\[I(J^P) = ?(??) \]

OMITTED FROM SUMMARY TABLE

Observed by MIZUK 08 in the \(\pi^+ \chi_{c1}(1P) \) invariant mass distribution in \(B^0 \to K^- \pi^+ \chi_{c1}(1P) \) decays. Not seen by LEES 12 in this same mode after accounting for \(K \pi \) resonant mass and angular structure.

\(X(4250)^\pm \) MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4248 (\pm 44 \pm 180) (-29 \pm 35)</td>
<td>1 MIZUK 08</td>
<td>BELL</td>
<td>(B^0 \to K^- \pi^+ \chi_{c1}(1P))</td>
</tr>
</tbody>
</table>

1 From a Dalitz plot analysis with two Breit-Wigner amplitudes.

\(X(4250)^\pm \) WIDTH

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>177 (\pm 54 \pm 316) (-30 \pm 61)</td>
<td>2 MIZUK 08</td>
<td>BELL</td>
<td>(B^0 \to K^- \pi^+ \chi_{c1}(1P))</td>
</tr>
</tbody>
</table>

2 From a Dalitz plot analysis with two Breit-Wigner amplitudes.

\(X(4250)^\pm \) DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1) (\pi^+ \chi_{c1}(1P))</td>
<td>seen</td>
</tr>
</tbody>
</table>

\(X(4250)^\pm \) BRANCHING RATIOS

<table>
<thead>
<tr>
<th>(\Gamma(\pi^+ \chi_{c1}(1P))/\Gamma_{\text{total}})</th>
<th>(\Gamma_1/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>seen (\cdots \cdots) We do not use the following data for averages, fits, limits, etc. (\cdots \cdots)</td>
<td>(\cdots \cdots)</td>
</tr>
<tr>
<td>not seen (\cdots \cdots)</td>
<td>(\cdots \cdots)</td>
</tr>
</tbody>
</table>

3 With a product branching fraction measurement of \(B(B^0 \to K^- \chi_{c1}(4250)^+ \times B(X(4250)^+ \to \pi^+ \chi_{c1}(1P)) = (4.9 \pm 2.3 \pm 19.7 \pm 0.9 \pm 9.5) \times 10^{-5} \).

4 With a product branching fraction limit of \(B(B^0 \to X(4250)^+ K^-) \times B(X(4250)^+ \to \chi_{c1}(1P) < 4.0 \times 10^{-5} \) at 90% CL.

\(X(4250)^\pm \) REFERENCES

| LEES 12B | PR D85 052003 | J.P. Lees et al. | (BABAR Collab.) |
| MIZUK 08 | PR D78 072004 | R. Mizuk et al. | (BELLE Collab.) |

REFID=54042
REFID=52535