NODE=M120

 $I(J^P) = \frac{1}{2}(?^{?})$ I needs confirmation.

OMITTED FROM SUMMARY TABLE Seen in $D^*(2007)^0 \pi^+$. $J^P = 0^+$ ruled out.

$D_1(2420)^{\pm}$ MASS

$\frac{\textit{VALUE}~(MeV)}{\textbf{2425.3} \pm \textbf{1.5}}$ $[2423.2 \pm 2.5]$	OUR AVE	<u>EVTS</u> ERAGE Er JR 2020 AV	<u>DOCUMENT ID</u> ror includes scale /ERAGE Scale fa	e factor	<u>TECN</u> or of 1.4 = 1.5]	<u>COMMENT</u> . See the ideogram below.
2427.2 ± 1.0	± 1.2	4207	ABLIKIM	20P	BES3	$e^+e^- \rightarrow D^+D^-\pi^+\pi^-$
2421.9 ± 4.7	+3.4 - 1.2	759 ¹	ABRAMOWICZ	213	ZEUS	$e^{\pm} p \rightarrow D^{(*)0} \pi^+ X$
2421 ± 2	± 1	124	ABE	05A	BELL	$\overline{B}^0 \rightarrow D^+ \pi^+ \pi^- \pi^-$
2425 ± 2	± 2	146	BERGFELD	94 B	CLE2	$e^+e^- ightarrow D^{*0}\pi^+X$
2443 ± 7	± 5	190	ANJOS	89C	TPS	$\gamma N \rightarrow D^0 \pi^+ X^0$

¹From the fit of the $M(D^0 \pi^+)$ distribution. The widths of the D_1^+ and D_2^{*+} are fixed to 25 MeV and 37 MeV, and A_{D_1} and A_{D_2} are fixed to the theoretical predictions of 3 and -1, respectively.

NODE=M120M;LINKAGE=AB

 $m_{D_1^*(2420)^{\pm}} - m_{D_1^*(2420)^0}$

NODE=M	1120DM
--------	--------

NODE=M120DM

VALUE (MeV)DOCUMENT ID4+2
-3±3BERGFELD

 $D_1(2420)^{\pm}$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT	NODE
23.7± 2.9 OUI [25 ± 6 MeV O	R AVERAGE UR 2020 AVERAG	GE]				NEW
$23.2\pm~2.3\pm2.3$	3 4207	ABLIKIM	20P	BES3	$e^+e^- \rightarrow D^+D^-\pi^+\pi^-$	
$21 ~\pm~ 5 ~\pm 8$	124	ABE	05A	BELL	$\overline{B}^0 \rightarrow D^+ \pi^+ \pi^- \pi^-$	
$26 \begin{array}{c} + 8 \\ - 7 \end{array} \pm 4$	146	BERGFELD	94 B	CLE2	$e^+ e^- \rightarrow D^{*0} \pi^+ X$	
$41 \hspace{0.1in} \pm 19 \hspace{0.1in} \pm 8$	190	ANJOS	89C	TPS	$\gamma N \rightarrow D^0 \pi^+ X^0$	

TECN COMMENT

94B CLE2 $e^+e^- \rightarrow$ hadrons

NODE=M120W

NODE=M120W NEW

NODE=M120

NODE=M120M

NEW

NODE=M120215;NODE=M120

$D_1(2420)^{\pm}$ DECAY MODES

 $D_1^*(2420)^-$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
Γ_1	$D^{*}(2007)^{0}\pi^{+}$	seen
Γ2	$D^+\pi^+\pi^-$	seen
Γ3	$D^+ ho^0$	
Γ ₄	$D^+ f_0(500)$	
Γ ₅	$D_0^*(2300)^0 \pi^+$	
Γ_6	$D^0 \pi^+$	not seen
Γ ₇	$D^{*+}\pi^+\pi^-$	not seen

$D_1(2420)^{\pm}$ BRANCHING RATIOS

$\Gamma(D^*(2007)^0\pi^+)/\Gamma_{tc}$	otal				Γ ₁ /Γ	
VALUE		DOCUMENT ID		TECN	COMMENT	-
seen		ANJOS	89C	TPS	$\gamma N \rightarrow D^0 \pi^+ X^0$	
$\Gamma(D^0\pi^+)/\Gamma(D^*(2007)^0\pi^+)$ Γ_6/Γ_1						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	-
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet						
<0.18	90	BERGFELD	94 B	CLE2	$e^+e^- ightarrow$ hadrons	

$D_1(2420)^{\pm}$ POLARIZATION AMPLITUDE A_{D1}

A polarization amplitude ${\rm A}_{D_1}$ is a parameter that depends on the initial polarization of the D_1 and is sensitive to a possible S-wave contribution to its decay. For D_1 decays the helicity angle, θ_h , distribution varies like $1 + \mathsf{A}_{D_1} \mathsf{cos}^2 heta_h$, where $heta_h$ is the angle in the D^* rest frame between the two pions emitted by the $D_1 \rightarrow D^* \pi$ and the $D^* \rightarrow D \pi$.

Unpolarized D_1 decaying purely via D-wave is predicted to give $A_{D_1} = 3$.

VALUE	DOCUMENT ID	TECN COMMENT		NODE=M120PAH
\bullet \bullet We do not use the following	data for averages, fit	, limits, etc. • • •		
$3.8 {\pm} 0.6 {\pm} 0.8$	² AUBERT 09	BABR $B^0 \rightarrow D$	$\frac{1}{1}\ell^+ \nu_\ell$	
2 Assuming $\Gamma(\Upsilon(4S) ightarrow B^+B^+$ partial widths and helicity angle	$^-)$ / $\Gamma(arTau(4S) ightarrow E$ e distributions for cha	$(\overline{B}{}^0\overline{B}{}^0)=1.065\pm 0.000$ rged and neutral D_1	026 and equal mesons.	NODE=M120PAH;LINKAGE=A

$D_1(2420)^{\pm}$ REFERENCES

ABLIKIM	20P	PL B804 135395	M. Ablikim <i>et al.</i>	(BESIII Collab.)	REFID=60395
ABRAMOWICZ	13	NP B866 229	H. Abramowicz <i>et al.</i>	(ZEUS Collab.)	REFID=54743
AUBERT	09Y	PRL 103 051803	B. Aubert <i>et al.</i>	(BABAR Collab.)	REFID=52929
ABE	05A	PRL 94 221805	K. Abe <i>et al.</i>	(BELLE Collab.)	REFID=50755
BERGFELD	94B	PL B340 194	T. Bergfeld <i>et al.</i>	(CLEO Collab.)	REFID=44099
ANJOS	89C	PRL 62 1717	J.C. Anjos <i>et al.</i>	(FNAL E691 Collab.)	REFID=40737

NODE=M120

```
DESIG=1
DESIG=3;OUR EST; \rightarrow UNCHECKED \leftarrow
DESIG=4
DESIG=5
DESIG=6
\mathsf{DESIG}{=}2; \mathsf{OUR} \ \mathsf{EVAL}; \rightarrow \mathsf{UNCHECKED} \leftarrow
DESIG=7;OUR EST; \rightarrow UNCHECKED \leftarrow
```

NODE=M120220

NODE=M120R1 NODE=M120R1

NODE=M120R2 NODE=M120R2

NODE=M120PAH

NODE=M120PAH

NODE=M120

AU