) (= ($\mu_{\overline{\mu}}$) = 0

AMO-SANCHEZ 11M by a factor 1/3 to obtain $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K\overline{K}\pi)$. Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.

$$\Gamma(K^0K^-\pi^+\pi^-\pi^++\text{c.c.})/\Gamma_{\text{total}}$$

Γ₄₃/Γ $\begin{array}{c|c} \underline{\textit{Document id}} & \underline{\textit{Tecn}} & \underline{\textit{Comment}} \\ \hline \text{ABLIKIM} & 12\text{N} & \overline{\text{BES3}} & \underline{\textit{Comment}} \\ \psi(2S) \rightarrow \ \pi^0 \gamma \, \mathcal{K}_S^0 \, \mathcal{K}^{\mp} \pi^{\mp} 2 \pi^{\pm} \end{array}$ VALUE (units 10^{-2}) EVTS $5.4 \pm 1.4 \pm 0.5$ ^{1,2} ABLIKIM 43 ¹ABLIKIM 12N quotes B($\psi(2S) \rightarrow \pi^0 h_c$) · B($h_c \rightarrow \gamma \eta_c$) · B($\eta_c \rightarrow \kappa_S^0 K^- \pi^- 2\pi^+$)

= (12.01 \pm 2.22 \pm 2.04) $\times\,10^{-6}$ which we multiply by 2 to take c.c. into account. ²ABLIKIM 12N reports [$\Gamma(\eta_c(1S) \rightarrow \kappa^0 \kappa^- \pi^+ \pi^- \pi^+ + \text{c.c.})/\Gamma_{\text{total}}$] × [B($\psi(2S) \rightarrow \kappa^0 \kappa^- \pi^+ \pi^- \pi^+ + \text{c.c.})/\Gamma_{\text{total}}$] $h_c(1P)\pi^0)] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (24.02 \pm 4.44 \pm 4.08) \times 10^{-6}$ which we divide by our best values B($\psi(2S) \rightarrow h_c(1P)\pi^0$) = (7.4 ± 0.5) × 10⁻⁴, B($h_c(1P) \rightarrow$ $\gamma \eta_c(1S) = (60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

NODE=M026R15;LINKAGE=A

NODE=M026R15;LINKAGE=AK

NODE=M026R15;LINKAGE=AM

NODE=M026R15;LINKAGE=E

NODE=M026R40 NODE=M026R40

NODE=M026R40;LINKAGE=LE

NODE=M026R6 NODE=M026R6

NODE=M026R6;LINKAGE=AB

NODE=M026R6;LINKAGE=A

NODE=M026R6;LINKAGE=E

NODE=M026R05 NODE=M026R05

NODE=M026R05;LINKAGE=AB

NODE=M026R01 NODE=M026R01

NODE=M026R01;LINKAGE=DE

NODE=M026R06 NODE=M026R06

NODE=M026R06:LINKAGE=AA

NODE=M026R06;LINKAGE=AB

$\Gamma(K^+K^-2(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ44/Γ NODE=M026R23 NODE=M026R23 VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT 8.4±2.4 OUR AVERAGE 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma K^+ K^- 2(\pi^+ \pi^-)$ ¹ ABLIKIM $8 \pm 4 \pm 1$ 10 06A BES2 $J/\psi \rightarrow K^+ K^- 2(\pi^+ \pi^-) \gamma$ ² ABLIKIM $8.6\!\pm\!2.8\!\pm\!0.8$ 100 NODE=M026R23;LINKAGE=AL $h_c(1P)\pi^0$] × [B($h_c(1P) \rightarrow \gamma \eta_c(1S)$)] = (3.60 ± 1.71 ± 0.64) × 10⁻⁶ which we divide by our best values B($\psi(2S) \rightarrow h_c(1P)\pi^0$) = (7.4 ± 0.5) × 10⁻⁴, B($h_c(1P) \rightarrow$ $\gamma \eta_{c}(1S)) = (60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. NODE=M026R23;LINKAGE=AB $\gamma \eta_{c}(1S))] = (1.21 \pm 0.32 \pm 0.24) \times 10^{-4}$ which we divide by our best value B($J/\psi(1S) \rightarrow$ $\gamma \eta_c(1S)$ = (1.41 ± 0.14) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ Γ_{46}/Γ NODE=M026R51 NODE=M026R51 DOCUMENT ID TECN COMMENT VALUE CL% 17AJ BES3 $\psi(2S) \rightarrow \gamma \pi^+ \pi^- \pi^0$ $< 4 \times 10^{-4}$ ¹ ABLIKIM 90 ¹ABLIKIM 17AJ reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+ \pi^- \pi^0) / \Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \eta_c(1S))]$ NODE=M026R51;LINKAGE=A $< 1.6 \times 10^{-6}$ which we divide by our best value B($\psi(2S) \rightarrow \gamma \eta_c(1S)$) = 3.6×10^{-3} . $\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\rm total}$ Γ_{47}/Γ NODE=M026R07 NODE=M026R07 VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma \pi^+ \pi^- 2\pi^0$ ¹ ABLIKIM $4.6 \pm 0.9 \pm 0.5$ 118 ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+ \pi^- \pi^0 \pi^0) / \Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)]$ NODE=M026R07;LINKAGE=AB × $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (20.31 \pm 2.20 \pm 3.33) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ (60 \pm 4) \times 10 $^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(2(\pi^+\pi^-\pi^0))/\Gamma_{\text{total}}$ Γ₄₀/Γ NODE=M026R08 NODE=M026R08 VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT 15.9±2.0 OUR AVERAGE $15.3 \!\pm\! 1.8 \!\pm\! 1.8$ 333 ABLIKIM ¹ ABLIKIM $16.8 \pm 2.8 \pm 1.7$ 175 ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow 2(\pi^+\pi^-\pi^0))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)]$ NODE=M026R08;LINKAGE=AB × $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (75.13 \pm 7.42 \pm 9.99) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ $(60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(3(\pi^+\pi^-))/\Gamma_{total}$ Γ_{50}/Γ NODE=M026R24 NODE=M026R24 VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 18.9±3.4 OUR AVERAGE ¹ ABLIKIM 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma 3(\pi^+ \pi^-)$ 20 ± 5 ± 2 51 ² ABLIKIM 06A BES2 $J/\psi \rightarrow 3(\pi^+\pi^-)\gamma$ $18 \pm 4 \pm 2$ 479 ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow 3(\pi^+\pi^-))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)]$ NODE=M026R24;LINKAGE=AL × $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (8.82 \pm 1.57 \pm 1.59) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ (60 \pm 4) \times 10 $^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values. ² ABLIKIM 06A reports $[\Gamma(\eta_c(1S) \rightarrow 3(\pi^+\pi^-))/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] =$ NODE=M026R24;LINKAGE=AB $(2.59 \pm 0.32 \pm 0.47) \times 10^{-4}$ which we divide by our best value B $(J/\psi(1S) \rightarrow \gamma \eta_c(1S))$ = (1.41 \pm 0.14) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Γ_{51}/Γ NODE=M026R2 NODE=M026R2 <u>VALUE (uni</u>ts 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

13.3± 1.1 OUR FIT Error includes scale factor of 1.1. $12.0 \pm 2.6 \pm 1.5$ ABLIKIM 34 19AP BES3 $h_c \rightarrow \gamma \eta_c$

• •	•	We do not	use the	following	data for	averages,	fits,	limits, etc.	٠	• •	
-----	---	-----------	---------	-----------	----------	-----------	-------	--------------	---	-----	--

$15~\pm~5~\pm1$	15	^{1,2} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma p \overline{p}$
12.9^+ $\frac{1.8}{2.1}\pm0.8$	195	^{2,3} WU	06	BELL	$B^+ \rightarrow p \overline{p} K^+$
$13.5\pm~3.0\pm1.3$	213	^{2,4} BAI	04	BES	$J/\psi \rightarrow \gamma p \overline{p}$
$9.2\pm~3.5\pm0.9$	18	^{2,5} BISELLO	91	DM2	$J/\psi \rightarrow \gamma p \overline{p}$
$10 ~\pm~ 5 ~\pm 1$	23	^{2,6} BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{C} \gamma$
$22 + 22 \pm 3$		^{2,7} HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_{c} \gamma$

¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] \times [B(h_c(1P) \rightarrow \gamma\eta_c(1S))] = (0.65 \pm 0.19 \pm 0.10) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma\eta_c(1S)) = (60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 2 Not used since the same experimental measurement has been used in another related quantity included elsewhere in the fit.

³ WU 06 reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \eta_c K^+)] = (1.42 \pm 0.11 \stackrel{+0.16}{-0.20}) \times 10^{-6}$ which we divide by our best value $B(B^+ \rightarrow \eta_c K^+) = (1.10 \pm 0.07) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ⁴ BAI 04 reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (1.9 \pm 0.3 \pm 0.3) \times 10^{-5}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = (1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ BISELLO 91 reports $[\Gamma(\eta_c(1S) \rightarrow \rho \overline{\rho})/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] = (0.13 \pm 0.04 \pm 0.03) \times 10^{-4}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = (1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁶ BALTRUSAITIS 86 reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))]$ = $(1.4 \pm 0.7) \times 10^{-5}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = (1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁷ HIMEL 80B reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\eta_c(1S))] = (8 + 8 4) \times 10^{-6}$ which we divide by our best value $B(\psi(2S) \rightarrow \gamma\eta_c(1S)) = (3.6 \pm 0.5) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\phi\phi)/\Gamma_{\text{total}}$

$\Gamma_{51}/\Gamma imes \Gamma_9/\Gamma$

 Γ_{52}/Γ

 Γ_{55}/Γ

VALUE (units 10 ⁻⁵)	DOCUMENT ID	TECN	COMMENT
0.24±0.07 OUR FIT	Error includes scale factor of 1.9.		
4.0 $+3.5$ -3.2	BAGLIN 89	SPEC	$\overline{p}p \rightarrow K^+ K^- K^+ K^-$

$\Gamma(p\overline{p}\pi^0)/\Gamma_{\rm total}$

VALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT		_
• • • We do not use the	e following c	lata for averages	, fits,	limits, e	etc. • • •		
$0.34 \pm 0.12 \pm 0.03$	14	^L ABLIKIM	12N	BES3	$\psi(2S) ightarrow$	$\pi^0 \gamma p \overline{p} \pi^0$	

¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\bar{p}\pi^0)/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] \times [B(h_c(1P) \rightarrow \gamma\eta_c(1S))] = (1.53 \pm 0.49 \pm 0.23) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma\eta_c(1S)) = (60 \pm 4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(K^+ \overline{p} \Lambda + \text{c.c.}) / \Gamma_{\text{total}}$

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
$2.46^{+0.33}_{-0.32}\pm0.16$	157	¹ LU	19	BELL	$B^+ \rightarrow \overline{p}\Lambda K^+ K^+$

¹LU 19 reports $(2.83^{+0.36}_{-0.34} \pm 0.35) \times 10^{-3}$ from a measurement of $[\Gamma(\eta_c(1S) \rightarrow K^+ \overline{p}A + \text{ c.c.})/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \eta_c K^+)]$ assuming $B(B^+ \rightarrow \eta_c K^+) = (9.6 \pm 1.1) \times 10^{-4}$, which we rescale to our best value $B(B^+ \rightarrow \eta_c K^+) = (1.10 \pm 0.07) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

NODE=M026R2;LINKAGE=AB

NODE=M026R2;LINKAGE=H

- NODE=M026R2;LINKAGE=WU
- NODE=M026R2;LINKAGE=C

NODE=M026R2;LINKAGE=D

NODE=M026R2;LINKAGE=F

NODE=M026R2;LINKAGE=G

NODE=M026R33 NODE=M026R33

NODE=M026R09 NODE=M026R09

NODE=M026R09;LINKAGE=AB

NODE=M026R53 NODE=M026R53

NODE=M026R53;LINKAGE=A

						0/21/2023 13.23 Tage 10
Γ(Λ(1520)Λ+c.c.	.)/Г _{total}				Г ₅₆ /Г	NODE=M026R54
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT		NODE=M026R54
$3.0 \pm 1.3 \pm 0.2$	43	¹ LU	19 BELL	$B^+ \rightarrow \overline{p}\Lambda K$	$K^+ K^+$	
¹ LU 19 reports (3 $\overline{\Lambda}(1520)\Lambda$ + c.c.) 1.1) × 10 ⁻⁴ , whi 10 ⁻³ . Our first of error from using of	3.48 ± 1.48 $/\Gamma_{total}] imes $ ich we resca error is their our best values	\pm 0.46) \times 10 ⁻³ B(B ⁺ \rightarrow η_{c} K ⁺)] le to our best value experiment's error ue.	from a measu assuming B(B $=$ B($B^+ ightarrow \eta_c$ and our second	rement of [$\Gamma(B^+ \rightarrow \eta_c K^+)$ $(L^+ \Gamma) = (1.10)$ and error is the	$(\eta_c(1S) \rightarrow) = (9.6 \pm \pm 0.07) \times$ systematic	NODE=M026R54;LINKAGE=A
$\Gamma(\Sigma^+\overline{\Sigma}^-)/\Gamma_{total}$					Г ₅₇ /Г	
VALUE (units 10^{-3})	<u> </u>	DOCUMENT ID	<u>TECN</u>	COMMENT		NODE=M020R28
• • • vve do not use	the followin	1 ADJUKINA	12c DEC2	etc. • • •	_0_0	
${}^{1} \text{ABLIKIM 13C rep} (3.60 \pm 0.48 \pm 0.3) = (1.41 \pm 0.14) is the systematic$	ports [$\Gamma(\eta_c)$ $(31) \times 10^{-5}$, $(10^{-2}, 0)$ error from ($(15) \rightarrow \Sigma^+ \overline{\Sigma}^-)/I$ which we divide by c r first error is their using our best value	$[JC BESS]_{total} \times [B(J)]_{our best value}$ experiment's e	$J/\psi ightarrow \gamma \rho p$ $J/\psi(1S) ightarrow \gamma \eta$ ${\sf B}(J/\psi(1S) ightarrow$ error and our se	$\eta_c(1S))] = \gamma \eta_c(1S))$ econd error	NODE=M026R28;LINKAGE=AB
$\Gamma(\Xi^{-}\overline{\Xi}^{+})/\Gamma_{\text{total}}$			TECN	COMMENT	Г ₅₈ /Г	NODE=M026R29 NODE=M026R29
$\frac{VALUE (units 10^{-5})}{VALUE (units 10^{-5})}$	<u>EV15</u>	DOCUMENT ID	<u>TECN</u>			
107+022+010	78		13c RES3	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\bar{u}_{\pi} + \pi^{-}$	
${}^{1}\text{ABLIKIM 13C rep} \\ (1.51 \pm 0.27 \pm 0.3) \\ = (1.41 \pm 0.14) \\ \text{is the systematic}$	ports [$\Gamma(\eta_c)$ 14)×10 ⁻⁵ × 10 ⁻² . Ou error from u	$(15) \rightarrow \Xi^{-}\overline{\Xi^{+}})/\Gamma$ which we divide by or r first error is their using our best value	$[t_{\text{total}}] \times [B(J)]$ our best value experiment's e	$J/\psi = \gamma \eta \eta$ $J/\psi(1S) \rightarrow \gamma \eta$ $B(J/\psi(1S) \rightarrow \gamma \eta$ error and our set	$\eta_{c}(1S))] = \gamma \eta_{c}(1S))$ econd error	NODE=M026R29;LINKAGE=AB
		RADIATIVE DE	CAYS —			NODE=M026310
$\Gamma(\gamma\gamma)/\Gamma_{ ext{total}}$					Г ₅₉ /Г	NODE=M026R31
VALUE (units 10 ⁻⁴) CL	<u>% EVTS</u>	DOCUMENT ID	TECN	COMMENT		NODE=M026R31
1.66±0.13 OUR FIT	Error incl	udes scale factor of	1.2.			
32 + 10 + 03			131 RES3			
0.9 + 1.9 + 0.1	$12^{+2.8}$	1,3 ADAMS	08 CLEO	$a/a(25) \rightarrow \pi$	$+\pi^{-}I/2/2$	
$\begin{array}{r} 0.9 & -0.8 \\ 2.0 & +0.9 \\ -0.7 & \pm 0.1 \end{array}$	^{1.2} -1.1 13	^{1,4} WICHT	08 BELL	$B^{\pm} \rightarrow K^{\pm}$	- γγ	
$1.87 \pm 0.32 \substack{+0.95 \\ -0.50}$		¹ AMBROGIAN	VI 03 E835	$\overline{p} p ightarrow \gamma \gamma$	I	
$2.80^{+0.67}_{-0.58}\pm1.0$		¹ ARMSTRON	G 95F E760	$\overline{p} p ightarrow \gamma \gamma$		
< 9 90		^{1,5} BISELLO	91 DM2	$J/\psi ightarrow \gamma \gamma$	γ	
$6 + 4 \pm 4$		¹ BAGLIN	87B SPEC	$\overline{p}p \rightarrow \gamma\gamma$		
< 18 90		⁶ BLOOM	83 CBAL	$J/\psi \rightarrow \eta_c$	γ	
¹ Not used since the quantity included	he same exp elsewhere i	perimental measure n the fit.	ment has beer	n used in anot	her related	NODE=M026R31;LINKAGE=A
2 ABLIKIM 13I rep $1.2 \pm 0.6) \times 10^{-1}$ $(1.41 \pm 0.14) \times 10^{-1}$	orts [$\Gamma(\eta_c(1 - 6 which w))$	$S) \rightarrow \gamma \gamma) / \Gamma_{total}$ we divide by our beautist error is their expression over beautists	$ imes$ [B($J/\psi(1S)$ est value B($J/\psi(1S)$ periment's error	$\gamma \gamma \eta_{m{c}}(1S) \gamma \eta_{m{c}}(1S) \gamma \gamma_{m{c}}(1S)$ or and our second	$)] = (4.5 \pm \eta_c(1S)) =$ ond error is	NODE=M026R31;LINKAGE=AL
³ ADAMS 08 repo $(1.2^{+2.7}_{-1.1} \pm 0.3)$ $-(1.41 \pm 0.14)$	prts $[\Gamma(\eta_c)]$ × 10 ⁻⁶ wh × 10 ⁻² Out	$(LS) \rightarrow \gamma \gamma)/\Gamma_{tot}$	$_{al}$] × [B(J/ ψ Ir best value f	$\psi(1S) ightarrow \gamma \eta$ $\exists (J/\psi(1S) ightarrow$	$\gamma \eta_{c}(1S))] = \gamma \eta_{c}(1S))$	NODE=M026R31;LINKAGE=AD
is the systematic ⁴ WICHT 08 rep (2.2+0.9+0.4)	error from uports $[\Gamma(\eta_c \times 10^{-7} \text{ wh})]$	using our best value $(1S) ightarrow \gamma\gamma)/\Gamma$ ich we divide by o	total] × [B our best value	$(B^+ ightarrow \eta)$ e B $(B^+ ightarrow \eta)$	${}_{c}\kappa^{+})] = \eta_{c}\kappa^{+}) =$	NODE=M026R31;LINKAGE=WI
$(1.10 \pm 0.07) \times$	10 ⁻³ . Our	first error is their	experiment's	error and our	second er-	
⁵ The quoted branc ⁶ Using B $(J/\psi(1S))$	ching ratios) $\rightarrow \gamma \eta_{c}(1)$	use B $(J/\psi(1S) ightarrow S)) = 0.0127 \pm 0.025$	$\gamma \eta_{c}(1S)) =$ 0036.	0.0127 ± 0.00	36.	NODE=M026R31;LINKAGE=E NODE=M026R31;LINKAGE=C

NODE=M026R32 NODE=M026R32

NODE=M026320

NODE=M026R34 NODE=M026R34

NODE=M026R35 NODE=M026R35

NODE=M026R36 NODE=M026R36

NODE=M026R37 NODE=M026R37

OCCUR=2

NODE=M026R34;LINKAGE=AL

NODE=M026R34;LINKAGE=AB

NODE=M026R35;LINKAGE=AL

NODE=M026R35;LINKAGE=AB

NODE=M026R36:LINKAGE=AB

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\gamma)$	$\Gamma_{51}/\Gamma imes \Gamma_{59}/\Gamma$			
VALUE (units 10^{-6})	EVTS	DOCUMENT ID	TECN	COMMENT
0.221 ± 0.019 OUR FIT	Error i	ncludes scale factor of	1.2.	
0.26 ± 0.05 OUR AVE	RAGE	Error includes scale fac	tor of 1.4.	
$0.224^{+0.038}_{-0.037}{\pm}0.020$	190	AMBROGIANI 03	E835	$\overline{p} p \rightarrow \ \eta_{\rm C} \rightarrow \ \gamma \gamma$
$0.336\substack{+0.080\\-0.070}$		ARMSTRONG 95	F E760	$\overline{p} p ightarrow \gamma \gamma$
$\substack{0.68 + 0.42 \\ -0.31}$	12	BAGLIN 87	в SPEC	$\overline{p} p ightarrow \gamma \gamma$

Charge conjugation (C), Parity (P), -Lepton family number (LF) violating modes

Г((π+	π^{-})/I	total	
----	-----	-----------	-----	-------	--

 $\Gamma(n\overline{n})/\Gamma$ $\downarrow \chi \Gamma(\gamma\gamma)/\Gamma$

Г ₆₀ /Г

(//						
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<13	90	¹ ABLIKIM	11G	BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$	
\bullet \bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	tc. • • •	
<80	90	² ABLIKIM	06 B	BES2	$J/\psi \rightarrow \pi^+ \pi^- \gamma$	

¹ABLIKIM 11G reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] < 2$ 1.82×10^{-6} which we divide by our best value B($J/\psi(1S) \rightarrow \gamma \eta_c(1S)$) = 1.41×10^{-2} . ²ABLIKIM 06B reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))]$ $< 1.1 \times 10^{-5}$ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma \eta_{C}(1S)$) = 1.41×10⁻².

$\Gamma(\pi^0 \pi^0) / \Gamma_{\text{total}}$

 Γ_{61}/Γ

VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
< 4	90	¹ ABLIKIM	11G	BES3	$J/\psi \rightarrow \gamma \pi^0 \pi^0$
• • • We do not use t	he followi	ng data for average	s, fits,	limits,	etc. • • •
<50	90	² ABLIKIM	06 B	BES2	$J/\psi \rightarrow \pi^0 \pi^0 \gamma$
¹ ABLIKIM 11G repo	orts [$\Gamma(\eta_c$	$(1S) \rightarrow \pi^0 \pi^0)/\Gamma$	total]	× [B(J	$\gamma/\psi(1S) \rightarrow \gamma \eta_{c}(1S))] <$
6.0×10^{-7} which v	we divide l	by our best value B	$(J/\psi(1$	$(S) \rightarrow (S)$	$\gamma \eta_c(1S)) = 1.41 \times 10^{-2}$
2	/	0.0.		·	

² ABLIKIM 06B reports $[\Gamma(\eta_c(1S) \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] < 0.71 \times 10^{-5}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.41 \times 10^{-2}$.

$\Gamma(K^+K^-)/\Gamma_{total}$

 Γ_{62}/Γ

 Γ_{63}/Γ

()/						
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<70	90	¹ ABLIKIM	06 B	BES2	$J/\psi \rightarrow K^+ K^- \gamma$	
1 ABLIKIM 068 repo	rte [[(n ($(1S) \rightarrow \kappa + \kappa -)/\Gamma$		1 v [R($I/\psi(1S) \rightarrow \alpha m (1S))$	_

ABLIKIM 06B reports $[\Gamma(\eta_c(1S) \rightarrow K^+K^-)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] < 0$ 0.96×10^{-5} which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.41 \times 10^{-2}$.

$\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$

VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT		
<40	90	¹ ABLIKIM	06 B	BES2	$J/\psi \rightarrow \kappa^0_S \kappa^0_S \gamma$		
• • We do not use the	ne followi	ng data for average	es, fits,	limits, e	etc. • • •		
<32	90	^{2,3} UEHARA	13	BELL	$\gamma \gamma \rightarrow \kappa^0_{S} \kappa^0_{S}$		
< 5.6	90	^{4,5} UEHARA	13	BELL	$\gamma \gamma \rightarrow \kappa^{0}_{S} \kappa^{0}_{S}$		
¹ ABLIKIM 06B reports $[\Gamma(\eta_c(1S) \rightarrow \kappa_S^0 \kappa_S^0) / \Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] <$							
$0.53 imes 10^{-5}$ which	we divide	by our best value E	$S(J/\psi($	$(1S) \rightarrow 0$	$\gamma \eta_c(1S)) = 1.41 \times 10^{-2}$		
² Using $\Gamma(\gamma \gamma)(\eta_{c}) =$	5.3 ± 0	.5 keV. UEHARA 1	3 repo	rts $\Gamma(\gamma\gamma)$	$(\kappa_S^0 \kappa_S^0) < 1.6 \text{ eV}.$		

 $^{3}\,\mathrm{Taking}$ into account interference with the non-resonant continuum.

⁴ Using $\Gamma(\gamma \gamma)(\eta_c) = 5.3 \pm 0.5$ keV. UEHARA 13 reports $\Gamma(\gamma \gamma) \times B(K^0_{S} K^0_{S}) < 0.29$ eV. ⁵Neglecting interference with the non-resonant continuum.

$\eta_c(1S)$ CROSS-PARTICLE BRANCHING RATIOS

$$\begin{split} \Gamma(\eta_c(1S) \to \eta'(958)\pi\pi)/\Gamma_{\text{total}} \times \Gamma(J/\psi(1S) \to \gamma\eta_c(1S))/\Gamma_{\text{total}} \\ \Gamma_1/\Gamma \times \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)} \end{split}$$

VALUE (units 10^{-4}) TECN COMMENT EVTS DOCUMENT ID **2.8 ±0.5 OUR FIT** Error includes scale factor of 1.4. 5.25 ± 1.65 14

¹ BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_{c} \gamma$

 1 The value reported by BALTRUSAITIS 86 has been multiplied by 3/2 to account for isospin symmetry.

NODE=M026R37;LINKAGE=B

NODE=M026R37;LINKAGE=U2

NODE=M026R37;LINKAGE=AB

NODE=M026R37;LINKAGE=A

NODE=M026R37;LINKAGE=U1

NODE=M026230

NODE=M026R64 NODE=M026R64

NODE=M026R64;LINKAGE=A

$\Gamma(\eta_c(1S) \rightarrow \rho \rho) / \Gamma$	$_{ m total}~ imes~ \Gammaig(J/\psi(1S) o \gamma \eta_{ m c}(1S)ig)/ \Gamma_{ m total}$	
	$\Gamma_4/\Gamma imes \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	NODE=M026R65
$\frac{VALUE \text{ (units } 10^{-4})}{26 \text{ LOG OUD AVED}}$	<u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=M026R65
$1.6 \pm 0.6 \pm 0.4$	72 ABLIKIM 051 BES2 $I/\psi \rightarrow \pi^+\pi^-\pi^+\pi^-$	γ
$3.30 \pm 0.30 \pm 0.60$	113 ¹ BISELLO 91 DM2 $J/\psi \rightarrow \gamma \rho^0 \rho^0$	1
$3.0 \ \pm 1.3 \ \pm 0.6$	32 ² BISELLO 91 DM2 $J/\psi \rightarrow \gamma \rho^+ \rho^-$	OCCUR=2
¹ The value reported symmetry.	by BISELLO 91 has been multiplied by 3 to account for isospi	n NODE=M026R65;LINKAGE=A
² The value reported symmetry.	by BISELLO 91 has been multiplied by $3/2$ to account for isospi	n NODE=M026R65;LINKAGE=B
$\Gamma(\eta_c(1S) \rightarrow K^*(89))$	$2)^{0} \mathcal{K}^{-} \pi^{+} + \text{c.c.} / \Gamma_{\text{total}} \times \Gamma (J/\psi(1S) \to \gamma \eta_{c}(1S)) /$	
Γ _{total}	$\Gamma_5/\Gamma imes \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	
VALUE (units 10^{-4})	EVTS DOCUMENT ID TECN COMMENT	NODE=M026R66
2.6±0.6	$\begin{array}{c} \hline \hline$	_
$\Gamma(\eta_c(1S) o K^*(89))$	2) $\overline{K}^{*}(892))/\Gamma_{\text{total}} \times \Gamma(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S))/\Gamma_{\text{total}}$ $\Gamma_{6}/\Gamma \times \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$) NODE=M026R67
<u>VALUE</u> (units 10^{-4}) <u>EV</u>	TS DOCUMENT ID TECN COMMENT	NODE=M026R67
0.99±0.17 OUR FIT	AGE	
1.4 + 0.3 + 0.5	60 ABLIKIM 05 BES2 $J/\psi \rightarrow K^+ K^- \pi^+ \pi^- \gamma$	
$1.04 \pm 0.36 \pm 0.18$	14 ¹ BISELLO 91 DM2 $e^+e^- \rightarrow \gamma K^+K^-\pi^+\pi^-$	-
1.2 ±0.6	9 ¹ BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{c} \gamma$	
¹ The reported value	has been multiplied by 2 to account for isospin symmetry.	NODE=M026R67;LINKAGE=A
$\Gamma(\eta_c(1S) ightarrow K^*(89))$	$2)^{0}\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-})/\Gamma_{\text{total}} \times \Gamma(J/\psi(1S) \to \gamma \eta_{c}(1S))/$	1
Γ _{total}	$\Gamma_7/\Gamma imes \Gamma_{245}^{J/\psi(15)}/\Gamma^{J/\psi(15)}$	NODE=M026R68
<u>VALUE (units 10^{-4})</u> <u>E</u>	VTS DOCUMENT ID TECN COMMENT	NODE=M026R68
$1.91 \pm 0.64 \pm 0.48$	45 ABLIKIM 06A BES2 $J/\psi \rightarrow K^{*0}\overline{K}^{*0}\pi^{+}\pi^{-}\gamma$	Ŷ
$\Gamma(\eta_c(1S) \to \phi K^+ I)$	$(-)/\Gamma_{\text{total}} \times \Gamma(B^+ \to \eta_c K^+)/\Gamma_{\text{total}} \Gamma_8/\Gamma \times \Gamma_{220}^{B^{\pm}}/\Gamma^{B^{\pm}}$	
VALUE (units 10 ⁻⁶)	<u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=M020R09
3.6^{+1.1} _{−0.9} ±0.8 14	$1^{+4.4}_{-3.7}$ HUANG 03 BELL $B^+ \to (\phi K^+ K^-) K^+$	
$\Gamma(\eta_c(1S) \rightarrow \phi \phi) / \Gamma$	$_{total}$ $ imes$ $\Gamma(J/\psi(1S) ightarrow \gamma \eta_{m{c}}(1S))/\Gamma_{total}$	
x y	$\Gamma_0/\Gamma \times \Gamma_{245}^{J/\psi(15)}/\Gamma^{J/\psi(15)}$	
VALUE (units 10^{-5}) E	VTS DOCUMENT ID TECN COMMENT	NODE=M020R80 NODE=M026R80
2.6±0.6 OUR FIT E	ror includes scale factor of 2.2.	_
$4.3 \pm 0.5 + 0.5 - 1.2$ 1	.2k ABLIKIM 17P BES3 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$	
$3.3 \pm 0.6 \pm 0.6$ $3.9 \pm 0.9 \pm 0.7$	72 ABLIKIM 05L BES2 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ 19 BISELLO 91 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$	
$3.8^{+2.3}_{-1.5}{\pm}0.7$	5 BISELLO 91 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^0_S K^0_L$	OCCUR=2
$9.3 \pm 2.0 \pm 1.6$ $8.5 \pm 2.7 \pm 1.8$	80 BAI 90B MRK3 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ BAI 90B MRK3 $J/\psi \rightarrow \gamma K^+ K^- K_0^0 K_0^0$	OCCUR=3
• • • We do not use t	the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$	
$3.3 {\pm} 0.6 {\pm} 0.6$	357 ¹ BAI 04 BES $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$	
¹ Superseded by ABL	IKIM 05L.	NODE=M026R80;LINKAGE=E
$\Gamma(n(1S) \rightarrow dd)/\Gamma$	$\Gamma \to \Gamma (B^+ \to \pi K^+) / \Gamma \to \Gamma \to \Gamma \to \Gamma \to \Gamma B^{\pm} / \Gamma B^{\pm}$	±
$VALUE (units 10^{-6})$	total ''/' ''270/' EVTS DOCUMENT ID TECN COMMENT	NODE=M026R70 NODE=M026R70
2.0±0.5 OUR FIT E	ror includes scale factor of 2.2.	_
3.3 ^{+1.2} _{-1.0} OUR AVERA	E Error includes scale factor of 1.5.	
$4.7 \pm 1.2 \pm 0.5$	AUBERT,B 04B BABR $B^{\pm} \rightarrow \ \kappa^{\pm} \eta_{c}$	
$2.2^{+1.0}_{-0.7}{\pm}0.5$	7 HUANG 03 BELL $B^{\pm} \rightarrow \kappa^{\pm} \phi \phi$	

$\Gamma(\eta_c(1S) o \omega \omega)/l$	$\Gamma_{\text{total}} \times \Gamma(J/\psi(1S) \to \gamma \eta_c)$	$\frac{1S}{\Gamma_{\text{total}}} \int \Gamma_{\text{total}} = \frac{1}{\Gamma_{\text{total}}} \int \frac{1}{\sqrt{1}} \int \frac{1}{\sqrt{1}}$	
$\frac{VALUE \text{ (units } 10^{-5})}{3.7 \pm 1.2 \text{ OUR FIT}}$ 4.90 $\pm 0.17 \pm 0.77$	_ <u>EVTS</u> <u>DOCUMENT ID</u> Error includes scale factor of 2.1. 1705 ABLIKIM 19A	$\frac{16}{16} + \frac{245}{245} + \frac{1}{16} + \frac{1}{$	NODE=M026R71 NODE=M026R71
$\Gamma(\eta_c(1S) \rightarrow f_2(127))$	$0) f_2(1270) / \Gamma_{\text{total}} \times \Gamma (J/\psi$	$(1S) \rightarrow \gamma \eta_c(1S)) / \Gamma_{\text{total}}$ $\Gamma_{18} / \Gamma \times \Gamma_{2}^{J/\psi(1S)} / \Gamma^{J/\psi(1S)}$	
VALUE (units 10^{-4})	TVTS DOCUMENT ID	TECN COMMENT	NODE = M026R72 $NODE = M026R72$
1.5±0.4 OUR FIT			
$1.3 \pm 0.3 \pm 0.3 = 0.4$	1.2 ± 19.8 ABLIKIM	04M BES $J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$	
$\Gamma(\eta_c(1S) \to K \overline{K} \pi)$	$//\Gamma_{total} \times \Gamma(J/\psi(1S) \rightarrow \gamma \eta)$	$c(1S))/\Gamma_{total}$	
		$\Gamma_{37}/\Gamma \times \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	
VALUE (units 10^{-4})	EVTS DOCUMENT ID		NODE=M026R73
10.1 ±0.9 OUR FIT	Error includes scale factor of 1.5		
6.7 \pm 0.8 OUR AVE	NAGE	BES $I/w \rightarrow \alpha \kappa^{\pm} \pi^{\mp} \kappa^{0}$	
$8.76 \pm 1.80 \pm 1.68$	33 ² BISELLO 91	$DM2 \qquad J/\psi \rightarrow \gamma K^+ K^- \pi^0$	
$6.9 \pm 1.2 \pm 1.2$	68 ³ BISELLO 91	DM2 $J/\psi \rightarrow \gamma K^{\pm} \pi^{\mp} K^{0}_{S}$	OCCUR=2
7.8 ±3.0	32 ⁴ BALTRUSAIT86	MRK3 $J/\psi \rightarrow \gamma K^+ K^- \pi^0$	
5.7 \pm 1.5	$63 \qquad 9 \text{ BALTRUSAIT86}$	$MRK3 \ J/\psi \to \gamma K^{\pm} \pi^{\pm} K^{S}_{S}$	OCCUR=2
which we multiply	$\gamma \psi \rightarrow \gamma \eta_c \rightarrow B(\eta_c \rightarrow K + K_s)$ by 3 to account for isospin symme	π^+) = (2.2 ± 0.3 ± 0.5) × 10 · · · · · · · · · · · · · · · · · ·	NODE=M026R73;LINKAGE=A
² BISELLO 91 report	s B $(J/\psi \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K^+)$	${\cal K}^- \pi^0) = (1.46 \pm 0.30 \pm 0.28) imes$	NODE=M026R73;LINKAGE=B
³ BISELLO 91 report	s B $(J/\psi \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K^{\pm} h)$	$\binom{0}{5}\pi^{\mp} = (2.3 \pm 0.4 \pm 0.4) \times 10^{-4}$	NODE=M026R73;LINKAGE=C
which we multiply ⁴ BALTRUSAITIS 86	by 3 to account for isospin symme preports $B(J/\psi \rightarrow \gamma n_{z}) \cdot B(n_{z} \rightarrow \gamma n_{z})$	try. $K^+ K^- \pi^0 = (1.3 \pm 0.5) \times 10^{-4}$	
which we multiply	by 6 to account for isospin symmetry $P(I_{L}) = P(I_{L})$	$x^{+} (x^{0} - x^{-}) = (1 + 0.5) + 10^{-4}$	NODE=M020R73;LINKAGE=D
which we multiply	by 3 to account for isospin symme	$K + K_{S}^{\circ}\pi^{+}$ = (1.9±0.5)×10 ⁻¹ try.	NODE=M026R73;LINKAGE=E
$\Gamma(n (1S) \rightarrow K \overline{K} \pi)$	$\sqrt{\Gamma_{}} \times \Gamma(B^+ \to n K^+)$		
$VALUE (units 10^{-5})$		- total - 377 - 2707 - DMMENT	NODE=M026R74 NODE=M026R74
7.9 ± 0.5 OUR FIT	Error includes scale factor of 1.1.		
$8.01 \pm 0.42^{+1.71}$	¹ VINOKUROVA 11 BELL e^{-1}	$^+e^- \rightarrow ~\Upsilon(4S)$	
-1.05 7.4 $\pm 0.5 \pm 0.7$	AUBERT,B 04B BABR B	$^{\pm} \rightarrow \kappa^{\pm} \eta_{c}$	
¹ VINOKUROVA 11	reports B($B^+ \rightarrow \eta_C K^+$, $\eta_C \rightarrow$	$\kappa_{S}^{0} \kappa^{\pm} \pi^{\mp}) = (26.7 \pm 1.4 + 2.9) \pm 1.4 + 2.9 \pm 1.4 \pm 1.4 + 2.9 \pm 1.4 \pm $	
4.9) $ imes$ 10 $^{-6}$, wher	e the first uncertainty is statistical	, the second is due to systematics,	NODE_M020K74,EINKAGE_D
and the third corr	es from interference of $\eta_{\mathcal{C}}(1S)$ -	$ ightarrow ~~ \kappa^0_{{\cal S}} {\it K}^{\pm} \pi^{\mp}$ with nonresonant	
$K^0_S K^{\pm} \pi^{\mp}$. We contain the reported result	ombined both systematic uncertain	nties to single values. We multiply	
$\Gamma(n(1S) \rightarrow K\overline{K}\pi)$	$\sqrt{\Gamma}$ τ τ τ $\Gamma(w(2S) \rightarrow \alpha n$ (1)	1 S)) /F	
	$\psi(23) = \psi(23)$	$\frac{1}{1000} \int \int \frac{1}{1000} \int \frac{1}{1000} \int \frac{1}{10000} \int \frac{1}{10000000000000000000000000000000000$	
VALUE (units 10^{-4})	DOCUMENT ID	TECN COMMENT	NODE=M026R75 NODE=M026R75
2.6±0.4 OUR FIT E	rror includes scale factor of 1.3.		
$4.5^{+2.4}_{-1.8}$	HIMEL 80B	8 MRK2 $\psi(2S) \rightarrow \eta_{c} \gamma$	
$\Gamma(\eta_c(1S) \to K\overline{K}\pi)$	$/\Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma n_c)$	$(1S))/\Gamma_{total}$	
(////		$\Gamma_{37}/\Gamma \times \Gamma_{20}^{h_c(1P)}/\Gamma^{h_c(1P)}$	
VALUE (units 10^{-2})	VTS DOCUMENT ID T	ECN COMMENT	NODE= $M026R76$ NODE= $M026R76$
4.28±0.34 OUR FIT			
4.1 ±0.6 OUR AVER			
$\begin{array}{r} 3.7 \pm 0.7 \pm 0.3 \\ 4.6 \pm 0.8 \pm 0.3 \end{array}$	⁵⁵ ^{1,2} ABLIKIM 12N B 107 ^{3,4} ABLIKIM 12N B	ES3 $\psi(2S) \rightarrow \pi^{0} \gamma K^{+} K^{-} \pi^{0}$ ES3 $\psi(2S) \rightarrow \pi^{0} \gamma K^{0}_{S} K^{\mp} \pi^{\pm}$	OCCUR=2

NODE=M026R76;LINKAGE=A

NODE=M026R76;LINKAGE=B

NODE=M026R76;LINKAGE=C

NODE=M026R76;LINKAGE=D

¹ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K^+ K^- \pi^0) = (4.54 \pm 0.76 \pm 0.48) \times 10^{-6}$ which we multiply by 6 to account for isospin symmetry. ²ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow K\overline{K}\pi)/\Gamma_{total} \times \Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] = (27.24 \pm 4.56 \pm 2.88) \times 10^{-6}$ which we divide by our best value $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}) = C_{c}^{-2} + C_{c}^{-2} +$

³ ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K_S^0 K^{\pm} \pi^+) =$ (11.35 ± 1.25 ± 1.50) × 10⁻⁶ which we multiply by 3 to account for isospin symmetry. ⁴ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow K\overline{K}\pi)/\Gamma_{total} \times \Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] = (34.05 \pm 3.75 \pm 4.50) \times 10^{-6}$ which we divide by our best value $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta_c(1S) \to K\overline{K}\eta)/\Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\text{total}}$ $\Gamma_{\text{total}} = \Gamma_{\text{total}} \Gamma_{\text{to$

					90/····30 /·
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
7.9±1.0 OUR FIT					
$5.7 \pm 2.9 \pm 0.4$	7 1	^{,2} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta K^+ K^-$
1 ABLIKIM 12N quo	otes B(ψ (2.	$(S) \rightarrow \pi^0 h_c) \cdot 1$	B(<i>h_c -</i>	$\rightarrow \gamma \eta_c$) · B($\eta_c \rightarrow K^+ K^- \eta$) =
$(2.11 \pm 1.01 \pm 0.3)$	$32) imes 10^{-6}$	which we multi	ply by	2 to acc	count for isospin symmetry.
² ABLIKIM 12N repo	orts [$\Gamma(\eta_c)$	$(1S) \rightarrow K \overline{K} \eta) / \Gamma$	total	$\times \Gamma(h_c$	$(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{\text{total}}]$
$ imes$ [B(ψ (2S) $ ightarrow$ h_{c}	$(1P)\pi^{0}$]	$= (4.22 \pm 2.02 \pm$	0.64)	$\times 10^{-6}$	which we divide by our best
value B $(\psi(2S) ightarrow$ error and our seco	$h_c(1P)\pi^0$ nd error is) = (7.4 \pm 0.5) $ imes$ the systematic er	10 ⁻⁴ . ror fro	Our fir m using	st error is their experiment's our best value.

$\Gamma(\eta_c(1S) \to \eta \pi^+ \pi^-) / \Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma \eta_c(1S)) / \Gamma_{\text{total}} \\ \Gamma_{39} / \Gamma \times \Gamma_{30}^{h_c(1P)} / \Gamma^{h_c(1P)}$

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
9.7±2.5±0.7	33	¹ ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta \pi^+ \pi^-$
¹ ABLIKIM 12N repo	orts [$\Gamma(\eta_c$	$(1S) \rightarrow \eta \pi^+ \pi^-$	-)/Γ _{to}	tal ×	$\Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/$
$[F_{total}] imes [B(\psi(2S))]$	$\rightarrow h_c(1)$	$(P)\pi^{0})] = (7.22 \pm$	1.47 :	\pm 1.11)	$ imes 10^{-6}$ which we divide by
our best value $B(\psi$ experiment's error a	(2S) ightarrow and our se	$h_{\mathcal{C}}(1P)\pi^{0}) = (7.5)$	$4 \pm 0.$	5) $ imes$ 10 tic error	— ⁴ . Our first error is their r from using our best value.

$\Gamma(\eta_c(1S) o \eta \pi^+ \pi^-) / \Gamma_{\text{total}} imes \Gamma(J/\psi(1S) o \gamma \eta_c(1S)) / \Gamma_{\text{total}}$							
			Г ₃₉ /Г	$ imes \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$			
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT			
4.2±0.9 OUR AVERA	IGE						
16 11	75	DALTDUCALT 06	MDK2	I tale > an ai			

	 · · · -	-1					
$3.1 \pm 1.1 \pm 1.5$	18	PARTRIDGE	80 B	CBAL	$J/\psi \rightarrow$	$\eta \pi^+ \pi^- \gamma$	
4.6 ± 1.1	75	BALIRUSAII.	86	MRK3	$J/\psi \rightarrow$	$\eta_{c}\gamma$	

$$\begin{split} \Gamma(\eta_c(1S) \to \eta_2(\pi^+\pi^-))/\Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma\eta_c(1S))/\Gamma_{\text{total}} \\ \Gamma_{40}/\Gamma \times \Gamma_{30}^{h_c(1P)}/\Gamma^{h_c(1P)} \end{split}$$

 $\begin{array}{c|c} \underline{VALUE\ (\text{units\ }10^{-2})} & \underline{EVTS} & \underline{DOCUMENT\ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \textbf{2.6\pm0.7\pm0.2} & 39 & 1 \\ \hline \textbf{ABLIKIM} & 12N & \textbf{BES3} & \underline{V(2S)} \rightarrow \pi^0 \gamma \eta 2(\pi^+\pi^-) \\ \hline \textbf{1} & \textbf{ABLIKIM\ }12N \text{ reports\ } [\Gamma(\eta_c(1S) \rightarrow \eta 2(\pi^+\pi^-))/\Gamma_{\text{total}} \times \Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{\text{total}} \\ \Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] = (19.17 \pm 3.77 \pm 3.72) \times 10^{-6} \text{ which we divide by our best value\ } B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}. \text{ Our first error is their experiment's error and our second error is the systematic error from using our best value. } \end{array}$

$\Gamma(\eta_c(1S) \rightarrow I)$	$K^+ K^- \pi^+ \pi^-)$	$/\Gamma_{\text{total}} \times \Gamma(J/\psi)$	(1 <i>S</i>) → ↑ Γ ₄₁ /	$\gamma \eta_c(1S))/\Gamma_{\text{total}}$ $\Gamma imes \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	
VALUE (units 10^{-4})) <u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	

1.17	7±0.26	5 OUR	FIT Error	includes scale facto	r of 2.0			
1.9	±0.6	OUR	AVERAGE	Error includes scale	e factor	r of 2.4.		
1.5	± 0.2	± 0.2	0.4k	BAI	04	BES	$J/\psi ightarrow$	$\gamma K^+ K^- \pi^+ \pi^-$
2.7	± 0.4		110	BALTRUSAI	Т86	MRK3	$J/\psi \rightarrow$	$\eta_{\textit{C}}\gamma$

$\Gamma(\eta_c(1S) \to K^+)$	$(K^{-}\pi^{+}\pi^{-})/\Gamma_{\text{total}} \times \Gamma(\psi(2))$	S) –	→ γη _c (Γ4	1S))/ Γ_{total} $_{1}/\Gamma \times \Gamma^{\psi(2S)}_{184}/\Gamma^{\psi(2S)}$	NODE=M026R85
VALUE (units 10 ⁻⁵) 3.0±0.8 OUR FIT	<u>DOCUMENT ID</u>		TECN		NODE=M026R85
$4.0^{+6.0}_{-2.5}$	HIMEL	8 0 B	MRK2	$\psi(2S) \rightarrow \eta_{C} \gamma$	

NODE=M026R77 NODE=M026R77

NODE=M026R77;LINKAGE=A

NODE=M026R77;LINKAGE=B

NODE=M026R78 NODE=M026R78

NODE=M026R78;LINKAGE=A

NODE=M026R79 NODE=M026R79

NODE=M026R81 NODE=M026R81

NODE=M026R84 NODE=M026R84

NODE=M026R81;LINKAGE=A

$$\begin{split} \Gamma(\eta_c(1S) \to \mathcal{K}^+ \mathcal{K}^- \pi^+ \pi^-) / \Gamma_{\text{total}} & \times \Gamma(h_c(1P) \to \gamma \eta_c(1S)) / \Gamma_{\text{total}} \\ \Gamma_{41} / \Gamma \times \Gamma_{30}^{h_c(1P)} / \Gamma^{h_c(1P)} \end{split}$$

 $\begin{array}{c|c} \hline & \underline{VALUE\ (\text{units\ }10^{-3})} & \underline{EVTS} & \underline{DOCUMENT\ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline & \mathbf{5.0\pm 1.0\ OUR\ FIT} & \mathrm{Error\ includes\ scale\ factor\ of\ }1.7. \\ \hline & \mathbf{5.6\pm 1.3\pm 0.4} & 38 & ^1\ \mathrm{ABLIKIM} & 12\mathrm{N}\ \mathrm{BES3} & \psi(2S) \rightarrow \ \pi^0\ \gamma\ K^+\ K^-\ \pi^+\ \pi^- \\ & ^1\ \mathrm{ABLIKIM\ }12\mathrm{N\ reports\ }[\Gamma(\eta_c(1S) \rightarrow \ K^+\ K^-\ \pi^+\ \pi^-)/\Gamma_{\mathrm{total}} \times \ \Gamma(h_c(1P) \rightarrow \ \gamma\ \eta_c(1S))/\Gamma_{\mathrm{total}} \\ & \Gamma_{\mathrm{total}}] \times \ [\mathrm{B}(\psi(2S) \rightarrow \ h_c(1P)\ \pi^0)] = (4.16\pm 0.76\pm 0.59) \times 10^{-6} \ \text{which\ we\ divide\ by\ our\ best\ value\ } \mathrm{B}(\psi(2S) \rightarrow \ h_c(1P)\ \pi^0) = (7.4\pm 0.5) \times 10^{-4}. \ \mathrm{Our\ first\ error\ is\ their\ experiment's\ error\ and\ our\ second\ error\ is\ the\ systematic\ error\ from\ using\ our\ best\ value. \\ \hline \end{array}$

$\Gamma(\eta_c(1S) \to K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}) / \Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma \eta_c(1S)) / \\ \Gamma_{\text{total}} \qquad \Gamma_{43} / \Gamma \times \Gamma_{30}^{h_c(1P)} / \Gamma^{h_c(1P)}$

VALUE (UNITS 10)	DOCOMENT IL	/	TECN	COMMENT
3.2±0.8±0.2	^{1,2} ABLIKIM	12N	BES3	$\overline{\psi(2S)} \rightarrow \pi^0 \gamma \kappa^0_S \kappa^\mp \pi^\mp 2\pi^\pm$
¹ ABLIKIM 12N quot	tes B($\psi(2S) \rightarrow \pi^0 I$	$(h_c) \cdot B($	$h_c \rightarrow \gamma$	$(\gamma \eta_c) \cdot B(\eta_c \to \kappa_S^0 \kappa^- \pi^- 2\pi^+)$
$=$ (12.01 \pm 2.22 \pm	$_{\odot}$ 2.04) $ imes$ 10 $^{-6}$ whic	h we m	ultiply b	by 2 to take c.c. into account.
² ABLIKIM 12N repo	rts [$\Gamma(\eta_{m{c}}(1S) ightarrow$ K	$^{0}K^{-}\pi$	$+\pi^{-}\pi^{-}$	$^{+}+ \text{c.c.})/\Gamma_{\text{total}} \times \Gamma(h_{c}(1P) \rightarrow$
$\gamma \eta_{c}(1S))/\Gamma_{total}$	\times [B($\psi(2S) \rightarrow h_c($	$(1P)\pi^{0}$] = (24)	$0.02\pm4.44\pm4.08) imes10^{-6}$ which

we divide by our best value $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta_{c}(1S) \rightarrow K^{+} K^{-} 2(\pi^{+} \pi^{-})) / \Gamma_{\text{total}} \times \Gamma(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) / \Gamma_{\text{total}}$ $\Gamma_{44} / \Gamma \times \Gamma_{245}^{J/\psi(1S)} / \Gamma^{J/\psi(1S)}$

VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
$1.21 \pm 0.32 \pm 0.24$	100	ABLIKIM	06A	BES2	$J/\psi \rightarrow K^+ K^- 2(\pi^+ \pi^-)\gamma$

$\Gamma(\eta_c(1S) \to K^+ K^- 2(\pi^+ \pi^-)) / \Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma \eta_c(1S)) / \Gamma_{\text{total}} \\ \Gamma_{44} / \Gamma \times \Gamma_{30}^{h_c(1P)} / \Gamma^{h_c(1P)}$

 $\begin{array}{c} \underline{VALUE \ (\text{units } 10^{-3})} \\ \hline \textbf{4.8 \pm 2.5 \pm 0.3} \\ \hline \textbf{10} \\ \hline \textbf{1} \\ \hline \textbf{ABLIKIM} \\ \hline \textbf{12N} \\ \hline \textbf{BES3} \\ \hline \textbf{W}(2S) \rightarrow \pi^{0} \gamma K^{+} K^{-} 2(\pi^{+} \pi^{-})) \\ \hline \textbf{1} \\ \hline \textbf{ABLIKIM} \\ \hline \textbf{12N} \\ \hline \textbf{reports} \\ \hline [\Gamma(\eta_{c}(1S) \rightarrow K^{+} K^{-} 2(\pi^{+} \pi^{-}))/\Gamma_{\text{total}} \times \Gamma(h_{c}(1P) \rightarrow \gamma \eta_{c}(1S))/\Gamma_{\text{total}}] \\ \times \\ \hline [B(\psi(2S) \rightarrow h_{c}(1P)\pi^{0})] = (3.60 \pm 1.71 \pm 0.64) \times 10^{-6} \text{ which} \\ \hline \textbf{we divide by our best value} \\ B(\psi(2S) \rightarrow h_{c}(1P)\pi^{0}) = (7.4 \pm 0.5) \times 10^{-4}. \\ \hline \textbf{Our first} \\ error is their experiment's error and our second error is the systematic error from using \\ \hline \textbf{M}_{c}(1P) \\$

$$\begin{split} \Gamma\big(\eta_c(1S) \to 2(K^+K^-)\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(h_c(1P) \to \gamma \eta_c(1S)\big)/\Gamma_{\text{total}} \\ \Gamma_{45}/\Gamma \times \Gamma_{30}^{h_c(1P)}/\Gamma^{h_c(1P)} \end{split}$$

$\Gamma(\eta_{c}(1S) \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}) / \Gamma_{\text{total}} \times \Gamma(h_{c}(1P) \rightarrow \gamma \eta_{c}(1S)) / \Gamma_{\text{total}}$ $\Gamma_{47} / \Gamma \times \Gamma_{30}^{h_{c}(1P)} / \Gamma^{h_{c}(1P)}$ $VALUE (\text{units } 10^{-2}) \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$

2.7±0.5±0.2 ¹ABLIKIM 12N reports [$\Gamma(\eta_c(1S) \rightarrow \pi^+ \pi^- \pi^0 \pi^0)/\Gamma_{total} \times \Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{total}$] × [$B(\psi(2S) \rightarrow h_c(1P)\pi^0$)] = (20.31 ± 2.20 ± 3.33) × 10⁻⁶ which we divide by our best value $B(\psi(2S) \rightarrow h_c(1P)\pi^0)$ = (7.4 ± 0.5) × 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best value. NODE=M026R83 NODE=M026R83

NODE=M026R83;LINKAGE=A

NODE=M026R86 NODE=M026R86

NODE=M026R86;LINKAGE=A

NODE=M026R86;LINKAGE=B

NODE=M026R88 NODE=M026R88

NODE=M026R87 NODE=M026R87

NODE=M026R87;LINKAGE=A

NODE=M026R90 NODE=M026R90

NODE=M026R89 NODE=M026R89

NODE=M026R89;LINKAGE=A

NODE=M026R91 NODE=M026R91

NODE=M026R91;LINKAGE=A

L.61±0.29 OUF	R AVERAGE					
$1.9 \pm 0.3 \pm 0.3$	213	BAI	04	BES	$J/\psi ightarrow$	$\gamma p \overline{p}$
$1.3 \pm 0.4 \pm 0.3$	18	BISELL	O 91	DM2	$J/\psi ightarrow$	$\gamma p \overline{p}$
L.4 ± 0.7	23	BALTR	USAIT86	MRK3	$J/\psi \rightarrow$	$\eta_{c}\gamma$

 $\Gamma(\eta_c(1S) \to p\overline{p})/\Gamma_{\text{total}} \times \Gamma(h_c(1P) \to \gamma \eta_c(1S))/\Gamma_{\text{total}}$ $\Gamma_{51}/\Gamma \times \Gamma^{h_c(1P)}_{30}/\Gamma^{h_c(1P)}$ NODE=M026R98 NODE=M026R98 <u>VALUE (units 10^{-4})</u> TECN COMMENT DOCUMENT ID EVTS 8.0±0.8 OUR FIT $8.7 \pm 2.9 \pm 0.6$ 15 ¹ ABLIKIM 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma p \overline{p}$ ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{\text{total}} \times \Gamma(h_c(1P) \rightarrow \gamma \eta_c(1S))/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] = (0.65 \pm 0.19 \pm 0.10) \times 10^{-6}$ which we divide by our best NODE=M026R98;LINKAGE=A value B($\psi(2S) \rightarrow h_c(1P)\pi^0$) = (7.4 ± 0.5) × 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\eta_c(1S) \to \rho \overline{\rho}) / \Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(1S)) / \Gamma_{\text{total}}$ $\Gamma_{51}/\Gamma \times \Gamma_{184}^{\psi(2S)}/\Gamma^{\psi(2S)}$ NODE=M026P00 NODE=M026P00 VALUE (units 10⁻⁶) TECN COMMENT DOCUMENT ID 4.8±0.7 OUR FIT Error includes scale factor of 1.2. 8 +8 HIMEL 80B MRK2 $\psi(2S) \rightarrow \eta_C \gamma$ $\Gamma_{51}/\Gamma \times \Gamma_{270}^{B^{\pm}}/\Gamma^{B^{\pm}}$ $\Gamma(\eta_c(1S) \to p \overline{p}) / \Gamma_{\text{total}} \times \Gamma(B^+ \to \eta_c K^+) / \Gamma_{\text{total}}$ NODE=M026P01 NODE=M026P01 VALUE (units 10^{-6}) DOCUMENT ID EVTS TECN COMMENT **1.47±0.12 OUR FIT** Error includes scale factor of 1.1. **1.54±0.19 OUR AVERAGE** Error includes scale factor of 1.1. $1.42 \pm 0.11 \substack{+0.16 \\ -0.20}$ 195 WU 06 BELL $B^+ \rightarrow p \overline{p} K^+$ $1.8 \begin{array}{c} +0.3 \\ -0.2 \end{array} \pm 0.2$ 05L BABR $e^+e^- \rightarrow \Upsilon(4S)$ AUBERT,B $\Gamma\big(\eta_{\textit{c}}(1S) \rightarrow \rho \overline{\rho} \pi^0\big)/\Gamma_{\rm total} \, \times \, \Gamma\big(h_{\textit{c}}(1P) \rightarrow \gamma \eta_{\textit{c}}(1S)\big)/\Gamma_{\rm total}$ $\Gamma_{52}/\Gamma \times \Gamma_{30}^{h_c(1P)}/\Gamma^{h_c(1P)}$ NODE=M026P02 NODE=M026P02 TECN COMMENT VALUE (units 10^{-3}) DOCUMENT ID 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma p \overline{p} \pi^0$ ¹ ABLIKIM $2.1 \pm 0.7 \pm 0.1$ ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p}\pi^0)/\Gamma_{total} \times \Gamma(h_c(1P) \rightarrow \gamma\eta_c(1S))/\Gamma_{total}]$ NODE=M026P02:LINKAGE=A × $[B(\psi(2S) \rightarrow h_c(1P)\pi^0)] = (1.53 \pm 0.49 \pm 0.23) \times 10^{-6}$ which we divide by our best value $B(\psi(2S) \rightarrow h_c(1P)\pi^0) = (7.4 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$$\begin{split} \Gamma(\eta_c(1S) \to \rho \overline{\rho} \pi^+ \pi^-) / \Gamma_{\text{total}} \, \times \, \Gamma(h_c(1P) \to \gamma \eta_c(1S)) / \Gamma_{\text{total}} \\ \Gamma_{53} / \Gamma \times \Gamma_{30}^{h_c(1P)} / \Gamma^{h_c(1P)} \end{split}$$
NODE=M026P07 NODE=M026P07 TECN COMMENT *VALUE* (units 10^{-3}) EVTS DOCUMENT ID 2.19±0.30 OUR FIT ¹ ABLIKIM 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma p \overline{p} \pi^+ \pi^ 3.1 \pm 1.0 \pm 0.2$ 19 ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p}\pi^+\pi^-)/\Gamma_{total} \times \Gamma(h_c(1P) \rightarrow \gamma\eta_c(1S))/\Gamma_{total})$ NODE=M026P07;LINKAGE=A $\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow h_c(1P)\pi^0)] = (2.30 \pm 0.65 \pm 0.36) \times 10^{-6}$ which we divide by our best value B($\psi(2S) \rightarrow h_{\mathcal{C}}(1P)\pi^0$) = (7.4 \pm 0.5) $imes 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\eta_c(1S) \to \rho \overline{\rho} \pi^+ \pi^-) / \Gamma_{\text{total}} \times \Gamma(B^+ \to \eta_c K^+) / \Gamma_{\text{total}}$ $\Gamma_{53}/\Gamma\times\Gamma_{270}^{\pmb{B}^\pm}/\Gamma^{\pmb{B}^\pm}$ NODE=M026R82 NODE=M026R82 VALUE (units 10⁻⁶) TECN COMMENT DOCUMENT ID 4.0 ±0.4 OUR FIT $3.94^{+0.41}_{-0.39}^{+0.22}_{-0.18}$ 19 BELL $e^+e^- \rightarrow \Upsilon(4S)$ CHILIKIN $\Gamma(\eta_{c}(1S) \rightarrow \Lambda \overline{\Lambda}) / \Gamma_{\text{total}} \times \Gamma(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) / \Gamma_{\text{total}}$ $\Gamma_{54}/\Gamma \times \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$ NODE=M026P03 NODE=M026P03 VALUE (units 10⁻⁵) TECN COMMENT DOCUMENT ID **1.5 \pm0.4 OUR FIT** Error includes scale factor of 1.5. $1.98 \pm 0.21 \pm 0.32$ ABLIKIM 12B BES3 $J/\psi \rightarrow \Lambda \overline{\Lambda} \gamma$ $\Gamma_{54}/\Gamma \times \Gamma_{270}^{B^{\pm}}/\Gamma^{B^{\pm}}$ $\Gamma(\eta_c(1S) \to \Lambda \overline{\Lambda}) / \Gamma_{\text{total}} \times \Gamma(B^+ \to \eta_c K^+) / \Gamma_{\text{total}}$ NODE=M026P04 NODE=M026P04 VALUE (units 10^{-6}) EVTS DOCUMENT ID TECN COMMENT **1.21±0.30 OUR FIT** Error includes scale factor of 1.5. 0.95 + 0.25 + 0.08 - 0.22 - 0.1106 BELL $B^+ \rightarrow \Lambda \overline{\Lambda} K^+$ 20 WU

$\Gamma(\eta_c(1S) \rightarrow \Sigma^+ \overline{\Sigma}^-) / \Gamma_{\text{total}} $	$<$ $\Gamma(J/\psi(1S) ightarrow \gamma)$	$\eta_c(1S))/\Gamma_{ m total}$	
		$\Gamma_{57}/\Gamma imes \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	NODE=M026P05
<u>VALUE (units 10^{-5})</u> <u>EVTS</u>	DOCUMENT ID	TECN COMMENT	NODE=M026P05
3.60±0.48±0.31 112	ABLIKIM 13c	BES3 $J/\psi \rightarrow \gamma \rho \overline{\rho} \pi^0 \pi^0$	
$\Gamma(\eta_c(1S) \rightarrow \Xi^-\overline{\Xi}^+)/\Gamma_{\text{total}} $	$\Gamma(J/\psi(1S) o \gamma)$	$\eta_c(1S))/\Gamma_{ ext{total}}$	
		$\Gamma_{58}/\Gamma imes \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	NODE=M026P06
<u>VALUE (units 10^{-5})</u> <u>EVTS</u>	DOCUMENT ID	TECN COMMENT	NODE=M026P06
1.51±0.27±0.14 78	ABLIKIM 13C	BES3 $J/\psi \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^-$	
$\Gamma(\eta_c(1S) \rightarrow \gamma \gamma) / \Gamma_{\text{total}} \times \Gamma(.)$	$J/\psi(1S) \rightarrow \gamma \eta_c(1)$	S))/Γ _{total}	
		$\Gamma_{59}/\Gamma \times \Gamma_{245}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$	NODE=M026P08
<u>VALUE (units 10^{-6}) EVTS</u>	DOCUMENT ID	TECN COMMENT	NODE=M026P08
2.34±0.35 OUR FIT Error include	es scale factor of 1.2.		
3.8 +1.3 OUR AVERAGE Error	includes scale factor of	of 1.1.	
$4.5 \pm 1.2 \pm 0.6$	ABLIKIM 13	BES3	
$1.2 \ ^{+2.7}_{-1.1} \ \pm 0.3 \ 1.2 \ ^{+2.8}_{-1.1}$	ADAMS 08	CLEO $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$	
$\Gamma(\eta_c(1S) \to \gamma \gamma) / \Gamma_{\text{total}} \times \Gamma(\eta_c(1S))$	$B^+ \rightarrow \eta_c K^+)/\Gamma_{to}$	tal $\Gamma_{59}/\Gamma \times \Gamma_{270}^{B^{\pm}}/\Gamma^{B^{\pm}}$	
VALUE (units 10^{-6}) EVTS	DOCUMENT ID	TECN COMMENT	NODE=M020P09
0.183±0.022 OUR FIT Error inclu	ides scale factor of 1.2	<u>2.</u>	
0.22 +0.09 +0.04 -0.07 -0.02 13	WICHT 08	BELL $B^{\pm} \rightarrow K^{\pm} \gamma \gamma$	

$\eta_c(1S)$ REFERENCES

ΔΔΙΙ	23AH	PR D108 032010	R Aaii et al	(LHCh, Collab.)	REFID=62349
ABLIKIM	210	PR D103 012009	M Ablikim et al	(BESIII Collab.	REFID=61030
LEES	210	PR D104 072002	IP Lees et al	(BABAR Collab.	REFID=61442
	20H	FP1 C80 191	R Aaii et al	(LHCh Collab.	REFID=60419
	10AD	PR D100 012003	M Ablikim at al	(BESIII Collab.)	REFID=50001
	10/1/	DR D100 012003	M Ablikim at al	(DESIII Collab.)	REFID=50008
	19AV	PR D100 052012	K Chilikin et al.	(DESITI COTAD.	REFID-50800
	19	PR D100 012001	R. Chilkin et al.	(BELLE Collab.	DEEID_50614
LU	19	PR D99 032003	PC. Lu et al.	(DELLE Collab.	
XU	18	PR D98 072001	Q.N. Xu et al.	(BELLE Collab.	
AAIJ	TTAD	PL B769 305	R. Aaij et al.	(LHCb Collab.	REFID=57890
AAIJ	17BB	EPJ C// 609	R. Aaij <i>et al.</i>	(LHCb Collab.	REFID=58191
ABLIKIM	17AJ	PR D96 112008	M. Ablikim <i>et al.</i>	(BESIII Collab.)	REFID=58322
ABLIKIM	17P	PR D95 092004	M. Ablikim <i>et al.</i>	(BESIII Collab.)	REFID=57989
LEES	16A	PR D93 012005	J.P. Lees <i>et al.</i>	(BABAR Collab.)	REFID=5/125
AAIJ	15BI	EPJ C75 311	R. Aaij <i>et al.</i>	(LHCb Collab.	REFID=5/14/
ANASHIN	14	PL B738 391	V.V. Anashin et al.	(KEDR Collab.	REFID=56130
LEES	14E	PR D89 112004	J.P. Lees <i>et al.</i>	(BABAR Collab.)	REFID=55937
ABLIKIM	13C	PR D87 012003	M. Ablikim <i>et al.</i>	(BESIII Collab.)	REFID=54878
ABLIKIM	131	PR D87 032003	M. Ablikim <i>et al.</i>	(BESIII Collab.)	REFID=54954
UEHARA	13	PTEP 2013 123C01	S. Uehara <i>et al.</i>	(BELLE Collab.)	REFID=55592
ABLIKIM	12B	PR D86 032008	M. Ablikim et al.	(BESIII Collab.)	REFID=54267
ABLIKIM	12F	PRL 108 222002	M. Ablikim et al.	(BESIII Collab.)	REFID=54271
ABLIKIM	12N	PR D86 092009	M. Ablikim <i>et al.</i>	(BESIII Collab.)	REFID=54741
LIU	12B	PRL 108 232001	Z.Q. Liu et al.	(BELLE Collab.)	REFID=54303
ZHANG	12A	PR D86 052002	C.C. Zhang et al.	(BELLE Collab.)	REFID=54763
ABLIKIM	11G	PR D84 032006	M. Ablikim et al.	(BESIII Collab.)	REFID=53711
DEL-AMO-SA	. 11M	PR D84 012004	P. del Amo Sanchez et al.	(BABAR Collab.)	REFID=16751
VINOKUROVA	11	PL B706 139	A. Vinokurova <i>et al.</i>	(BELLE Collab.)	REFID=53927
LEES	10	PR D81 052010	J.P. Lees et al.	(BABAR Collab.	REFID=53236
MITCHELL	09	PRL 102 011801	R.E. Mitchell et al.	(CLEO Collab.	REFID=52676
ADAMS	08	PRL 101 101801	G.S. Adams et al.	CLEO Collab.	REFID=52261
AUBERT	08AB	PR D78 012006	B. Aubert et al.	(BABAR Collab.	REFID=52267
UEHARA	08	EP.I C53 1	S. Uehara <i>et al.</i>	(BELLE Collab.	REFID=52064
WICHT	08	PI B662 323	I Wicht et al	(BELLE Collab	REFID=52204
ABE	07	PRI 98 082001	K Abe et al	(BELLE Collab.)	REFID=51627
ABLIKIM	06A	PL B633 19	M Ablikim <i>et al</i>	(BES Collab.	REFID=50987
ABLIKIM	06B	FP1 C45 337	M Ablikim et al	(BES Collab.)	REFID=50988
AUBERT	06E	PRI 96 052002	B Aubert et al	(BABAR Collab.)	REFID=51059
PDG	06	IP G33 1	W-M Yao et al	(BDG Collab.)	REFID-51004
WII	06	PRI 07 162003	C-H Wu et al	(BELLE Collab.)	REFID=51472
	051	PR D72 072005	M Ablikim at al	(BES Collab.)	REFID=50837
	051	PR D72 072005	B Aubort at al	(BABAR Collab.)	REFID=50837
KUO	050	DI D621 41	CC Kup at al	(PELLE Callab.)	REFID=50027
ADE	0.5	PE D021 41	K Abo at al	(BELLE Collab.)	REFID=50001
	04G	PR D70 0/1102	N. Abe et al.	(DELLE COIIAD.)	DEEID_50220
	04111	FR D/U 112000	N. ADIKIM et al.		
	04	FRE 92 142001	D.IVI. Asher et al.	(CLEO COIIAD.)	
	04D	PRL 92 142002	D. AUDERT <i>et al.</i>	(BABAK Collab.	
AUDERI,B	04B		D. Aubert et al.	(BABAR Collab.)	
BAI	04	PL 65/8 10	J.Z. Bai et al.	(BES Collab.)	
ABDALLAH	03J	EPJ C31 481	J. Addallah <i>et al.</i>	(DELPHI Collab.	REFID=49025

NODE=M026

REFID=49465 REFID=49185 REFID=49206 REFID=49621 REFID=49621 REFID=496853 REFID=47476 REFID=47476 REFID=44553 REFID=44683 REFID=44623 REFID=4468 REFID=4468 REFID=44073 REFID=41088 REFID=4105 REFID=41072 REFID=40728 REFID=40728 REFID=40738 REFID=2009 REFID=22006 REFID=22006 REFID=22004

AMBROGIANI BAI FANG HUANG ABE,K BAI BRANDENB ACCIARRI BAI ABREU SHIRAI ARMSTRONG ALBRECHT ADRIANI BISELLO BAI CHEN BAGLIN BEHREND BALTRUSAIT BERGER GAISER ALTHOFF BALTRUSAIT	03 03 03 02 00F 99B 99T 99B 99F 99B 99B 99B 99B 90B 90B 90B 90B 90B 89 89 89 88 88 88 88 88 88 86 86 88 88 88 88 88	PL B566 45 PL B555 174 PRL 90 071801 PRL 91 241802 PRL 89 142001 PR D62 072001 PR B461 155 PR D60 072001 PL B441 479 PL B424 405 PR D52 4839 PL B318 375 NP B350 1 PRL 65 1309 PL B243 169 PL B243 169 PL B243 157 ZPHY C42 367 ZPHY C42 367 ZPHY C42 367 ZPHY C41 533 PRL 60 2355 PL B187 191 PR D33 629 PL B38 711 ZPHY C29 189 PRL 52 2126 APNS 32 142	M. Ambrogiani et al. J.Z. Bai et al. F. Fang et al. HC. Huang et al. K. Abe et al. J.Z. Bai et al. G. Brandenburg et al. M. Acciarri et al. J.Z. Bai et al. P. Abreu et al. M. Shirai et al. T.A. Armstrong et al. H. Albrecht et al. O. Adriani et al. D. Bisello et al. Z. Bai et al. W.Y. Chen et al. C. Baglin, S. Baird, G. E. H.J. Behrend et al. W. Braunschweig et al. H. Aihara et al. C. Baglin et al. R.M. Baltrusaitis et al. J. Gaiser et al. M. Althoff et al.	(FNAL E835 Collab.) (BES Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELC Collab.) (CLEO Collab.) (L3 Collab.) (DELPHI Collab.) (DELPHI Collab.) (AMY Collab.) (FNAL, FERR, GENO+) (ARGUS Collab.) (DM2 Collab.) (DM2 Collab.) (DM2 Collab.) (Mark III Collab.) (CELCO Collab.) (CELCO Collab.) (TASSO Collab.) (TASSO Collab.) (CTystal Ball Collab.) (Crystal Ball Collab.) (CT, VCSC+) JP (SLAC (CT)
ALTHOFF	85B	ZPHY C29 189	M. Althoff <i>et al.</i>	(TASSO Collab.)
BALIRUSAII	. 84	PRL 52 2126	R.M. Baltrusaitis et al.	(CIT, UCSC+) JP (SLAC, CIT)
	03 80B	ARNS 33 143 DRI 45 1146	T.M. Himol at al	(SLAC, CIT)
PARTRIDGE	80B	PRI 45 1150	R Partridge <i>et al</i>	(CIT HARV PRIN+)
				(,,,,)