NODE=M085

NODE=M085

X(1835)

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

OMITTED FROM SUMMARY TABLE

Could be a superposition of two states, one appearing as threshold enhancement in $p\overline{p}$ the other one with a lower mass at 1835 MeV. Coupled-channel analyses with more sophisticated model are needed.

X(1835) MASS							_	NODE=M085M		
VALUE	E (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT		NODE=M085M	
1831.	1831.8 ⁺ 4.0 OUR AVERAGE									
1832.	5± 3.	1± 2.5	21k	¹ ABLIKIM	24B	BES3	$J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$	I		
1825.	3± 2.	$^{+17.3}_{-2.4}$		² ABLIKIM	16J	BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$		OCCUR=2	
1844	\pm 9	$^{+16}_{-25}$		³ ABLIKIM	15⊤	BES3	$J/\psi ightarrow \gamma \kappa^0_S \kappa^0_S \eta$			
• • •	We de	o not us	e the follow	ving data for average	s, fits,	limits, e	etc. • • •			
1818	\pm 9	\pm 2.5	37k	⁴ ABLIKIM	24B	BES3	$J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$		OCCUR=2	
1839	±26	± 26 + 9.4		⁵ ABLIKIM	181	BES3	$J/\psi \rightarrow \gamma \gamma \phi(1020)$			
1909.	5 ± 15.9	9-27.5			101	BE23	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$			
1842.	2 ± 4.1	2^{+}_{-} 2.6	0.6k	⁷ ABLIKIM	130	BES3	$J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$			
1832	$^{+19}_{-5}$	± 26		⁸ ABLIKIM	12D	BES3	$J/\psi \rightarrow \gamma p \overline{p}$			
1836.	$5\pm$ 3.	$0^+ \begin{array}{c} 5.6\\ 2.1 \end{array}$	4265	⁹ ABLIKIM	11C	BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$			
1877.	3± 6.	$3^+_{-} \begin{array}{c} 3.4 \\ 7.4 \end{array}$		¹⁰ ABLIKIM	11J	BES3	$J/\psi \rightarrow \omega (\eta \pi^+ \pi^-)$			
1837	$^{+10}_{-12}$	$^{+}_{-}$ 9	231	^{11,12} ALEXANDER	10	CLEO	$J/\psi \rightarrow \gamma p \overline{p}$			
1833.	7± 6.	$1\pm$ 2.7	264	ABLIKIM	05 R	BES2	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$			
1831	± 7 ± 3	+ 5		^{12,13} ABLIKIM	05r	BES2	$J/\psi \rightarrow \gamma p \overline{p}$		OCCUR=2	
1859	-10	-25		¹² BAI	03F	BES2	$J/\psi \rightarrow \gamma p \overline{p}$			
includes known background contributions. A second solution of the fit gives 37k events. ² From a fit of the measured $\pi^+\pi^-\eta'$ lineshape that accounts for the abrupt distortion observed at the $p\bar{p}$ threshold through interference with a second previously unseen narrow resonance near 1870 MeV. The fit uses Breit-Wigner functions for the signal shapes and includes known backgrounds and contributors. ³ Decay dominated by $f_0(980)\eta$ hence $I^G(J^{PC}) = 0^+(0^{-+})$. ⁴ From a fit of the measured $3(\pi^+\pi^-)$ lineshape to a Flatte formula that accounts for the							s. on od od	NODE=M085M;LINKAGE=B NODE=M085M;LINKAGE=D NODE=M085M;LINKAGE=G		
al co 5 F	brupt d ontribu rom a f	istortion tions. fit to γd	i observed a	at the <i>pp</i> threshold. mass. Angular analys	I he fi is cons	t also in sistent w	cludes known backgrour v ith $J^{PC}=0^{-}+.$ Oth	er	NODE=M085M·LINKAGE=C	
$_{e}J^{PC}$ not excluded.										
^o Pole mass from a fit of the measured $\pi^+ \pi^- \eta'$ lineshape to a Flatte formula that accounts for the abrupt distortion observed at the $p\overline{p}$ threshold; the fit also includes known backgrounds and contributors, as well as an <i>ad hoc</i> Breit-Wigner function (M \approx 1919 MeV: $\Gamma \approx 51$ MeV) that is required for a good fit								NODE=M085M;LINKAGE=A		
⁷ Superseded by ABLIKIM 24B. ⁸ From the fit including final state interaction effects in isospin 0 <i>S</i> -wave according to SIBIRTSEV 05A. Supersedes ABLIKIM 10G.								I :0	NODE=M085M;LINKAGE=F NODE=M085M;LINKAGE=AK	
⁹ F	rom a f	it of the	$\pi^+\pi^-\eta'$	mass distribution to a	a coml	bination	of $\gamma f_1(1510)$, $\gamma X(1835)$),	NODE=M085M;LINKAGE=AI	
and two states $\gamma X(2120)$ and $\gamma \eta(2370)$, for $M(\pi^+\pi^-\eta') < 2.8$ GeV, and accounting for backgrounds from non- η' events and $1/\eta_1 \rightarrow \pi^0 \pi^+ \pi^- \eta'$										
¹⁰ The selected process is $J/\psi \rightarrow \omega a_0(980)\pi$ with $B(J/\psi \rightarrow \omega X \rightarrow \omega a_0(980)^{\pm}(\rightarrow \Box)$								\rightarrow	NODE=M085M:LINKAGE=BL	
$\eta \pi^{\pm} \pi^{\mp} = (1.50 \pm 0.26 + 0.72 - 0.36) \times 10^{-4}$. Not seen in $J/\psi(1S) \to \omega \kappa^{+} \kappa^{-} \eta$ by								ру	,	
A to	ABLIKIM 24BQ with 90% CL upper limit of 9.55×10^{-7} . This state may be also due to $n_2(1870)$ or to a combination of $X(1835)$ and $n_2(1870)$.									
¹¹ From a fit of the $p\bar{p}$ mass distribution to a combination of $\gamma X(1835)$, γR with $M(R)$ = 2100 MeV and $\Gamma(R) = 160$ MeV, and $\gamma p\bar{p}$ phase space, for $M(p\bar{p}) < 2.85$ GeV.							?)	NODE=M085M;LINKAGE=AE		
¹² E A <i>p</i>	¹² Evidence for a threshold enhancement in the $p\overline{p}$ mass spectrum was also reported by ABE 02K, AUBERT, B 05L, and WANG 05A in $B^+ \rightarrow p\overline{p}K^+$, WANG 05A in $B^0 \rightarrow p\overline{p}K_S^0$, ABE 02W in $\overline{B}^0 \rightarrow p\overline{p}D^0$, DEL-AMO-SANCHEZ 12 in $B \rightarrow D(D^*)p\overline{p}(\pi)$, and WEI 08 in $B^+ \rightarrow p\overline{p}\pi^+$ decays. Not seen by ATHAR 06 in $\Upsilon(15) \rightarrow p\overline{p}\gamma$.									

Page 1

NODE=M085M;LINKAGE=AB

 $^{13}\mathrm{From}$ the fit including final state interaction effects in isospin 0 S-wave according to SIBIRTSEV 05A. Systematic errors not estimated.

X(1835) WIDTH

VALUE (MeV)	CL% EVTS	DOCUMENT ID		TECN	COMMENT	NODE=M085W	
120 ±70 OUR A	ERAGE E	rror includes scale fact	tor of	8.8.			
$80.7\pm~5.2\pm~7.7$	21k	¹ ABLIKIM	24B	BES3	$J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$		
$245.2 \pm 13.1 + 4.6 \\ - 9.6$		² ABLIKIM	16J	BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$	OCCUR=2	
$192 \begin{array}{r} +20 \\ -17 \end{array} \begin{array}{r} +62 \\ -43 \end{array}$		³ ABLIKIM	15⊤	BES3	$J/\psi \rightarrow \ \gamma K^0_S K^0_S \eta$		
• • • We do not use	e the followin	g data for averages, f	its, lin	nits, etc	. • • •		
175 ± 57 ± 25		⁴ ABLIKIM	181	BES3	$J/\psi ightarrow \gamma \gamma \phi$ (1020)		
$273.5 \pm 21.4 \substack{+ & 6.1 \\ - & 64.0 }$		⁵ ABLIKIM	16J	BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$		
$83 \pm 14 \pm 11$	0.6k	⁶ ABLIKIM	13 U	BES3	$J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$		
< 76	90	⁷ ABLIKIM	12D	BES3	$J/\psi ightarrow \gamma p \overline{p}$		
190 \pm 9 $^{+38}_{-36}$	4265	⁸ ABLIKIM	11C	BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$		
$57 \pm 12 + 19 - 4$		⁹ ABLIKIM	11J	BES3	$J/\psi ightarrow \omega (\eta \pi^+ \pi^-)$		
0 + 44 - 0	231	$^{10,11} \rm ALEXANDER$	10	CLEO	$J/\psi \rightarrow \gamma p \overline{p}$		
$67.7 \pm 20.3 \pm$ 7.7	264	ABLIKIM	05 R	BES2	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$		
< 153	90	11,12 ABLIKIM	05R	BES2	$J/\psi \rightarrow \gamma p \overline{p}$	OCCUR=2	
< 30		¹¹ BAI	03F	BES2	$J/\psi \rightarrow \gamma p \overline{p}$		
¹ From a fit of the measured $3(\pi^+\pi^-)$ lineshape that accounts for the abrupt distortion observed at the $p\bar{p}$ threshold through interference with a second previously unseen narrow NODE=M085W;LINK/							

resonance near 1880 MeV. The fit uses Breit-Wigner functions for the signal shapes and includes known background contributions. A second solution of the fit gives 37k events.

 $^2\,{\sf From}$ a fit of the measured $\pi^+\,\pi^-\,\eta'$ lineshape that accounts for the abrupt distortion observed at the $p\overline{p}$ threshold through interference with a second previously unseen narrow resonance near 1870 MeV. The fit uses Breit-Wigner functions for the signal shapes and includes known backgrounds and contributors. ³ Decay dominated by $f_0(980)\eta$ hence $I^G(J^{PC}) = 0^+(0^{-+})$.

⁴ From a fit to $\gamma \phi$ invariant mass. Angular analysis consistent with $J^{PC} = 0^{-+}$. Other J^{PC} not excluded.

⁵ Pole width from a fit of the measured $\pi^+\pi^-\eta'$ lineshape to a Flatte formula that accounts for the abrupt distortion observed at the $p\overline{p}$ threshold; the fit also includes known backgrounds and contributors, as well as an *ad hoc* Breit-Wigner function (M pprox1919 MeV; $\Gamma~\approx~51$ MeV) that is required for a good fit.

⁶Superseded by ABLIKIM 24B.

- ⁷ From the fit including final state interaction effects in isospin 0 S-wave according to SIBIRTSEV 05A. Supersedes ABLIKIM 10G.
- 8 From a fit of the $\pi^+\pi^-\eta'$ mass distribution to a combination of $\gamma f_1(1510), \, \gamma X(1835),$ and two states $\gamma X(2120)$ and $\gamma \eta(2370)$, for $M(\pi^+ \pi^- \eta') < 2.8$ GeV,and accounting for backgrounds from non- η' events and $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$.
- ⁹ The selected process is $J/\psi \rightarrow \omega a_0(980)\pi$ with $B(J/\psi \rightarrow \omega X \rightarrow \omega a_0(980)^{\pm}(\rightarrow \omega X) \rightarrow \omega a_0(980)^{\pm}$ $\eta \pi^{\pm} \pi^{\mp} = (1.50 \pm 0.26 + 0.72) \times 10^{-4}$. Not seen in $J/\psi(1S) \rightarrow \omega K^+ K^- \eta$ by ABLIKIM 24BQ with 90% CL upper limit of 9.55 \times 10 $^{-7}.$ This state may be also due to $\eta_2(1870)$ or to a combination of X(1835) and $\eta_2(1870)$.
- ¹⁰ From a fit of the $p\overline{p}$ mass distribution to a combination of $\gamma X(1835)$, γR with M(R)= 2100 MeV and $\Gamma(R) = 160$ MeV, and $\gamma p \overline{p}$ phase space, for $M(p \overline{p}) < 2.85$ GeV.
- $^{11}\,{\sf Evidence}$ for a threshold enhancement in the $p\,\overline{p}$ mass spectrum was also reported by ABE 02K, AUBERT, B 05L, and WANG 05A in $B^+ \rightarrow p\overline{p}K^+$, WANG 05A in $B^0 \rightarrow p\overline{p}K_S^0$, ABE 02W in $\overline{B}^0 \rightarrow p\overline{p}D^0$, DEL-AMO-SANCHEZ 12 in $B \rightarrow D(D^*)p\overline{p}(\pi)$,

and WEI 08 in $B^+
ightarrow \ p \, \overline{p} \, \pi^+$ decays. Not seen by ATHAR 06 in $\Upsilon(1S)
ightarrow \ p \, \overline{p} \, \gamma$. $^{12}\,\mathrm{From}$ the fit including final state interaction effects in isospin 0 S-wave according to SIBIRTSEV 05A. Systematic errors not estimated.

X(1835) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Г1	pp	seen	DESIG=1;OUR EVA
Γ2	$\eta' \pi^+ \pi^-$	seen	DESIG=2
Γ3	$\gamma\gamma$	not seen	DESIG=4;OUR EST
Γ ₄	$K^0_S K^0_S \eta$	seen	DESIG=5;OUR EVA
Γ ₅	$\gamma \phi(1020)$	possibly seen	DESIG=6
Г ₆	$3(\pi^+\pi^-)$	seen	DESIG=7

NODE=M085W

AGE=E

NODE=M085W;LINKAGE=B

NODE=M085W;LINKAGE=D NODE=M085W;LINKAGE=C

NODE=M085W;LINKAGE=A

NODE=M085W:LINKAGE=F NODE=M085W;LINKAGE=AK

NODE=M085W;LINKAGE=AI

NODE=M085W;LINKAGE=BL

NODE=M085W;LINKAGE=AE

NODE=M085W;LINKAGE=HF

NODE=M085W;LINKAGE=AB

NODE=M085215;NODE=M085

 $L; \rightarrow UNCHECKED \leftarrow$ $; \rightarrow \mathsf{UNCHECKED} \leftarrow$ $L; \rightarrow UNCHECKED \leftarrow$

NODE=M085G01;LINKAGE=ZH NODE=M085G01;LINKAGE=ZA

NODE=M085225

NODE=M085G01 NODE=M085G01

NODE=M085220

NODE=M085R01 NODE=M085R01

NODE=M085R00 NODE=M085R00

NODE=M085R03 NODE=M085R03

NODE=M085R04 NODE=M085R04

NODE=M085R05 NODE=M085R05

NODE=M085R06 NODE=M085R06

NODE=M085R00;LINKAGE=A

NODE=M085R03;LINKAGE=A

NODE=M085R04;LINKAGE=A

NODE=M085R05;LINKAGE=A

OCCUR=2

$Y(1925) \Gamma(1)\Gamma(a,a)/\Gamma(total)$

events. ²Superseded by ABLIKIM 24B.

	X(1	1835) I (i)I ($(\gamma\gamma)/I$ (to	otal)		
$\Gamma(\eta'\pi^+\pi^-)$ × Γ	$(\gamma \gamma) / \Gamma_{\text{tota}}$	d.				$\Gamma_2\Gamma_3/\Gamma$
VALUE (eV)	<u>CL%</u>	DOCUMENT ID	TEC	<u>N _CON</u>	IMENT	
• • • We do not us	e the followin	ng data for ave	erages, fits,	limits, (etc. • • •	
<35.6	90 1 7	ZHANG	12A BEL	L e ⁺	$e^- ightarrow e^+ e^-$	$\eta' \pi^+ \pi^-$
<83	90 ² 7	ZHANG	12A BEL	.L e ⁺	$e^- ightarrow e^+ e^-$	$\eta' \pi^+ \pi^-$
¹ From a two-resc significance of 2	mance fit and .8 σ .	l constructive	interferenc	e of the	$\eta(1760)$ and	X(1835), a
² From a two-reso significance of 2	onance fit and .8 σ .	d destructive	interference	e of the	$\eta(1760)$ and	X(1835), a
	X(18	35) BRANC	HING RA	TIOS		
$\Gamma(p\overline{p})/\Gamma(\eta'\pi^+\pi)$	-)					Γ_1/Γ_2
ALUE		DOCUMEN	IT ID	<u>TECN</u>	COMMENT	
• • We do not us	e the followin	ig data for ave	erages, fits,	limits, o	etc. • • •	
.333		ABLIKIM	05R	BES2	$J/\psi \rightarrow \gamma \pi^2$	$+\pi^{-}\eta^{\prime}$
$(n'\pi^+\pi^-)/\Gamma(k)$	$\binom{0}{2} \binom{K_{0}}{n}$					
(1 , n)) (1) /ALUE	5.5.5.1)	DOCUMEN	IT ID	TECN	COMMENT	• 2/ • 4
• • We do not us	e the followin	ig data for ave	erages, fits,	limits,	etc. • • •	
5.7 ± 1.8			15T	BES3	$I/\psi \rightarrow \gamma K$	${}^{0}\kappa^{0}n$
1 Using results for			10.	2200	5/4 / /	5.5.7
Using results fro		U5R.				
$\left(\eta'\pi^{+}\pi^{-}\right)/\Gamma_{\rm tot}$	al					Γ_2/Γ
ALUE		DOCUMEN	IT ID	TECN	COMMENT	
een		¹ ABLIKIM	16J	BES3	$J/\psi \rightarrow \gamma \pi^2$	$+\pi^{-}\eta^{\prime}$
abrupt distortion backgrounds and 51 MeV) that is by ABLIKIM 16. fits to this possil within the respe	observed at t contributors required for is that a seco pility yield pro	the $p\overline{p}$ thresho , as well as an a good fit. Ar ond resonance oduct branchin tic uncertaint	old with a F ad hoc Bre nother expla- e near 1870 ng fraction v	latte for it-Wign anation MeV int values co	mula in addition of $(M \approx 1919)$ for the distort corferes with the the second	on to known MeV; $\Gamma \approx$ ion provided he X(1835); that shown
(ad(1020))/F.						Г- /Г
$(\gamma \varphi (1020))/1$ to	otal	DOCUMEN	ח דו	TECN	COMMENT	15/1
ossibly seen		¹ ABLIKIM	181	BES3	$\frac{U}{J/\psi} \rightarrow \gamma \gamma$	<i>φ</i> (1020)
¹ Seen as a peak Other J ^{PC} not	in $\gamma\phi$ invaria excluded.	nt mass. Ang	gular analys	is consis	stent with J^{P_0}	$C = 0^{-+}$
$\Gamma(\gamma\gamma)/\Gamma(\eta'\pi^+\pi)$	-)					Γ_3/Γ_2
/ALUE	<u>CL%</u>	DOCUMEN	IT ID	TECN	COMMENT	
<9.80 × 10 ⁼³ ¹ Using results fro	90 m ABLIKIM	¹ ABLIKIM	180	BES3	$\psi(2S) \rightarrow \pi$	$+\pi^-\gamma\gamma\gamma$
$(3(\pi^{+}\pi^{-}))/\Gamma$		2001				
/ALUE	EVTS	DOCUMEN	IT ID	TECN	COMMENT	10/1
ieen	<u>21k</u>	¹ ABLIKIM	24R	BES3	$J/\psi \rightarrow \gamma 30$	$(\pi^+\pi^-)$
• • We do not us	e the followin	ig data for ave	erages, fits,	limits,	etc. ● ● ●	
seen	0.6k	² ABI IKIM	- 130	BES3	$J/\psi \rightarrow \gamma 30$	$(\pi^{+}\pi^{-})$
1 ARI IKIM DAR -		V(102	5)) v D(V	(1025)	$(\pi^{+}\pi^{-})$	(110 + (110) + (110 + (110 + (110 + (110 + (110 + (110 + (110 +
- ABLINIVI 24B q 0.30 \pm 0.15) \times 1 destructive inter	$100000 \text{ B}(J/\psi)$ 10^{-5} for const ference from a	$\gamma \rightarrow \gamma \Lambda (1835)$ structive interfaction of the me	ference and $3(\pi)$	$(1835) - (2.07 \pm \pi^{-})$ li	\rightarrow 3(π ' π) = 0.50 ± 0.36) neshape that	$y = (1.19 \pm 10^{-5} \text{ for}$

the abrupt distortion observed at the $p\overline{p}$ threshold through interference with a second narrow resonance near 1880 MeV. The solution for destructive interference gives 37k

NODE=M085R06;LINKAGE=B

I

NODE=M085R06;LINKAGE=A

NODE=M085

X(1835) REFERENCES

ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ALEXANDER WEI ATHAR ABLIKIM AUBERT,B SIBIRTSEV WANG BAI ABE	24B 24BQ 18I 18O 16J 15T 13U 12D 12 11J 10G 10 08 06 05R 05A 05A 05A 05A 03F 02K 02W	PRL 132 151901 PR D110 052005 PR D97 051101 PR D97 072014 PRL 117 042002 PRL 115 091803 PR D88 091502 PRL 108 112003 PR D85 092017 PR D86 052002 PRL 106 072002 PRL 107 182001 CP C34 421 PR D82 092002 PL B659 80 PR D73 032001 PRL 95 262001 PR D71 054010 PR D71 054010 PL B617 141 PRL 91 022001 PRL 88 181803 PRL 89 151802	 M. Ablikim et al. P. del Amo Sanchez et al. C.C. Zhang et al. M. Ablikim et al. M. Ablikim et al. M. Ablikim et al. J.P. Alexander et al. J.P. Alexander et al. J.B. Athar et al. B. Aubert et al. B. Aubert et al. M. Z. Wang et al. J.Z. Bai et al. K. Abe et al. 	(BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (BESIII (CLEO (CLEO (BELLE (BABAR (BELLE (BELLE (BELLE	Collab.) Collab.)	REFID=62651 REFID=63020 REFID=58893 REFID=58925 REFID=57454 REFID=57454 REFID=55825 REFID=54269 REFID=54268 REFID=54268 REFID=53685 REFID=53685 REFID=53685 REFID=55685 REFID=50983 REFID=50983 REFID=50983 REFID=50081 REFID=50081 REFID=500827 REFID=50651 REFID=49473 REFID=48690 REFID=48690 REFID=48690
--	---	--	--	--	--	--