3/18/2024 16:16

Page 1

NODE=Q007

NODE=Q007

 $I(J^P) = 0(\frac{1}{2}^+)$ Charge = $\frac{2}{3} e$

See the related review(s):

Top Quark

t-QUARK MASS

 $\mathsf{Top} = +1$

We first list the direct measurements of the top quark mass which employ the event kinematics and then list the measurements which extract a top quark mass from the measured $t\bar{t}$ cross-section using theory calculations. A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."

For earlier search limits see PDG 96, Physical Review **D54** 1 (1996). We no longer include a compilation of indirect top mass determinations from Standard Model Electroweak fits in the Listings (our last compilation can be found in the Listings of the 2007 partial update). For a discussion of current results see the reviews "The Top Quark" and "Electroweak Model and Constraints on New Physics."

t-Quark Mass (Direct Measurements)

The following measurements extract a *t*-quark mass from the kinematics of $t\bar{t}$ events. They are sensitive to the top quark mass used in the MC generator that is usually interpreted as the pole mass, but the theoretical uncertainty in this interpretation is hard to quantify. See the review "The Top Quark" and references therein for more information.

OUR AVERAGE of 172.57 \pm 0.29 GeV is an average of top mass measurements from LHC and Tevatron Runs. The latest Tevatron average, 174.30 \pm 0.35 \pm 0.54 GeV, was provided by the Tevatron Electroweak Working Group (TEVEWWG).

172.57 ± 0.29 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram	
	V
below. $[172.69 \pm 0.30 \text{ GeV OUR } 2023 \text{ AVERAGE Scale factor} = 1.3]$ 174.41+ 0.39+ 0.71 ¹ AAD 23N ATLS leptonic invariant mass in	
$174.41 \pm 0.39 \pm 0.71$ ¹ AAD 23N ATLS leptonic invariant mass in ℓ +jets channel	
171.77 \pm 0.37 ² TUMASYAN 23BB CMS ℓ + \geq 4j (2b)	
$173.06 \pm 0.24 \pm 0.80$ ³ TUMASYAN 23Z CMS boosted top; ℓ +jets channel	
172.13 ⁺ 0.76 ⁴ TUMASYAN 21G CMS <i>t</i> -channel single top production	
172.6 \pm 2.5 ⁵ SIRUNYAN 20AR CMS jet mass from boosted top	
	CUR=2
172.34 \pm 0.20 \pm 0.70 $^{\prime}$ SIRUNYAN 19AP CMS \geq 6 jets (\geq 2 <i>b</i>)	
172.33 \pm 0.14 $^+$ 0.66 8 SIRUNYAN 19AR CMS dilepton channel (e μ , 2e, 2 μ)	
	CUR=4
$174.30\pm$ $0.35\pm$ 0.54 10 TEVEWWG 16 TEVA Tevatron combination	
● ● We do not use the following data for averages, fits, limits, etc. ● ●	
172.08 \pm 0.39 \pm 0.82 $\stackrel{11}{}$ AABOUD 19AC ATLS ℓ + \geq 4j (2 <i>b</i>)	
	CUR=2
172.25 \pm 0.08 \pm 0.62 $\stackrel{13}{}$ SIRUNYAN 18DE CMS ℓ + \geq 4j (2 <i>b</i>)	
$173.72 \pm 0.55 \pm 1.01$ 14 AABOUD 17AH ATLS \geq 5 jets (2b)	
174.95 \pm 0.40 \pm 0.64 $$ 15 ABAZOV 17B D0 $$ ℓ + jets and dilepton channels	
$172.95\pm~0.77{+}~0.97_{-}~0.93$ 16 SIRUNYAN 17L CMS t -channel single top production	
170.8 \pm 9.0 ¹⁷ SIRUNYAN 17N CMS jet mass in highly-boosted $t \overline{t}$ events	
172.22 \pm 0.18 $^+$ $\stackrel{0.89}{-}$ $\stackrel{18}{}$ SIRUNYAN 170 CMS Dilepton channel	
172.99 \pm 0.41 \pm 0.74 19 AABOUD 16T ATLS dilepton channel	
	CUR=2
173.32 \pm 1.36 \pm 0.85 $\stackrel{21}{}$ ABAZOV 16 D0 $\ell\ell+E_T+\geq$ 2j (\geq 2b)	
173.93 \pm 1.61 \pm 0.88 $\stackrel{22}{}_{\sim}$ ABAZOV 16D D0 $\ell\ell\ell+E_T$ + \geq 2j (\geq 2b)	
172.35 \pm 0.16 \pm 0.48 23,24 КНАСНАТКҮ16АК СМЅ ℓ + \geq 4j (2b)	
$172.32 \pm 0.25 \pm 0.59 \ {}^{23,24}$ KHACHATRY16AK CMS \geq 6 jets (2b) OCC	CUR=2

NODE=Q007210

NODE=Q007210

NODE=Q007TP NODE=Q007TP

172.82± 0.19± 1.22 ^{23,25} KHACHATRY...16AK CMS $173.68 \pm \ 0.20 {+}{-} \ \begin{array}{c} 1.58 \\ 0.97 \end{array}$ ²⁶ KHACHATRY...16AL CMS semi- + di-leptonic channels 27 KHACHATRY...16CB CMS $173.5~\pm~3.0~\pm~0.9$ $t \rightarrow (W \rightarrow \ell \nu)(b \rightarrow$ $J/\psi X \rightarrow \mu^+ \mu^- X$ ²⁸ AAD $175.1~\pm~1.4~\pm~1.2$ 15AW ATLS ²⁹ AAD $172.99 \pm \ 0.48 \pm \ 0.78$ 15BF ATLS ℓ + jets and dilepton ³⁰ AALTONEN 171.5 \pm 1.9 \pm 2.5 15D CDF $\ell \ell + \not\!\!E_T + \ge 2j$ $175.07 \pm \ 1.19 {+}{-} \ 1.55 \\ - \ 1.58$ ³¹ AALTONEN 14N CDF $174.98 \pm 0.58 \pm 0.49$ ³² ABAZOV 14C D0 $\ell + \not\!\!\! E_T + 4$ jets (≥ 1 *b*-tag) 33 CHATRCHYAN 14C CMS $173.49 \pm 0.69 \pm 1.21$ \geq 6 jets (\geq 2 *b*-tag) ³⁴ AALTONEN $173.93 \pm 1.64 \pm 0.87$ 13H CDF 173.9 \pm 0.9 $\stackrel{+}{_{-}}$ 1.7 _{-} 2.1 35 CHATRCHYAN 13s CMS ³⁶ AAD $174.5 \pm 0.6 \pm 2.3$ $\ell{+}{
ot\!\!\!\!/}_T{+}\geq$ 4 jets (\geq 1 *b*), MT 121 ATLS ³⁷ AALTONEN 12AI CDF $172.85 \pm \ 0.71 \pm \ 0.85$ ³⁸ AALTONEN 172.7 \pm 9.3 \pm 3.7 12AL CDF ³⁹ AALTONEN $173.18\pm~0.56\pm~0.75$ 12AP TEVA CDF, D0 combination ⁴⁰ AALTONEN 12G CDF $172.5 \pm 1.4 \pm 1.5$ 6–8 jets with $\geq 1 b$ ⁴¹ ABAZOV $173.7 ~\pm~ 2.8 ~\pm~ 1.5$ 12AB D0 ⁴² ABAZOV 12AB D0 OCCUR=2 $173.9~\pm~1.9~\pm~1.6$ ⁴³ CHATRCHYAN 12BA CMS $172.5~\pm~0.4~\pm~1.5$ 44 CHATRCHYAN 12BP CMS $173.49 \pm \ 0.43 \pm \ 0.98$ ⁴⁵ AALTONEN 172.4 \pm 1.4 \pm 1.3 11AC CDF ⁴⁶ AALTONEN 11AK CDF 172.3 \pm 2.4 \pm 1.0 Repl. by AALTONEN 13H 47 AALTONEN 11E CDF $172.1~\pm~1.1~\pm~0.9$ ℓ + jets and dilepton ⁴⁸ AALTONEN $176.9 \pm 8.0 \pm 2.7$ 11T CDF $p_T(\ell)$ shape ⁴⁹ ABAZOV $174.94 \pm \ 0.83 \pm \ 1.24$ 11P D0 ⁵⁰ ABAZOV $174.0~\pm~1.8~\pm~2.4$ 11R D0 ⁵¹ CHATRCHYAN 11F CMS 175.5 \pm 4.6 \pm 4.6 dilepton + $\not\!\!E_T$ + jets ⁵² AALTONEN $173.0~\pm~0.9~\pm~0.9$ 10AE CDF ME method ⁵³ AALTONEN 10C CDF 169.3 \pm 2.7 \pm 3.2 dilepton + b-tag (MT2+NWA) ⁵⁴ AALTONEN $170.7~\pm~6.3~\pm~2.6$ 10D CDF $\ell + \not\!\!E_T + 4$ jets (*b*-tag) $174.8 \pm 2.4 + 1.2 \\ - 1.0$ ⁵⁵ AALTONEN 10E CDF > 6 jets, vtx *b*-tag 10 ⁵⁶ AALTONEN $180.5 \pm 12.0 \pm 3.6$ 09AK CDF 57 AALTONEN 09J CDF 172.7 \pm 1.8 \pm 1.2 $\ell + \not\!\! E_T + 4$ jets (*b*-tag) 171.1 \pm 3.7 \pm 2.1 ⁵⁸ AALTONEN 09K CDF 6 jets, vtx *b*-tag ⁵⁹ AALTONEN $171.9~\pm~1.7~\pm~1.1$ 09L CDF ℓ + jets, $\ell\ell$ + jets ⁶⁰ AALTONEN 171.2 \pm 2.7 \pm 2.9 090 CDF dilepton $165.5 \ \begin{array}{c} + & 3.4 \\ - & 3.3 \end{array} \ \pm \ 3.1$ ⁶¹ AALTONEN 09X CDF 174.7 \pm 4.4 \pm 2.0 ⁶² ABAZOV 09AH D0 dilepton + b-tag (ν WT+MWT) 170.7 $\stackrel{+}{} \begin{array}{c} 4.2\\ -\end{array} \begin{array}{c} 3.9 \end{array} \pm \end{array} 3.5$ 63,64 AALTONEN 08C CDF dilepton, $\sigma_{t\overline{t}}$ constrained 65 ABAZOV $171.5~\pm~1.8~\pm~1.1$ 08AH D0 $\ell + \not\!\! E_T + 4$ jets 66,67 AALTONEN 177.1 \pm 4.9 \pm 4.7 07 CDF 6 jets with \geq 1 *b* vtx $172.3 \begin{array}{c} +10.8 \\ -9.6 \end{array} \pm 10.8$ 68 AALTONEN 07B CDF \geq 4 jets (*b*-tag) ⁶⁹ AALTONEN 174.0 \pm 2.2 \pm 4.8 07D CDF \geq 6 jets, vtx *b*-tag 70,71 AALTONEN 170.8 \pm 2.2 \pm 1.4 071 CDF lepton + jets (*b*-tag) 173.7 \pm 4.4 $\stackrel{+}{_{-}}$ 2.1 67,72 ABAZOV 07F D0 lepton + jets⁷³ ABAZOV $176.2 \pm 9.2 \pm 3.9$ 07W D0 dilepton (MWT) 73 ABAZOV $179.5~\pm~7.4~\pm~5.6$ 07W D0 dilepton (ν WT) OCCUR=2 71,74 ABULENCIA $164.5 ~\pm~ 3.9 ~\pm~ 3.9$ 07D CDF dilepton $180.7 \begin{array}{c} +15.5 \\ -13.4 \end{array}$ \pm 8.6 ⁷⁵ ABULENCIA 07J CDF lepton + jets $170.3 \ + \ 4.1 \ + \ 1.2 \ - \ 4.5 \ - \ 1.8$ ^{71,76} ABAZOV 060 D0 lepton + jets (b-tag) 173.2 $\stackrel{+}{} \begin{array}{c} 2.6\\ -\end{array} \begin{array}{c} 2.4\\ \pm\end{array} \begin{array}{c} 3.2 \end{array}$ 77,78 ABULENCIA 06D CDF lepton + jets $173.5 \ \begin{array}{c} + & 3.7 \\ - & 3.6 \end{array} \ \pm \ 1.3$ OCCUR=2 ^{64,77} ABULENCIA 06D CDF lepton + jets71,79 ABULENCIA 165.2 \pm 6.1 \pm 3.4 06G CDF dilepton 64,80 ABULENCIA $170.1~\pm~6.0~\pm~4.1$ 06V CDF dilepton ^{81,82} ABAZOV $178.5 \pm 13.7 \pm 7.7$ 05 D0 6 or more jets 180.1 \pm 3.6 \pm 3.9 ^{83,84} ABAZOV 04G D0 lepton + jets⁸⁵ AFFOLDER $176.1 \pm 5.1 \pm 5.3$ 01 CDF lepton + jets

OCCUR=3

NODE=Q007TP;LINKAGE=OB

NODE=Q007TP;LINKAGE=QB

NODE=Q007TP;LINKAGE=PB

NODE=Q007TP;LINKAGE=MB

NODE=Q007TP;LINKAGE=IB

NODE=Q007TP;LINKAGE=KB

NODE=Q007TP;LINKAGE=JB

NODE=Q007TP;LINKAGE=SA

NODE=Q007TP;LINKAGE=WA

NODE=Q007TP;LINKAGE=HB

NODE=Q007TP:LINKAGE=LB

NODE=Q007TP;LINKAGE=FB

			86 4 5 5 9 5 5 5	~ ~			
176.1	\pm 6.6		⁸⁶ AFFOLDER	01	CDF	dilepton, lepton+jets, all-jets	OCCUR=2
172.1	\pm 5.2	\pm 4.9	⁸⁷ АВВОТТ	99 G	D0	di-lepton, lepton+jets	
176.0	\pm 6.5		^{88,89} ABE	99 B	CDF	dilepton, lepton+jets, all-jets	
167.4	± 10.3	\pm 4.8	^{89,90} ABE	99 B	CDF	dilepton	OCCUR=2
168.4	± 12.3	\pm 3.6	⁸⁴ АВВОТТ	98 D	D0	dilepton	
173.3	\pm 5.6	\pm 5.5	^{84,91} ABBOTT	98F	D0	lepton + jets	
175.9	\pm 4.8	\pm 5.3	^{90,92} ABE	98E	CDF	lepton + jets	
161	± 17	± 10	⁹⁰ ABE	98F	CDF	dilepton	
172.1	\pm 5.2	\pm 4.9	⁹³ BHAT	98 B	RVUE	dilepton and lepton+jets	
173.8	\pm 5.0		⁹⁴ BHAT	98 B	RVUE	dilepton, lepton+jets, all-jets	OCCUR=2
173.3	\pm 5.6		⁸⁴ ABACHI	97E	D0	lepton + jets	
186	± 10	\pm 5.7	90,95 ABE	97 R	CDF	6 or more jets	
199	$^{+19}_{-21}$	± 22	ABACHI	95	D0	lepton + jets	
176	± 8	± 10	ABE	95F	CDF	lepton $+ b$ -jet	
174	± 10	$^{+13}_{-12}$	ABE	94E	CDF	lepton + <i>b</i> -jet	
1			1		_		

- ¹AAD 23N based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The second error is the sum of systematic (±0.66) and that from changing parton-shower gluon recoil scheme (±0.25) uncertainties. The distribution of the invariant mass $m_{\ell\mu}$ (ℓ from W and μ from *b*-hadron decay) is used, which is less sensitive to jet energy uncertainties and top production modelling.
- ²TUMASYAN 23BB based on 36.3 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. For each event, the mass is reconstructed from a kinematic fit of the decay products to a $t\bar{t}$ hypothesis. A profile likelihood method is applied using up to four observables per event.
- ³ TUMASYAN 23z based on 138 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. The second error is the sum of experimental (±0.61), model (±0.47), and theoretical (±0.23) uncertainties. The products of the hadronic decay of a top quark with $p_T > 400$ GeV, in the ℓ + jets channel of $t\bar{t}$, are reconstructed as a single jet. The top quark mass is determined from the normalized differential cross section measurement in the m_{jet} distribution.
- ⁴ TUMASYAN 21G based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Events are selected NODE=Q007TP;LINKAGE=NB by requiring $1\ell + 2jets(1b jet)$ final state.
- ⁵ SIRUNYAN 20AR based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The products of the hadronic decay of a top quark with $p_T > 400$ GeV, in the ℓ + jets channel of $t\bar{t}$ are reconstructed as a single jet. The top quark mass is determined from the normalized differential cross section measurement in the m_{jet} distribution.
- 6 AABOUD 19AC is an ATLAS combination of 7 and 8 TeV top-quark mass determination in the dilepton, lepton + jets, and all jets channels.
- ⁷ SIRUNYAN 19AP based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A kinematical fit is applied to each event assuming the signal event topology. m_t is determined simultaneously with a jet energy scale factor (JSF). The second error represents stat.+JSF. Modeling uncertainties are larger than in the measurements at $\sqrt{s} = 7$ and 8 TeV because of the use of new alternative color reconnection models.
- use of new alternative color reconnection models. ⁸SIRUNYAN 19AR based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Obtained from a simultaneous fit of the cross section and the top quark mass in the POWHEG simulation. The cross section is used also to extract the $\overline{\text{MS}}$ mass and the strong coupling constant for different PDF sets.
- ⁹ KHACHATRYAN 16AK based on 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Combination of the three top mass measurements in KHACHATRYAN 16AK and with the CMS results at $\sqrt{s} = 7$ TeV.
- 10 TEVEWWG 16 is the latest Tevatron average (July 2016) provided by the Tevatron Electroweak Working Group. It takes correlated uncertainties into account and has a χ^2 of 10.8 for 11 degrees of freedom.
- ¹¹AABOUD 19AC based on 20.2 fb⁻¹ in *pp* collisions at $\sqrt{s} = 8$ TeV. Uses optimized event selection to suppress less-well-reconstructed events and template fits to determine m_t together with a global jet energy scale factor and a relative *b*-to-light-jet energy scale factor.
- ¹² SIRUNYAN 19AP based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A combined measurement using the lepton+jets and all-jets channels through a single likelihood function. See SIRUNYAN 18DE.
- ¹³ SIRUNYAN 18DE based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. m_t is determined simultaneously with an overall jet energy scale factor constrained by the mass of the hadronically decayed *W*. Compared to the Run 1 analysis a more advanced treatment of modeling uncertainties are employed, in particular concerning color-reconnection models. Superseded by TUMASYAN 23BB.
- ¹⁴ AABOUD 17AH based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Uses template fits to the ratio of the masses of three-jets (from *t* candidate) and dijets (from *W* candidate), to suppress jet energy scale uncertainty. Large QCD background is modelled using a data-driven method.
- ¹⁵ ABAZOV 17B is a combination of measurements of the top quark mass by D0 in the lepton+jets and dilepton channels, using all data collected in Run I (1992–1996) at \sqrt{s} = 1.8 TeV and Run II (2001–2011) at \sqrt{s} = 1.96 TeV of the Tevatron, corresponding to integrated luminosities of 0.1 fb⁻¹ and 9.7 fb⁻¹, respectively.

NODE=Q007TP;LINKAGE=XA

Page 4 16 SIRUNYAN 17L based on 19.7 fb $^{-1}$ of pp data at $\sqrt{s} =$ 8 TeV. m_t is reconstructed from NODE=Q007TP;LINKAGE=CB a fit to the invariant mass distribution of $\mu \nu b$, where p_T^{miss} and W mass constraint are used to reconstruct u momentum. The number of events for various contributions, except for the *t*-channel single top one, are fixed to the values extracted from simulation. Superseded by TUMASYAN 21G. $^{17}\,\rm SIRUNYAN$ 17N based on 19.7 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 8 TeV. The fully hadronic NODE=Q007TP;LINKAGE=YA decay of a highly-boosted t is reconstructed in the ℓ +jets channel and unfolded at the particle level. The sensitivity of the peak position of the m_{jet} distribution is used to test quality of the modelling by the simulation. $^{18}\,{\rm SIRUNYAN}$ 170 based on 19.7 fb $^{-1}$ of pp data at \sqrt{s} = 8 TeV. Analysis is based on NODE=Q007TP;LINKAGE=DB the kinematical observables $M(b\ell)$, M_{T2} and $M(b\ell\nu)$. A fit is performed to determine m_t and an overall jet energy scale factor simultaneously. 19 AABOUD 16T based on 20.2 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 8 TeV. The analysis is refined NODE=Q007TP;LINKAGE=PA using the p_T and invariant mass distributions of $\ell + b$ -jet system. A combination with measurements from \sqrt{s} = 7 TeV data in the dilepton and lepton+jets channels gives 172.84 \pm 0.34 \pm 0.61 GeV. ²⁰AABOUD 16T is an ATLAS combination of 8 TeV top-quark mass in the dilepton channel NODE=Q007TP;LINKAGE=RA with previous measurements from \sqrt{s} = 7 TeV data in the dilepton and lepton + jets channels. ²¹ABAZOV 16 based on 9.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Employs im-NODE=Q007TP;LINKAGE=DA proved fit to minimize statistical errors and improved jet energy calibration, using lepton + jets mode, which reduces error of jet energy scale. Based on previous determination in ABAZOV 12AB with increased integrated luminosity and improved fit and calibrations. $^{22}{\sf ABAZOV}$ 16D based on 9.7 fb $^{-1}$ of data in $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV, using NODE=Q007TP;LINKAGE=FA the matrix element technique. Based on previous determination in ABAZOV 11R with increased integrated luminosity. There is a strong correlation with the determination in ABAZOV 16. (See ABAZOV 17B.) 23 KHACHATRYAN 16AK based on 19.7 fb $^{-1}$ of pp data at $\sqrt{s} = 8$ TeV. Combination of NODE=Q007TP;LINKAGE=IA the three top mass measurements in KHACHATRYAN 16AK and with the CMS results at $\sqrt{s}=$ 7 TeV gives 172.44 \pm 0.13 \pm 0.47 GeV. $^{\rm 24}\,{\rm The}$ top mass and jet energy scale factor are determined by a fit. NODE=Q007TP;LINKAGE=KA $^{25}\,\rm{Uses}$ the analytical matrix weighting technique method. NODE=Q007TP;LINKAGE=MA 26 KHACHATRYAN 16AL based on 19.7 fb $^{-1}$ in pp collisions at \sqrt{s} = 8 TeV. Determined NODE=Q007TP:LINKAGE=HA from the invariant mass distribution of leptons and reconstructed secondary vertices from b decays using only charged particles. The uncertainty is dominated by modeling of bfragmentation and top p_T distribution. $^{27}\,\rm KHACHATRYAN$ 16CB based on 666 candidate reconstructed events corresponding to NODE=Q007TP;LINKAGE=QA 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The measurement exploits correlation of m_t with $\mathsf{M}(J/\psi\,\ell)$ in the same top quark decay, using a high-purity event sample. A study on modeling of *b*-quark fragmentation is given in Sec.3.3. 28 AAD 15AW based on 4.6 fb $^{-1}$ of pp data at $\sqrt{s}=$ 7 TeV. Uses template fits to the ratio NODE=Q007TP;LINKAGE=Y of the masses of three-jets (from t candidate) and dijets (from W candidate). Large background from multijet production is modeled with data-driven methods. ²⁹ AAD 15BF based on 4.6 fb⁻¹ in *pp* collisions at $\sqrt{s} = 7$ TeV. Using a three-dimensional NODE=Q007TP;LINKAGE=Z template likelihood technique the lepton plus jets (\geq 1*b*-tagged) channel gives 172.33 \pm 0.75 ± 1.02 GeV, while exploiting a one dimensional template method using $m_{\ell \, b}$ the dilepton channel (1 or 2*b*-tags) gives $173.79 \pm 0.54 \pm 1.30$ GeV. The results are combined. 30 AALTONEN 15D based on 9.1 fb $^{-1}$ of $p\overline{p}$ data at \sqrt{s} = 1.96 TeV. Uses a template NODE=Q007TP;LINKAGE=X technique to fit a distribution of a variable defined by a linear combination of variables sensitive and insensitive to jet energy scale to optimize reduction of systematic errors. *b*-tagged and non-*b*-tagged events are separately analyzed and combined. ³¹Based on 9.3 fb⁻¹ of $p\overline{p}$ data at $\sqrt{s} = 1.96$ TeV. Multivariate algorithm is used to NODE=Q007TP;LINKAGE=U discriminate signal from backgrounds, and templates are used to measure m_t . $^{32}\,\text{Based}$ on 9.7 fb $^{-1}$ of $p\,\overline{p}$ data at \sqrt{s} = 1.96 TeV. A matrix element method is used NODE=Q007TP;LINKAGE=W to calculate the probability of an event to be signal or background, and the overall jet energy scale is constrained in situ by m_W . See ABAZOV 15G for further details. $^{33}\,\text{Based}$ on 3.54 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 7 TeV. The mass is reconstructed for each NODE=Q007TP;LINKAGE=T event employing a kinematic fit of the jets to a ttbar hypothesis. The combination with the pervious CMS measurements in the dilepton and the lepton+jets channels gives 173.54 \pm 0.33 \pm 0.96 GeV. ³⁴Based on 8.7 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Events with an identified charged NODE=Q007TP;LINKAGE=R lepton or small ${\not\!\!E}_T$ are rejected from the event sample, so that the measurement is statistically independent from those in the ℓ + jets and all hadronic channels while being sensitive to those events with a au lepton in the final state. $^{35}\,\textsc{Based}$ on 5.0 fb $^{-1}$ of $p\,p$ data at $\sqrt{s}=$ 7 TeV. CHATRCHYAN 13S studied events with NODE=Q007TP;LINKAGE=S di-lepton + E_T + ≥ 2 *b*-jets, and looked for kinematical endpoints of MT2, MT2_T, and subsystem variables. $^{36}\mathrm{AAD}$ 121 based on 1.04 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 7 TeV. Uses 2d-template analysis NODE=Q007TP;LINKAGE=GD (MT) with m_t and jet energy scale factor (JSF) from m_W mass fit. ³⁷Based on 8.7 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. The JES is calibrated by using NODE=Q007TP;LINKAGE=CL the dijet mass from the W boson decay. 38 Use the ME method based on 2.2 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. NODE=Q007TP;LINKAGE=CD ³⁹Combination based on up to 5.8 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. NODE=Q007TP;LINKAGE=EA

3/18/2024 16:16

	3/18/2024 16:16 Page	5
40 Based on 5.8 fb ⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV the quoted value is $m_t = 172.5 \pm 1.4(\text{stat})\pm 1.0(\text{JES})\pm 1.1(\text{syst})$ GeV. The measurement is performed with a liklihood fit technique which simultaneously determines m_t and JES (Jet Energy Scale).	NODE=Q007TP;LINKAGE=OA	
41 Based on 4.3 fb ⁻¹ of data in p-pbar collisions at 1.96 TeV. The measurement reduces the JES uncertainty by using the single lepton channel study of ABAZOV 11P.	NODE=Q007TP;LINKAGE=VA	
⁴² Combination with the result in 1 fb ^{-1} of preceding data reported in ABAZOV 09AH as well as the MWT result of ABAZOV 11R with a statistical correlation of 60%.	NODE=Q007TP;LINKAGE=VB	
⁴³ Based on 5.0 fb ⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Uses an analytical matrix weighting technique (AMWT) and full kinematic analysis (KIN).	NODE=Q007TP;LINKAGE=CA	
⁴⁴ Based on 5.0 fb ⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The first error is statistical and JES combined, and the second is systematic. Ideogram method is used to obtain 2D liklihood for the kinematical fit with two parameters mtop and JES.	NODE=Q007TP;LINKAGE=RC	
⁴⁵ Based on 3.2 fb ⁻¹ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The first error is from statistics and JES combined, and the latter is from the other systematic uncertainties. The result is obtained using an unbinned maximum likelihood method where the top quark mass and the JES are measured simultaneously, with $\Delta_{JES} = 0.3 \pm 0.3$ (stat).	NODE=Q007TP;LINKAGE=NL	
⁴⁶ Based on 5.7 fb ⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Events with an identified charged lepton or small E_T are rejected from the event sample, so that the measurement is statistically independent from those in the ℓ + jets and all hadronic channels while being sensitive to those events with a τ lepton in the final state. Supersedes AALTONEN 07B.	NODE=Q007TP;LINKAGE=TL	
⁴⁷ AALTONEN 11E based on 5.6 fb ⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Employs a multi- dimensional template likelihood technique where the lepton plus jets (one or two <i>b</i> -tags) channel gives 172.2 \pm 1.2 \pm 0.9 GeV while the dilepton channel yields 170.3 \pm 2.0 \pm 3.1 GeV. The results are combined. OUR EVALUATION includes the measurement in the dilepton channel only.	NODE=Q007TP;LINKAGE=NT	
⁴⁸ Uses a likelihood fit of the lepton p_T distribution based on 2.7 fb ⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.	NODE=Q007TP;LINKAGE=NN	
⁴⁹ Based on 3.6 fb ⁻¹ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. ABAZOV 11P reports 174.94 \pm 0.83 \pm 0.78 \pm 0.96 GeV, where the first uncertainty is from statistics, the second from JES, and the last from other systematic uncertainties. We combine the JES and systematic uncertainties. A matrix-element method is used where the JES uncertainty is constrained by the <i>W</i> mass. ABAZOV 11P describes a measurement based on 2.6 fb ⁻¹ that is	NODE=Q007TP;LINKAGE=ZA	
combined with ABAZOV 08AH, which employs an independent 1 fb ⁻¹ of data. ⁵⁰ Based on a matrix-element method which employs 5.4 fb ⁻¹ in $p\bar{p}$ collisions at $\sqrt{s} =$	NODE=Q007TP;LINKAGE=OZ	
1.96 TeV. Superseded by ABAZOV 12AB. ⁵¹ Based on 36 pb ⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV. A Kinematic Method using <i>b</i> -tagging		
and an analytical Matrix Weighting Technique give consistent results and are combined. Superseded by CHATRCHYAN 12BA.	NODE=Q007TP;LINKAGE=CH	
52 Based on 5.6 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. The likelihood calculated using a matrix element method gives $m_t=173.0\pm0.7({\rm stat})\pm0.6({\rm JES})\pm0.9({\rm syst})$ GeV, for a total uncertainty of 1.2 GeV.	NODE=Q007TP;LINKAGE=NA	
⁵³ Based on 3.4 fb ⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The result is obtained by combining the MT2 variable method and the NWA (Neutrino Weighting Algorithm). The MT2 method alone gives $m_t = 168.0^{+4.8}_{-4.0}(\text{stat}) \pm 2.9(\text{syst})$ GeV with smaller systematic error	NODE=Q007TP;LINKAGE=TA	
due to small JES uncertainty. ⁵⁴ Based on 1.9 fb ⁻¹ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The result is from the mea-		
surement using the transverse decay length of b -hadrons and that using the transverse momentum of the W decay muons, which are both insensitive to the JES (jet energy scale) uncertainty. OUR EVALUATION uses only the measurement exploiting the de-	NODE=Q007TP;LINKAGE=AE	
cay length significance which yields $166.9^{+9.5}_{-8.5}$ (stat) ± 2.9 (syst) GeV. The measurement that uses the lepton transverse momentum is excluded from the average because of a statistical correlation with other samples.		
⁵⁵ Based on 2.9 fb ⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The first error is from statistics and JES uncertainty, and the latter is from the other systematics. Neural-network-based kinematical selection of 6 highest E_T jets with a vtx <i>b</i> -tag is used to distinguish signal from background. Superseded by AALTONEN 12G.	NODE=Q007TP;LINKAGE=LN	
⁵⁶ Based on 2 fb ⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The top mass is obtained from the measurement of the invariant mass of the lepton (<i>e</i> or μ) from <i>W</i> decays and the soft μ in <i>b</i> -jet. The result is insensitive to jet energy scaling.	NODE=Q007TP;LINKAGE=NO	
⁵⁷ Based on 1.9 fb ⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics. Matrix element method with effective propagators.	NODE=Q007TP;LINKAGE=LO	
⁵⁸ Based on 943 pb ⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistical and jet-energy-scale uncertainties, and the latter is from other systematics. AALTONEN 09K selected 6 jet events with one or more vertex <i>b</i> -tags and used the tree-level matrix element to construct template models of signal and background.	NODE=Q007TP;LINKAGE=OT	
⁵⁹ Based on 1.9 fb ⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistical and jet-energy-scale (JES) uncertainties, and the second is from other systematics. Events with lepton + jets and those with dilepton + jets were simultaneously fit to constrain m_t and JES. Lepton + jets data only give $m_t = 171.8 \pm 2.2$ GeV, and dilepton data only give $m_t = 171.8 \pm 2.2$ GeV.	NODE=Q007TP;LINKAGE=EN	

only give $m_t = 171.2^{+5.3}_{-5.1}$ GeV. ⁶⁰Based on 2 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Matrix Element method. Optimal selection criteria for candidate events with two high p_T leptons, high E_T , and two or more jets

NODE=Q007TP;LINKAGE=TE

with and without b-tag are obtained by neural network with neuroevolution technique to minimize the statistical error of m_t . 61 Based on 2.9 fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. Mass m_t is estimated from the likelihood NODE=Q007TP;LINKAGE=ON for the eight-fold kinematical solutions in the plane of the azimuthal angles of the two neutrino momenta. $^{62}\text{Based}$ on 1 fb $^{-1}$ of data at \sqrt{s} = 1.96 TeV. Events with two identified leptons, and NODE=Q007TP;LINKAGE=ZV those with one lepton plus one isolated track and a b-tag were used to constrain m_t . The result is a combination of the $\nu {\sf WT}$ (ν Weighting Technique) result of 176.2 \pm 4.8 \pm 2.1 GeV and the MWT (Matrix-element Weighting Technique) result of 173.2 \pm 4.9 \pm 2.0 GeV. ⁶³ Reports measurement of $170.7 + 4.2 \pm 2.6 \pm 2.4$ GeV based on 1.2 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The last error is due to the theoretical uncertainty on $\sigma_{t\bar{t}}$. Without the cross-section constraint a top mass of $169.7 + 5.2 \pm 3.1$ GeV is obtained. NODE=Q007TP;LINKAGE=AN ⁶⁴ Template method. NODE=Q007TP;LINKAGE=BC 65 Result is based on 1 fb $^{-1}$ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistics NODE=Q007TP;LINKAGE=BV and jet energy scale uncertainty, and the latter is from the other systematics. $^{66} \rm Based$ on 310 $\rm pb^{-1}$ of data at $\sqrt{s} = 1.96 \rm ~TeV.$ NODE=Q007TP;LINKAGE=TN ⁶⁷ Ideogram method. NODE=Q007TP;LINKAGE=TO ⁶⁸ Based on 311 pb⁻¹ of data at \sqrt{s} = 1.96 TeV. Events with 4 or more jets with E_T > NODE=Q007TP;LINKAGE=LT 15 GeV, significant missing E_T , and secondary vertex *b*-tag are used in the fit. About 44% of the signal acceptance is from $\tau \nu$ + 4 jets. Events with identified *e* or μ are vetoed to provide a statistically independent measurement. $^{69}\,\textsc{Based}$ on 1.02 fb $^{-1}$ of data at \sqrt{s} = 1.96 TeV. Superseded by AALTONEN 12G. NODE=Q007TP;LINKAGE=NE 70 Based on 955 pb $^{-1}$ of data $\sqrt{s} = 1.96$ TeV. m_t and JES (Jet Energy Scale) are fitted NODE=Q007TP;LINKAGE=LA simultaneously, and the first error contains the JES contribution of 1.5 GeV. ⁷¹ Matrix element method. NODE=Q007TP;LINKAGE=UB 72 Based on 425 pb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. The first error is a combination of statistics NODE=Q007TP;LINKAGE=OV and JES (Jet Energy Scale) uncertainty, which has been measured simultaneously to give $JES = 0.989 \pm 0.029(stat)$. $^{73}\mathrm{Based}$ on 370 pb $^{-1}$ of data at \sqrt{s} = 1.96 TeV. Combined result of MWT (Matrix-NODE=Q007TP;LINKAGE=ZO element Weighting Technique) and uWT (u Weighting Technique) analyses is 178.1 \pm $6.7\pm4.8\,\text{GeV}.$ $^{74}\,\textsc{Based}$ on 1.0 fb $^{-1}$ of data at \sqrt{s} = 1.96 TeV. ABULENCIA 07D improves the matrix NODE=Q007TP;LINKAGE=LE element description by including the effects of initial-state radiation. 75 Based on 695 pb $^{-1}$ of data at \sqrt{s} = 1.96 TeV. The transverse decay length of the b NODE=Q007TP;LINKAGE=UL hadron is used to determine m_t , and the result is free from the JES (jet energy scale) uncertainty. 76 Based on \sim 400 pb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. The first error includes statistical and NODE=Q007TP;LINKAGE=BZ systematic jet energy scale uncertainties, the second error is from the other systematics. The result is obtained with the b-tagging information. The result without b-tagging is $169.2^{+5.0+1.5}_{-7.4-1.4}$ GeV. Superseded by ABAZOV 08AH. $^{77}\,\mathrm{Based}$ on 318 pb^{-1} of data at $\sqrt{s}=1.96$ TeV. NODE=Q007TP;LINKAGE=BA ⁷⁸ Dynamical likelihood method. NODE=Q007TP;LINKAGE=BB $^{79} \rm Based$ on 340 $\rm pb^{-1}$ of data at $\sqrt{s}=1.96$ TeV. NODE=Q007TP;LINKAGE=UA 80 Based on 360 pb $^{-1}$ of data at $\sqrt{s} = 1.96$ TeV. NODE=Q007TP;LINKAGE=AL ⁸¹Based on 110.2 \pm 5.8 pb⁻¹ at \sqrt{s} = 1.8 TeV. NODE=Q007TP;LINKAGE=AA 82 Based on the all hadronic decays of $t\bar{t}$ pairs. Single *b*-quark tagging via the decay chain NODE=Q007TP;LINKAGE=AZ $b
ightarrow c
ightarrow \mu$ was used to select signal enriched multijet events. The result was obtained by the maximum likelihood method after bias correction. 83 Obtained by re-analysis of the lepton + jets candidate events that led to ABBOTT 98F. NODE=Q007TP;LINKAGE=AO It is based upon the maximum likelihood method which makes use of the leading order matrix elements. $^{84}\,\text{Based}$ on 125 \pm 7 pb^{-1} of data at \sqrt{s} = 1.8 TeV. NODE=Q007TP;LINKAGE=WW 85 Based on $\sim 106~{\rm pb}^{-1}$ of data at $\sqrt{s}{=}$ 1.8 TeV. NODE=Q007TP;LINKAGE=F1 86 Obtained by combining the measurements in the lepton + jets [AFFOLDER 01], all-jets NODE=Q007TP;LINKAGE=F2 [ABE 97R, ABE 99B], and dilepton [ABE 99B] decay topologies. ⁸⁷ Obtained by combining the D0 result m_t (GeV) = 168.4 ± 12.3 ± 3.6 from 6 di-lepton events (see also ABBOTT 98D) and m_t (GeV) = 173.3 ± 5.6 ± 5.5 from lepton+jet NODE=Q007TP;LINKAGE=DG events (ABBOTT 98F). ⁸⁸ Obtained by combining the CDF results of m_t (GeV)=167.4 ± 10.3 ± 4.8 from 8 dilepton NODE=Q007TP;LINKAGE=BG events, m_t (GeV)=175.9 \pm 4.8 \pm 5.3 from lepton+jet events (ABE 98E), and m_t (GeV)=186.0 \pm 10.0 \pm 5.7 from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper. $^{89}\ensuremath{\mathsf{See}}$ AFFOLDER 01 for details of systematic error re-evaluation. NODE=Q007TP;LINKAGE=XZ

 90 Based on 109 \pm 7 pb $^{-1}$ of data at \sqrt{s} = 1.8 TeV.

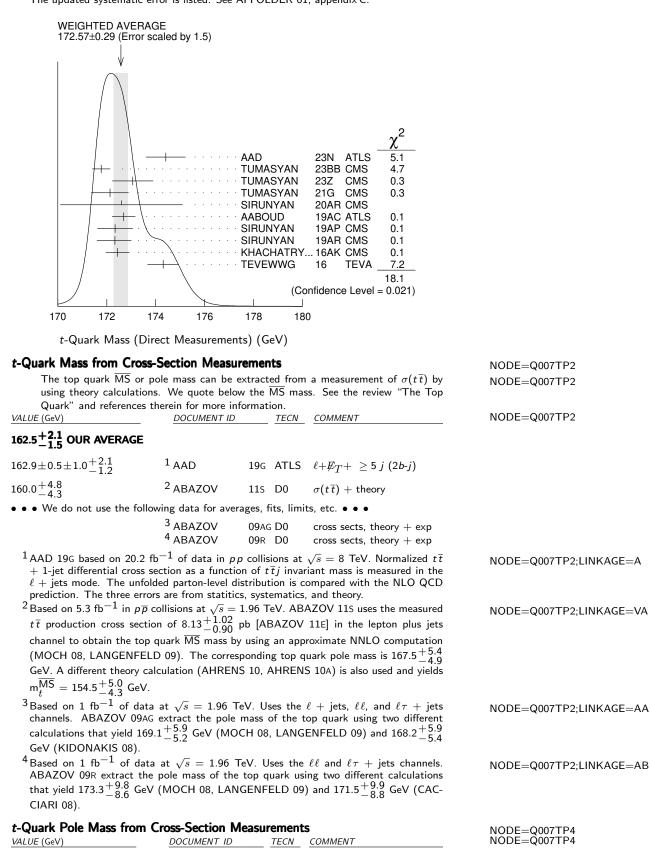
⁹¹See ABAZOV 04G.

- $^{92}\,\mathrm{The}$ updated systematic error is listed. See AFFOLDER 01, appendix C.
- 93 Obtained by combining the DØ results of $m_t({\rm GeV}){=}168.4\pm12.3\pm3.6$ from 6 dilepton events and $m_t({\rm GeV}){=}173.3\pm5.6\pm5.5$ from 77 lepton+jet events.
- 94 Obtained by combining the DØ results from dilepton and lepton+jet events, and the CDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.

NODE=Q007TP;LINKAGE=BF

NODE=Q007TP;LINKAGE=XX

NODE=Q007TP;LINKAGE=AT


NODE=Q007TP;LINKAGE=XY

NODE=Q007TP;LINKAGE=BE

NODE=Q007TP;LINKAGE=AR

NFW

 95 Based on the first observation of all hadronic decays of $t\,\overline{t}$ pairs. Single *b*-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See AFFOLDER 01, appendix C.

172.4 ±0.7 OUR AVE [172.5 ± 0.7 GeV OUR				
$173.4 \begin{array}{c} +1.8 \\ -2.0 \end{array}$	¹ AAD	23AY LHC	$e^{\pm}\mu^{\mp}$ pair; ATLAS+CMS	I

				_			
172.93±1.36	² TUMASYAN		$t\overline{t}+$ jet; $\ell^\pm\ell^\mp$ mode	1			
173.1 $^{+2.0}_{-2.1}$	³ AAD	20Q ATLS	$e+\mu+1$ or 2 <i>b</i> -jets				
171.1 $\pm 0.4 \pm 0.9^{+0.7}_{-0.3}$	⁴ AAD	19G ATLS	$\ell \! + \! \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$				
170.6 ±2.7	⁵ SIRUNYAN	17W CMS	$\ell + \geq 1 { m j}$				
172.8 $\pm 1.1 \ +3.3 \\ -3.1$	⁶ ABAZOV	16F D0	$\ell\ell$, ℓ +jets channels				
$173.7 \begin{array}{c} +2.3 \\ -2.1 \end{array}$	⁷ AAD	15BWATLS	$\ell {+} ot\!$	OCCUR=7			
$\bullet \bullet \bullet$ We do not use the foll		rages, fits, lin	nits, etc. • • •				
170.5 ± 0.8	⁸ SIRUNYAN	20BV CMS	<i>t</i> t normalized multi- differential cross sections				
173.2 $\pm 0.9 \pm 0.8 \pm 1.2$	⁹ AABOUD	17BC ATLS					
$173.8 \begin{array}{c} +1.7 \\ -1.8 \end{array}$	¹⁰ KHACHATRY	16AW CMS	$e + \mu + ot\!$				
$172.9 \begin{array}{c} +2.5 \\ -2.6 \end{array}$	¹¹ AAD		pp at $\sqrt{s}=$ 7, 8 TeV				
$176.7 \begin{array}{c} +3.0 \\ -2.8 \end{array}$	¹² CHATRCHYA	N14 CMS	pp at $\sqrt{s}=$ 7 TeV				
tively. The result is obta and the NNLO+NNLL pr	ined from the comredictions fixing $lpha_s$	bined inclusiv $(m_Z) = 0.11$		NODE=Q007TP4;LINKAGE=J			
ized $t \overline{t} + 1$ -jet differentia	al cross section as a le unfolded parton-	a function of a level distribut	ions at $\sqrt{s} = 13$ TeV. Normal- $\bar{t}j$ invariant mass is measured ion is compared with the NLO MP16NLO is used.	NODE=Q007TP4;LINKAGE=K			
³ AAD 20Q based on 36.1 the inclusive cross section	fb $^{-1}$ of ${\it pp}$ data at	t $\sqrt{s}=$ 13 Te	V. The result is obtained from	NODE=Q007TP4;LINKAGE=H			
⁴ AAD 19G based on 20.2 + 1-jet differential cross ℓ + jets mode. The unfo	fb ^{—1} of data in <i>p</i> section as a function Ided parton-level d	p collisions at on of $t\overline{t}j$ inva listribution is	t $\sqrt{s} = 8$ TeV. Normalized $t\bar{t}$ ariant mass is measured in the compared with the NLO QCD	NODE=Q007TP4;LINKAGE=G			
prediction. The three error ⁵ SIRUNYAN 17W based or according to the jet mul obtained from the inclusi	NODE=Q007TP4;LINKAGE=F						
⁶ ABAZOV 16F based on 9 obtained from the inclusiv	NODE=Q007TP4;LINKAGE=D						
⁷ AAD 15BW based on 4.6 cross section for $t\bar{t} + 1$ + 1 jet system. The mea	fb ⁻¹ of <i>pp</i> data a jet as a function of sured cross section	at $\sqrt{s} = 7$ Te f the inverse of is corrected	V. Uses normalized differential of the invariant mass of the $t\overline{t}$ to the parton level. Then a fit	NODE=Q007TP4;LINKAGE=B			
to the data using NLO + parton shower prediction is performed. ⁸ SIRUNYAN 20BV based on 35.9 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The error accounts for both experimental and theoretical uncertainties. Events containing two oppositely charged leptons are used. The pole mass is particularly sensitive to the $t\bar{t}$ invariant mass distribution close to the threshold. However, the Coulomb and soft gluon resummation effects are not taken into account, hence, an additional theoretical uncertainty of order							
+1 GeV is assumed. ⁹ AABOUD 17BC based on 20.2 fb ⁻¹ of <i>pp</i> data at $\sqrt{s} = 8$ TeV. The pole mass is extracted from a fit of NLO predictions to eight single lepton and dilepton differential distributions, while simultaneously constraining uncertainties due to PDFs and QCD scales. The three reported uncertainties come from statistics, experimental systematics,							
and theoretical sources. ¹⁰ KHACHATRYAN 16AW b 8 TeV. The 7 TeV data in from the inclusive cross s	NODE=Q007TP4;LINKAGE=C						
¹¹ AAD 14AY used $\sigma(t\overline{t})$ for $m_t=171.4\pm2.6~{ m GeV}~{ m b}$	NODE=Q007TP4;LINKAGE=A						
based on 20.3 fb ⁻¹ of data at 8 TeV. ¹² CHATRCHYAN 14 used $\sigma(t\bar{t})$ from pp collisions at $\sqrt{s} = 7$ TeV measured in CHA- TRCHYAN 12AX to obtain m_t (pole) for $\alpha_s(m_Z) = 0.1184 \pm 0.0007$. The errors have been corrected in KHACHATRYAN 14K.							
	<i>m</i> _t –	m _ī		NODE=Q007CPT			
Test of <i>CPT</i> conser uncertainties are un		RAGE assume	s that the systematic	NODE=Q007CPT			
	DOCUMENT ID	<u>TECN</u>	COMMENT	NODE=Q007CPT			

	DOCOMENTID		TECH	connen
-0.15 ± 0.20 OUR AVERAGE	Error includes	scale	factor o	f 1.1.
$0.83^{+1.79}_{-1.35}$	¹ TUMASYAN	21G	CMS	<i>t</i> -channel single top produc- tion
$\begin{array}{c} -0.15 {\pm} 0.19 {\pm} 0.09 \\ 0.67 {\pm} 0.61 {\pm} 0.41 \end{array}$	² CHATRCHYAN ³ AAD	17 14	CMS ATLS	$\ell + ot\!$

$egin{array}{llllllllllllllllllllllllllllllllllll$	⁵ CHATRCHYAN 12Y CMS	$egin{array}{l} \ell + ot\!$	
$\bullet \bullet \bullet$ We do not use the fol	llowing data for averages, fits,	limits, etc. • • •	
$\begin{array}{rrrr} -3.3 & \pm 1.4 & \pm 1.0 \\ 3.8 & \pm 3.4 & \pm 1.2 \end{array}$	⁷ AALTONEN 11K CDF ⁸ ABAZOV 09AA D0	Repl. by AALTONEN 13E $\ell + ot\!$	
by requiring $1\ell+2$ jets(1	. <i>b</i> jet) final state. An average to	$\sqrt{s}=13$ TeV. Events are selected op mass of 172.13 $^{+0.76}_{-0.77}$ GeV/c 2	NODE=Q007CPT;LINKAGE=D
mass of 172.04 \pm 0.10 (s	stat) Gev is obtained.	$\sqrt{s}=$ 8 TeV and an average top	NODE=Q007CPT;LINKAGE=C
		erage top mass of 172.5 GeV/c ² .	NODE=Q007CPT;LINKAGE=A
GeV/c ² .		and an average top mass of 172.5	NODE=Q007CPT;LINKAGE=B
events using the Ideogra	m method.	on the fitted m_t for ℓ^+ and ℓ^-	NODE=Q007CPT;LINKAGE=CH
	ent method which employs 3.6	$\overline{ m o}~{ m fb}^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=1$	NODE=Q007CPT;LINKAGE=AL
= 1.96 TeV.		s 5.6 fb $^{-1}$ in $p\overline{p}$ collisions at \sqrt{s}	NODE=Q007CPT;LINKAGE=AA
8 Based on 1 fb $^{-1}$ of data	a in $p \overline{p}$ collisions at $\sqrt{s} = 1.96$	ō TeV.	NODE=Q007CPT;LINKAGE=AB
	t-quark DECAY WIDTH	1	NODE=Q007W
VALUE (GeV) CL%	DOCUMENT ID TEC	N COMMENT	NODE=Q007W
$1.42^{+0.19}_{-0.15}$ our avera	GE Error includes scale facto	or of 1.4.	

$1.76\!\pm\!0.33 \substack{+0.79 \\ -0.68}$	¹ AABOUD	18AZ ATLS	$\ell {+} ot\!$
$1.36\!\pm\!0.02 \substack{+0.14\\-0.11}$	² KHACHATRY	14E CMS	$\ell\ell\!+\!E_T$ +2-4jets (0-2 <i>b</i> -tag)
$2.00 \substack{+0.47 \\ -0.43}$	³ ABAZOV	12T D0	$\Gamma(t \rightarrow bW)/B(t \rightarrow bW)$
• • • We do not use the fo	llowing data for ave	rages, fits, lim	its, etc. • • •
< 6.39 OF		127 CDE	$\ell + \overline{L} + \sum A : (\ge 0, h)$

< 6.38	95	⁺ AALI ONEN	132 CDF	$\ell + \not\!\!\!\!/ _T + \geq$ 4j (\geq 0 b),
				direct
$1.99\substack{+0.69\\-0.55}$		⁵ ABAZOV	11B D0	Repl. by ABAZOV 12⊤
> 1.21	95	⁵ ABAZOV		$\Gamma(t \rightarrow W b)$
< 7.6	95	⁶ AALTONEN	10AC CDF	ℓ + jets, direct
<13.1	95	⁷ AALTONEN	09м CDF	m_t (rec) distribution

¹Based on 20.2 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Γ_t is measured using a template fit to the reconstructed invariant mass of the *b*-jet of the semileptonically decaying top quark and the corresponding lepton, and the angular distance between j_b and j_l in hadronic top decay. Signal templates are generated by reweighting events at parton-level to Breit-Wigner distribution with different Γ_t hypotheses for $m_t = 172.5$ GeV. The result is consistent with the NNLO SM prediction of 1.322 GeV.

² Based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The result is obtained by combining the measurement of $R = \Gamma(t \rightarrow Wb)/\Gamma(t \rightarrow Wq \ (q=b,s,d))$ and a previous CMS measurement of the *t*-channel single top production cross section of CHATRCHYAN 12BQ, by using the theoretical calculation of $\Gamma(t \rightarrow Wb)$ for $m_t = 172.5$ GeV.

³ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. $\Gamma(t \rightarrow bW) = 1.87^{+0.44}_{-0.40}$ GeV is obtained from the observed *t*-channel single top quark production cross section, whereas $B(t \rightarrow bW) = 0.90 \pm 0.04$ is used assuming $\sum_{q} B(t \rightarrow qW) = 1$. The result is valid for $m_t = 172.5$ GeV. See the paper for the values for $m_t = 170$ or 175 GeV.

 4 Based on 8.7 fb $^{-1}$ of data. The two sided 68% CL interval is 1.10 GeV < Γ_t < 4.05 GeV for m_t = 172.5 GeV.

⁵Based on 2.3 fb⁻¹ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. ABAZOV 11B extracted Γ_t from the partial width $\Gamma(t \rightarrow Wb) = 1.92^{+0.58}_{-0.51}$ GeV measured using the *t*-channel single top production cross section, and the branching fraction brt $\rightarrow Wb = 0.962^{+0.068}_{-0.066}(\text{stat})^{+0.064}_{-0.052}(\text{syst})$. The $\Gamma(t \rightarrow Wb)$ measurement gives the 95% CL lowerbound of $\Gamma(t \rightarrow Wb)$ and hence that of Γ_t .

⁶ Results are based on 4.3 fb⁻¹ of data in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The top quark mass and the hadronically decaying W boson mass are reconstructed for each candidate events and compared with templates of different top quark width. The two sided 68% CL interval is 0.3 GeV< $\Gamma_t < 4.4$ GeV for $m_t = 172.5$ GeV.

NODE=Q007W;LINKAGE=AB

NODE=Q007W;LINKAGE=A

NODE=Q007W;LINKAGE=C

NODE=Q007W;LINKAGE=B

NODE=Q007W;LINKAGE=AZ

OCCUR=2

NODE=Q007W;LINKAGE=AL

NODE=Q007W;LINKAGE=AA

t DECAY MODES

	Mode		Fraction (Γ_{i}	/Γ)	Confidence le	evel
-	Wq(q = b, s, d)					
Γ ₂	WЬ					
Г ₃	e $ u_e b$		(11.10 ± 0.11)	30) %		
Γ4	$\mu u_{\mu} b$		(11.40 ± 0.12)	20) %		
Γ ₅	$\tau \nu_{\tau} b$		(10.7 ±0.	5)%		
Γ ₆	$q \overline{q} b$		$(66.5 \pm 1.)$	4)%		
Γ ₇	$\gamma q(q=u,c)$		[<i>a</i>] < 4.5	× 10 ⁻	-5 9	95%
Г ₈	$H^+ b, H^+ \rightarrow \tau \nu_{\tau}$					
	$\Delta T = 1$ weak m	eutral	current (<i>T1</i>) m	odes		
Г9	Zq(q=u,c)	Τ1	[b] < 1.2	imes 10 ⁻	-4 9	95%
Γ_{10}	Hu	Τ1	< 1.9	imes 10 ⁻	-4 9	95%
Γ_{11}^{-1}	Нс	Τ1	< 4.3	imes 10 ⁻	-4 9	95%
Γ_{12}	$\ell^+ \overline{q} \overline{q}'(q{=}d,s,b; q'{=}u,c)$	Τ1	< 1.6	imes 10 ⁻	-3 9	95%
	Lepton Family n	umber	(<i>LF</i>) violating	modes		
Γ_{13}	$e^{\pm}\mu^{\mp}c$	LF	< 8.9	imes 10 ⁻	-7	
Γ ₁₄	$e^{\pm}\mu^{\mp}u$	LF	< 7	imes 10 ⁻	-8	
[a] This limit is for $\Gamma(t \rightarrow \gamma q) / \Gamma(t \rightarrow W b)$. [b] This limit is for $\Gamma(t \rightarrow Z q) / \Gamma(t \rightarrow W b)$.						

t BRANCHING RATIOS

$\Gamma(Wb)/\Gamma(Wq(q=b, s, d))$

OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.							
VALUE	DOCUMENT ID	TEC	NCOMMENT				
0.957±0.034 OUR AVERAGE	Error includes	scale facto	r of 1.5. See the ideogram below.				
0.87 ± 0.07		14G CDF					
$1.014\!\pm\!0.003\!\pm\!0.032$	² KHACHATRY.						
0.94 ± 0.09	³ AALTONEN		$\ell + { ot\!$				
0.90 ± 0.04	⁴ ABAZOV	11X D0	_				
$\bullet \bullet \bullet$ We do not use the following	wing data for ave	erages, fits,	limits, etc. • • •				
$0.97 \begin{array}{c} +0.09 \\ -0.08 \end{array}$	⁵ ABAZOV	08M D0	ℓ + n jets with 0,1,2 <i>b</i> -tag				
$1.03 \begin{array}{c} +0.19 \\ -0.17 \end{array}$	⁶ ABAZOV	06K D0					
$1.12 \begin{array}{r} +0.21 \\ -0.19 \end{array} \begin{array}{r} +0.17 \\ -0.13 \end{array}$	⁷ ACOSTA	05A CDF	Repl. by AALTONEN 13G				
$\begin{array}{rrrr} 0.94 & +0.26 & +0.17 \\ & -0.21 & -0.12 \end{array}$	⁸ AFFOLDER	01C CDF	:				

 1 Based on 8.7 fb $^{-1}$ of data. This measurement gives $|V_{tb}|=0.93\pm0.04$ and $|V_{tb}|>0.85$ (95% CL) in the SM.

²Based on 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. The result is obtained by counting the number of *b* jets per $t\bar{t}$ signal events in the dilepton channel. The $t\bar{t}$ production cross section is measured to be $\sigma(t\bar{t}) = 238 \pm 1 \pm 15$ pb, in good agreement with the SM prediction and the latest CMS measurement of CHATRCHYAN 14F. The measurement gives R > 0.995 (95% CL), or $|V_{tb}| > 0.975$ (95% CL) in the SM, requiring $R \leq 1$.

³Based on 8.7 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Measure the fraction of $t \rightarrow Wb$ decays simultaneously with the $t\overline{t}$ cross section. The correlation coefficient between those two measurements is -0.434. Assume unitarity of the 3×3 CKM matrix and set $|V_{tb}| > 0.89$ at 95% CL.

⁴ Based on 5.4 fb⁻¹ of data. The error is statistical and systematic combined. The result is a combination of 0.95 \pm 0.07 from ℓ + jets channel and 0.86 \pm 0.05 from $\ell\ell$ channel. $|V^{tb}| = 0.95 \pm 0.02$ follows from the result by assuming unitarity of the 3x3 CKM matrix.

 5 Result is based on 0.9 fb $^{-1}$ of data. The 95% CL lower bound R > 0.79 gives $|V_{tb}| >$ 0.89 (95% CL).

⁶ABAZOV 06K result is from the analysis of $t\bar{t} \rightarrow \ell\nu + \geq 3$ jets with 230 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. It gives R > 0.61 and $|V_{tb}| > 0.78$ at 95% CL. Superseded by _ABAZOV 08M.

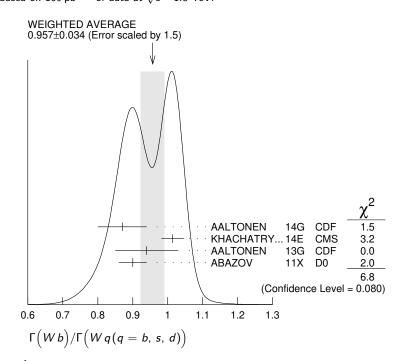
ABAZOV 08M. ⁷ ACOSTA 05A result is from the analysis of lepton + jets and di-lepton + jets final states of $t\bar{t}$ candidate events with ~ 162 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is statistical and the second systematic. It gives R > 0.61, or $|V_{tb}| > 0.78$ at 95% CL.

⁸AFFOLDER 01C measures the top-quark decay width ratio $R = \Gamma(Wb)/\Gamma(Wq)$, where q is a d, s, or b quark, by using the number of events with multiple b tags. The first

NODE=Q007240;NODE=Q007

DESIG=6:OUR EST: \rightarrow UNCHECKED \leftarrow DESIG=1;OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=9 DESIG=10 DESIG=4 DESIG=11 DESIG=3 DESIG=14 NODE=Q007;CLUMP=A DESIG=2 DESIG=12 DESIG=13 DESIG=8 NODE=Q007;CLUMP=F DESIG=15 DESIG=16 LINKAGE=TD3 LINKAGE=TD2 NODE=Q007245 NODE=Q007R6 NODE=Q007R6 NODE=Q007R6

 Γ_2/Γ_1


NODE=Q007R6;LINKAGE=C NODE=Q007R6;LINKAGE=B NODE=Q007R6;LINKAGE=AB NODE=Q007R6;LINKAGE=BZ NODE=Q007R6;LINKAGE=AZ

NODE=Q007R6;LINKAGE=E

NODE=Q007R6;LINKAGE=AC

NODE=Q007R6;LINKAGE=A

error is statistical and the second systematic. A numerical integration of the likelihood function gives R>0.61~(0.56) at 90% (95%) CL. By assuming three generation unitarity, $\left|V_{t\,b}\right|=0.97^{+0.16}_{-0.12}$ or $\left|V_{t\,b}\right|>0.78~(0.75)$ at 90% (95%) CL is obtained. The result is based on 109 pb $^{-1}$ of data at $\sqrt{s}=1.8~{\rm TeV}.$

Γ(<i>eν_eb</i>)/Γ _{total}			Г3/Г
VALUE	DOCUMENT ID	TECN	COMMENT
0.111 ± 0.003	¹ AAD	15cc ATLS	ℓ +jets, $\ell\ell$ +jets, $\ell\tau_{h}$ +jets

¹ AAD 15CC based on 4.6 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. The original value is given by 13.3 \pm 0.4 \pm 0.5%, which includes electrons from the decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ + jets channel. We have converted the original value to eliminate contributions of electrons from τ 's, by using the AAD 15CC measurements of the branching ratios to μ and τ channels, as well as the PDG values of τ branching ratios into *e* and μ channels.

$\Gamma(\mu u_{\mu} b) / \Gamma_{total}$			Γ₄/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
0.114 ± 0.002	¹ AAD	15cc ATLS	$\ell + { m jets}, \ \ell \ \ell + { m jets}, \ \ell \ au_{h} + { m jets}$

¹ AAD 15CC based on 4.6 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. The original value is given by 13.4 ± 0.3 ± 0.5%, which includes muons from the decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ + jets channel. We have converted the original value to eliminate contributions of muons from τ 's, by using the AAD 15CC measurements of the branching ratios to μ and τ channels, as well as the PDG values of τ branching ratios into *e* and τ channels.

$\Gamma(\tau \nu_{\tau} b) / \Gamma_{\text{total}}$			Г ₅ /Г			
VALUE	DOCUMENT ID	TECN	COMMENT			
0.107 ±0.005 OUR AVERAG						
	¹ SIRUNYAN	20V CMS	$\ell au_{m{h}} + \ \geq$ 3 jets (\geq 1 <i>b</i> -tag)			
0.112 ± 0.009	² AAD	15cc ATLS	ℓ +jets, $\ell\ell$ +jets, $\ell\tau_h$ +jets			
0.096 ± 0.028	³ AALTONEN	14A CDF	$\ell + \tau_h + \ge 2$ jets ($\ge 1b$ -tag)			
• • We do not use the following data for averages, fits, limits, etc. • •						
	⁴ ABULENCIA ⁵ ABE	06R CDF 97∨ CDF				

¹ SIRUNYAN 20V based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. $t\bar{t}$ events are selected in the $t\bar{t} \rightarrow (\ell\nu_{\ell})(\tau_{h}\nu_{\tau})b\bar{b}$ mode, where τ_{h} refers to the hadronic decays of τ . The branching ratio is determined with respect to the $t\bar{t}$ inclusive cross section extrapolated from the light dilepton mode. The ratio of the $t\bar{t}$ production cross sections in the $\ell\tau_{h}$ and $\ell\ell$ channels yields 0.973 \pm 0.009 \pm 0.066, consistent with lepton universality. ² AAD 15CC based on 4.6 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. The original value is given by

² AAD 15CC based on 4.6 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. The original value is given by 7.0 ± 0.3 ± 0.5%, which includes only the hadronic decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ +

NODE=Q007R9 NODE=Q007R9

NODE=Q007R9;LINKAGE=A

NODE=Q007R10 NODE=Q007R10

NODE=Q007R10;LINKAGE=A

NODE=Q007R4 NODE=Q007R4

NODE=Q007R4;LINKAGE=D

NODE=Q007R4;LINKAGE=C

jets channel. We have converted the original value to include leptonic decays of τ 's, by using the AAD 15CC measurements of the branching ratios to *e* and μ channels, as well as the PDG values of τ branching ratios into *e* and μ channels.

- ³Based on 9 fb⁻¹ of data. The measurement is in the channel $t\bar{t} \rightarrow (b\ell\nu)(b\tau\nu)$, where τ decays into hadrons (τ_h) , and ℓ (e or μ) include ℓ from τ decays (τ_ℓ) . The result is consistent with lepton universality.
- ⁴ ABULENCIA 06R looked for $t\bar{t} \rightarrow (\ell \nu_{\ell}) (\tau \nu_{\tau}) b\bar{b}$ events in 194 pb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. 2 events are found where 1.00 ± 0.17 signal and 1.29 ± 0.25 background events are expected, giving a 95% CL upper bound for the partial width ratio $\Gamma(t \rightarrow \tau \nu q) / \Gamma_{SM}(t \rightarrow \tau \nu q) < 5.2$.
- ⁵ ABE 97V searched for $t\bar{t} \rightarrow (\ell \nu_{\ell}) (\tau \nu_{\tau}) b\bar{b}$ events in 109 pb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. They observed 4 candidate events where one expects ~ 1 signal and ~ 2 background events. Three of the four observed events have jets identified as *b* candidates.

Γ(qqb)/Γ _{total}			Г ₆ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
$0.665 \pm 0.004 \pm 0.013$	¹ AAD	15cc ATLS	$\ell + { m jets}, \ \ell \ell + { m jets}, \ \ell au_{h} + { m jets}$

¹AAD 15CC based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Branching ratio of top quark into b and jets. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ + jets channel.

$\Gamma(\gamma q(q=u,c))/\Gamma_{\text{total}}$

Г₇/Г

(γq)	q=u,c))/I _t	otal				17/1		NODE=Q00
VALUE		<u>CL%</u>	DOCUMENT ID			COMMENT		NODE=Q00
<4.5	× 10 ⁻⁵ (Cl	L = 95%)	$[<1.8 imes 10^{-4}$ (CL =	95%) O	UR 2023 BEST LIMIT]	_	
<0.85	× 10 ^{—5}	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma u)$, left-handed $t u \gamma$ coupling		
<4.2	× 10 ⁻⁵	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma c)$, left-handed $t c \gamma$ coupling		OCCUR=2
<1.2	× 10 ⁻⁵	95	¹ AAD	23	ATLS	, . .	I	OCCUR=3
<4.5	× 10 ⁻⁵	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma c)$, right-handed $t c \gamma$ coupling	I	OCCUR=4
<1.3	imes 10 ⁻⁴	95	² KHACHATRY	16A	s CMS			
<1.7	imes 10 ⁻³	95	² KHACHATRY	16A	s CMS	$B(t \rightarrow \gamma c)$		OCCUR=2
<5.9	imes 10 ⁻³	95	³ CHEKANOV	03	ZEUS	$B(t \rightarrow \gamma u)$		
• • • W	/e do not use	the follow	ing data for avera	ges, f	its, limits	s, etc. ● ● ●		
<2.8	imes 10 ⁻⁵	95	⁴ AAD	20 B	ATLS	$B(t \rightarrow \gamma u)$, left-handed $t u \gamma$ coupling, Repl. by AAD 23		
<6.1	imes 10 ⁻⁵	95	⁴ AAD	20 B	ATLS	$B(t \rightarrow \gamma u)$, right-handed $t u \gamma$ coupling, Repl. by		OCCUR=2
<2.2	$\times 10^{-4}$	95	⁴ AAD	20 B	ATLS	$t c \gamma$ coupling, Repl. by		OCCUR=3
<1.8	$\times 10^{-4}$	95	⁴ AAD	20 B	ATLS	AAD 23 B($t \rightarrow \gamma c$), right-handed $t c \gamma$ coupling, Repl. by AAD 23		OCCUR=4
< 0.006	4	95	⁵ AARON	09A	H1	$t \rightarrow \gamma u$		
< 0.046		95	⁶ ABDALLAH		DLPH	,		
< 0.013	2	95	⁷ AKTAS	04	H1	$B(t \rightarrow \gamma u)$		
< 0.041		95	⁸ ACHARD	02J	L3	$B(t \rightarrow \gamma c \text{ or } \gamma u)$		
< 0.032		95	⁹ ABE	98 G	CDF	$t \overline{t} \rightarrow (W b) (\gamma c \text{ or } \gamma u)$		
							-	

¹ AAD 23 based on 139 fb⁻¹ of data in *pp* collisions at $\sqrt{s} = 13$ TeV. Anomalous FCNC left-handed and right-handed couplings are searched for through the single top production in association with a photon and in the decay of a top quark in the $t\bar{t}$ production. The SM predictions of the corresponding branching ratios are of the order of 10^{-14} .

³CHEKANOV 03 looked for single top production via FCNC in the reaction $e^{\pm} p \rightarrow e^{\pm}$ (*t* or \bar{t}) X in 130.1 pb⁻¹ of data at \sqrt{s} =300–318 GeV. No evidence for top production and its decay into *bW* was found. The result is obtained for m_t =175 GeV when B(γc)=B(Z q)=0, where q is a u or c quark. Bounds on the effective *t*-u- γ and *t*-u-Z couplings are found in their Fig. 4. The conversion to the constraint listed is from private communication, E. Gallo, January 2004.

NODE=Q007R4;LINKAGE=B

NODE=Q007R4;LINKAGE=AL

NODE=Q007R4;LINKAGE=A

NODE=Q007R11 NODE=Q007R11

NODE=Q007R11;LINKAGE=A

NODE=Q007R3 NODE=Q007R3;CHECK LIMITS

NODE=Q007R3;LINKAGE=D

NODE=Q007R3;LINKAGE=B

NODE=Q007R3;LINKAGE=CK

NODE=Q007R3;LINKAGE=C

NODE=Q007R3;LINKAGE=AA

NODE=Q007R3:LINKAGE=AB

NODE=Q007R3;LINKAGE=AK

NODE=Q007R3;LINKAGE=J

NODE=Q007R3;LINKAGE=A

NODE=Q007R02;LINKAGE=A

NODE=Q007R02 NODE=Q007R02

NODE=Q007R2

NODE=Q007R2

- ⁵ AARON 09A looked for single top production via FCNC in $e^{\pm} p$ collisions at HERA with 474 pb⁻¹. The upper bound of the cross section gives the bound on the FCNC coupling $\kappa_{t u \gamma} / \Lambda < 1.03 \text{ TeV}^{-1}$, which corresponds to the result for $m_t = 175 \text{ GeV}$.
- ⁶ABDALLAH 04C looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$ in 541 pb⁻¹ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on B($t \rightarrow \gamma q$), where q is a u or a c quark, for $m_t = 175$ GeV when B($t \rightarrow Zq$)=0 is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_t = 170$ -180 GeV, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.
- ⁷AKTAS 04 looked for single top production via FCNC in e^{\pm} collisions at HERA with 118.3 pb⁻¹, and found 5 events in the *e* or μ channels. By assuming that they are due to statistical fluctuation, the upper bound on the $tu\gamma$ coupling $\kappa_{tu\gamma} < 0.27$ (95% CL) is obtained. The conversion to the partial width limit, when $B(\gamma c) = B(Zu) = B(Zc) = 0$, is from private communication, E. Perez, May 2005.
- ⁸ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$ in 634 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(γq), where q is a uor c quark. The bound assumes B(Z q)=0 and is for m_t = 175 GeV; bounds for m_t =170 GeV and 180 GeV and B(Z q) \neq 0 are given in Fig. 5 and Table 7.
- ⁹ABE 98G looked for $t\bar{t}$ events where one t decays into $q\gamma$ while the other decays into bW. The quoted bound is for $\Gamma(\gamma q)/\Gamma(W b)$.

Γ((H + I	Ь, H +	$\rightarrow \tau$	$(\nu_{\tau})/$	/Γ _{total}
----	----------------	---------------	--------------------	-----------------	---------------------

. (2,	$(\tau \tau \tau)/\tau$ total		
VALUE (%)	CL%	DOCUMENT ID	TECN
<0.25	95	¹ AABOUD	18BWATLS

¹AABOUD 18BW based on 36.1 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. In the mass range of $m_{H^+} = 90\text{-}160$ GeV, assuming the SM cross section for the $t\bar{t}$ production, the upper limit for the branching fraction B($t \rightarrow bH^+$) × B($H^+ \rightarrow \tau \nu_{\tau}$) ranges between 0.25% and 0.031%.

$\Gamma(Zq(q=u,c))/\Gamma_{total}$

٦/و٦

Γ₈/Γ

Test for $\Delta T=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE (units 10^{-3})	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT		NODE=Q007R2;CHECK LIMITS
$< 0.12 \ (CL = 9)$	5%) [$<0.5 \times 10^{-3}$ (CL =	= 95%) OUR 2	2023 BEST LIMIT]		
< 0.062	95	¹ AAD	23AS ATLS			
< 0.12	05	1		coupling $P(t, y, Z, z)$ left handed $t \in Z$		
< 0.15	95	- AAD	25A5 ATLS		•	OCCUR=2
< 0.066	95	¹ AAD	23AS ATLS	$B(t \rightarrow Zu)$, right-handed	I	OCCUR=4
< 0.12	95	¹ AAD	23AS ATLS			OCCUR=5
				tcZ coupling	-	
< 0.22	95	² SIRUNYAN	17E CMS	$t \rightarrow Z u$		
< 0.49	95	² SIRUNYAN	17E CMS	$t \rightarrow Zc$		OCCUR=2
< 0.7	95	³ AAD	16D ATLS	$t \rightarrow Zq (q = u, c)$		
$\bullet \bullet \bullet$ We do not	use the	following data for a	verages, fits, l	imits, etc. • • •		
< 0.17	95	⁴ AABOUD	18AT ATLS	$t \rightarrow Z u$		
< 0.24	95	⁴ AABOUD				OCCUR=2
< 0.6	95	⁵ CHATRCHYAN	14s CMS	$t \rightarrow Zq (q = u, c)$		
< 0.5	95	⁶ CHATRCHYAN	14s CMS	$t \rightarrow Zq (q = u, c)$		OCCUR=2
< 2.1	95	⁷ CHATRCHYAN	13F CMS	$t \rightarrow Zq (q = u, c)$		
< 7.3	95	⁸ AAD				
<32	95	⁹ ABAZOV	11M D0	$t \rightarrow Zq (q = u, c)$		
<83	95	¹⁰ AALTONEN	09AL CDF	$t \rightarrow Zq (q=c)$		
<37	95	¹¹ AALTONEN	08AD CDF	$t \rightarrow Zq (q = u, c)$		
$<$ 1.59 \times 10 ²	95					
	95		02J L3	$e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$		
	95		020 ALEP	$e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$		
< 3.3 × 10	90	ADE	906 CDF	$\mathcal{L} \rightarrow (\mathcal{V} \mathcal{D}) (\mathcal{Z} \mathcal{C} \text{ of } \mathcal{Z} \mathcal{U})$		
	 < 0.12 (CL = 9 < 0.062 < 0.13 < 0.066 < 0.12 < 0.22 < 0.49 < 0.7 • • We do not < 0.17 < 0.24 < 0.6 < 0.5 < 2.1 < 7.3 < 32 < 83 < 37 	 < 0.06295< 0.13	< 0.12 (CL = 95%)	< 0.12 (CL = 95%) $[<0.5 \times 10^{-3} (CL = 95\%) OUR 3$ < 0.06295 $1 AAD$ 23AS ATLS< 0.1395 $1 AAD$ 23AS ATLS< 0.06695 $1 AAD$ 23AS ATLS< 0.1295 $2 SIRUNYAN$ 17E CMS< 0.4995 $2 SIRUNYAN$ 17E CMS< 0.795 $3 AAD$ 16D ATLS• • We do not use the following data for averages, fits, I< 0.1795 $4 AABOUD$ < 0.18AT ATLS< 0.2495 $6 CHATRCHYAN 14s$ < 0.595 $6 CHATRCHYAN 14s$ < 0.595 $9 CHATRCHYAN 13F$ < 0.595 $9 ABAZOV$ < 1.3795 $10 AALTONEN$ < 0.3395 $10 AALTONEN$ < 1.37 $x 10^2$ < 95 $13 ACHARD$ < 1.37 $x 10^2$ < 1.37 $x 10^2$ < 1.37 $x 10^2$ < 1.4 $x 10^2$ < 1.5 $15 ABBIENDI$ < 017 094 < 1.37 $x 10^2$ < 16 BARATE	< 0.12 (CL = 95%)[<0.5 × 10 ⁻³ (CL = 95%) OUR 2023 BEST LIMIT]< 0.062	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $^1 \, {\rm AAD}$ 23AS based on 139 fb $^{-1}$ of data in ${\it pp}$ collisions at \sqrt{s} = 13 TeV. Anomalous NODE=Q007R2;LINKAGE=I FCNC left-handed and right-handed couplings are searched for through the single top production in association with a Z boson and in the decay of a top quark in the $t\bar{t}$ production. Events with 3 $\ell~+~\geq$ 1 jet(s) (1b-tagged) + $\not\!\!\!E_T$ are used. The SM predictions of the corresponding branching ratios are of the order of 10^{-14} . ²SIRUNYAN 17E based on 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. The final states $t\bar{t} \rightarrow$ NODE=Q007R2;LINKAGE=E $\ell^+ \ell^- \, \ell'^\pm \,
u +$ jets $(\ell, \, \ell' = e, \, \mu)$ are investigated and the cross section $\sigma(p \, p o \, t \, Z \, q \, o$ $\ell \nu b \ell^+ \ell^- q) = 10^{+8}_{-7}$ fb is measured, giving no sign of FCNC decays of the top quark. ³AAD 16D based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The FCNC decay is searched NODE=Q007R2;LINKAGE=D for in $t\bar{t}$ events in the final state (bW)(qZ) when both W and Z decay leptonically, giving 3 charged leptons. ⁴Based on 36.1 fb⁻¹ of pp data at $\sqrt{s}=$ 13 TeV. The final states $t\,ar{t} o \,\ell^+\ell^-\ell'^\pm
u$ NODE=Q007R2;LINKAGE=F + jets (ℓ , $\ell' = e$, μ) are investigated and no significant excess over the SM background contributions is observed. 5 Based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The flavor changing decay is searched NODE=Q007R2;LINKAGE=B for in $t\bar{t}$ events in the final state (bW)(qZ) when both W and Z decay leptoically, giving 3 charged leptons. ⁶ CHATRCHYAN 14s combined search limit from this and CHATRCHYAN 13F data. ⁷ Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Search for FCNC decays of the top quark NODE=Q007R2;LINKAGE=C NODE=Q007R2;LINKAGE=CH in $t\bar{t} \rightarrow \ell^+ \ell^- \ell'^\pm \nu$ + jets ($\ell, \ell' = e, \mu$) final states found no excess of signal events. ⁸Based on 2.1 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. NODE=Q007R2;LINKAGE=AD 9 Based on 4.1 fb $^{-1}$ of data. ABAZOV 11M searched for FCNC decays of the top quark NODE=Q007R2;LINKAGE=AZ in $t\bar{t} \rightarrow \ell^+ \ell^- \ell'^\pm \nu$ + jets $(\ell, \ell' = e, \mu)$ final states, and absence of the signal gives the bound. ¹⁰Based on $p\overline{p}$ data of 1.52 fb⁻¹. AALTONEN 09AL compared $t\overline{t} \rightarrow WbWb \rightarrow \ell \nu bjjb$ NODE=Q007R2;LINKAGE=AL and $t \overline{t} \rightarrow Z c W b \rightarrow \ell \ell c j j b$ decay chains, and absence of the latter signal gives the bound. The result is for 100% longitudinally polarized Z boson and the theoretical $t \bar{t}$ production cross section The results for different Z polarizations and those without the cross section assumption are given in their Table XII. $^{11}\,{\rm Result}$ is based on 1.9 fb $^{-1}$ of data at $\sqrt{s}\,=\,$ 1.96 TeV. $t\,\overline{t}\,\rightarrow\,\,$ W bZ q or Z q Z qNODE=Q007R2;LINKAGE=AA processes have been looked for in $Z + \ge 4$ jet events with and without *b*-tag. No signal leads to the bound B($t \rightarrow Zq$) < 0.037 (0.041) for $m_t = 175$ (170) GeV. $^{12}\text{ABDALLAH}$ 04C looked for single top production via FCNC in the reaction $e^+\,e^ \rightarrow$ NODE=Q007R2;LINKAGE=AB $\bar{t}c$ or $\bar{t}u$ in 541 pb⁻¹ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on $B(t \rightarrow Zq)$, where q is a u or a c quark, for $m_t = 175 \text{ GeV}$ when $B(t \rightarrow \gamma q)=0$ is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_t = 170-180$ GeV, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes. 13 ACHARD 02J looked for single top production via FCNC in the reaction $e^+\,e^- \rightarrow ~\bar{t}\,c$ NODE=Q007R2;LINKAGE=J or $\overline{t}u$ in 634 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(Zq), where q is a u or c quark. The bound assumes $B(\gamma q)=0$ and is for $m_t=175$ GeV; bounds for m_t =170 GeV and 180 GeV and B(γq) $\neq 0$ are given in Fig. 5 and Table 7. Table 6 gives constraints on t-c-e-e four-fermi contact interactions. $^{14}\,{\sf HEISTER}$ 02Q looked for single top production via FCNC in the reaction $e^+\,e^-\,
ightarrow\,\overline{t}\,c$ NODE=Q007R2;LINKAGE=H or $\overline{t}u$ in 214 pb⁻¹ of data at \sqrt{s} = 204–209 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction B(Zq), where q is a u or c quark. The bound assumes $B(\gamma q)=0$ and is for $m_t=174$ GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 2. $^{15}{\sf ABBIENDI}$ 01T looked for single top production via FCNC in the reaction $e^+\,e^- \rightarrow ~\bar{t}\,c$ NODE=Q007R2;LINKAGE=BT or $\overline{t}u$ in 600 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to bounds on the branching fractions B(Zq) and $B(\gamma q)$, where q is a u or c quark. The result is obtained for $m_t = 174$ GeV. The upper bound becomes 9.7% (20.6%) for $m_t = 169$ (179) GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4. 16 BARATE 00S looked for single top production via FCNC in the reaction $e^+\,e^- \rightarrow ~\bar{t}\,c$ or NODE=Q007R2;LINKAGE=BS $\overline{t}u$ in 411 pb⁻¹ of data at c.m. energies between 189 and 202 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction. The bound assumes B(γq)=0. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4. $^{17}\,{\rm ABE}$ 98G looked for $t\,\bar{t}$ events where one t decays into three jets and the other decays NODE=Q007R2;LINKAGE=A into qZ with $Z \rightarrow \ell \ell$. The quoted bound is for $\Gamma(Zq)/\Gamma(Wb)$. $\Gamma(Hu)/\Gamma_{total}$ Γ_{10}/Γ NODE=Q007R00 NODE=Q007R00 VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT ¹ TUMASYAN < 1.9 95 22A CMS $t \rightarrow Hu (H \rightarrow \gamma \gamma)$

3/18/2024 16:16

Page 14

NODE=Q007R00;LINKAGE=K

NODE=Q007R00;LINKAGE=M

NODE=Q007R00;LINKAGE=O

NODE=Q007R00;LINKAGE=L

NODE=Q007R00;LINKAGE=J

NODE=Q007R00;LINKAGE=G

NODE=Q007R00;LINKAGE=H

NODE=Q007R00;LINKAGE=I

NODE=Q007R00;LINKAGE=A

NODE=Q007R00;LINKAGE=F

• • • We do not use the following data for averages, fits, limits, etc. • •

		enering auta iei ui	0.4800,			
< 3.8	95	² AAD	23cj ATLS	$pp ightarrow tH ext{ or } t ightarrow Hu$ $(H ightarrow \gamma \gamma)$	I	
< 4.0	95	³ AAD	23cj ATLS	$pp \rightarrow tH \text{ or } t \rightarrow Hu$ (combined with $H \rightarrow \gamma \gamma$, $H \rightarrow bb, H \rightarrow \tau \tau$)	I	OCCUR=3
< 6.9	95	⁴ AAD	23H ATLS	$pp \rightarrow tH \text{ or } t \rightarrow Hu$ $(H \rightarrow \tau \tau)$	I	
< 7.9	95	⁵ TUMASYAN	22K CMS	$t \rightarrow Hu (H \rightarrow bb)$		
<52	95	⁶ AABOUD	19s ATLS	$t \rightarrow Hu (H \rightarrow bb)$		
<17	95	⁷ AABOUD	19s ATLS	$t \rightarrow Hu (H \rightarrow \tau \tau)$		OCCUR=2
<12	95	⁸ AABOUD	19s ATLS	combination of $t \rightarrow Hu$ $(H \rightarrow WW, ZZ, \tau\tau, \gamma\gamma, b\overline{b})$		OCCUR=3
<19	95	⁹ AABOUD	18x ATLS	$t \rightarrow Hu (H \rightarrow WW, ZZ, \tau \tau)$		
<47	95	¹⁰ SIRUNYAN	18BC CMS	$t \rightarrow Hu (H \rightarrow bb)$		
<24	95	¹¹ AABOUD	17AV ATLS	$t \rightarrow Hu (H \rightarrow \gamma \gamma)$		OCCUR=2
<55	95	¹² KHACHATRY	17I CMS	$t \rightarrow Hu (H \rightarrow WW, ZZ, \tau \tau, \gamma \gamma, b\overline{b})$		OCCUR=2
<61	95	¹³ AAD	15co ATLS	$t \rightarrow Hu (H \rightarrow bb)$		OCCUR=2
<79	95	¹⁴ AAD	14AA ATLS	$t \rightarrow Hq (q=u,c; H \rightarrow \gamma\gamma)$		

¹TUMASYAN 22A based on 137 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered include both the associated production of a single top quark with a Higgs boson and the decay $t \to Hu$ in $t\bar{t}$ production using $H \to \gamma\gamma$.

² AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hu$ in $t\bar{t}$ production using $H \rightarrow \gamma\gamma$. Limits on the SMEFT Wilson coefficients are derived.

coefficients are derived. 3 AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The results are combined with searches in the $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, and $H \rightarrow \tau \tau$ final states. Limits on the SMEFT Wilson coefficients are also derived.

SMEFT Wilson coefficients are also derived. ⁴ AAD 23H based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two hadronically decaying τ and multiple jets. The limit corresponds to $(3.5^{+1.5}_{-1.0}) \times 10^{-4}$ measurement.

measurement. ⁵ TUMASYAN 22κ based on 137 fb⁻¹ at $\sqrt{s} = 13$ TeV of *pp* data. Uses events with one isolated lepton and multiple jets (including $\geq 2b$ -jets). Deep neural networks are used for kinematical event reconstruction. ⁶ AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of *pp* data. Uses events with

⁶AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of *pp* data. Uses events with one isolated lepton and multiple jets (several of them *b*-tagged with high purity). A multivariate analysis is performed to distinguish the signal from backgrounds.

⁷ AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two hadronically decaying τ and multiple jets. A multivariate analysis is performed to distinguish the signal from backgrounds.

⁸AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The searches using $H \rightarrow bb$ and $H \rightarrow \tau_h \tau_h$ are combined with searches in diphoton and multilepton final states. The upper limit on the Yukawa coupling $|Y_{tuH}| < 0.066$ (95% CL) is obtained.

⁹AABOUD 18x based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. $\ell\ell(\text{same sign}) + \ge 4j$ mode and $\ell\ell\ell + \ge 2j$ mode are targeted and specialized boosted decision trees are used to distinguish signals from backgrounds.

¹⁰ SIRUNYAN 18BC based on 35.9 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Two channels $pp \rightarrow tH$ and $pp \rightarrow t\bar{t}$ in final states with one isolated lepton and >=3 jets with >=2 b jets are considered assuming a single tHu FCNC coupling. Reconstructed kinematical variables are fed into a multivariate analysis and no significant deviation is observed from the predicted background.

¹¹AABOUD 17AV based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Search for $t\bar{t}$ events, where the other top quark decays hadronically or semi-leptonically.

¹² KHACHATRYAN 17I based on 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV, using the topologies $t\bar{t} \rightarrow Hq+Wb$, where q=u, c.

¹³ AAD 15C0 based on 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. Searches for $t\bar{t}$ events, where the other top quark decays semi-leptonically. Exploits high multiplicity of *b*-jets and uses a likelihood discriminant. Combining with other ATLAS searches for different Higgs decay modes, B($t \rightarrow Hc$) < 0.46% and B($t \rightarrow Hu$) < 0.45% are obtained.

¹⁴ AAD 14AA based on 4.7 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of *pp* data. The upper-bound is for the sum of Br($t \rightarrow Hc$) and Br($t \rightarrow Hu$). Search for $t\bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper bound constrains the *H*-*t*-*c* Yukawa couplings $\sqrt{|Y_{tc_L}^H|^2 + |Y_{tc_R}^H|^2} < 0.17$ (95% CL).

NODE=Q007R00;LINKAGE=D NODE=Q007R00;LINKAGE=C

NODE=Q007R00;LINKAGE=E

NODE=Q007R00;LINKAGE=B

 $\Gamma(Hc)/\Gamma_{total}$ Γ_{11}/Γ NODE=Q007R01 NODE=Q007R01 VALUE (units 10 DOCUMENT ID TECN COMMENT CL% < 4.3 (CL = 95%) [$< 0.73 \times 10^{-3}$ (CL = 95%) OUR 2023 BEST LIMIT] ¹ AAD 23CJ ATLS $pp \rightarrow tH$ or $t \rightarrow Hc$ < 4.3 95 $(H \rightarrow \gamma \gamma)$ • • • We do not use the following data for averages, fits, limits, etc. • • • 2 AAD < 5.8 95 23CJ ATLS $pp \rightarrow tH$ or $t \rightarrow Hc$ (com-OCCUR=2 bined with $H \rightarrow \gamma \gamma$, $H \rightarrow bb, H \rightarrow \tau \tau$) ³ AAD < 9.4 95 23H ATLS $pp \rightarrow tH \text{ or } t \rightarrow Hc$ $(H \rightarrow \tau \tau)$ ⁴ TUMASYAN < 7.3 95 22A CMS $t \rightarrow Hc (H \rightarrow \gamma \gamma)$ ⁵ TUMASYAN 22K CMS < 9.4 95 $t \rightarrow Hc (H \rightarrow bb)$ ⁶ AABOUD 19s ATLS combination of $t \rightarrow Hc$ < 1195 $(H \rightarrow WW, ZZ, \tau\tau)$ $\gamma \gamma$, $b\overline{b}$) ⁷ AABOUD 19s ATLS <42 95 $t \rightarrow Hc (H \rightarrow bb)$ OCCUR=2 ⁸ AABOUD < 1995 19s ATLS $t \rightarrow Hc (H \rightarrow \tau \tau)$ OCCUR=3 ⁹ AABOUD 95 18X ATLS $t \rightarrow Hc (H \rightarrow WW, ZZ)$ < 16 $\tau \tau$) ¹⁰ SIRUNYAN 18BC CMS <47 95 $t \rightarrow Hc (H \rightarrow bb)$ ¹¹ AABOUD 17AV ATLS <22 95 $t \rightarrow Hc (H \rightarrow \gamma \gamma)$ 12 KHACHATRY...171 CMS 95 $t \rightarrow Hc (H \rightarrow WW, ZZ)$ < 40 $\tau \tau$, $\gamma \gamma$, $b \overline{b}$) 13 aad 15co ATLS <56 95 $t \rightarrow Hc (H \rightarrow bb)$ ¹⁴ AAD <79 95 14AA ATLS $t \rightarrow Hq (q=u,c; H \rightarrow \gamma\gamma)$ ¹⁵ CHATRCHYAN 14R CMS $< 1.3 \times 10^{2}$ 95 $t \rightarrow Hc (H \rightarrow \geq 2 \ell)$ ¹⁶ KHACHATRY...14Q CMS 95 $t \rightarrow Hc (H \rightarrow \gamma \gamma \text{ or lep-}$ < 56tons) ¹AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered NODE=Q007R01;LINKAGE=O include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hc$ in $t\bar{t}$ production using $H \rightarrow \gamma\gamma$. Limits on the SMEFT Wilson coefficients are derived. ²AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of *pp* data. The results are combined NODE=Q007R01;LINKAGE=P with searches in the H $ightarrow \gamma$, H ightarrow bb, and H ightarrow au au final states. Limits on the SMEFT Wilson coefficients are also derived. ³ AAD 23H based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of *pp* data. Uses events with one or two $(s + 2.2) = 10^{-4}$ NODE=Q007R01;LINKAGE=N hadronically decaying τ and multiple jets. The limit corresponds to $(4.8 + 2.2) \times 10^{-4}$ measurement. 4 TUMASYAN 22A based on 137 fb $^{-1}$ at \sqrt{s} = 13 TeV of *pp* data. The processes NODE=Q007R01;LINKAGE=M considered include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hc$ in $t\bar{t}$ production using $H \rightarrow \gamma\gamma$. $^5\,{\rm TUMASYAN}$ 22K based on 137 fb $^{-1}$ at $\sqrt{s}=$ 13 TeV of $p\,p$ data. Uses events with one NODE=Q007R01;LINKAGE=L isolated lepton and multiple jets (including $\geq 2b$ -jets). Deep neural networks are used for kinematical event reconstruction. ⁶AABOUD 195 based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The searches using NODE=Q007R01;LINKAGE=I H
ightarrow ~bb and $H
ightarrow ~ au_h au_h$ are combined with searches in diphoton and multilepton final states. The upper limit on the Yukawa coupling $\left|Y_{tcH}\right|\,<$ 0.064 (95% CL) is obtained. ⁷AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} =$ 13 TeV of *pp* data. Uses events with NODE=Q007R01;LINKAGE=J one isolated lepton and multiple jets (several of them b-tagged with high purity). A multivariate analysis is performed to distinguish the signal from backgrounds. $^{8}\text{AABOUD}$ 19S based on 36.1 fb $^{-1}$ at \sqrt{s} = 13 TeV of $p\,p$ data. Uses events with one NODE=Q007R01;LINKAGE=K or two hadronically decaying au and multiple jets. A multivariate analysis is performed to distinguish the signal from backgrounds. 9 AABOUD 18X based on 36.1 fb $^{-1}$ at $\sqrt{s}=$ 13 TeV of pp data. $\ell\ell(\mathsf{same sign})+\geq$ 4j NODE=Q007R01;LINKAGE=G mode and $\ell\ell\ell + \geq 2j$ mode are targeted and specialized boosted decision trees are used to distinguish signals from backgrounds. $^{10}\,{\sf SIRUNYAN}$ 18BC based on 35.9 fb $^{-1}$ at $\sqrt{s}=$ 13 TeV of $p\,p$ data. Two channels $p\,p$ \rightarrow NODE=Q007R01;LINKAGE=H tH and $pp \rightarrow t\bar{t}$ in final states with one isolated lepton and >=3 jets with >=2 b jets are considered assuming a single tHc FCNC coupling. Reconstructed kinematical variables are fed into a multivariate analysis and no significant deviation is observed from the predicted background. $^{11}{\rm AABOUD}$ 17AV based on 36.1 fb $^{-1}$ at \sqrt{s} = 13 TeV of $p\,p$ data. Search for $t\,\bar{t}$ events, NODE=Q007R01;LINKAGE=E where the other top quark decays hadronically or semi-leptonically. The upper bound on the H-t-c Yukawa couplings is 0.090 (95% CL). 12 KHACHATRYAN 17I based on 19.7 fb $^{-1}$ of pp data at $\sqrt{s} = 8$ TeV, using the topologies NODE=Q007R01;LINKAGE=D $t \overline{t} \rightarrow Hq + Wb$, where q=u, c. 13 AAD 15CO based on 20.3 fb $^{-1}$ at \sqrt{s} = 8 TeV of $p\,p$ data. Searches for $t\,\bar{t}$ events, NODE=Q007R01;LINKAGE=C

where the other top quark decays semi-leptonically. Exploits high multiplicity of *b*-jets and uses a likelihood discriminant. Combining with other ATLAS searches for different Higgs decay modes, $B(t \rightarrow Hc) < 0.46\%$ and $B(t \rightarrow Hu) < 0.45\%$ are obtained.

¹⁴ AAD 14AA based on 4.7 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. The upper-bound is for the sum of Br($t \rightarrow Hc$) and Br($t \rightarrow Hu$). Search for $t\bar{t}$

NODE=Q007R01;LINKAGE=B

events, where the other top quark decays hadronically or semi-leptonically. The upper bound constrains the *H*-*t*-*c* Yukawa couplings $\sqrt{|Y_{tc_L}^H|^2 + |Y_{tc_R}^H|^2} < 0.17$ (95% CL).

¹⁵ Based on 19.5 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Search for final states with 3 or more isolated high E_T charged leptons ($\ell = e, \mu$) bounds the $t \to Hc$ decay in $t\bar{t}$ events when *H* decays contain a pair of leptons. The upper bound constraints the *H*-*t*-*c* Yukawa couplings $\sqrt{|Y_{tc_L}^H|^2 + |Y_{tc_R}^H|^2} < 0.21$ (95% CL).

¹⁶ KHACHATRYAN 14Q based on 19.5 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. Search for final states with ≥ 3 isolated charged leptons or with a photon pair accompanied by ≥ 1 lepton(s).

$\Gamma(\ell^+ \overline{q} \, \overline{q}'(q=d,s,b;q'=u,c)) / \Gamma_{total}$

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
<1.6 × 10 ⁻³	95	¹ CHATRCHYAN 140	CMS	$\mu + {\sf dijets}$
\bullet \bullet \bullet We do not use the	following	data for averages, fits,	limits, e	tc. • • •
$< 1.7 \times 10^{-3}$	95	¹ CHATRCHYAN 140	CMS	e + dijets

¹Based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Baryon number violating decays of the top quark are searched for in $t\bar{t}$ production events where one of the pair decays into hadronic three jets.

$\Gamma(e^{\pm}\mu^{\mp}c)/\Gamma_{\text{total}}$

				13/
VALUE	DOCUMENT ID	TECN	COMMENT	
<8.9 × 10 ⁻⁷	¹ TUMASYAN 2	22z CMS	pp at 13 TeV	

¹TUMASYAN 22Z analysis includes both the production $(c \rightarrow e\mu t)$ and decay $(t \rightarrow e\mu c)$ modes of the top quark through CFLV interactions. With no significant excess over the standard model expectation, the limits are set at 95% CL on the B $(t \rightarrow e\mu c)$ of 1.31×10^{-6} , 0.89×10^{-6} , 2.59×10^{-6} for vector-, scalar-, and tensor-like CLFV four-fermion effective interactions, respectively.

$\Gamma(e^{\pm}\mu^{\mp}u)/\Gamma_{total}$				Г ₁₄ /Г
VALUE	DOCUMENT ID	TECN	COMMENT	
<7 × 10 ⁻⁸	¹ TUMASYAN 22	2z CMS	<i>pp</i> at 13 TeV	

¹TUMASYAN 22Z analysis includes both the production $(u \rightarrow e\mu t)$ and decay $(t \rightarrow e\mu u)$ modes of the top quark through CFLV interactions. With no significant excess over the standard model expectation, the limits are set at 95% CL on the B $(t \rightarrow e\mu u)$ of 0.13×10^{-6} , 0.07×10^{-6} , 0.25×10^{-6} for vector-, scalar-, and tensor-like CLFV four-fermion effective interactions, respectively.

t-quark EW Couplings

W helicity fractions in top decays. F_0 is the fraction of longitudinal and F_+ the fraction of right-handed W bosons. F_{V+A} is the fraction of V+A current in top decays. The effective Lagrangian (cited by ABAZOV 08AI) has terms \mathbf{f}_1^L and \mathbf{f}_1^R for V-A and V+A couplings, \mathbf{f}_2^L and \mathbf{f}_2^R for tensor couplings with \mathbf{b}_R and \mathbf{b}_L respectively.

F 0 VALUE	DOCUMENT ID	TECN	COMMENT
0.693±0.013 OUR AVERAG		TECN	COMMENT
$0.693 \pm 0.009 \pm 0.011$	1	LHC	ATLAS+CMS combined
$0.726\!\pm\!0.066\!\pm\!0.067$	² AALTONEN 13D	CDF	$F_0 = B(t \rightarrow W_0 b)$
$0.682\!\pm\!0.030\!\pm\!0.033$	³ CHATRCHYAN 13BH	I CMS	$F_0 = B(t \rightarrow W_0 b)$
0.67 ± 0.07		ATLS	$\tilde{F_0} = B(t \rightarrow W_0 b)$
$0.722\!\pm\!0.062\!\pm\!0.052$	⁵ AALTONEN 12Z	TEVA	$\tilde{F_0} = B(t \rightarrow W_0 b)$
$0.669\!\pm\!0.078\!\pm\!0.065$	⁶ ABAZOV 11C		
$0.91\ \pm 0.37\ \pm 0.13$	⁷ AFFOLDER 00B	CDF	$F_0 = B(t \rightarrow W_0 b)$
• • • We do not use the foll	owing data for averages,	fits, lim	its, etc. • • •
$0.70 \ \pm 0.05$	⁸ AABOUD 17BB	ATLS	$F_0 = 1 - f_1$, Repl by AAD 20Y
$0.681\!\pm\!0.012\!\pm\!0.023$	⁹ KHACHATRY16BU	CMS	$F_0 = B(t \rightarrow W_0 b)$, Repl by AAD 20Y
$0.70 \ \pm 0.07 \ \pm 0.04$		CDF	Repl. by AALTONEN 12Z
$0.62\ \pm 0.10\ \pm 0.05$	¹¹ AALTONEN 09Q	CDF	Repl. by AALTONEN 10Q
$0.425 \!\pm\! 0.166 \!\pm\! 0.102$	¹² ABAZOV 08B	D0	Repl. by ABAZOV 11C
$\begin{array}{ccc} 0.85 & +0.15 \\ -0.22 & \pm 0.06 \end{array}$	¹³ ABULENCIA 071	CDF	$F_0 = B(t \rightarrow W_0 b)$
$0.74 \begin{array}{c} +0.22 \\ -0.34 \end{array}$		CDF	$F_0 = B(t \rightarrow W_0 b)$
0.56 ± 0.31	¹⁵ ABAZOV 05G	D0	$F_0 = B(t \rightarrow W_0 b)$

NODE=Q007R01;LINKAGE=A

NODE=Q007R01;LINKAGE=KH

NODE=Q007R8 NODE=Q007R8

OCCUR=2

 Γ_{12}/Γ

 Γ_{12}/Γ

NODE=Q007R8;LINKAGE=A

NODE=Q007R03 NODE=Q007R03

NODE=Q007R03;LINKAGE=A

NODE=Q007R04 NODE=Q007R04

NODE=Q007R04;LINKAGE=A

NODE=Q007260

NODE=Q007260

NODE=Q007TV0 NODE=Q007TV0

first error stands for th second error for the ren	e sum of the statistic naining systematic unc ferent jet multiplicities	al and backgrou ertainties. The r in the final state	for each experiment. The nd uncertainties, and the measurements used events e. The result is consistent 2.8 \pm 1.3 GeV.	3	∖GE=F
2 Based on 8.7 fb ⁻¹ of c $ ot\!$	NODE=Q007TV0;LINKA	\GE=C			
³ Based on 5.0 fb ⁻¹ of μ with large E_T and ℓ +	NODE=Q007TV0;LINKA	∖GE=B			
⁴ Based on 1.04 fb ⁻¹ of $\not\!\!\!E_T$ and either $\ell + \ge 4$ = -0.96.	pp data at $\sqrt{s}=$ 7 Te j or $\ell\ell+\geq$ 2j. The un	eV. AAD 12BG st certainties are no	udied tt events with large of independent, $\rho(F_0, F)$	NODE=Q007TV0;LINKA	GE=GA
⁵ Based on 2.7 and 5.1 ft of D0 data in ℓ + jets 0.0017(1), while F_+ = fixed values are the SM GeV.	and dilepton channels $-0.015 \pm 0.018 \pm 0.018$ prediction for $m_t = 17$	5. $F_0 = 0.682 \pm 0.030$ if $F_0 = 0.682 \pm 0.030$ if $F_0 = 0.682 \pm 0.031 \pm 0.012$	on channels, and 5.4 fb ⁻¹ \pm 0.035 \pm 0.046 if $F_+ =$ 88(4), where the assumed and $m_W = 80.399 \pm 0.023$		GE=AL
⁶ Results are based on 5.	he SM constraint of f	$_{0} = 0.698$ (for r	6 TeV, including those of $m_t = 173.3$ GeV, $m_W =$	NODE=Q007TV0;LINKA	∖GE=BA
<i>W b</i> events. The ratio in the decaying top qua	F_0 is the fraction of ark rest frame. B($t ightarrow$	the helicity zero $W_+ b$) is the f	ecays of W bosons in $t \rightarrow 0$ (longitudinal) W bosons raction of positive helicity lecays. It is obtained by	5 /	∖GE=A
assuming the Standard		the top quark t	lecays. It is obtained by		
⁸ AABOUD 17BB based decay rate of top quark determine five generaliz	on 20.2 fb ⁻¹ of pp in the <i>t</i> -channel singled $W t b$ couplings as vector couplings. See this paper	e-top production vell as the top po per for constrain	8 TeV. Triple-differential is used to simultaneously larization. No assumption ts on other couplings not Eq.	, I	،GE≕E
⁹ KHACHATRYAN 16BU with $\ell + \not\!\!\! E_T + \ge 4$	based on 19.8 fb ⁻¹ of jets(\geq 2 <i>b</i>). The end (<i>F</i> ₀ , <i>F</i> ₋) = -0.87. T	f pp data at \sqrt{s} rors of F_0 and he result is cons	$F = 8$ TeV using $t\bar{t}$ events F_{-} are correlated with a istent with the NNLO SM	- - -,	∖GE=D
10 Results are based on 2. obtained by assuming F Model independent fits $-0.15 \pm 0.07 \pm 0.06$ v	7 fb ⁻¹ of data in $p\overline{p}$ + = 0, while F_+ result for the two fractions	collisions at \sqrt{s} t is obtained for give $F_0 = 0.88$:	= 1.96 TeV. F_0 result is $F_0 = 0.70$, the SM value. $\pm 0.11 \pm 0.06$ and $F_+ =$ The results are for $m_t =$		∖GE=NN
Model independent fits	$=$ 0, while F_+ result	s obtained for F	= 1.96 TeV. F_0 result is $F_0 = 0.70$, the SM values. $\pm 0.16 \pm 0.05$ and $F_+ = 0.16$		GE=AA
$-0.03\pm0.06\pm0.03.$ 12 Based on 1 fb $^{-1}$ at \sqrt{s}	$\bar{s} = 1.96$ TeV.			NODE=Q007TV0;LINKA	CE-70
13 Based on 318 pb $^{-1}$ of 14 Based on 200 pb $^{-1}$ of	data at $\sqrt{s} = 1.96$ Te	V. V. $t \rightarrow Wb =$	$ \ell \nu b \ (\ell = e \text{ or } \mu).$ The	NODE=Q007TV01INKA	GE=BU
errors are stat $+$ syst.					10L-/12
polarized W under the	pton + jets final states constraint of no right	, and obtained th	ecays of W bosons in $t \overline{t}$ e fraction of longitudinally , $F_+ = 0$. Based on 125	,	.GE=AZ
pb $^{-1}$ of data at $\sqrt{s}=$	1.8 TeV.				
F_				NODE=Q007TVN	
	DOCUMENT	D <u>TECN</u>	COMMENT	NODE=Q007TVN	
0.315 ± 0.010 OUR AVERA					
$0.315\!\pm\!0.006\!\pm\!0.009$	¹ AAD	20Y LHC	ATLAS+CMS com- bined		
$0.310\!\pm\!0.022\!\pm\!0.022$		′AN 13вн CMS	$F_{-} = B(t \rightarrow W_{-}b)$		
0.32 ±0.04	³ AAD		$F_{-} = B(t \rightarrow W_{-}b)$		
• • • We do not use the fo		-			
$> 0.264 \pm 0.044$ 9	5 ⁴ AABOUD	17bb ATLS	$F_{-} = f_{1}(1 - f_{1}^{+}),$ Repl. by AAD 20Y		
$0.323 \!\pm\! 0.008 \!\pm\! 0.014$	⁵ КНАСНАТЕ	RY16B∪ CMS	$F_{-} = B(t \rightarrow W_{-}b),$ Repl. by AAD 20Y		
first error stands for the second error for the ren	e sum of the statistic naining systematic unc	al and backgrou ertainties. The r	for each experiment. The nd uncertainties, and the neasurements used events e. The result is consistent	3	\GE=D

with one report and different jet multiplicities in the final state. The result is consistent with the NNLO SM prediction of 0.311 \pm 0.005 for $m_t = 172.8 \pm 1.3$ GeV. ²Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13BH studied tt events with large $\not{\!\! E}_T$ and $\ell + \geq 4$ jets using a constrained kinematic fit.

NODE=Q007TVN;LINKAGE=A

3/18/2024 16:16

Page 18

- ³ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not\!\!E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$. The uncertainties are not independent, $\rho(F_0, F_-)$ = - 0.96.
- ⁴AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark in the *t*-channel single-top production is used to simultaneously determine five generalized Wtb couplings as well as the top polarization. No assumption is made for the other couplings. The authors reported $f_1=0.30\pm0.05$ and $f_1^+~<~0.120$

which we converted to $F_{-} = f_1(1 - f_1^+)$. See this paper for constraints on other couplings not included here.

⁵KHACHATRYAN 16BU based on 19.8 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV using $t \bar{t}$ events correlation coefficient $\rho(F_0, F_-) = -0.87$. The result is consistent with the NNLO SM prediction of 0.311 \pm 0.005 for $m_t =$ 172.8 \pm 1.3 GeV.

F ₊						NODE=Q007TVP
VALUE	<u>CL%</u>	DOCUMENT ID	<u>T</u>	ECN	COMMENT	NODE=Q007TVP
-0.005±0.007 OUR A -0.008±0.005±0.006	VERAGI	¹ AAD	20y L	нс	ATLAS+CMS com- bined	
$-0.045 \pm 0.044 \pm 0.058$ $0.008 \pm 0.012 \pm 0.014$		² AALTONEN ³ CHATRCHYAI	13D С N 13вн С		$F_{+} = B(t \rightarrow W_{+} b)$ $F_{+} = B(t \rightarrow W_{+} b)$	
0.01 ± 0.05		⁴ AAD			$F_{+} = B(t \rightarrow W_{+}b)$	
$0.023 \pm 0.041 \pm 0.034$		⁵ ABAZOV	11c D		$F_{+} = B(t \rightarrow W_{+}b)$ $F_{+} = B(t \rightarrow W_{+}b)$	
0.11 ± 0.15		⁶ AFFOLDER			$F_{+} = B(t \rightarrow W_{+}b)$ $F_{+} = B(t \rightarrow W_{+}b)$	
• • • We do not use the	following					
$< 0.036 \pm 0.006$	95	⁷ AABOUD	17BB A	ILS	$F_{+} = f_1 f_1^+$, Repl. by	
$-0.004\!\pm\!0.005\!\pm\!0.014$		⁸ KHACHATRY	16BU C	MS	AAD 20Y $F_+ = B(t \rightarrow W_+ b),$ Repl. by AAD 20Y	
$-0.033 \pm 0.034 \pm 0.031$		⁹ AALTONEN	12z T	EVA	$F_{+} = B(t \rightarrow W_{+} b)$	
$-0.01\ \pm 0.02\ \pm 0.05$		¹⁰ AALTONEN	10Q C		Repl. by AALTO-	
$-0.04\ \pm 0.04\ \pm 0.03$		¹¹ AALTONEN	09Q C	DF	NEN 13D Repl. by AALTO- NEN 10Q	
$0.119 \pm 0.090 \pm 0.053$ $0.056 \pm 0.080 \pm 0.057$		¹² ABAZOV ¹³ ABAZOV	08в D 07d D	00		
$0.05 \ {+0.11 \atop -0.05} \ {\pm 0.03}$		¹⁴ ABULENCIA			$F_{+} = B(t \rightarrow W_{+}b)$	
< 0.26	95	¹⁴ ABULENCIA			$F_+ = B(t \rightarrow W_+ b)$	OCCUR=2
< 0.27	95	¹⁵ ABULENCIA			$F_{+} = B(t \rightarrow W_{+}b)$	
$0.00 \pm 0.13 \pm 0.07$	50	¹⁶ ABAZOV	05L D		$F_{+} = B(t \rightarrow W_{+}b)$	
< 0.25	95	¹⁶ ABAZOV	05L D		$F_{+} = B(t \rightarrow W_{+}b)$	OCCUR=2
< 0.24	95	¹⁷ ACOSTA			$F_{+} = B(t \rightarrow W_{+}b)$	
¹ AAD 20Y based on ab first error stands for t	he sum	b ^{—1} of <i>pp</i> data at of the statistical a	$\sqrt{s} = 8$ and back	TeV fo	or each experiment. The d uncertainties, and the easurements used events	NODE=Q007TVP;LINKAGE=

with one lepton and different jet multiplicities in the final state. The result is estimated from the measurements of F_0 and F_- assuming unitarity. The value is consistent with the NNLO SM prediction of 0.0017 \pm 0.0001 for $m_t = 172.8 \pm 1.3$ GeV.

² Based on 8.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV using $t\overline{t}$ events with $\ell + \mathcal{E}_T + \geq 4$ jets($\geq 1 b$), and under the constraint $F_0 + F_+ + F_- = 1$. The statistical errors of F_0 and F_+ are correlated with correlation coefficient $\rho(F_0,F_+) = -0.69$.

 3 Based on 5.0 fb $^{-1}$ of pp data at \sqrt{s} = 7 TeV. CHATRCHYAN 13BH studied tt events with large $\not\!\!\!E_T$ and ℓ + \geq 4 jets using a constrained kinematic fit.

- ⁴ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not\!\!\!E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$.
- ⁵ Results are based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV, including those of ABAZOV 08B. Under the SM constraint of $f_0 = 0.698$ (for $m_t = 173.3$ GeV, $m_W = 80.399$ GeV), $f_+ = 0.010 \pm 0.022 \pm 0.030$ is obtained.
- ⁶AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in $t \rightarrow$ W b events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. B($t \rightarrow W_+ b$) is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_0 .
- ⁷AABOUD 17BB based on 20.2 fb⁻¹ of pp data at \sqrt{s} = 8 TeV. Triple-differential decay rate of top quark in the *t*-channel single-top production is used to simultaneously determine five generalized W t b couplings as well as the top polarization. No assumption is made for the other couplings. The authors reported $f_1=0.30\pm0.05$ and $f_1^+~<~0.120$

which we converted to $F_+ = f_1 f_1^+$. See this paper for constraints on other couplings not included here.

NODE=Q007TVN;LINKAGE=GA

NODE=Q007TVN;LINKAGE=C

NODE=Q007TVN;LINKAGE=B

=F

NODE=Q007TVP;LINKAGE=C

NODE=Q007TVP;LINKAGE=B

NODE=Q007TVP;LINKAGE=GA

NODE=Q007TVP;LINKAGE=BA

NODE=Q007TVP;LINKAGE=A

NODE=Q007TVP;LINKAGE=E

3/18/2024 16:16 Page 20 ⁸KHACHATRYAN 16BU based on 19.8 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV using $t \overline{t}$ events NODE=Q007TVP;LINKAGE=D of 0.0017 \pm 0.0001 for $m_t^- = 172.8 \pm 1.3$ GeV. ⁹Based on 2.7 and 5.1 fb⁻¹ of CDF data in ℓ + jets and dilepton channels, and 5.4 fb⁻¹ of D0 data in ℓ + jets and dilepton channels. $F_0 = 0.682 \pm 0.035 \pm 0.046$ if $F_+ = 0.0017(1)$, while $F_+ = -0.015 \pm 0.018 \pm 0.030$ if $F_0 = 0.688(4)$, where the assumed fixed values are the SM prediction for $m_t = 173.3 \pm 1.1$ GeV and $m_W = 80.399 \pm 0.023$ NODE=Q007TVP:LINKAGE=AL GeV. ¹⁰Results are based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. F_0 result is NODE=Q007TVP;LINKAGE=NN obtained by assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM value. Model independent fits for the two fractions give $F_0 = 0.88 \pm 0.11 \pm 0.06$ and $F_+ = -0.15 \pm 0.07 \pm 0.06$ with correlation coefficient of -0.59. The results are for $m_t = 0.015 \pm 0.07 \pm 0.06$ with correlation coefficient of -0.59. 175 GeV. ¹¹Results are based on 1.9 fb⁻¹ of data in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. F_0 result is obtained assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM values. NODE=Q007TVP;LINKAGE=AA Model independent fits for the two fractions give $F_0 = 0.66 \pm 0.16 \pm 0.05$ and $F_+ =$ $-0.03 \pm 0.06 \pm 0.03$. $^{12}\,\mathrm{Based}$ on 1 fb $^{-1}$ at \sqrt{s} = 1.96 TeV. NODE=Q007TVP:LINKAGE=ZO ¹³Based on 370 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV, using the ℓ + jets and dilepton decay channels. The result assumes $F_0 = 0.70$, and it gives $F_+ < 0.23$ at 95% CL. NODE=Q007TVP;LINKAGE=BZ ¹⁴Based on 318 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. NODE=Q007TVP;LINKAGE=BU $^{15}\,{\rm Based}$ on 200 ${\rm pb}^{-1}$ of data at \sqrt{s} = 1.96 TeV. t $\rightarrow~$ $W\,b$ $\rightarrow~$ $\ell\nu\,b$ (ℓ = e or $\mu).$ The NODE=Q007TVP;LINKAGE=AE errors are stat + syst. $^{16}\mathrm{ABAZOV}$ 05L studied the angular distribution of leptonic decays of W bosons in $t\,\overline{t}$ NODE=Q007TVP;LINKAGE=AB events, where one of the W's from t or \overline{t} decays into e or μ and the other decays hadronically. The fraction of the "+" helicity W boson is obtained by assuming F_0 = 0.7, which is the generic prediction for any linear combination of V and A currents. Based on 230 \pm 15 pb⁻¹ of data at \sqrt{s} = 1.96 TeV. ¹⁷ACOSTA 05D measures the m_{ℓ}^2 +b distribution in $t\bar{t}$ production events where one or NODE=Q007TVP;LINKAGE=AC both W's decay leptonically to $\ell = e$ or μ , and finds a bound on the V+A coupling of the t b W vertex. By assuming the SM value of the longitudinal W fraction $F_0 = B(t \rightarrow t)$ $W_0 b) = 0.70$, the bound on F_+ is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become F $_{V+A}~<$ 0.61 (95% CL) and F $_{+}~<$ 0.18 (95 %CL), respectively. Based on 109 \pm 7 pb $^{-1}$ of data at \sqrt{s} = 1.8 TeV (run I). F_{V+A} NODE=Q007TV2 NODE=Q007TV2 VALUE <u>CL%</u> DOCUMENT ID TECN COMMENT ¹ ABULENCIA 07G CDF $F_{V+A} = B(t \rightarrow W b_R)$ 95 < 0.29 OCCUR=2 • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.06\!\pm\!0.22\!\pm\!0.12$ < 0.80 95 ¹Based on 700 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. NODE=Q007TV2;LINKAGE=LE ²ACOSTA 05D measures the m_{ℓ}^2 +b distribution in $t\bar{t}$ production events where one or NODE=Q007TV2;LINKAGE=AC both W's decay leptonically to $\ell = e$ or μ , and finds a bound on the V+A coupling of the *t bW* vertex. By assuming the SM value of the longitudinal W fraction $F_0 = B(t \rightarrow W_0 b) = 0.70$, the bound on F_+ is obtained. If the results are combined with those of $F_0 = 0.70$, the bound on F_+ is obtained. AFFOLDER 00B, the bounds become F_{V+A} < 0.61 (95% CL) and F_{+} < 0.18 (95% CL), respectively. Based on 109 \pm 7 pb $^{-1}$ of data at \sqrt{s} = 1.8 TeV (run I). f_1^R NODE=Q007TV4 NODE=Q007TV4 TECN COMMENT <u>CL%</u> DOCUMENT ID VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.11 < f_1^R < 0.16$ 95 ¹ AAD 20Y LHC ATLAS+CMS combined ² AABOUD $|f_1^R/f_2^L| < 0.37$ 17BB ATLS 95 t-channel single top $|f_1^R| < 0.16$ ³ KHACHATRY...17G CMS 95 t-channel single-t prod. $-0.20 < \text{Re}(V_{tb} \text{ f}_1^R) < 0.23$ 95 ⁴ AAD 12bg ATLS Constr. on Wtb vtx $(V_{tb} f_1^R)^2 < 0.93$ $|f_1^R|^2 < 0.30$ 95 ⁵ ABAZOV 12E D0 Single-top

 $\begin{array}{l} |\mathbf{f}_1^L| = \mathbf{1}, \ |\mathbf{f}_2^L| {=} |\mathbf{f}_2^R| {=} \mathbf{0} \\ |\mathbf{f}_1^L|^2 = \mathbf{1}.8 {+} {1.0 \atop -1.3} \end{array}$ $|f_1^{\hat{R}}|^2 < 2.5$ ¹AAD 20Y based on about 20 fb⁻¹ of pp data at \sqrt{s} = 8 TeV for each experiment. The measurements used events with one lepton and different jet multiplicities in the final state. The measurements of F_0 and F_- are used to set the limit. The limit is obtained by assuming the other couplings to have their SM values.

121 D0

09J D0

08AI D0

single-t + W helicity

⁶ ABAZOV

⁷ ABAZOV

⁸ ABAZOV

95

95

95

 $|\mathbf{f}_1^R|^2 < 1.01$

²AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark is used to simultaneously determine five generalized W t b couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.

NODE=Q007TV4;LINKAGE=C

NODE=Q007TV4;LINKAGE=B

- ³KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ and 8 TeV, respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of (f₁^L, f₁^R, f₂^R).
- ⁴ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not\!\!E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$.
- ⁵ Based on 5.4 fb⁻¹ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
- ⁶ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.
- ⁷Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.
- ⁸ Result is based on 0.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the t b W coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_L^1 = V_{t b}^*$.

f_2^L

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	data for averages	, fits,	limits, e	etc. • • •
$-0.08 < f_2^L < 0.05$	95		20Y	LHC	ATLAS+CMS com- bined
$ f_2^L/f_1^L < 0.29$	95	² AABOUD	17 BE	3 ATLS	
$ f_2^L < 0.057$	95	³ KHACHATRY.	17 G	CMS	t-channel single-t prod.
$-0.14 < \text{Re}(f_2^L) < 0.11$	95	⁴ AAD	12BG	ATLS	Constr. on Wtb vtx
$(V_{tb} f_2^L)^2 < 0.13$	95	⁵ ABAZOV	12E	D0	Single-top
$ f_2^L ^2 < 0.05$	95	⁶ ABAZOV	121	D0	single- $t + W$ helicity
$ f_2^L ^2 < 0.28$	95	⁷ ABAZOV	09J	D0	$ f_1^L = 1$, $ f_1^R = f_2^R = 0$
$ f_2^{\hat{L}} ^2 < 0.5$	95	⁸ ABAZOV	08AI	D0	$ \mathbf{f}_1^L ^2 = 1.4^{+0.6}_{-0.5}$

¹AAD 20Y based on about 20 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV for each experiment. The measurements used events with one lepton and different jet multiplicities in the final state. The measurements of F_0 and F_- are used to set the limit. The limit is obtained by assuming the other couplings to have their SM values.

- ² AABOUD 17BB based on 20.2 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark is used to simultaneously determine five generalized *W t b* couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
- 3 KHACHATRYAN 17G based on 5.0 and 19.7 fb $^{-1}$ of pp data at \sqrt{s} = 7 and 8 TeV, respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of (f_1^L , f_2^L , f_2^R).
- ⁴ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not\!\!E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$.
- ⁵Based on 5.4 fb⁻¹ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
- ⁶Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.
- ⁷ Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.
- ⁸ Result is based on 0.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the *t b W* coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^1 = V_{tb}^*$.

NODE=Q007TV4;LINKAGE=A

NODE=Q007TV4;LINKAGE=GA

NODE=Q007TV4;LINKAGE=AV

NODE=Q007TV4;LINKAGE=VM

NODE=Q007TV4;LINKAGE=ZV

NODE=Q007TV4;LINKAGE=AO

NODE=Q007TV5 NODE=Q007TV5

NODE=Q007TV5;LINKAGE=C

NODE=Q007TV5;LINKAGE=B

NODE=Q007TV5;LINKAGE=A

NODE=Q007TV5;LINKAGE=GA

NODE=Q007TV5;LINKAGE=AV

NODE=Q007TV5;LINKAGE=VM

NODE=Q007TV5;LINKAGE=ZV

NODE=Q007TV6;LINKAGE=D

NODE=Q007TV6;LINKAGE=C

NODE=Q007TV6;LINKAGE=B

NODE=Q007TV6;LINKAGE=A

NODE=Q007TV6;LINKAGE=GA

NODE=Q007TV6;LINKAGE=AV

NODE=Q007TV6;LINKAGE=VM

NODE=Q007TV6;LINKAGE=ZV

NODE=Q007TV6;LINKAGE=AO

NODE=Q007A02

NODE=Q007A02

NODE=Q007A02

f_2^R						NODE=Q007TV6
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	NODE=Q007TV6
$\bullet \bullet \bullet$ We do not use the	following	g data for averages,	fits, lin	nits, et	c. ● ● ●	
$-0.04 \ < { m f}_2^R \ < 0.02$	95	¹ AAD	20Y I	LHC	ATLAS+CMS com- bined	
$-0.12 < \operatorname{Re}(f_2^R/f_1^L) < 0.17$		² AABOUD	17bb /	ATLS	t-channel single top	
$-0.07 < lm(f_2^R/f_1^L) < 0.06$	95	² AABOUD	17bb /	ATLS	t-channel single top	OCCUR=2
$-0.18 < \text{Im}(f_2^{R}) < 0.06$	95	³ AABOUD	171 /	ATLS	t-channel single top	
$-0.049 < f_2^{\overline{R}} < 0.048$	95	⁴ KHACHATRY.	17G (CMS	<i>t</i> -channel single top	
$-0.36 < \operatorname{Re}(\bar{f}_2^R/f_1^L) < 0.10$	95	⁵ AAD	16ak /	ATLS	Single-top	
$-0.17 < \text{Im}(f_2^{\hat{R}}/f_1^{\hat{L}}) < 0.23$	95	⁵ AAD	16ak /	ATLS	Single-top	OCCUR=3
$-0.08 < \text{Re}(\tilde{f}_2^R) < 0.04$	95	⁶ AAD	12bg /	ATLS	Constr. on Wtb vtx	
$(V_{tb} f_2^R)^2 < 0.06$	95	⁷ ABAZOV	12E [D0	Single-top	
$ f_2^{\hat{R}} ^2 < 0.12$	95	⁸ ABAZOV	12ı I	D0	single- $t + W$ helicity	
$ f_2^{R} ^2 < 0.23$	95	⁹ ABAZOV	09J [D0	$ f_1^L =1$, $ f_1^R = f_2^L =0$	
$\begin{array}{l} \mathbf{f}_2^R ^2 &< 0.12 \\ \mathbf{f}_2^R ^2 &< 0.23 \\ \mathbf{f}_2^R ^2 &< 0.3 \end{array}$	95	¹⁰ ABAZOV	08AI I	D0	$\begin{array}{l} f_1^L {=}1, \ f_1^R {=} f_2^L {=}0\\ f_1^L ^2 = 1.4{+}0.9\\ -0.8 \end{array}$	
1 AAD 20Y based on al	bout 20	${\rm fb}^{-1}$ of pp data a	at \sqrt{s} :	= 8 Te	eV for each experiment.	NODE=Q007TV6;LINKAGE=F
The measurements use	ed events	s with one lepton an	d differ	ent jet	multiplicities in the final	
		•			it. The limit is obtained	
by assuming the other	couplin	gs to have their SM	values			

² AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark is used to simultaneously determine five generalized W t b couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.

³ AABOUD 17I based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. A cut-based analysis is used to discriminate between signal and backgrounds. All anomalous couplings other than $\text{Im}(f)_{2}^{R}$ are assumed to be zero. See this paper for a number of other asymmetries and measurements that are not included here.

- and measurements that are not included here. ⁴KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ and 8 TeV, respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of (f₁^L, f₂^D, f₂^R).
- ⁵ AAD 16AK based on 4.6 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. The results are obtained from an analysis of angular distributions of the decay products of single top quarks, assuming $f_1^R = f_2^L = 0$. The fraction of decays containing transversely polarized *W* is measured to be $F_+ + F_- = 0.37 \pm 0.07$.
- ⁶Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$.
- $^7\,{\rm Based}$ on 5.4 fb $^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
- ⁸ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.
- ⁹Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.
- ¹⁰ Result is based on 0.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the t b W coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^L = V_{tb}^*$.

$|\mathsf{f}_{LV}\mathsf{V}_{tb}|$

Assumed that the top-quark-related CKM matrix elements obey the relation $|\mathsf{V}_{td}|,$ $|\mathsf{V}_{ts}|\ll|\mathsf{V}_{tb}|$ and a form factor f_{LV} is determined for each production mode and centre-of-mass energy.

VALUE	DOCUMENT ID	TECN	COMMENT
0.995 ± 0.021 OUR AVERAGE			
0.988 ± 0.024	¹ SIRUNYAN	20AZ CMS	13 TeV, <i>t</i> -channel single top
$1.02\ \pm 0.04\ \pm 0.02$	² AABOUD	19R LHC	ATLAS + CMS at 7, 8 TeV

¹ SIRUNYAN 20AZ based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. Final states enriched in single top quark *t*-channel events are used. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters. Under the standard model assumption of CKM unitarity, the values are found to be $|V_{tb}| > 12$

0.970 and $|{\sf V}_{td}|^2 + |{\sf V}_{ts}|^2 \,\,<$ 0.057, both at 95% CL.

² The combination of single-top production cross-section measurements in the *t*-channel, *tW*, and *s*-channel production modes from ATLAS and CMS at $\sqrt{s} = 7$ and 8 TeV.

$ f_{LV}\sqrt{ V_{td} ^2+ V_{td} ^2}$	s ²					NODE=Q007A05
	$ V_{tb} $ a	nd a form factor f			nents obey the relation nined for each production	NODE=Q007A05
VALUE		DOCUMENT ID		TECN	COMMENT	NODE=Q007A05
• • • We do not use th	e follow	ing data for averages	s, fits,	limits,	etc. • • •	
0.24 ± 0.12		¹ SIRUNYAN	20A2	z CMS	t-channel single top	
$\sqrt{s}=$ 13 TeV meas single top quark <i>t</i> -cl matrix within the SM	ured V _i hannel e 1. Under	$ t_{td} ^2 + V_{ts} ^2 = 0.0$ vents by releasing al)6 ± l cons assur	0.06 usi straints nption c	n 35.9 fb ⁻¹ of pp data at ng final states enriched in from unitarity of the CKM of CKM unitarity,the values 7, both at 95% CL.	NODE=Q007A05;LINKAGE=A
Chromo-magnetic di	pole m	oment $\mu_t = \mathbf{g}_c \hat{\mu}_t /$	m.			NODE=Q007CMD
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	NODE=Q007CMD
• • • We do not use th	e follow	ing data for averages	s, fits,	limits,	etc. • • •	
$-0.024 \substack{+0.013 + 0.016 \\ -0.009 - 0.011}$		¹ SIRUNYAN	20A1	MCMS	$\ell+jets$	
$\begin{array}{c} -0.024 + 0.013 + 0.010 \\ -0.009 - 0.011 \\ -0.014 < \hat{\mu}_t < 0.004 \\ -0.053 < {\rm Re}(\hat{\mu}_t) < 0.026 \end{array}$	95	² SIRUNYAN	19B)	x CMS	$\ell\ell + \geq 2 \mathbf{j} \ (\geq 1b)$ $\ell\ell + \geq 2 \mathbf{j} \ (\geq 1b)$	
¹ SIRUNYAN 20AM b high boosts are rec initial subprocess is	ased on construct separate	35.9 fb^{-1} of pp dated through a fit of ed using different determined using different determined the set of th	ata at the epend	t $\sqrt{s} =$ kinemat encies c	13 TeV. $t\bar{t}$ with low and ic distributions. The $q\bar{q}$ of the distributions on the is measured to be $A_{FB}^{(1)} =$	NODE=Q007CMD;LINKAGE=
normalized different dependent $t\bar{t}$ produ MC simulations and ³ KHACHATRYAN 16	ised on 3 ial cross ction de with th 6AI base	s sections is measur ensity matrix. The c e NLO QCD calculat	ed to oeffic tion ii pp da	extrac ients ar ncluding ata at v	\sqrt{s} = 8 TeV, using lepton	NODE=Q007CMD;LINKAGE= NODE=Q007CMD;LINKAGE=
Chromo-electric dipo	ole mor	nent $d_t = g_s \hat{d}_t / r_s$	n _t	TECN	COMMENT	NODE=Q007CED NODE=Q007CED
• • • We do not use th			s fits			
		¹ TUMASYAN		CMS	ℓ+jets	1
$ig \hat{d}_t ig <$ 0.015 $-$ 0.014 $< \hat{d}_t <$ 0.027	95 95	² TUMASYAN		CMS	dilepton channel; $\epsilon(p_t p_{\overline{t}} p_{\ell^+} p_{\ell^-})$	
$-0.019 < \hat{d}_t < 0.019$	95	² TUMASYAN	23 ∪	CMS	$\frac{\epsilon(p_{L}p_{T}p_{\ell}+p_{\ell}-)}{\epsilon(p_{L}p_{D}p_{\ell}+p_{\ell}-)}$	OCCUR=2
$\left \hat{d}_t ight <$ 0.03	95	³ SIRUNYAN	20A1	MCMS	ℓ+jets	
$-0.020 < \hat{d}_t < 0.012$	95	⁴ SIRUNYAN		x CMS	$\ell\ell+~\geq$ 2j (\geq 1 <i>b</i>)	
$-0.068 < \text{Im}(\hat{d}_t) < 0.067$	95	⁵ KHACHATRY.	16 AI	CMS	$\ell\ell+$ ≥2 j ($\geq1b$)	
products of moment sionless chromoelect found, which is cons ² TUMASYAN 23U b pseudo-scalar produ	ta of the cric top o sistent w ased on cts <i>O</i> ₁	e final-state particles quark dipole moment vith the SM expectat 35.9 fb^{-1} of pp d $= \epsilon(p_t p_{\bar{t}} p_{\ell^+} p_{\ell^-})$ a	are i No ion. ata at nd <i>O</i>	measure evidenc t $\sqrt{s} =$ $\theta_3 = \epsilon(\mu)$	13 TeV. Four <i>T</i> -odd triple d to constrain the dimen- e of <i>CP</i> -violating effects is 13 TeV. <i>CP</i> -odd Lorentz $p_b p_{\overline{b}}^- p_{\ell^+} p_{\ell^-}$) constructed	NODE=Q007CED;LINKAGE= NODE=Q007CED;LINKAGE=
and used to constra evidence for <i>CP</i> -viol ³ SIRUNYAN 20AM b high boosts are rec initial subprocess is	in the d ating eff ased on construct separat	limensionless chromo fects is found, which 35.9 fb^{-1} of pp di ted through a fit of ed using different do	electi is co ata at the epend	ric top on $\sqrt{s} = \sqrt{s}$ ric top of $\sqrt{s} = \sqrt{s}$ lences c	respectively, are measured quark dipole moment. No with the SM expectation. 13 TeV. $t\bar{t}$ with low and ic distributions. The $q\bar{q}$ f the distributions on the	NODE=Q007CED;LINKAGE=
initial states, and the $0.048 + 0.095 + 0.02$ -0.087 - 0.02	e lineariz 0 9 [.]	zed forward-backward	d asyr	nmetry	is measured to be $A_{FB}^{(1)} =$	

⁴ SIRUNYAN 19BX based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A set of parton-level normalized differential cross sections is measured to extract coefficients of the spin-dependent $t\bar{t}$ production density matrix and constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark. The coefficients are compared with the NLO MC simulations and with the NLO QCD calculation including EW corrections. ⁵ KHACHATRYAN 16AI based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using lepton angular distributions as a function of the $t\bar{t}$ -system kinematical variables.

NODE=Q007CED;LINKAGE=A

NODE=Q007CED;LINKAGE=B

3/18/2024 16:16 Page 24

NODE=Q007SC;LINKAGE=A

NODE=Q007SC;LINKAGE=A1

NODE=Q007SC;LINKAGE=A2

NODE=Q007SC;LINKAGE=AL

NODE=Q007SC;LINKAGE=AA

NODE=Q007SC;LINKAGE=AB

NODE=Q007TSC

NODE=Q007TSC

NODE=Q007SC

NODE=Q007SC

Spin Correlation in $t\bar{t}$ Production in $p\bar{p}$ Collisions

C is the correlation strength parameter, f is the ratio of events with correlated t and \overline{t} spins (SM prediction: f = 1), and κ is the spin correlation coefficient. See "The Top Quark" review for more information.

VALUE	DOCUMENT ID	TECN	COMMENT	NODE=Q007SC					
• • We do not use the following data for averages, fits, limits, etc. • • •									
0.89 ± 0.22	¹ ABAZOV	16A D0	f ($\ell\ell$ + \geq 2 jets, ℓ + \geq 4 jets)						
0.85 ± 0.29	² ABAZOV	12B D0	f ($\ell\ell$ + \geq 2 jets, ℓ + \geq 4 jets)						
$1.15^{+0.42}_{-0.43}$	³ ABAZOV	12B D0	f ($\ell + ot\!$	OCCUR=2					
$0.60\substack{+0.50\\-0.16}$	⁴ AALTONEN	11AR CDF	$\kappa \; (\ell + ot\!$						
$0.74 \substack{+ 0.40 \\ - 0.41}$	⁵ ABAZOV	11AE D0	f ($\ell\ell$ + $\not\!$						
0.10 ± 0.45	⁶ ABAZOV	11AF D0	${\sf C}\;(\ell\ell+ ot\!$						
	-		-						

¹ABAZOV 16A based on 9.7 fb⁻¹ of data. A matrix element method is used. It corresponds to evidence of spin correlation at 4.2σ and is in agreement with the NLO SM prediction $0.80 \substack{+0.01 \\ -0.02}$.

² This is a combination of the lepton + jets analysis presented in ABAZOV 12B and the dilepton measurement of ABAZOV 11AE. It provides a 3.1 σ evidence for the $t\bar{t}$ spin correlation.

 $^3\,\rm Based$ on 5.3 fb^{-1} of data. The error is statistical and systematic combined. A matrix element method is used.

⁴ Based on 4.3 fb⁻¹ of data. The measurement is based on the angular study of the top quark decay products in the helicity basis. The theory prediction is $\kappa \approx 0.40$.

 $^5\,\text{Based}$ on 5.4 fb $^{-1}$ of data using a matrix element method. The error is statistical and systematic combined. The no-correlation hypothesis is excluded at the 97.7% CL.

 $^6\text{Based}$ on 5.4 fb $^{-1}$ of data. The error is statistical and systematic combined. The NLO QCD prediction is C = 0.78 \pm 0.03. The neutrino weighting method is used for reconstruction of kinematics.

Spin Correlation in $t\bar{t}$ Production in pp Collisions

VALUE	DOCUMENT ID		COMMENT	NODE=Q007TSC					
● ● We do not use the following data for averages, fits, limits, etc. ● ●									
$0.90\!\pm\!0.07\!\pm\!0.09\!\pm\!0.01$	¹ SIRUNYAN	19BX CMS	${\it C}_{kk}$ in $\ell\ell+$ \geq 2j (\geq 1 <i>b</i>)						
$1.13 {\pm} 0.32 {\pm} 0.32 {+} 0.10 \\ -0.13$	¹ SIRUNYAN	19BX CMS	$C_{rr} ext{ in } \ell\ell + ext{ } \geq 2 ext{j} ext{ } (\geq 1 ext{b})$	OCCUR=2					
$1.01\!\pm\!0.04\!\pm\!0.05\!\pm\!0.01$	¹ SIRUNYAN	19BX CMS	$C_{\!\!\!\!\!nn}{ m in}\ell\ell+\geq 2{ m j}(\geq 1b)$	OCCUR=3					
$0.94\!\pm\!0.17\!\pm\!0.26\!\pm\!0.01$	¹ SIRUNYAN	19BX CMS	$C_{rk}+C_{kr}$ in $\ell\ell+\geq 2$ j $(\geq 1b)$	OCCUR=4					
$0.98\!\pm\!0.03\!\pm\!0.04\!\pm\!0.01$	¹ SIRUNYAN	19BX CMS	$(C_{kk} + C_{rr} + C_{nn})/3 \text{ in } \ell\ell + > 2 \text{i} (> 1b)$	OCCUR=5					
$0.74\!\pm\!0.07\!\pm\!0.19\!+\!0.06\\-0.08$	¹ SIRUNYAN	19BX CMS	$A^{lab}_{cos\phi}$ in $\ell\ell+\geq 2$ j ($\geq 1b$)	OCCUR=6					
$1.05\!\pm\!0.03\!\pm\!0.08\!+\!0.09\\-0.12$	¹ SIRUNYAN	19BX CMS	$egin{array}{lll} {\sf A}_{ig \Delta\phi(\ell\ell)ig } \ { m in} \ \ell\ell \ + \ \ge 2{ m j} \ (\ge 1b) \end{array}$	OCCUR=7					
$1.12^{+0.12}_{-0.15}$	² KHACHATRY	16AI CMS	$\ell\ell + \geq 2j \ (\geq 1b)$						
$0.72 {\pm} 0.08 {+} {0.15 \atop -0.13}$	³ KHACHATRY	16X CMS	μ + 4,5j						
$1.20\!\pm\!0.05\!\pm\!0.13$	⁴ AAD	15J ATLS	$\Delta \phi(\ell \ell)$ in $\ell \ell + \geq 2 { m j} (\geq 1 b)$						
$1.19\!\pm\!0.09\!\pm\!0.18$	⁵ AAD	14bb ATLS	$\Delta \phi(\ell \ell)$ in $\ell \ell + \geq 2$ j events						
$1.12 \pm 0.11 \pm 0.22$	⁵ AAD	14bb ATLS	$\Delta \phi(\ell j)$ in $\ell+\geq$ 4j events	OCCUR=2					
$0.87\!\pm\!0.11\!\pm\!0.14$	5,6 _{AAD}	14bb ATLS	S-ratio in $\ell\ell+\geq 2j$ events	OCCUR=3					
$0.75\!\pm\!0.19\!\pm\!0.23$	^{5,7} AAD	14BB ATLS	$\cos heta(\ell^+) \cos heta(\ell^-) ext{ in } \ell\ell \ + \ \geq 2 ext{j events}$	OCCUR=4					
$0.83 \pm 0.14 \pm 0.18$	^{5,8} AAD	14bb ATLS	$\cos heta (\ell^+) \cos heta (\ell^-)$ in $\ell \ell + \geq 2 { m j}$ events	OCCUR=5					

¹SIRUNYAN 19BX based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. A set of partonlevel normalized differential cross sections sensitive to coefficients of the spin-dependent $t\bar{t}$ production density matrix is measured. The distributions and coefficients are compared with the NLO MC simulations and with the NLO QCD calculation including EW corrections. Three errors are from statistics, experimental systematics, and theory.

²KHACHATRYAN 16AI based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using lepton angular distributions as a function of the $t\bar{t}$ -system kinematical variables.

³ KHACHATRYAN 16x based on 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Uses a template fit method. Spin correlation strength in the helicity basis is given by $A_{hel} = 0.23 \pm 0.03^{+0.05}_{-0.04}$.

NODE=Q007TSC;LINKAGE=D

NODE=Q007TSC;LINKAGE=E

NODE=Q007TSC;LINKAGE=C

⁴AAD 15J based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Uses a fit including a linear superposition of $\Delta \phi$ distribution from the SM NLO simulation with coefficient f_{SM} and from $t \bar{t}$ simulation without spin correlation with coefficient $(1 - f_{SM})$.

⁵Based on 4.6 fb⁻¹ of pp data at \sqrt{s} =7 TeV. The results are for m_t = 172.5 GeV.

- ⁶The S-ratio is defined as the SM spin correlation in the like-helicity gluon-gluon collisions normalized to the no spin correlation case; see eq.(6) for the LO expression.
- $^7\,{\rm The}$ polar angle correlation along the helicity axis.

 8 The polar angle correlation along the direction which maximizes the correlation.

t-quark FCNC Couplings κ^{utg}/Λ and κ^{ctg}/Λ

NODE=Q007TSC;LINKAGE=F

NODE=Q007TSC;LINKAGE=G NODE=Q007TSC;LINKAGE=H

NODE=Q007TUG;LINKAGE=B

NODE=Q007TUG;LINKAGE=A

NODE=Q007TUG;LINKAGE=AD

NODE=Q007TUG;LINKAGE=AZ

NODE=Q007TUG;LINKAGE=AA

NODE=Q007TUG;LINKAGE=AB

NODE=Q007A03

NODE=Q007TSC;LINKAGE=B

NODE=Q007TSC;LINKAGE=A

NODE=Q007TUG NODE=Q007TUG

VALUE (TeV $^{-1}$)	CL%_	DOCUMENT ID	TECN	COMMENT	NODE=Q007TUG
• • • We do not us	e the followir	ng data for averages,	fits, limits, e	etc. • • •	
		¹ AAD	22⊤ ATLS	ug ightarrow t , $cg ightarrow t$	
<0.0041	95	² KHACHATRY	17G CMS	$ \kappa^{tug} /\Lambda$	
<0.018	95	² KHACHATRY	17G CMS	$ \kappa^{tcg} /\Lambda$	OCCUR=2
<0.010	95	³ AAD	16AS ATLS	κ^{tug}/Λ	
<0.023	95	³ AAD	16AS ATLS	κ^{tcg}/Λ	OCCUR=2
<0.0069	95	⁴ AAD	12bp ATLS	$t^{tug}/\Lambda (t^{tcg} = 0)$	
<0.016	95	⁴ AAD	12bp ATLS	$t^{tcg}/\Lambda (t^{tug} = 0)$	OCCUR=2
<0.013	95	⁵ ABAZOV	10K D0	κ^{tug}/Λ	
<0.057	95	⁵ ABAZOV	10K D0	κ^{tcg}/Λ	OCCUR=2
<0.018	95	⁶ AALTONEN	09N CDF	$\kappa^{tug}/\Lambda~(\kappa^{tcg}=0)$	
<0.069	95	⁶ AALTONEN	09N CDF	$\kappa^{tcg}/\Lambda~(\kappa^{tug}=0)$	OCCUR=2
<0.037	95	⁷ ABAZOV	07∨ D0	κ^{utg}/Λ	
<0.15	95	⁷ ABAZOV	07∨ D0	κ^{ctg}/Λ	OCCUR=2
¹ AAD 22T based		1 of pp data at \sqrt{s}		The results are obtained	NODE=Q007TUG;LINKAGE=D

¹AAD 22T based on 139 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The results are obtained from the 95% CL upper limits on the single top-quark productions $\sigma(ug \rightarrow t) \cdot B(t \rightarrow t) \cdot B(t)$ how the by $\partial (t) = \ell v$ of the single top quark single top quark single ($u_g = 0$) $(u_g = 0)$ ($u_$ and B($t \rightarrow cg$) $< 3.7 \times 10^{-4}$.

- ²KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of pp data at $\sqrt{s} = 7$ and 8 TeV, respectively. t-channel single top production is used. The result corresponds to B(t ightarrow $ug) < 2.0 \times 10^{-5} \text{ or } B(t \rightarrow cg) < 4.1 \times 10^{-4}.$
- ³AAD 16AS based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The results are obtained from the 95% CL upper limit on the single top-quark production $\sigma(qg \rightarrow t) \cdot B(t \rightarrow t) \cdot B(t)$ $bW)B(W \to I\nu) < 2.9 \text{ pb}, B(t \to ug) < 4.0 \times 10^{-5} \text{ and } B(t \to cg) < 20 \times 10^{-5}.$
- ⁴ Based on 2.05 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The results are obtained from the 95% CL upper limit on the single top-quark production $\sigma(qg \rightarrow t) \cdot B(t \rightarrow bW) < 3.9$ pb, for q=u or q=c, $B(t \rightarrow ug) < 5.7 \times 10^{-5}$ and $B(t \rightarrow ug) < 2.7 \times 10^{-4}$.
- 5 Based on 2.3 fb $^{-1}$ of data in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. Upper limit of single top quark production cross section 0.20 pb and 0.27 pb via FCNC t-u-g and t-c-g couplings, respectively, lead to the bounds without assuming the absence of the other coupling. ${\sf B}(t o \ u + \ g) < \ 2.0 imes 10^{-4} \ {\sf and} \ {\sf B}(t o \ c + \ g) < \ 3.9 imes 10^{-3} \ {\sf follow}.$
- ⁶ Based on 2.2 fb⁻¹ of data in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Upper limit of single top quark production cross section $\sigma(u(c) + g \rightarrow t) < 1.8$ pb (95% CL) via FCNC *t-u-g* and *t-c-g* couplings lead to the bounds. B($t \rightarrow u + g$) < 3.9×10^{-4} and B($t \rightarrow c +$ g) < 5.7×10^{-3} follow.
- ⁷ Result is based on 230 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Absence of single top quark production events via FCNC *t-u-g* and *t-c-g* couplings lead to the upper bounds on the dimensioned couplings, κ^{utg}/Λ and κ^{ctg}/Λ , respectively.

t-Quark Yukawa Coupling from $t\bar{t}$ Kinematic Distributions in pp Collisions

The ratio of <i>t</i> - <u>VALUE</u>	quark Yukawa coupl <u>DOCUMENT ID</u>	0	dard model predicted value. <u>COMMENT</u>	NODE=Q007A03 NODE=Q007A03
• • • We do not use	the following data	for averages, f	its, limits, etc. • • •	
$1.16 \substack{+0.24 \\ -0.35}$	¹ SIRUNYAN	20вн CMS	$\ell\ell~(\ell{=}e{,}\mu)+{ m jets}~(~{\geq}~2b{ m j})+{E_T}$	
$1.07 \substack{+0.34 \\ -0.43}$	² SIRUNYAN	19BY CMS	ℓ +jets, $t \overline{t}$ threshold	

 $^1\,{\rm SIRUNYAN}$ 20BH based on 137 fb $^{-1}$ of data at \sqrt{s} = 13 TeV. Kinematic distributions of $t\bar{t}$ are compared with predictions by different values of the top Yukawa coupling in loop corrections, where the scaling of the SM coupling is used within the κ -framework.

²SIRUNYAN 19BY based on 35.8 fb⁻¹ of data at $\sqrt{s} = 13$ TeV. Experimental sensitivity is enhanced in the low $M_{t\bar{t}}$ region. The distributions of $M_{t\bar{t}}$, $|y_t - y_{\bar{t}}|$, and the number of reconstructed jets are compared with predictions by different Yukawa couplings which include NNLO QCD and NLO EW corrections.

NODE=Q007A03;LINKAGE=A

NODE=Q007TTH;LINKAGE=F

NODE=Q007TTH;LINKAGE=G

NODE=Q007TTH;LINKAGE=E

NODE=Q007TTH;LINKAGE=C

NODE=Q007TTH;LINKAGE=D

NODE=Q007TTH;LINKAGE=A

NODE=Q007TTH;LINKAGE=B

NODE=Q007TTH NODE=Q007TTH

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following d	ata for averages fits	limits	etc • • •

 $\sigma(Ht\bar{t}) / \sigma(Ht\bar{t})_{SM}$

• • • We do not us	se the following	data for averages	, mus,	innits, e	
$1.43^{+0.33}_{-0.31}{}^{+0.21}_{-0.15}$	5	¹ AAD	20z	ATLS	$Ht\overline{t}$ ($H ightarrow\gamma\gamma$)
$1.38 \substack{+0.29 + 0.21 \\ -0.27 - 0.11}$		² SIRUNYAN	20AS	CMS	$H t \overline{t} (H ightarrow \gamma \gamma)$
$0.72 \pm 0.24 \pm 0.38$;	³ SIRUNYAN	19R	CMS	$\begin{array}{ll} Ht\overline{t} (H \rightarrow b\overline{b}, t\overline{t} \rightarrow \\ \ell + \text{jets or dilepton}) \end{array}$
$0.9\ \pm 0.7\ \pm 1.3$		⁴ SIRUNYAN			$Ht\overline{t} (H \rightarrow b\overline{b}, t\overline{t} \rightarrow all jets)$
$1.26^{+0.31}_{-0.26}$		⁵ SIRUNYAN	18L	CMS	combination of CMS
<6.7 2.8 ±1.0	95	⁶ AAD ⁷ KHACHATRY.		ATLS CMS	$ \begin{array}{l} Ht \overline{t}; \ H \to \ \gamma \gamma \\ H \to \ b \overline{b}, \ \tau_h \tau_h, \ \gamma \gamma, \\ W W / Z Z (\text{leptons}) \end{array} $

¹ AAD 20Z based on 139 fb⁻¹ of *pp* data at 13 TeV. Assuming a *CP*-even coupling the $t\bar{t}H$ process is observed with a significance of 5.2 σ , and the measured $\sigma_{t\bar{t}H} \cdot B_{\gamma\gamma} = 1.64^{+0.38}_{-0.36} + 0.17_{-0.14}$ fb. A *CP*-mixing angle $|\alpha| > 43^{\circ}$ is excluded at 95% CL.

² SIRUNYAN 20AS based on 137 fb⁻¹ of pp data at 13 TeV. The $t\bar{t}H$ process is observed with a significance of 6.6 σ , and the measured $\sigma_{t\bar{t}H} \cdot B_{\gamma\gamma} = 1.56^{+0.33}_{-0.30}_{-0.08}$ fb. The fractional contribution of the *CP*-odd component is measured to be $f_{CP}^{t\bar{t}H} = 0.00 \pm 0.33$.

- 3 SIRUNYAN 19R based on 35.9 fb $^{-1}$ of $p\,p$ data at 13 TeV. Multivariate techniques are employed to separate the signal from the dominant $t\bar{t}+$ jets background. The result is for m_{H} = 125 GeV. The measured ratio corresponds to a signal significance of 1.6σ above the background-only hypothesis.
- ⁴ SIRUNYAN 18BD based on 35.9 fb⁻¹ of pp data at 13 TeV. A combined fit of signal and background templates to data is performed in six event categories separated by jet and *b*-jet multiplicities. An upper limit of 3.8 is obtained for the cross section ratio.
- ⁵ SIRUNYAN 18L based on up to 5.1, 19.7, and 35.9 fb⁻¹ of pp data at 7, 8, and 13 TeV, respectively. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The result is for the Higgs boson mass of 125.09 GeV.
- ⁶Based on 4.5 fb⁻¹ of data at 7 TeV and 20.3 fb⁻¹ at 8 TeV. The result is for m_H = 125.4 GeV. The measurement constrains the top quark Yukawa coupling strength parameter $\kappa_t = Y_t/Y_t^{SM}$ to be $-1.3 < \kappa_t < 8.0$ (95% CL).
- ⁷ Based on 5.1 fb⁻¹ of pp data at 7 TeV and 19.7 fb⁻¹ at 8 TeV. The results are obtained by assuming the SM decay branching fractions for the Higgs boson of mass 125.6 GeV. The signal strength for individual Higgs decay channels are given in Fig. 13, and the preferred region in the (κ_V , κ_f) space is given in Fig. 14.

Direct n	probe of the <i>t</i>	bW coupling and	possible n	w phy	ysics at $\sqrt{s} = 1.8$ TeV.	NODE=Q007STA NODE=Q007STA
VALUE (pb)	<u>CL%</u>	DOCUMENT IL	•		COMMENT	NODE=Q007STA
• • • We do	not use the fo	llowing data for a	verages, fit	s, limi	ts, etc. ● ● ●	
<24	95	¹ ACOSTA	04H CI	DF	$p \overline{p} \rightarrow t b + X, t q b + X$	
<18	95	² ACOSTA	02 CI	DF	$p \overline{p} \rightarrow t b + X$	
<13	95	³ ACOSTA	02 CI	DF	$p \overline{p} \rightarrow t q b + X$	OCCUR=2
cess, $q^{\prime} \overline{q} \sim 106 \ { m pb}^{-2} m ACOSTA$	$\rightarrow t \overline{b}$, and $^{-1}$ of data. 02 bounds the	the <i>t</i> -channel N	′-exchange ′ single top	proce quark	e s-channel W-exchange pro- ss, $q'g \rightarrow qt\overline{b}$. Based on production via the s-channel of data.	NODE=Q007STA;LINKAGE=AO NODE=Q007STA;LINKAGE=DA
W-exchan	ige process, <i>q</i> '	$q \rightarrow t D$. Based	$00 \sim 100 \mu$			
³ ACOSTA	02 bounds the	$q \rightarrow t b$. Based e cross section for $g \rightarrow q t \overline{b}$. Base	^r single top	quark	production via the <i>t</i> -channel	NODE=Q007STA;LINKAGE=EA
³ ACOSTA <i>W</i> -exchan	02 bounds the nge process, <i>q</i>	e cross section for $g \rightarrow q t \overline{b}$. Base	r single top d on \sim 106	-quark pb ^{— 1}	production via the <i>t</i> -channel	
³ ACOSTA <i>W</i> -exchan Single t-Qu Direct p	02 bounds the nge process, <i>q</i> ark Product probes of the	e cross section for $g \rightarrow qt\overline{b}$. Base ion Cross Section tbW coupling an	r single top d on ~ 106 on in p p d possible r	-quark pb ⁻¹ Collis new pł	production via the <i>t</i> -channel ¹ of data.	NODE=Q007STA;LINKAGE=EA NODE=Q007STB NODE=Q007STB

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$3.53^{ig+1.25}_{-1.16}$	¹ AALTONEN	16	CDF	s - + t -channels (0 ℓ + $\not\!\!\!E_T$ + 2,3 i (> 1 b -tag))
$2.25 \substack{+0.29 \\ -0.31}$	² AALTONEN	15H	TEVA	· · · · · · · · · · · · · · · · · · ·

NODE=Q007STB;LINKAGE=F

NODE=Q007STB;LINKAGE=G

NODE=Q007STB;LINKAGE=C

NODE=Q007STB;LINKAGE=B

NODE=Q007STB;LINKAGE=D

NODE=Q007STB;LINKAGE=E

$3.30^{+0.52}_{-0.40}$		^{2,3} AALTONEN	15H TEVA	s- + t-channels	OCCUR=2
$1.12\substack{+0.61 \\ -0.57}$		⁴ AALTONEN	14к CDF	s-channel (0 $\ell + ot\!$	
$1.41^{+0.44}_{-0.42}$		⁵ AALTONEN	14L CDF	s-channel ($\ell {+} ot\!$	
$1.29\substack{+0.26 \\ -0.24}$		⁶ AALTONEN	14M TEVA	s-channel (CDF + D0)	
$3.04^{+0.57}_{-0.53}$		⁷ AALTONEN	140 CDF	$s+t+Wt \ (\ell+ ot \!$	
$1.10\substack{+0.33\\-0.31}$		⁸ ABAZOV	130 D0	s-channel	
$3.07 \substack{+0.54 \\ -0.49}$		⁸ ABAZOV	130 D0	t-channel	OCCUR=2
$4.11 \substack{+0.60 \\ -0.55}$		⁸ ABAZOV	130 D0	s- + t-channels	OCCUR=3
0.98 ± 0.63		⁹ ABAZOV	11AA D0	<i>s</i> -channel	
2.90 ± 0.59		⁹ ABAZOV	11AA D0	<i>t</i> -channel	OCCUR=2
$3.43^{+0.73}_{-0.74}$		¹⁰ ABAZOV	11AD D0	s- + t -channels	
$1.8 \ {+0.7 \atop -0.5}$		¹¹ AALTONEN	10AB CDF	<i>s</i> -channel	
0.8 ±0.4		¹¹ AALTONEN	10AB CDF	<i>t</i> -channel	OCCUR=2
$4.9 \ {}^{+2.5}_{-2.2}$		¹² AALTONEN	100 CDF	$ ot\!$	
$3.14 \substack{+0.94 \\ -0.80}$		¹³ ABAZOV	10 D0	<i>t</i> -channel	
1.05 ± 0.81		¹³ ABAZOV	10 D0	<i>s</i> -channel	OCCUR=2
< 7.3	95	¹⁴ ABAZOV	10J D0	au + jets decay	
$2.3 \ {}^{+0.6}_{-0.5}$		¹⁵ AALTONEN	09AT CDF	<i>s</i> - + <i>t</i> -channel	
3.94 ± 0.88		¹⁶ ABAZOV	09z D0	<i>s</i> - + <i>t</i> -channel	
$2.2 \ {+0.7} \\ -0.6$		¹⁷ AALTONEN	08AH CDF	<i>s</i> - + <i>t</i> -channel	
4.7 ±1.3		¹⁸ ABAZOV	081 D0	<i>s</i> - + <i>t</i> -channel	
$4.9 \hspace{0.2cm} \pm 1.4$		¹⁹ ABAZOV	07H D0	s- + t -channel	
< 6.4	95	²⁰ ABAZOV	05P D0	$p\overline{p} \rightarrow tb + X$	
< 5.0	95	²⁰ ABAZOV	05p D0	$p\overline{p} ightarrow tqb + X$	OCCUR=2
<10.1	95	²¹ ACOSTA	05N CDF	$p \overline{p} \rightarrow t q b + X$	
<13.6	95	²¹ ACOSTA	05N CDF	$p \overline{p} \rightarrow t b + X$	OCCUR=2
<17.8	95	²¹ ACOSTA	05N CDF	$p\overline{p} ightarrow tb + X, tqb + X$	OCCUR=3
				ides, as a part, the result of $AAITONEN$ 140 gives a s \pm	NODE=Q007STB;LINKAGE=H

AALTONEN 10 based on 9.5 fb = of data. This includes, as a part, the result of AALTONEN 14K. Combination of this result with that of AALTONEN 140 gives a s + t cross section of $3.02^{+0.49}_{-0.48}$ pb and $|V_{tb}| > 0.84$ (95% CL).

²AALTONEN 15H based on 9.7 fb⁻¹ of data per experiment. The result is for $m_t = 172.5$ GeV, and is a combination of the CDF measurements (AALTONEN 16) and the D0 measurements (ABAZOV 130) on the *t*-channel single *t*-quark production cross section. The result is consistent with the NLO+NNLL SM prediction and gives $|V_{tb}| = 1.02^{+0.06}_{-0.05}$ and $|V_{tb}| > 0.92$ (95% CL).

³AALTONEN 15H is a combined measurement of *s*-channel single top cross section by CDF + D0. AALTONEN 14M is not included.

⁴ Based on 9.45 fb⁻¹ of data, using neural networks to separate signal from backgrounds. The result is for $m_t = 172.5$ GeV. Combination of this result with the CDF measurement in the 1 lepton channel AALTONEN 14L gives $1.36 \substack{+0.37 \\ -0.32}$ pb, consistent with the SM prediction, and is 4.2 sigma away from the background only hypothesis.

 5 Based on 9.4 fb $^{-1}$ of data, using neural networks to separate signal from backgrounds. The result is for $m_t=$ 172.5 GeV. The result is 3.8 sigma away from the background only hypothesis.

⁶ Based on 9.7 fb⁻¹ of data per experiment. The result is for $m_t = 172.5$ GeV, and is a combination of the CDF measurements AALTONEN 14L, AALTONEN 14K and the D0 measurement ABAZOV 130 on the s-channel single *t*-quark production cross section. The result is consistent with the SM prediction of 1.05 ± 0.06 pb and the significance _ of the observation_is of 6.3 standard deviations.

 7 Based on 7.5 fb $^{-1}$ of data. Neural network is used to discriminate signals (s-, t- and Wt-channel single top production) from backgrounds. The result is consistent with the SM prediction, and gives $|V_{tb}| = 0.95 \pm 0.09(\text{stat} + \text{syst}) \pm 0.05(\text{theory})$ and $|V_{tb}| > 0.78$ (95% CL). The result is for $m_t = 172.5$ GeV.

⁸ Based on 9.7 fb⁻¹ of data. Events with $\ell + \not{E}_T + 2$ or 3 jets (1 or 2 *b*-tag) are analysed, assuming $m_t = 172.5$ GeV. The combined s- + t-channel cross section gives $|V_{tb} f_1^L| = 1.12^{+0.09}_{-0.08}$, or $|V_{tb}| > 0.92$ at 95% CL for $f_1^L = 1$ and a flat prior within 0 $\leq |V_{tb}|^2 \leq 1$.

3/18/2024 16:16 9 Based on 5.4 fb $^{-1}$ of data. The error is statistical + systematic combined. The re-NODE=Q007STB;LINKAGE=BO sults are for $m_t = 172.5$ GeV. Results for other m_t values are given in Table 2 of ABAZOV 11AA. 10 Based on 5.4 fb $^{-1}$ of data and for $m_t =$ 172.5 GeV. The error is statistical + systematic NODE=Q007STB;LINKAGE=VO combined. Results for other m_t values are given in Table III of ABAZOV 11AD. The result is obtained by assuming the SM ratio between tb (s-channel) and tqb (t-channel) productions, and gives $|{\rm V}_{tb}~f_1^L|=1.02^{+0.10}_{-0.11},$ or $|{\rm V}_{tb}|~>$ 0.79 at 95% CL for a flat prior within 0 $<\ |V_{\it tb}|^2\ < 1.$ ¹¹Based on 3.2 fb⁻¹ of data. For combined *s*- + *t*-channel result see AALTONEN 09AT. ¹²Result is based on 2.1 fb⁻¹ of data. Events with large missing E_T and jets with at NODE=Q007STB;LINKAGE=AN NODE=Q007STB;LINKAGE=LN least one b-jet without identified electron or muon are selected. Result is obtained when observed 2.1 σ excess over the background originates from the signal for $m_t=$ 175 GeV, giving $|V_{tb}| = 1.24^{+0.34}_{-0.29} \pm 0.07$ (theory). ¹³Result is based on 2.3 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T + 2$,3, 4 jets with one or two *b*-tags are selected. The analysis assumes $m_t = 170$ GeV. NODE=Q007STB;LINKAGE=AV 14 Result is based on 4.8 fb $^{-1}$ of data. Events with an isolated reconstructed tau lepton, NODE=Q007STB;LINKAGE=AO missing E_T + 2, 3 jets with one or two *b*-tags are selected. When combined with ABAZOV 09Z result for $e + \mu$ channels, the s- and t-channels combined cross section is $3.84^{+0.89}_{-0.83}$ pb. $^{15}\,\textsc{Based}$ on 3.2 fb $^{-1}$ of data. Events with isolated ℓ + $\not\!\!\!E_T$ + jets with at least one NODE=Q007STB;LINKAGE=AL b-tag are analyzed and s- and t-channel single top events are selected by using the likelihood function, matrix element, neural-network, boosted decision tree, likelihood function optimized for s-channel process, and neural-networked based analysis of events with $\not\!\!\!E_T$ that has sensitivity for W
ightarrow au
u decays. The result is for m_t = 175 GeV, and the mean value decreases by 0.02 pb/GeV for smaller m_t . The signal has 5.0 sigma significance. The result gives $\left| V_{tb} \right| = 0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory), or $\left| V_{tb} \right| > 0.71$ at 95% CL. ¹⁶Based on 2.3 fb⁻¹ of data. Events with isolated $\ell + \not\!\!\! E_T + \ge$ 2 jets with 1 or 2 *b*-tags NODE=Q007STB:LINKAGE=AB are analyzed and s- and t-channel single top events are selected by using boosted decision tree, Bayesian neural networks and the matrix element method. The signal has 5.0 sigma significance. The result gives $|V_{tb}| = 1.07 \pm 0.12$, or $|V_{tb}| > 0.78$ at 95% CL. The analysis assumes $m_t = 170$ GeV. NODE=Q007STB;LINKAGE=AA at least one b-tag are selected, and s- and t-channel single top events are selected by using likelihood, matrix element, and neural network discriminants. The result can be interpreted as $|V_{tb}| = 0.88 \substack{+0.13 \\ -0.12}$ (stat + syst) ± 0.07 (theory), and $|V_{tb}| > 0.66$ (95%) CL) under the $|V_{tb}| < 1$ constraint. NODE=Q007STB;LINKAGE=BZ one or two *b*-vertex-tag are selected, and contributions from W + jets, $t\bar{t}$, *s*- and *t*channel single top events are identified by using boosted decision trees, Bayesian neural networks, and matrix element analysis. The result can be interpreted as the measurement of the CKM matrix element $|V_{tb}| = 1.31^{+0.25}_{-0.21}$, or $|V_{tb}| > 0.68$ (95% CL) under the $|V_{tb}| < 1$ constraint. $^{19}\,{\rm Result}$ is based on 0.9 fb $^{-1}$ of data. This result constrains ${\it V}_{tb}$ to 0.68 < $\left|{\it V}_{tb}\right|$ $\,\leq\,$ 1 NODE=Q007STB;LINKAGE=BA at 95% CL. 20 ABAZOV 05P bounds single top-quark production from either the s-channel W-exchange NODE=Q007STB;LINKAGE=AZ process, $q' \, \overline{q} \rightarrow t \, \overline{b}$, or the *t*-channel *W*-exchange process, $q' \, g \rightarrow q \, t \, \overline{b}$, based on \sim 230 pb⁻¹ of data. 21 ACOSTA 05N bounds single top-quark production from the *t*-channel *W*-exchange pro-NODE=Q007STB;LINKAGE=AS cess $(q'g \rightarrow qt\overline{b})$, the s-channel W-exchange process $(q'\overline{q} \rightarrow t\overline{b})$, and from the combined cross section of t- and s-channel. Based on $\sim~162~{
m pb}^{-1}$ of data. t-channel Single t Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV NODE=Q007ST7 Direct probe of the tbW coupling and possible new physics at $\sqrt{s} = 7$ TeV. NODE=Q007ST7 NODE=Q007ST7 VALUE (pb) DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD $67.5\pm$ 5.7 19R LHC combination of ATLAS+CMS 2 AAD $68 \pm 2 \pm 8$ 14BI ATLS $\ell + \not\!\! E_T + 2j$ or 3j $83 \pm 4 \begin{array}{c} +20 \\ -19 \end{array}$ ³ AAD 12CH ATLS t-channel $\ell + \not\!\!\! E_T + (2,3)j$ (1b) ⁴ CHATRCHYAN 12BQ CMS t-channel $\ell + \not\!\!E_T + \ge 2j$ (1b) $67.2\pm~6.1$ ⁵ CHATRCHYAN11R CMS *t*-channel $83.6 \pm 29.8 \pm 3.3$ 1_2 AABOUD 19R based on 1.17 to 5.1 fb $^{-1}$ of data from ATLAS and CMS at 7 TeV. 2_2 Based on 4.59 fb $^{-1}$ of data, using neural networks for signal and background separation. NODE=Q007ST7;LINKAGE=A NODE=Q007ST7;LINKAGE=B $\sigma(tq) = 46 \pm 1 \pm 6$ pb and $\sigma(\bar{t}q) = 23 \pm 1 \pm 3$ pb are separately measured, as well as their ratio $R = \sigma(tq)/\sigma(\bar{t}q) = 2.04 \pm 0.13 \pm 0.12$. The results are for $m_t = 172.5$ GeV, and those for other m_t values are given by eq.(4) and Table IV. The measurements give $\left|\mathsf{V}_{tb}\right|=1.02\pm0.07$ or $\left|\mathsf{V}_{tb}\right|>0.88$ (95% CL). $^3\mathsf{Based}$ on 1.04 fb $^{-1}$ of data. The result gives $|\mathsf{V}_{tb}|$ = $1.13\substack{+0.14\\-0.13}$ from the ratio NODE=Q007ST7;LINKAGE=AA $\sigma(\exp)/\sigma(th)$, where $\sigma(th)$ is the SM prediction for $|{
m V}_{tb}|$ = 1. The 95% CL lower

Page 28

NODE=Q007ST7;LINKAGE=CA

NODE=Q007ST7;LINKAGE=CH

NODE=Q007ST8;LINKAGE=C NODE=Q007ST8;LINKAGE=B

NODE=Q007ST8;LINKAGE=A

NODE=Q007TT8;LINKAGE=D NODE=Q007TT8;LINKAGE=B

NODE=Q007TT8;LINKAGE=C

NODE=Q007TT8;LINKAGE=A

NODE=Q007TT8 NODE=Q007TT8

NODE=Q007ST8 NODE=Q007ST8

bound of $|V_{tb}| > 0.75$ is found if $|V_{tb}| < 1$ is assumed. $\sigma(t) = 59^{+18}_{-16}$ pb and $\sigma(\bar{t}) = 33^{+13}_{-12}$ pb are found for the separate single t and \bar{t} production cross sections, respectively. The results assume $m_t = 172.5$ GeV for the acceptance.

- ⁴ Based on 1.17 fb⁻¹ of data for $\ell = \mu$, 1.56 fb⁻¹ of data for $\ell = e$ at 7 TeV collected during 2011. The result gives $|V_{tb}| = 1.020 \pm 0.046 (meas) \pm 0.017 (th)$. The 95% CL lower bound of $|V_{tb}| > 0.92$ is found if $|V_{tb}| < 1$ is assumed. The results assume $m_t = 172.5$ GeV for the acceptance.
- 5 Based on 36 pb $^{-1}$ of data. The first error is statistical + systematic combined, the second is luminosity. The result gives $|\mathsf{V}_{tb}|=1.114\pm0.22(\exp)\pm0.02(th)$ from the ratio $\sigma(\exp)/\sigma(th)$, where $\sigma(th)$ is the SM prediction for $|\mathsf{V}_{tb}|=1$. The 95% CL lower bound of $|\mathsf{V}_{tb}|>0.62$ (0.68) is found from the 2D (BDT) analysis under the constraint 0 < $|\mathsf{V}_{tb}|^2<1$.

t-channel Single t	Production Cross Se	ction in	pp Collisions at $\sqrt{s} = 8$ TeV
VALUE (pb)	DOCUMENT ID	TECN	COMMENT

\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet					
87.7±5.8	¹ AABOUD	19R	LHC	combination of ATLAS+CMS	
$89.6^{+7.1}_{-6.3}$	² AABOUD	17T	ATLS	$\ell {+} ot\!$	
$83.6 {\pm} 2.3 {\pm} 7.4$	³ KHACHATRY.	14F	CMS	$\ell + ot\!$	

¹AABOUD 19R based on 12.2 to 20.3 fb⁻¹ of data from ATLAS and CMS at 8 TeV. ²AABOUD 17T based on 20.2 fb⁻¹ of data. A maximum-likelihood fit to neural-network discriminant distributions is used to separate signal and background events. Individual cross sections are measured as $\sigma(tq) = 56.7^{+4.3}_{-3.8}$ pb and $\sigma(\bar{t}q) = 32.9^{+3.0}_{-2.7}$ pb, while their ratio is given by $\sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09$. A lower limit $|V_{tb}| > 0.92$ (95% CL) is obtained. Measured total and differential cross sections are described well by the SM.

³Based on 19.7 fb⁻¹ of data. The t and \overline{t} production cross sections are measured separately as $\sigma_{t-ch.}(t) = 53.8 \pm 1.5 \pm 4.4$ pb and $\sigma_{t-ch.}(\overline{t}) = 27.6 \pm 1.3 \pm 3.7$ pb, respectively, as well as their ratio $R_{t-ch} = \sigma_{t-ch.}(t)/\sigma_{t-ch.}(\overline{t}) = 1.95 \pm 0.10 \pm 0.19$, in agreement with the SM predictions. Combination with a previous CMS result at $\sqrt{s} = 7$ TeV [CHATRCHYAN 12BQ] gives $|V_{tb}| = 0.998 \pm 0.038 \pm 0.016$. Also obtained is the ratio $R_{8/7} = \sigma_{t-ch.}(8\text{TeV})/\sigma_{t-ch.}(7\text{TeV}) = 1.24 \pm 0.08 \pm 0.12$.

s-channel Single t Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV VALUE (pb) DOCUMENT ID TECN COMMENT

VALUE (PD)	DOCOMENTID	TLCN	COMMENT
• • • We do not use the followin	ng data for average	s, fits, limits,	etc. • • •
4.9 ± 1.4	¹ AABOUD	19R LHC	ATLAS + CMS
$4.8 \pm 0.8 {+1.6 \atop -1.3}$	² AAD	16∪ ATLS	$\ell + \not\!\!\! E_T + 2b$
13.4±7.3	³ KHACHATRY		
5.0±4.3	⁴ AAD	15A ATLS	$\ell + \not\!\!\!E_T + 2b$

 1 AABOUD 19R based on 12.2 to 20.3 fb $^{-1}$ of data from ATLAS and CMS at 8 TeV. 2 AAD 16U based on 20.3 fb $^{-1}$ of data, using a maximum-likelihood fit of a matrix element method discriminant. The same data set as in AAD 15A is used. The result corresponds to an observed significance of 3.2 σ .

 3 KHACHATRYAN 16AZ based on 19.7 fb $^{-1}$ of data, using a multivariate analysis to separate signal and backgrounds. The same method is applied to 5.1 fb $^{-1}$ of data at $\sqrt{s}=7$ TeV, giving 7.1 \pm 8.1 pb. Combining both measurements, the observed significance is 2.5 σ . A best fit value of 2.0 \pm 0.9 is obtained for the combined ratio of the measured values and SM expectations.

⁴ AAD 15A based on 20.3 fb⁻¹ of data, using a multivariate analysis to separate signal and backgrounds. The 95% CL upper bound of the cross section is 14.6 pb. The results are consistent with the SM prediction of 5.61 \pm 0.22 pb at approximate NNLO.

t-channel Single t Pr	oduction Cros	is Section in	$p p$ Collisions at $\sqrt{s} = 13$ TeV	NODE=Q007STX
VALUE (pb)	DOCUMENT IL	D <u>TECN</u>	COMMENT	NODE=Q007STX
$\bullet \bullet \bullet$ We do not use the	e following data	for averages,	fits, limits, etc. • • •	
$130{\pm}~1{\pm}19$	¹ SIRUNYAN	20D CMS	$\sigma(t q), \ell + ot\!$	
$77\pm$ 1 \pm 12			$\sigma(\overline{t} q), \ \ell + \not\!\! E_T + \ \geq 2 \ j$	OCCUR=2
$156\pm$ $5\pm27\pm$ 3		17H ATLS	$\sigma(t q)$, $\ell + E_T + 2$ j (1b, 1 forward j)	
$91\pm$ $4\pm18\pm$ 2	² AABOUD	17H ATLS	$\sigma(\overline{t}q)$, $\ell {+} ot\!$	OCCUR=2
$154\pm8\pm9{\pm}19{\pm}4$	³ SIRUNYAN	17AA CMS	$\sigma(tq)$, $\mu+\geq 2$ j (1b)	
$85{\pm}10{\pm}~4{\pm}11{\pm}2$	³ SIRUNYAN	17AA CMS	$\sigma(\overline{t} q)$, $\mu+\geq 2$ j (1b)	OCCUR=2

		0/20/2021 20120 1080 00
multiplicity and mult events. The cross see CKM matrix element f_{LV} is an anomalous	sed on 35.9 fb ⁻¹ of data. Different categories of jet and b jet tivariate discriminators are used to separate signal and background action ratio is measured to be $\sigma(tq)/\sigma(\bar{t}q) = 1.68 \pm 0.02 \pm 0.05$. t is obtained as $ f_{LV}V_{tb} = 0.98 \pm 0.07(\exp)\pm 0.02(\text{theo})$ where s form factor. All results are in agreement with the SM.	NODE=Q007STX;LINKAGE=C
² AABOUD 17H based discriminant distribut error is for luminosity	I on 3.2 fb ⁻¹ of data. A maximum-likelihood fit to neural-network tions is used to separate signal and background events. The third y. The cross section ratio is measured to be $\sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm$ ver limit $ V_{tb} > 0.84$ (95% CL) is obtained. All results are in	NODE=Q007STX;LINKAGE=A
³ SIRUNYAN 17AA ba to separate signal ar mental systematics, $\sigma(tq)/\sigma(\bar{t}q) = 1.81$	ased on 2.2 fb ⁻¹ of data. A multivariate discriminator is used and background events. The four errors are from statitics, experi- theory, and luminosity. The cross section ratio is measured to be $1 \pm 0.18 \pm 0.15$. CKM matrix element is obtained as $ V_{tb} = 0.02$ (theo). All results are in agreement with the SM.	NODE=Q007STX;LINKAGE=B
s-channel Single t Pr VALUE (pb)	roduction Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV DOCUMENT ID TECN COMMENT	NODE=Q007TTX NODE=Q007TTX
	e following data for averages, fits, limits, etc. • • •	
$8.2^{+3.5}_{-2.9}$	1 AAD 23E ATLS $\ell + ot\!$	I
¹ AAD 23E based on 13 only hypothesis. The pb.	$39~{\rm fb}^{-1}$ of data. The signal significance is 3.3σ over the background-e result is consistent with the NLO SM prediction of $10.32^{+0.40}_{-0.36}$	NODE=Q007TTX;LINKAGE=A
t T H Production Cros	ss Section in <i>pp</i> Collisions at $\sqrt{s} = 13$ TeV <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=Q007THX NODE=Q007THX
• • • We do not use the	e following data for averages, fits, limits, etc. $ullet$ $ullet$	
$33 \pm 31 {+} {22 \atop -} {17}$	¹ AAD 22Q ATLS $H \rightarrow \tau \tau$	
$670 \!\pm\! 90 \!+\! 110 \\ -\! 100$	² AABOUD 18BK ATLS $H \rightarrow b\overline{b}$, $WW^* \tau \tau$, $\gamma \gamma$, ZZ^*	
corresponds to the r prediction, where B(139 fb ⁻¹ of data. The measured value includes $B(H \rightarrow \tau \tau)$ and rapidity range $ y_H < 2.5$. The value is consistent with the SM $H \rightarrow \tau \tau$) = 6.3% for $m_H = 125.09$ GeV.	NODE=Q007THX;LINKAGE=B
to the background-on prediction of 507 $^{+35}_{-50}$	ed on 79.8 fb ⁻¹ of data. The observed significance is 5.8σ relative nly hypothesis. The measurement is consistent with the NLO SM $\frac{5}{0}$ fb. See Table 3 and Fig. 5 for measurements of individual modes. neasurements at 7 and 8 TeV, the observed significance is 6.3σ .	NODE=Q007THX;LINKAGE=A
Wt Production Cros	EXAMPLE Section in <i>pp</i> Collisions at $\sqrt{s} = 7$ TeV <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=Q007WT7 NODE=Q007WT7
• • • We do not use the	e following data for averages, fits, limits, etc. $ullet$ $ullet$	
16.3±4.1	1 AABOUD 19R LHC ATLAS + CMS combined	
$16 \begin{array}{c} +5 \\ -4 \end{array}$	² CHATRCHYAN 13c CMS $t+W$ channel, $2\ell+ ot\!\!\!/_T+1b$	
1 AABOUD 19R based 2 Based on 4.9 fb $^{-1}$ o 0.79 (95% CL) if V_t acceptance.	I on 1.17 to 5.1 fb ⁻¹ of data from ATLAS and CMS at 7 TeV. of data. The result gives $V_{tb} = 1.01 \substack{+0.16 \\ -0.13} (exp) \substack{+0.03 \\ -0.04} (th)$. $V_{tb} > b_{tb} < 1$ is assumed. The results assume $m_t = 172.5$ GeV for the	NODE=Q007WT7;LINKAGE=A NODE=Q007WT7;LINKAGE=CH
Wt Production Cros	Section in pp Collisions at $\sqrt{s} = 8$ TeV DOCUMENT ID TECN COMMENT	NODE=Q007WT8 NODE=Q007WT8
	e following data for averages, fits, limits, etc. • • •	
26 ± 7 23.1 \pm 3.6	$egin{array}{cccc} 1 & \mbox{AAD} & 21\mbox{ATLS} & \ell+\geq 3\mbox{j} \\ 2 & \mbox{AABOUD} & 19\mbox{R} & \mbox{LHC} & \mbox{ATLAS} + \mbox{CMS} & \mbox{combined} \end{array}$	
$23.0 \pm 1.3 {+3.2 \atop -3.5} \pm 1.1$	³ AAD 16B ATLS $2\ell + E_T + 1b$	
-3.5 23.4±5.4	⁴ CHATRCHYAN 14AC CMS $t+W$ channel, $2\ell+\not\!\!\!E_T+1b$	
trino is emitted, so trained to separate si NLO+NNLL SM pre	20.2 fb ⁻¹ of data. In this single lepton channel, only single neuthat both W and t can be reconstructed. A neural network is ignal from background. The measured cross section agrees with the diction of $22.4 \pm 0.6(\text{scale}) \pm 1.4(\text{PDF})$ pb.	NODE=Q007WT8;LINKAGE=D
= 172.5 GeV for the		NODE=Q007WT8;LINKAGE=C NODE=Q007WT8;LINKAGE=B
and a <i>b</i> -tagged jet signal from the back	of data. Events with two oppositely charged leptons, large $\not\!\!\!E_T$ are selected, and a multivariate analysis is used to separate the grounds. The result is consistent with the SM prediction of 22.2 \pm) pb at approximate NNLO.	NODE=Q007WT8;LINKAGE=A

3/18/2024 16:16 Page 30

		3/18/2024 16:16 Page 3
	Section in pp Collisions at $\sqrt{s} = 13$ TeV	NODE=Q007WTX
VALUE (pb)	DOCUMENT ID TECN COMMENT Ilowing data for averages, fits, limits, etc. ● ●	NODE=Q007WTX
$79.2 \pm 0.9^{+}_{-} \begin{array}{c} 7.7\\ 8.0 \end{array} \pm 1.2$	1 TUMASYAN 23T CMS $e^{\pm}\mu^{\mp}+\geq 1$ j(<i>b</i> -tag) 2 TUMASYAN 21E CMS $1\ell+$ jets	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	⁻ TOMASYAN 21E CMS 1ℓ + jets ³ AABOUD 18H ATLS $\ell^+\ell^- + \ge 1j$	
	⁴ SIRUNYAN 18DL CMS $e^{\pm}\mu^{\mp} + \geq 1$ j(<i>b</i> -tag)	
prediction. The different	on 138 fb ^{-1} of data. The result is consistent with the NNLO SM tial cross sections are measured as a function of six kinematical	NODE=Q007WTX;LINKAGE=D
² TUMASYAN 21E based the signal from the domi with a significance excee	tent with the NLO SM prediction. on 36 fb ⁻¹ of data. A boosted decision tree is used to separate inant $t\bar{t}$ backgrounds. The result corresponds to an observation eding 5 σ and is consistent with the NNLO QCD prediction of 4(PDF) pb or with the approximate NNNLO SM prediction of PDF) pb.	NODE=Q007WTX;LINKAGE=C
³ AABOUD 18H based on ate analysis is used to se	3.2 fb ^{-1} of data. The last error is from luminosity. A multivariparate the signal from the backgrounds. The result is consistent M prediction of 71.7 \pm 1.8(scale) \pm 3.4(PDF) pb.	NODE=Q007WTX;LINKAGE=A
⁴ SIRUNYAN 18DL based multivariate analysis is u	on 35.9 fb ⁻¹ of data. The last error is from luminosity. A used to separate the signal from the backgrounds. The result is $0+NNLL$ SM prediction of 71.7 \pm 1.8(scale) \pm 3.4(PDF) pb.	NODE=Q007WTX;LINKAGE=B
Zt Production Cross Se	ection in pp Collisions at $\sqrt{s} = 13$ TeV	NODE=Q007ZTX
VALUE (fb)	DOCUMENT ID TECN COMMENT	NODE=Q007ZTX
	llowing data for averages, fits, limits, etc. • • •	
87.9^+ $\begin{array}{c} 7.5+\\ 7.3-\end{array}$ $\begin{array}{c} 7.3-\\ 6.0\end{array}$	1 TUMASYAN 22L CMS $3\ell + \ge 2$ j ($\ge 1b$ j)	
$97 ~\pm~ 13 ~\pm~ 7$	² AAD 20AB ATLS $3\ell + 1,2j + 1bj$	
111 \pm 13 $\stackrel{+}{-}$ 11 - 9	3 SIRUNYAN 19BF CMS 3 $\ell+\geq$ 2j (\geq 1 b j)	
$600 \pm 170 \pm 140$	⁴ AABOUD 18AE ATLS $3\ell + 1j + 1bj$	
$123 \ \begin{array}{rrrr} + \ 33 \\ - \ 31 \end{array} \ \begin{array}{rrrr} + \ 29 \\ - \ 23 \end{array}$	⁵ SIRUNYAN 18Z CMS $3\ell + 1j + 1bj$	
ton invariant masses a $94.2^{+1.9}_{-1.8}({\sf scale}){\pm}2.5({\sf P}$	I on 138 fb ⁻¹ of data at 13 TeV. The result is for a dilep- above 30 GeV. It agrees with the NLO SM prediction of DF) fb. The ratio of t and \overline{t} production cross sections is mea-	NODE=Q007ZTX;LINKAGE=E
Both measurements are ² AAD 20AB based on 139 <i>t Z q</i> signal from backgr including non-resonant d	27. The spin asymmetry is measured to be $0.54 \pm 0.16 \pm 0.06$. in agreement with the SM predictions. fb ⁻¹ of data at 13 TeV. Neural networks are used to discriminate ounds. The result is for the cross section $\sigma(pp \rightarrow t\ell^+\ell^-q)$, dilepton pairs, for dilepton invariant masses above 30 GeV and is 0 SM prediction of $102 \pm \frac{1}{2}$ fb.	NODE=Q007ZTX;LINKAGE=D
³ SIRUNYAN 19BF based one to discriminate prom signal from backgrounds	on 77.4 fb ⁻¹ of data. Two BDT's are used in the analysis: npt leptons from non-prompt ones; and one to discriminate tZq . The result is for the cross section $\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^-q)$ sses above 30 GeV and is consistent with the NLO SM prediction	NODE=Q007ZTX;LINKAGE=C
	n 36.1 fb ⁻¹ of data. A multivariate analysis is used to separate sgrounds. The result is consistent with the NLO SM prediction ncertainty of $\begin{array}{c} +6.1\\ -7.4 \% \end{array}$.	NODE=Q007ZTX;LINKAGE=B
the signal from the back	In 35.9 fb ⁻¹ of data. A multivariate analysis is used to separate kgrounds. The result is for the cross section $\sigma(pp \rightarrow tZq \rightarrow tZq)$	NODE=Q007ZTX;LINKAGE=A
$Wb\ell^+\ell^-q)$ and is co 2.5(PDF) fb. Supersede	nsistent with the NLO SM prediction of 94.2 $^{+1.9}_{-1.8}$ (scale) \pm d by SIRUNYAN 19BF.	
γt Production Cross Se VALUE (fb)	ction in <i>pp</i> Collisions at $\sqrt{s} = 13$ TeV DOCUMENT ID TECN COMMENT	NODE=Q007GTX NODE=Q007GTX
	llowing data for averages, fits, limits, etc. • • •	
	¹ AAD 23BN ATLS $\gamma + \ell + \text{jets} + \not\!\!\! E_T$	
	ducial cross section for $pp \rightarrow t\gamma$ at 13 TeV with 139 fb ⁻¹ of oss section is $688 \pm 23^{+75}_{-71}$ fb, to be compared with the NLO	NODE=Q007GTX;LINKAGE=A
SM prediction of 515^{+3}_{-4}	³⁶ ₄₂ fb.	

		3/18/2024 16:16 Page
-	ction Cross Section in <i>ep</i> Collisions	NODE=Q007STE NODE=Q007STE
VALUE (pb)	CL% DOCUMENT ID TECN COMMENT following data for averages, fits, limits, etc. • • •	NODE-Q00731E
<0.25	95 ¹ AARON 09A H1 $e^{\pm}p \rightarrow e^{\pm}tX$ 95 ² AKTAS 04 H1 $e^{\pm}p \rightarrow e^{\pm}tX$	
<0.55 <0.225	95 ² AKTAS 04 H1 $e^{\pm}p \rightarrow e^{\pm}tX$ 95 ³ CHEKANOV 03 ZEUS $e^{\pm}p \rightarrow e^{\pm}tX$	
	•	
^{$-$} AARON 09A looked to 474 pb ^{-1} of data at	or single top production via FCNC in e^\pmp collisions at HERA with $\sqrt{s}=$ 301–319 GeV. The result supersedes that of AKTAS 04.	NODE=Q007STE;LINKAGE=AA
² AKTAS 04 looked for	r single top production via FCNC in e^{\pm} collisions at HERA with	NODE=Q007STE;LINKAGE=AK
118.3 pb ⁻¹ , and fou expected from the St channel. The observed	nd 5 events in the <i>e</i> or μ channels while 1.31 ± 0.22 events are andard Model background. No excess was found for the hadronic d cross section of $\sigma(ep \rightarrow etX) = 0.29 \substack{+0.15 \\ -0.14}$ pb at $\sqrt{s} = 319$ GeV er bound if the observed events are due to statistical fluctuation.	
³ CHEKANOV 03 looke	ed in 130.1 pb $^{-1}$ of data at $\sqrt{s}=$ 301 and 318 GeV. The limit is ad assumes $m_t=$ 175 GeV.	NODE=Q007STE;LINKAGE=CH
$t\overline{t}$ Production Cross S	Section in $ ho \overline{ ho}$ Collisions at $\sqrt{s}=1.8$ TeV	NODE=Q007TXA
	pined $t\bar{t}$ production cross sections obtained from Tevatron Run I by	NODE=Q007TXA
the CDF and D0 ex	periments are quoted below.	·
VALUE (pb)	DOCUMENT ID TECN COMMENT	NODE=Q007TXA
• • • We do not use the	following data for averages, fits, limits, etc. \bullet \bullet	
$5.69\!\pm\!1.21\!\pm\!1.04$	1ABAZOV 03A D0 Combined Run I data	
$6.5 \ +1.7 \ -1.4$	² AFFOLDER 01A CDF Combined Run I data	
¹ Combined result from	110 pb $^{-1}$ of Tevatron Run I data. Assume $m_t=$ 172.1 GeV.	NODE=Q007TXA;LINKAGE=AE
² Combined result from	105 pb $^{-1}$ of Tevatron Run I data. Assume $m_t^{-}=$ 175 GeV.	NODE=Q007TXA;LINKAGE=AF
t 7 Production Cross	Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV	
	between the first quoted error is from statistics, the second from sys-	NODE=Q007TX
tematic uncertaintie	es, and the third from luminosity. If only two errors are quoted the ed in the systematic uncertainties.	NODE=Q007TX
VALUE (pb)	DOCUMENT ID TECN COMMENT	NODE=Q007TX
	following data for averages, fits, limits, etc. • • •	
$7.26 \!\pm\! 0.13 \!+\! 0.57 \\ -0.50$	¹ ABAZOV 16F D0 $\ell\ell$, $\ell+$ jets channels	
8.1 ±2.1	² AALTONEN 14A CDF $\ell + au_{m{h}} + \geq 2$ jets ($\geq 1b$ -tag)	
$7.60\!\pm\!0.20\!\pm\!0.29\!\pm\!0.21$	³ AALTONEN 14H TEVA $\ell \ell$, ℓ +jets, all-jets channels	
$8.0 \ \pm 0.7 \ \pm 0.6 \ \pm 0.5$	4 ABAZOV 14K D0 $\ell + ot\!$	
7.09 ± 0.84	$\frac{5}{\epsilon}$ AALTONEN 13AB CDF $\ell\ell + ot\!$	
75 ± 10	6 ALTONEN 12C CDE $\ell + \mathcal{P} = + > 2$ into $(> 16 \text{ tors})$	

11E D0

11z D0

10E CDF

10I D0

10Q D0

09AG D0

09R D0

08M D0

08N D0

Combination

10AA CDF Repl. by AALTONEN 13AB

10V CDF $\ell + \geq$ 3 jets, soft-*e b*-tag

 τ_h + jets

09AD CDF $\ell\ell + \not\!\!\! E_T \ / \ \mathsf{vtx} \ b$ -tag

08 CDF $\ell^+ \ell^-$ ($\ell = e, \mu$)

 \geq 6 jets, vtx *b*-tag

10w CDF $\ell + \overline{\not E}_T + \ge 3$ jets + b-tag, norm. to $\sigma(Z \to \ell \ell)_{TH}$

 $\ell\ell$ and $\ell\tau+{\rm jets}$

 ℓ + jets, $\ell\ell$ and $\ell\tau$ + jets

 ℓ + n jets with 0,1,2 *b*-tag

 ℓ + n jets + *b*-tag or kinematics

 \geq 6 jets with 2 b-tags

⁶ AALTONEN

⁷ AALTONEN

⁸ AALTONEN

⁹ AALTONEN

 10 aaltonen

¹¹ ABAZOV

¹² ABAZOV

¹³ AALTONEN

¹⁴ AALTONEN

¹⁵ AALTONEN

¹⁶ AALTONEN

¹⁷ ABAZOV

 $^{18}\,\mathrm{ABAZOV}$

¹⁹ AALTONEN

²⁰ AALTONEN

 21 Abazov

²² ABAZOV

²³ ABAZOV

²⁴ ABAZOV

²⁵ ABULENCIA

 $7.5 \hspace{0.1in} \pm 1.0$

 $7.78 \substack{+0.77 \\ -0.64}$

 $7.56 \substack{+0.63 \\ -0.56}$

 $7.70 \!\pm\! 0.52$

 $6.9 \hspace{0.1in} \pm 2.0$

 $8.18^{+0.98}_{-0.87}$

 7.62 ± 0.85

 $8.5 \begin{array}{c} +2.7 \\ -2.2 \end{array}$

 $8.8 \pm 3.3 \pm 2.2$

 $8.5 \ \pm 0.6 \ \pm 0.7$

 $7.64 \!\pm\! 0.57 \!\pm\! 0.45$

 $7.99 \!\pm\! 0.55 \!\pm\! 0.76 \!\pm\! 0.46$

 $6.27 \pm 0.73 \pm 0.63 \pm 0.39$

 $7.2 \ \pm 0.5 \ \pm 1.0 \ \pm 0.4$

 $7.8 \ \pm 2.4 \ \pm 1.6 \ \pm 0.5$

 $6.9 \ \pm 1.2 \ {}^{+0.8}_{-0.7} \ \pm 0.4$

 $9.6 \ \pm 1.2 \ {}^{+0.6}_{-0.5} \ \pm 0.6$

9.1 $\pm 1.1 \begin{array}{c} +1.0 \\ -0.9 \end{array} \pm 0.6$

 $7.5 \ \pm 1.0 \ \begin{array}{c} +0.7 \\ -0.6 \end{array} \begin{array}{c} +0.6 \\ -0.5 \end{array}$

 $8.18^{+0.90}_{-0.84}{\pm}0.50$

NODE=Q007TX;LINKAGE=F

NODE=Q007TX;LINKAGE=C

NODE=Q007TX;LINKAGE=D

NODE=Q007TX;LINKAGE=E

NODE=Q007TX;LINKAGE=A

NODE=Q007TX;LINKAGE=B

NODE=Q007TX;LINKAGE=TE

NODE=Q007TX;LINKAGE=LT

NODE=Q007TX;LINKAGE=TO

NODE=Q007TX;LINKAGE=TN

NODE=Q007TX;LINKAGE=OB

NODE=Q007TX;LINKAGE=ZB

NODE=Q007TX;LINKAGE=ON

NODE=Q007TX;LINKAGE=LN

NODE=Q007TX;LINKAGE=LE

$8.3 \ \pm 1.0 \ +2.0 \ \pm 0.5$	²⁶ AALTONEN	07D CC	DF \geq 6 jets, vtx <i>b</i> -tag
$7.4 \ \pm 1.4 \ \pm 1.0$	²⁷ ABAZOV	070 D0	$\ell \ell + jets, vtx b-tag$
$4.5 \begin{array}{c} +2.0 \\ -1.9 \end{array} \begin{array}{c} +1.4 \\ -1.1 \end{array} \pm 0.3$	²⁸ ABAZOV	07p D0	\geq 6 jets, vtx <i>b</i> -tag
$6.4 \ \begin{array}{c} +1.3 \\ -1.2 \end{array} \pm 0.7 \ \pm 0.4$		07R D0	$\ell + \geq$ 4 jets
$6.6\ \pm 0.9\ \pm 0.4$	³⁰ ABAZOV	06X D0	ℓ + jets, vtx <i>b</i> -tag
$8.7 \ \pm 0.9 \ +1.1 \\ -0.9$	³¹ ABULENCIA	06z CD	DF ℓ + jets, vtx <i>b</i> -tag
$5.8\ \pm 1.2\ {}^{+0.9}_{-0.7}$	³² ABULENCIA,A	06C CE	DF missing E_T + jets, vt× <i>b</i> -tag
$7.5 \ \pm 2.1 \ \begin{array}{c} +3.3 \\ -2.2 \ -0.4 \end{array} \\$	³³ ABULENCIA,A	06e CD	DF 6–8 jets, <i>b</i> -tag
$8.9 \ \pm 1.0 \ +1.1 \\ -1.0$	³⁴ ABULENCIA,A	06F CD	DF ℓ + \geq 3 jets, <i>b</i> -tag
$8.6 \ {}^{+1.6}_{-1.5} \ \pm 0.6$	³⁵ ABAZOV	05Q D0	$\ell + n jets$
$8.6^{+3.2}_{-2.7}\pm1.1\pm0.6$	³⁶ ABAZOV	05r D0	di-lepton $+$ n jets
$6.7 \begin{array}{c} +1.4 \\ -1.3 \end{array} \begin{array}{c} +1.6 \\ \pm 0.4 \end{array} \\ \pm 0.4$	³⁷ ABAZOV	05x D0	ℓ + jets / kinematics
$5.3 \ \pm 3.3 \ +1.3 \ -1.0$	³⁸ ACOSTA	05s CE	DF $\ell+{\sf jets}\ /\ {\sf soft}\ \mu\ {\it b}{\sf -tag}$
$6.6 \pm 1.1 \pm 1.5$	³⁹ ACOSTA	05T CD	DF ℓ + jets / kinematics
$6.0 \begin{array}{c} +1.5 \\ -1.6 \end{array} \begin{array}{c} +1.2 \\ -1.3 \end{array}$	⁴⁰ ACOSTA	050 CD	DF ℓ + jets/kinematics + vtx <i>b</i> -tag
$5.6 \begin{array}{c} +1.2 \\ -1.1 \end{array} \begin{array}{c} +0.9 \\ -0.6 \end{array}$	⁴¹ ACOSTA	05∨ CD	DF ℓ + n jets
7.0 $^{+2.4}_{-2.1}$ $^{+1.6}_{-1.1}$ ± 0.4	⁴² ACOSTA	041 CE	DF di-lepton + jets + missing ET

 1 ABAZOV 16F based on 9.7 fb $^{-1}$ of data. The result is for $m_t=$ 172.5 GeV, and the m_t dependence is shown in Table V and Fig. 9. The result agrees with the NNLO+NNLL SM prediction of $7.35^{+0.23}_{-0.27}$ pb.

- ²Based on 9 fb⁻¹ of data. The measurement is in the channel $t \bar{t} o (b \ell
 u) (b au
 u)$, where au decays into hadrons (au_h) , and ℓ (e or μ) include ℓ from au decays (au_ℓ) . The result is for $m_t = 173$ GeV.
- 3 Based on 8.8 fb $^{-1}$ of data. Combination of CDF and D0 measurements given, respectively, by $\sigma(t\bar{t}; \text{CDF}) = 7.63 \pm 0.31 \pm 0.36 \pm 0.16$ pb, $\sigma(t\bar{t}; \text{D0}) = 7.56 \pm 0.20 \pm 0.32 \pm 0.32 \pm 0.32$ 0.46 pb. All the results are for $m_t = 172.5$ GeV. The m_t dependence of the mean value is parametrized in eq. (1) and shown in Fig. 2.
- ⁴Based on 9.7 fb⁻¹ of data. Differential cross sections with respect to m_{tt} , |y(top)|, E_T (top) are shown in Figs. 9, 10, 11, respectively, and are compared to the predictions of MC models.
- ⁵Based on 8.8 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.
- 6 Based on 8.7 fb $^{-1}$ of $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV. Measure the $t\overline{t}$ cross section simultaneously with the fraction of $t \rightarrow W b$ decays. The correlation coefficient between those two measurements is -0.434. Assume unitarity of the 3×3 CKM matrix and set $|V_{tb}| > 0.89$ at 95% CL.
- ⁷Based on 2.2 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. The result assumes the acceptance for $m_t = 172.5$ GeV.
- 8 Based on 1.12 fb $^{-1}$ and assumes $m_t =$ 175 GeV, where the cross section changes by ± 0.1 pb for every ∓ 1 GeV shift in m_t . AALTONEN 11D fits simultaneously the $t\bar{t}$ production cross section and the b-tagging efficiency and find improvements in both measurements.
- 9 Based on 2.7 fb $^{-1}$. The first error is from statistics and systematics, the second is from luminosity. The result is for $m_t = 175$ GeV. AALTONEN 11W fits simultaneously a jet flavor discriminator between b-, c-, and light-quarks, and find significant reduction in the systematic error.
- ¹⁰Based on 2.2 fb⁻¹. The result is for $m_t = 172.5$ GeV. AALTONEN 11Y selects multi-jet events with large E_T , and vetoes identified electrons and muons.
- 11 Based on 5.3 fb $^{-1}$. The error is statistical + systematic + luminosity combined. The result is for $m_t = 172.5$ GeV. The results for other m_t values are given in Table XII and eq.(10) of ABAZOV 11E.
- ¹²Combination of a dilepton measurement presented in ABAZOV 11Z (based on 5.4 fb⁻¹), which yields $7.36^{+0.90}_{-0.79}$ (stat+syst) pb, and the lepton + jets measurement of ABAZOV 11E. The result is for $m_t = 172.5$ GeV. The results for other m_t values is given by eq.(5) of ABAZOV 11A.
- ¹³Based on 2.8 fb⁻¹. The result is for $m_t = 175$ GeV.
- 14 Based on 2.9 fb⁻¹. Result is obtained from the fraction of signal events in the top quark mass measurement in the all hadronic decay channel.
- ¹⁵Based on 1.7 fb⁻¹. The result is for $m_t = 175$ GeV. AALTONEN 10V uses soft electrons from *b*-hadron decays to suppress *W*+jets background events. ¹⁶Based on 4.6 fb⁻¹. The result is for $m_t = 172.5$ GeV. The ratio $\sigma(t\bar{t} \rightarrow \ell + \text{jets}) / \ell$
- NODE=Q007TX;LINKAGE=EN $\sigma(Z/\gamma^* \rightarrow \ell \ell)$ is measured and then multiplied by the theoretical $Z/\gamma^* \rightarrow \ell \ell$ cross section of $\sigma(Z/\gamma^* \rightarrow \ell \ell) = 251.3 \pm 5.0$ pb, which is free from the luminosity error.

	0/10/1011 10110 1 ago
¹⁷ Based on 1 fb ⁻¹ . The result is for $m_t = 175$ GeV. 7.9 \pm 2.3 pb is found for $m_t = 170$ GeV. ABAZOV 10I uses a likelihood discriminant to separate signal from background, where the background model was created from lower jet-multiplicity data.	NODE=Q007TX;LINKAGE=OA
¹⁸ Based on 1 fb ⁻¹ . The result is for $m_t = 170$ GeV. For $m_t = 175$ GeV, the result is $6.3^{+1.2}_{-1.1}(\text{stat}) \pm 0.7(\text{syst}) \pm 0.4(\text{lumi})$ pb. Cross section of $t\bar{t}$ production has been measured in the $t\bar{t} \rightarrow \tau_h + \text{ jets topology, where } \tau_h$ denotes hadronically decaying τ leptons. The result for the cross section times the branching ratio is $\sigma(t\bar{t}) \cdot B(t\bar{t} \rightarrow \tau_h + \text{ jets}) = 0.60^{+0.23}_{-0.22} + 0.15} \pm 0.04$ pb for $m_t = 170$ GeV.	NODE=Q007TX;LINKAGE=VZ
¹⁹ Based on 1.1 fb ⁻¹ . The result is for B($W \rightarrow \ell \nu$) = 10.8% and m_t = 175 GeV; the mean value is 9.8 for m_t = 172.5 GeV and 10.1 for m_t = 170 GeV. AALTONEN 09AD used high p_T e or μ with an isolated track to select $t\bar{t}$ decays into dileptons including $\ell = \tau$. The result is based on the candidate event samples with and without vertex <i>b</i> -tag.	NODE=Q007TX;LINKAGE=LO
²⁰ Based on 2 fb ⁻¹ . The result is for $m_t = 175$ GeV; the mean value is 3% higher for $m_t = 170$ GeV and 4% lower for $m_t = 180$ GeV.	NODE=Q007TX;LINKAGE=AA
²¹ Result is based on 1 fb ⁻¹ of data. The result is for $m_t = 170$ GeV, and the mean value decreases with increasing m_t ; see their Fig. 2. The result is obtained after combining ℓ	NODE=Q007TX;LINKAGE=ZV
+ jets, $\ell\ell$, and $\ell\tau$ final states, and the ratios of the extracted cross sections are $R^{\ell\ell/\ell j} = 0.86^{+0.19}_{-0.17}$ and $R^{\ell\tau/\ell\ell-\ell j} = 0.97^{+0.32}_{-0.29}$, consistent with the SM expectation of R	
= 1. This leads to the upper bound of $B(t \rightarrow bH^+)$ as a function of m_{H^+} . Results are	
shown in their Fig. 1 for $B(H^+ \to \tau \nu) = 1$ and $B(H^+ \to c\bar{s}) = 1$ cases. Comparison of the m_t dependence of the extracted cross section and a partial NNLO prediction gives $m_t = 169.1^{+5.9}_{-5.2}$ GeV.	
²² Result is based on 1 fb ⁻¹ of data. The result is for $m_t = 170$ GeV, and the mean value changes by $-0.07 \ [m_t(\text{GeV})-170]$ pb near the reference m_t value. Comparison of the m_t dependence of the extracted cross section and a partial NNLO QCD prediction gives $m_t = 171.5^{+9.9}_{-8.8}$ GeV. The $\ell\tau$ channel alone gives $7.6^{+4.9}_{-4.3} - 3.4 - 0.9$ pb and the $\ell\ell$	NODE=Q007TX;LINKAGE=AV
channel gives $7.5 + 1.2 + 0.7 + 0.7 = 0.5$ pb.	
²³ Result is based on 0.9 fb ⁻¹ of data. The first error is from stat + syst, while the latter error is from luminosity. The result is for m_t =175 GeV, and the mean value changes by $-0.09 \text{ pb} \cdot [m_t(\text{GeV})-175]$.	NODE=Q007TX;LINKAGE=BZ
²⁴ Result is based on 0.9 fb ⁻¹ of data. The cross section is obtained from the $\ell + \geq 3$ jet event rates with 1 or 2 <i>b</i> -tag, and also from the kinematical likelihood analysis of the $\ell + 3$, 4 jet events. The result is for $m_t = 172.6$ GeV, and its m_t dependence shown in Fig. 3 leads to the constraint $m_t = 170 \pm 7$ GeV when compared to the SM prediction.	NODE=Q007TX;LINKAGE=BV
25 Result is based on 360 pb $^{-1}$ of data. Events with high $p_{\mathcal{T}}$ oppositely charged dileptons	NODE=Q007TX;LINKAGE=AL
$\ell^+ \ell^-$ ($\ell = e, \mu$) are used to obtain cross sections for $t \bar{t}, W^+ W^-$, and $Z \to \tau^+ \tau^-$ production processes simultaneously. The other cross sections are given in Table IV.	
²⁶ Based on 1.02 fb ⁻¹ of data. Result is for $m_t = 175$ GeV. Secondary vertex <i>b</i> -tag and neural network selections are used to achieve a signal-to-background ratio of about 1/2.	NODE=Q007TX;LINKAGE=NE
²⁷ Based on 425 pb ⁻¹ of data. Result is for $m_t = 175$ GeV. For $m_t = 170.9$ GeV, 7.8 \pm 1.8(stat + syst) pb is obtained.	NODE=Q007TX;LINKAGE=ZO
28 Based on 405 \pm 25 pb $^{-1}$ of data. Result is for $m_t =$ 175 GeV. The last error is for luminosity. Secondary vertex <i>b</i> -tag and neural network are used to separate the signal events from the background.	NODE=Q007TX;LINKAGE=VO
²⁹ Based on 425 pb ⁻¹ of data. Assumes $m_t = 175$ GeV.	NODE=Q007TX;LINKAGE=ZA
³⁰ Based on \sim 425 pb ⁻¹ . Assuming $m_t = 175$ GeV. The first error is combined statistical and systematic, the second one is luminosity.	NODE=Q007TX;LINKAGE=BO
³¹ Based on ~ 318 pb ⁻¹ . Assuming $m_t = 178$ GeV. The cross section changes by ± 0.08 pb for each \mp GeV change in the assumed m_t . Result is for at least one <i>b</i> -tag. For at least two <i>b</i> -tagged jets, $t\bar{t}$ signal of significance greater than 5σ is found, and the cross section is $10.1^{+1.6}_{-1.4} + 1.3$ pb for $m_t = 178$ GeV.	NODE=Q007TX;LINKAGE=UL
32 Based on \sim 311 pb $^{-1}$. Assuming m_t = 178 GeV. For m_t = 175 GeV, the result is	NODE=Q007TX;LINKAGE=BU
$6.0\pm1.2^{+0.9}_{-0.7}$. This is the first CDF measurement without lepton identification, and hence it has sensitivity to the $W o au u$ mode.	
³³ ABULENCIA,A 06E measures the $t\bar{t}$ production cross section in the all hadronic decay mode by selecting events with 6 to 8 jets and at least one b-jet. S/B = 1/5 has been	NODE=Q007TX;LINKAGE=AU
achieved. Based on 311 pb ⁻¹ . Assuming $m_t = 178$ GeV. ³⁴ Based on ~ 318 pb ⁻¹ . Assuming $m_t = 178$ GeV. Result is for at least one <i>b</i> -tag. For	
at least two b -tagged jets, the cross section is $11.1 \substack{+2.3 + 2.5 \\ -1.9 - 1.9}$ pb.	NODE=Q007TX;LINKAGE=AE
35 ABAZOV 05Q measures the top-quark pair production cross section with $\sim 230~{\rm pb}^{-1}$ of data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is <i>b</i> -jet like. The first error is statistical and systematic, and the second accounts for the luminosity uncertainty. The result assumes $m_t = 175~{\rm GeV}$; the mean value changes by $(175-m_t({\rm GeV})) \times 0.06~{\rm pb}$ in the mass range 160 to 190 GeV.	NODE=Q007TX;LINKAGE=AB
36 ABAZOV 05R measures the top-quark pair production cross section with 224–243 pb $^{-1}$ of data, based on the analysis of events with two charged leptons in the final state. The	NODE=Q007TX;LINKAGE=AZ

3/18/2024 16:16

Page 34

result assumes $m_t = 175$ GeV; the mean value changes by $(175 - m_t(\text{GeV})) \times 0.08$ pb in the mass range 160 to 190 GeV. ³⁷ Based on 230 pb⁻¹. Assuming $m_t = 175$ GeV.

 38 Based on 194 pb $^{-1}$. Assuming $m_t = 175$ GeV.

 39 Based on 194 \pm 11 pb $^{-1}$. Assuming $m_t = 175$ GeV.

 40 Based on 162 \pm 10 pb $^{-1}$. Assuming $m_t =$ 175 GeV.

- 41 ACOSTA 05V measures the top-quark pair production cross section with \sim 162 pb $^{-1}$ data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is *b*-jet like. Assumes $m_t = 175$ GeV.
- 42 ACOSTA 04I measures the top-quark pair production cross section with 197 \pm 12 pb $^{-1}$ data, based on the analysis of events with two charged leptons in the final state. Assumes $m_t = 175$ GeV.

Ratio of the Productio	n Cross Sections of	$t \overline{t} \gamma$ to	$t\overline{t}$ at $\sqrt{s}=1.96$ TeV
VALUE	DOCUMENT ID	TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ AALTONEN 11Z CDF $E_T(\gamma) > 10$ GeV, $|\eta(\gamma)| < 1.0$ 0.024 ± 0.009

 $^1\mathrm{Based}$ on 6.0 fb $^{-1}$ of data. The error is statistical and systematic combined. Events with lepton $+ \not\!\!\!E_T + \ge 3$ jets($\ge 1b$) with and without central, high E_T photon are measured. The result is consistent with the SM prediction of 0.024 ± 0.005 . The absolute production cross section is measured to be 0.18 \pm 0.08 fb. The statistical significance is 3.0 standard deviations.

tt Production	Cross Section	n in pp	Collisions at y	$\sqrt{s} = 7$ TeV
---------------	----------------------	---------	-----------------	--------------------

CL% DOCUMENT ID VALUE (pb) • • • We do not use the following data for averages, fits, limits, etc. • • • 1 AAD < 1.795 $^1\,\mathrm{Based}$ on 1.04 fb $^{-1}$ of $p\,p$ data at $\sqrt{s}=$ 7 TeV. The upper bounds are the same for LL,

LR and RR chiral components of the two top quarks.

$t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 5.02$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

VALUE (pb)	DOCUMENT ID	TECN	COMMENT	NODE=Q007TX5
• • • We do not use the fo	ollowing data for ave	rages, fits, lin	nits, etc. • • •	
$67.5 \pm 0.9 \pm 2.6$	¹ AAD		dilepton + single ℓ channels	I
$60.7 \pm 5.0 \pm 2.8 \pm 1.1$	² TUMASYAN		$e + \mu + \geq 2$ jets	
$63.0 \pm 4.1 \pm 3.0$	³ TUMASYAN	22T CMS	combination of $e + \mu + \ge 2$ jets, ℓ +jets	OCCUR=2
$69.5\!\pm\!6.1\!\pm\!5.6\!\pm\!1.6$	⁴ SIRUNYAN	18AQ CMS	ℓ +jets, $\ell\ell$ +jets	
of systematics (± 2.3), result agrees with the N	luminosity (± 1.1) a INLO+NNLL SM pr	nd beam ener rediction of 68		NODE=Q007TX5;LINKAGE=D
² TUMASYAN 22⊤ based errors are from statistic	on 302 pb ⁻¹ of dat s, systematics and Ιι	ta from <i>pp</i> col uminosity.	llisions at $\sqrt{s} = 5.02$ TeV. The	NODE=Q007TX5;LINKAGE=B
$\ell+$ jets channel by SIRU	JNYAN 18AQ. The e	errors are from	and the measurement in the n statistics and systematics $+$ INLL SM prediction $66.8 \substack{+2.9 \\ -3.1}$	NODE=Q007TX5;LINKAGE=C
⁴ SIRUNYAN 18AQ bas	result is in agree		from pp collisions at \sqrt{s} the NNLO SM prediction	NODE=Q007TX5;LINKAGE=A
$t \overline{t}$ Production Cross Se	ction in <i>pp</i> Collis	sions at \sqrt{s}	= 7 TeV	NODE=Q007TX7
	, and the third from	luminosity. If	tatistics, the second from sys- only two errors are quoted the	NODE=Q007TX7
VALUE (pb)	DOCUMENT ID		COMMENT	NODE=Q007TX7
$\bullet \bullet \bullet$ We do not use the fo	ollowing data for ave	rages, fits, lin	nits, etc. • • •	
$168.5 \pm 0.7^{+} \begin{array}{c} 6.2 + 3.4 \\ 5.0 \end{array}$	¹ AABOUD	23 ATLS	$1\ell + E_T + > 3$ j (0,1,2 <i>b</i> -	1

 $168.5 \pm 0.7^{+}_{-} \begin{array}{c} 6.2 + 3.4 \\ 5.9 - 3.2 \end{array}$ ¹ AABOUD 23 ATLS $1\ell + \not\!\!\! E_T + \ge$ 3j (0,1,2 *b*tagged j)

NODE=Q007TX;LINKAGE=AO NODE=Q007TX;LINKAGE=AC NODE=Q007TX;LINKAGE=AT NODE=Q007TX;LINKAGE=AS NODE=Q007TX;LINKAGE=CO

NODE=Q007TX;LINKAGE=CA

NODE=Q007TTA NODE=Q007TTA

NODE=Q007TP7 NODE=Q007TP7

NODE=Q007TX5

NODE=Q007TX5

NODE=Q007TTA;LINKAGE=AA

NODE=Q007TP7;LINKAGE=AA

$178.5\pm$ 4.7	² AAD 23AY LHC	$e^{\pm}\mu^{\mp}$ pair; ATLAS+CMS
$161.7 \pm \ 6.0 \pm 12.0 \pm \ 3.6$	³ KHACHATRY17B CMS	combined $\ell + ot\!$
$173.6\pm~2.1^+~{4.5\over 4.0}\pm~3.8$	⁴ KHACHATRY16aw CMS	$\mathbf{e} + \mathbf{\mu} + \mathbf{E}_T + \mathbf{E}_0$ j
$181.2 \pm \ 2.8 {+10.8 \atop -10.6}$	⁵ AAD 15BO ATLS	$e+\mu+ ot\!$
178 \pm 3 \pm 16 \pm 3	⁶ AAD 15cc ATLS	ℓ +jets, $\ell\ell$ +jets, $\ell\tau_{m h}$ +jets
	⁷ AAIJ 15R LHCB	$\mu+\geq 1$ j(b-tag) forward region
$182.9 \pm \ 3.1 \pm \ 6.4$	⁸ AAD 14AY ATLS	$e + \mu + 1$ or 2b jets
194 ± 18 ± 46		$ au_{h}+ ot\!$
$139 \pm 10 \pm 26$	¹⁰ CHATRCHYAN 13AY CMS	\geq 6 jets with 2 b-tags
$158.1 \pm \ 2.1 \pm 10.8$	¹¹ CHATRCHYAN 13BB CMS	$\ell + \not\!\!E_T + jets(>1 b-tag)$
$152 \pm 12 \pm 32$	¹² CHATRCHYAN 13BE CMS	$ au_{m{b}} + E_{T} + \geq 4$ jets (≥ 1 b)
177 ± 20 ± 14 \pm 7		Repl. by AAD 12BF
176 \pm 5 $\stackrel{+14}{_{-11}}$ \pm 8	¹⁴ AAD 12BF ATLS	$\ell\ell\!+\!E_T^{}+\geq 2j$
187 ± 11 $^{+18}_{-17}$ \pm 6	¹⁵ AAD 12BO ATLS	$\ell + ot\!$
186 ± 13 ± 20 \pm 7	¹⁶ AAD 12CG ATLS	$\ell + au_{m{h}} + ot\!$
143 ± 14 ± 22 \pm 3	¹⁷ CHATRCHYAN 12AC CMS	$\ell + au_{h} + E_{T} + \geq 2 \mathrm{j} \ (\geq 1 b)$
$161.9 \pm \ 2.5 {+}{-} \ 5.1 {\pm} \ 3.6$	¹⁸ CHATRCHYAN 12AX CMS	$\ell\ell + ot\!$
145 $\pm 31 \begin{array}{c} +42 \\ -27 \end{array}$	¹⁹ AAD 11A ATLS	$\ell + ot\!$
$173 \begin{array}{r} +39\\ -32 \end{array} \pm 7$	²⁰ CHATRCHYAN 11AA CMS	$\ell + ot\!$
168 ± 18 ± 14 \pm 7	²¹ CHATRCHYAN 11F CMS	$\ell \ell + E_T + jets$
154 ± 17 \pm 6	²² CHATRCHYAN 11z CMS	Combination
$194 \ \pm 72 \ \pm 24 \ \pm 21$	²³ KHACHATRY11A CMS	
1	1	

¹AABOUD 23 based on 4.6 fb⁻¹ of data. The measurement is performed using a multivariate event classifier based on a binary learning algorithm which differentiates $t \bar{t}$ events from backgrounds in a three-dimensional space. The result is in agreement with the NNLO+NNLL SM prediction of 177^{+5}_{-6} (scale) ± 9 (PDF+ α_s) pb for $m_t = 172.5$ GeV. Compared to the measured cross section using the dilepton mode of AAD 14AY, significance of discrepancy is between 1.9σ to 2.1σ .

 2 AAD 23AY based on 5 fb $^{-1}$ of data using $m_t =$ 172.5 GeV. The ratio of the combined cross section at $\sqrt{s} = 8$ TeV to this one at $\sqrt{s} = 7$ TeV is determined as 1.363 ± 0.032 . The values of the cross sections as well as the ratio are consistent with the NNLO+NNLL SM predictions.

 3 KHACHATRYAN 17B based on 5.0 fb $^{-1}$ of data, using a binned likelihood fit of templates to the data. Also the ratio $\sigma(t\bar{t}; 8 \text{ TeV})/\sigma(t\bar{t}; 7 \text{ TeV}) = 1.43 \pm 0.04 \pm 0.07 \pm 0.05$ is reported. The results are in agreement with NNLO SM predictions.

- 4 KHACHATRYAN 16AW based on 5.0 fb⁻¹ of data, using a binned likelihood fit to differential distributions of *b*-tagged and non-*b*-tagged jets. The result is in good agreement with NNLO SM predictions.
- 5 Based on 4.6 fb $^{-1}$ of data. Uses a template fit to distributions of $\not\!\!\! E_T$ and jet multiplicities to measure simultaneously $t \bar{t}$, W W, and $Z/\gamma^* \rightarrow \tau \tau$ cross sections, assuming $m_t =$ 172.5 GeV.
- 6 AAD 15CC based on 4.6 fb $^{-1}$ of data. The event selection criteria are optimized for the $\ell \tau_{h}$ + jets channel. Using only this channel 183 \pm 9 \pm 23 \pm 3 pb is derived for the cross section.
- $^7\,{\sf AAIJ}$ 15R, based on 1.0 fb $^{-1}$ of data, reports 0.239 \pm 0.053 \pm 0.033 \pm 0.024 pb cross section for the forward fiducial region $p_T(\mu) > 25$ GeV, $2.0 < \eta(\mu) < 4.5$, 50 GeV < $p_T(b) < 100 \text{ GeV}, 2.2 < \eta(b) < 4.2, \Delta R(\mu,b) > 0.5, \text{ and } p_T(\mu+b) > 20 \text{ GeV}.$ The three errors are from statistics, systematics, and theory. The result agrees with the SM NLO prediction.
- 8 AAD 14AY reports 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 pb value based on 4.6 fb^{-1} of data. The four errors are from statistics, systematic, luminosity, and the 0.66% beam energy uncertainty. We have combined the systematic uncertainties in quadrature. The result is for $m_t = 172.5 \text{GeV}$; for other m_t , $\sigma(m_t) = \sigma(172.5 \text{GeV}) \times [1-0.0028 \times (m_t - 172.5 \text{GeV})]$. The result is consistent with the SM prediction at NNLO.

- ¹⁰ Based on 3.54 fb⁻¹ of data. ¹¹ Based on 2.3 fb⁻¹ of data. ¹² Based on 3.9 fb⁻¹ of data. ¹³ Based on 35 pb⁻¹ of data for an assumed top quark mass of $m_t = 172.5$ GeV.
- $^{14}\,\rm Based$ on 0.70 fb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t=$ 172.5 GeV.
- $^{15}\,\rm Based$ on 35 pb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t =$ 172.5 GeV and 173 \pm 17 $^{+18}_{-16}$ \pm 6 pb is found without the *b*-tag.

NODE=Q007TX7;LINKAGE=GD NODE=Q007TX7;LINKAGE=A NODE=Q007TX7;LINKAGE=B NODE=Q007TX7;LINKAGE=C NODE=Q007TX7;LINKAGE=DA NODE=Q007TX7;LINKAGE=AD

NODE=Q007TX7;LINKAGE=K

NODE=Q007TX7;LINKAGE=J

NODE=Q007TX7;LINKAGE=I

NODE=Q007TX7;LINKAGE=H

NODE=Q007TX7;LINKAGE=F

NODE=Q007TX7;LINKAGE=E

NODE=Q007TX7;LINKAGE=G

NODE=Q007TX7;LINKAGE=D

NODE=Q007TX7;LINKAGE=GA

 $^{^9}$ Based on 1.67 fb $^{-1}$ of data. The result uses the acceptance for $m_t=$ 172.5 GeV.

- ¹⁶Based on 2.05 fb⁻¹ of data. The hadronic τ candidates are selected using a BDT technique. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t = 172.5$ GeV.
- ¹⁷Based on 2.0 fb⁻¹ and 2.2 fb⁻¹ of data for $\ell = e$ and $\ell = \mu$, respectively. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t = 172.5$ GeV.
- ¹⁸ Based on 2.3 fb⁻¹ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the profile likelihood-ratio (PLB) method and an assumed m_t of 172.5 GeV.
- ¹⁹Based on 2.9 pb⁻¹ of data. The result for single lepton channels is $142 \pm 34^{+50}_{-31}$ pb, while for the dilepton channels is 151^{+78+37}_{-62-24} pb.
- 20 Result is based on 36 pb $^{-1}$ of data. The first uncertainty corresponds to the statistical and systematic uncertainties, and the second corresponds to the luminosity.
- ²¹Based on 36 pb⁻¹ of data. The ratio of $t\bar{t}$ and Z/γ^* cross sections is measured as $\sigma(pp \rightarrow t\bar{t})/\sigma(pp \rightarrow Z/\gamma^* \rightarrow e^+e^-/\mu^+\mu^-) = 0.175 \pm 0.018(\text{stat})\pm 0.015(\text{syst})$ for 60 < $m_{\ell\ell}$ < 120 GeV, for which they use an NNLO prediction for the denominator cross section of 972 ± 42 pb.
- 22 Result is based on 36 pb $^{-1}$ of data. The first error is from statistical and systematic uncertainties, and the second from luminosity. This is a combination of a measurement in the dilepton channel (CHATRCHYAN 11F) and the measurement in the ℓ + jets channel (CHATRCHYAN 11Z) which yields 150 \pm 9 \pm 17 \pm 6 pb.
- $^{23}\,\text{Result}$ is based on 3.1 \pm 0.3 pb^{-1} of data.

$t \overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

 VALUE (pb)
 DOCUMENT ID
 TECN
 COMMENT

 ● ● ● We do not use the following data for averages, fits, limits, etc. ● ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

• • • We do not use the r	onowing data for a	verages, mus, i		
$243.3^{+6.0}_{-5.9}$	¹ AAD	23AY LHC	$e^{\pm}\mu^{\mp}$ pair; ATLAS+CMS combined	
$\begin{array}{rrrr} 248.3 \pm 0.7 \pm 13.4 \pm 4.7 \\ 239 \ \pm 4 \ \pm 28 \ \pm 5 \\ 228.5 \pm 3.8 \pm 13.7 \pm 6.0 \\ 242.9 \pm 1.7 \pm \ 8.6 \end{array}$	² AABOUD ³ AABOUD ⁴ KHACHATRY. ⁵ AAD	18вн ATLS 17z ATLS 17в CMS 16вк ATLS	$\ell {+} ot\!$	
$244.9 \pm 1.4 \stackrel{+}{_{-}} \begin{array}{c} 6.3 \\ 5.5 \end{array} \pm 6.4$	⁶ KHACHATRY.	16AW CMS	$e+\mu+{ ot\!\!\!\!/}_T+{ ot\!$	
$275.6\!\pm\!6.1\!\pm\!37.8\!\pm\!7.2$	⁷ KHACHATRY.	16BC CMS	\geq 6j (\geq 2 b)	
$260 \pm 1 \begin{array}{c} +24 \\ -25 \end{array}$	⁸ AAD	15bp ATLS	$\ell {+} ot\!$	
$\begin{array}{c} 242.4 \pm 1.7 \pm 10.2 \\ 239 \ \pm 2 \ \pm 11 \ \pm 6 \\ 257 \ \pm 3 \ \pm 24 \ \pm 7 \end{array}$	⁹ AAIJ ¹⁰ AAD ¹¹ CHATRCHYAN ¹² KHACHATRY.	14F CMS	$\begin{array}{l} \mu+\geq 1 \mathrm{j}(b\text{-tag}) \text{ forward region} \\ \mathrm{e}+\mu+1 \text{ or } 2b \text{ jets} \\ \ell\ell+\not\!$	

¹AAD 23AY based on 20 fb⁻¹ of data using $m_t = 172.5$ GeV. The ratio of this cross section at $\sqrt{s} = 8$ TeV to the combined cross section at $\sqrt{s} = 7$ TeV is determined as 1.363 ± 0.032 . The values of cross sections as well as their ratio are consistent with the NNLO+NNLL SM predictions.

- ²AABOUD 18BH based on 20.2 fb⁻¹ of data. The result is for $m_t = 172.5$ GeV. To reduce effects of uncertainties in the jet energy scale and *b*-tagging efficiency, they are included as nuisance parameters in the fit of discriminant distributions, after separating selected events into three regions. Furthermore the *W*+jets background distribution is modelled using *Z*+jets event data.
- ³AABOUD 17Z based on 20.2 fb⁻¹ of data, using the mode $t\bar{t} \rightarrow \tau \nu q' \bar{q} b\bar{b}$ with τ decaying hadronically. Single prong and 3 prong decays of τ are separately analyzed. The result is consistent with the SM. The third quoted uncertainty is due to luminosity.
- ⁴ KHACHATRYAN 17B based on 19.6 fb⁻¹ of data, using a binned likelihood fit of templates to the data. Also the ratio $\sigma(t\bar{t}; 8 \text{ TeV})/\sigma(t\bar{t}; 7 \text{ TeV}) = 1.43 \pm 0.04 \pm 0.07 \pm 0.05$ is reported. The results are in agreement with NNLO SM predictions.
- ⁵ AAD 16BK is an update of the value from AAD 14AY using the improved luminosity calibration. The value 242.9 \pm 1.7 \pm 5.5 \pm 5.1 \pm 4.2 pb is reported, where we have combined the systematic uncertainties in quadrature. Also the ratio $\sigma(t\bar{t};$ 8TeV)/ $\sigma(t\bar{t};$ 7TeV) = 1.328 \pm 0.024 \pm 0.015 \pm 0.038 \pm 0.001 has been updated. The former result is consistent with the SM predictions at NNLO, while the latter result is 2.1 σ below the expectation.
- ⁶ KHACHATRYAN 16AW based on 19.7 fb⁻¹ of data, using a binned likelihood fit to differential distributions of *b*-tagged and non-*b*-tagged jets. The result is in good agreement with NNLO SM predictions.
- ⁷ KHACHATRYAN 16BC based on 18.4 fb⁻¹ of data. The last uncertainty is due to luminosity. Cuts on kinematical fit probability and $\Delta R(b,b)$ are imposed. The major QCD background is determined from the data. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction. The top quark p_T spectra, also measured, are significantly softer than theoretical predictions.

NODE=Q007TX7;LINKAGE=AG

NODE=Q007TX7;LINKAGE=CC

NODE=Q007TX7;LINKAGE=CR

NODE=Q007TX7;LINKAGE=AA

NODE=Q007TX7;LINKAGE=CH

NODE=Q007TX7;LINKAGE=CA

NODE=Q007TX7;LINKAGE=CT

NODE=Q007TX7;LINKAGE=KH

NODE=Q007TX8 NODE=Q007TX8

NODE=Q007TX8

OCCUR=2

NODE=Q007TX8;LINKAGE=L

NODE=Q007TX8;LINKAGE=K

NODE=Q007TX8;LINKAGE=J

NODE=Q007TX8;LINKAGE=I

NODE=Q007TX8;LINKAGE=H

NODE=Q007TX8;LINKAGE=F

NODE=Q007TX8;LINKAGE=G

Page 38 8 AAD 15BP based on 20.3 fb $^{-1}$ of data. The result is for $m_t^{}$ = 172.5 GeV and NODE=Q007TX8;LINKAGE=D in agreement with the SM prediction 253^{+13}_{-15} pb at NNLO+NNLL. Superseded by AABOUD 18BH. $^9\,{\sf AAIJ}$ 15R, based on 2.0 fb $^{-1}$ of data, reports 0.289 \pm 0.043 \pm 0.040 \pm 0.029 pb cross NODE=Q007TX8;LINKAGE=E section for the forward fiducial region $p_T(\mu) > 25$ GeV, $2.0 < \eta(\mu) < 4.5$, 50 GeV $< p_T(b) < 100$ GeV, $2.2 < \eta(b) < 4.2$, $\Delta R(\mu,b) > 0.5$, and $p_T(\mu+b) > 20$ GeV. The three errors are from statistics, systematics, and theory. The result agrees with the SM NLO prediction. $^{10}\,\text{AAD}$ 14AY reports 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 pb value based on 20.3 fb $^{-1}$ of NODE=Q007TX8;LINKAGE=A data. The four errors are from statistics, systematic, luminosity, and the 0.66% beam energy uncertainty. We have combined the systematic uncertainties in quadrature. The $0.015\pm0.049\pm0.001.$ The results are consistent with the SM predictions at NNLO. $^{11}\,\mathrm{Based}$ on 5.3 fb $^{-1}$ of data. The result is for $m_t=172.5\,\mathrm{GeV},$ and a parametrization is NODE=Q007TX8:LINKAGE=B given in eq.(6.1) for the mean value at other m_t values. The result is in agreement with the SM prediction $252.9^{+6.4}_{-8.6}$ pb at NNLO. $^{12}\,{\rm Based}$ on 19.6 fb $^{-1}$ of data. The measurement is in the channel $t\,\overline{t}\,\rightarrow\,\,(b\ell\nu)(b\tau\nu)$, NODE=Q007TX8;LINKAGE=C where τ decays into hadrons (τ_h) . The result is for $m_t = 172.5$ GeV. For $m_t = 173.3$ GeV, the cross section is lower by 3.1 pb. $t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV NODE=Q007X13 NODE=Q007X13 VALUE (pb) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AAD 23S ATLS $e^{\pm}\mu^{\mp} + 1$ or 2 *b*-jets \pm 1 ± 15.4 829 791 \pm 1 \pm 21 \pm 14 ² TUMASYAN 21J CMS $1\ell+\mathsf{jets}$ ³ AAD $830 \pm 0.4 \pm 36 \pm 14$ 20AH ATLS $\ell + \geq$ 4 jets (\geq 1*b*-tag) ⁴ AAD $826.4 \pm 3.6 \pm 11.5 \pm 15.8$ 20Q ATLS $e\mu + 1$ or 2 *b*-jets ⁵ SIRUNYAN $781 \ \pm \ 7 \ \pm 62 \ \pm 20$ 20V CMS $\ell \tau_h + \geq 3$ jets ($\geq 1b$ -tag) ⁶ SIRUNYAN dilepton channel ($e\mu$,2e,2 μ) $803 \pm 2 \pm 25$ 19AR CMS ± 20 ⁷ SIRUNYAN 19P CMS dilepton channel ⁸ KHACHATRY...17N CMS 815 \pm 9 ± 38 ± 19 $e\mu + \geq 2j (\geq 1b j)$ $^{+26}_{-28}$ ⁹ SIRUNYAN 888 ± 2 ± 20 17W CMS $\ell + > 1j$ $818 \pm 8 \pm 35$ ¹⁰ AABOUD 16R ATLS $e + \mu + 1$ or 2b jets ¹¹ KHACHATRY...16J CMS $746 \pm 58 \pm 53 \pm 36$ $e + \mu + \ge 2j$ 1 AAD 23S based on 140 fb $^{-1}$ of data at 13 TeV. The second error is the sum of systematic NODE=Q007X13;LINKAGE=K effects (±13), luminosity (±8), and beam energy (±2) uncertainties. This measurement supersedes that of AAD 20Q. The result is in good agreement with the NNLO+NNLL SM prediction. $^2\,{\rm TUMASYAN}$ 21J result is based on 137 fb $^{-1}$ of data. The last uncertainty is due to NODE=Q007X13;LINKAGE=J the beam luminosity. The result is in agreement with the SM prediction of $832^{+40}_{-46}~{\rm pb}$ at NNLO+NNLL. Measurements of differential and double-differential cross sections are also presented. ³AAD 20AH based on 139 fb⁻¹ of data. The last quoted uncertainty is due to the beam luminosity. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction NODE=Q007X13;LINKAGE=I of 832^{+20}_{-29} (scale) ± 35 (PDF+ α (s)) pb at NNLO+NNLL. 4 AAD 20Q reports 826.4 \pm 3.6 \pm 11.5 \pm 15.7 \pm 1.9 pb based on 36.1 fb $^{-1}$ of data at 13 NODE=Q007X13;LINKAGE=G TeV. The four errors stem from statistics, systematic effects, luminosity, and beam energy, respectively. We have combined luminosity and beam energy uncertainties in quadrature. The result is in agreement with the SM prediction $832^{+20}_{-29}(\text{scale})\pm35(\text{PDF}+\alpha(\text{s}))$ pb at NNLO+NNLL for $m_t=172.5~{
m GeV}$. 5 SIRUNYAN 20V based on 35.9 fb $^{-1}$ of pp data at $\sqrt{s}=$ 13 TeV. The last uncertainty NODE=Q007X13:LINKAGE=H is due to beam luminosity. The $t \, \overline{t}$ production cross section is measured in the $t \, \overline{t}$ ightarrow $(\ell \nu_{\ell})(\tau_{h}\nu_{\tau})b\bar{b}$ final state, where τ_{h} refers to the hadronic decays of τ . The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction at NNLO+NNLL. $^6 {
m SIRUNYAN 19}_{
m AR}$ based on 35.9 fb $^{-1}$ of data. Obtained from the visible cross section NODE=Q007X13;LINKAGE=E measured using a template fit to multidifferential distributions categorized according to the *b*-tagged jet multiplicity. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction at NNLO+NNLL. ⁷SIRUNYAN 19P reports differential $t \bar{t}$ cross sections measured using dilepton events at NODE=Q007X13;LINKAGE=F 13 TeV with 35.9 fb $^{-1}$ and compared to NLO predictions. $^8\,\rm KHACHATRYAN$ 17N based on 2.2 fb $^{-1}$ of data. The last quoted uncertainty is due to NODE=Q007X13;LINKAGE=C the beam luminosity. This measurement supersedes that of KHACHATRYAN 16J. 9 SIRUNYAN 17W based on 2.2 fb $^{-1}$ of pp data at $\sqrt{s}=$ 13 TeV. Events are categorized NODE=Q007X13;LINKAGE=D according to the jet multiplicity and the number of b-tagged jets. A likelihood fit is performed to the event distributions to compare to the NNLO+NNLL prediction. 10 AABOUD 16R reported value 818 \pm 8 \pm 27 \pm 19 \pm 12 pb based on 3.2 fb $^{-1}$ of data. NODE=Q007X13;LINKAGE=B The four errors are from statistics, systematic, luminosity, and beam energy. We have

combined the systematic uncertainties in quadrature. The result is in agreement with

3/18/2024 16:16

the SM prediction 832 $^{+20}_{-29}({\rm scale})\pm35({\rm PDF}+\alpha({\rm s}))$ pb at NNLO+NNLL for $m_t=172.5$ GeV . ¹¹KHACHATRYAN 16J based on 43 pb⁻¹ of data. The last uncertainty is due to luminosity. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction NODE=Q007X13;LINKAGE=A 832^{+20}_{-29} (scale) ± 35 (PDF+ α (s)) pb at NNLO+NNLL. $t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 13.6$ TeV NODE=Q007Y13 VALUE (pb) DOCUMENT ID NODE=Q007Y13 TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $850 \pm 3 \pm 27$ ¹ AAD 24 ATLS $e^{\pm}\mu^{\mp}$ + 1 or 2 *b*-jets $^1\,{\rm AAD}$ 24 based on 29 fb $^{-1}$ of data. The last error includes the luminosity uncertainty of NODE=Q007Y13;LINKAGE=A ± 20 pb. The result is for $m_t^{}=$ 172.5 GeV and in agreement with the SM prediction of 924 $^{+32}_{-40}$ (scale+PDF+ α_s) pb. The ratio of the $t\bar{t}$ to the Z production cross section is also measured as $1.145 \pm 0.003 \pm 0.021 \pm 0.002$, which is consistent with the SM prediction of 1.238 + 0.063 = 0.071 (scale+PDF+ α_s). The uncertainties of luminosity and lepton efficiency largely cancel in the ratio. $t \overline{t}$ Production Cross Section in Nucleus-Nucleus Collisions NODE=Q007NN1 NODE=Q007NN1 $VALUE (\mu barn)$ DOCUMENT ID \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet $^{+0.71}_{-0.64}$ OCCUR=3 ¹ SIRUNYAN 2.03 20BC CMS Pb-Pb collisions, dilepton + b-jets $2.54 \substack{+0.84 \\ -0.74}$ OCCUR=4 ² SIRUNYAN 20BC CMS Pb-Pb collisions, dilepton only 1 SIRUNYAN 20BC based on (1.7 \pm 0.1) nb $^{-1}$ of lead-lead collision data at a nucleon-NODE=Q007NN1;LINKAGE=A nucleon c.m. energy of 5.02 TeV. It makes use of the final-state dilepton kinematic properties together with requirements on the number of *b*-jets. The measured value is compatible with QCD predictions. 2 SIRUNYAN 20BC based on (1.7 \pm 0.1) nb $^{-1}$ of lead-lead collision data at a nucleon-NODE=Q007NN1:LINKAGE=B nucleon c.m. energy of 5.02 TeV. It makes use of the final-state dilepton kinematic properties alone. The measured value is compatible with QCD predictions. $t\bar{t}$ $t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV NODE=Q007DT8 TECN COMMENT NODE=Q007DT8 VALUE (fb) CL% DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AAD <23 95 15AR ATLS $\ell + \not\!\!\! E_T + \ge$ 5j (\ge 2 *b*) 2 aad <70 95 ³ KHACHATRY...14r CMS $\ell + \not\!\!\! E_T + \ge 6j \ (\ge 2 \ b)$ <32 95 $^1\,{\rm AAD}$ 15AR based on 20.3 fb $^{-1}$ of data. A fit to $H_{\mathcal{T}}$ distributions in multi-channels NODE=Q007DT8;LINKAGE=B classified by the number of jets and of *b*-tagged jets is performed. ²AAD 15BY based on 20.3 fb⁻¹ of data. A same-sign lepton pair is required. An excess NODE=Q007DT8;LINKAGE=C over the SM prediction reaches 2.5 σ for hypotheses involving heavy resonances decaying into $t \overline{t} t \overline{t}$. 3 Based on 19.6 fb $^{-1}$ of data, using a multivariate analysis to separate signal from back-NODE=Q007DT8;LINKAGE=A grounds. About $\sigma(t \overline{t} t \overline{t}) = 1$ fb is expected in the SM. $t\bar{t}$ $t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV NODE=Q007D13

VALUE (fb)	CL%	DOCUMENT ID	TECN	COMMENT		NODE=Q007D13
• • • We do not us	e the foll	owing data for ave	erages, fits, lin	nits, etc. • • •		
22.5^+_{-} $\begin{array}{c} 6.6\\ 5.5\end{array}$		¹ AAD	23BC ATLS	(same-sign 2 ℓ) or $\geq 3\ell$	I	
$17.7^+_{-}\ \begin{array}{c}3.7+2.3\\3.5-1.9\end{array}$		² HAYRAPETY.	23B CMS	(same-sign 2 ℓ), 3 ℓ , 4 ℓ	I	
$36 \begin{array}{c} +12 \\ -11 \end{array}$		³ TUMASYAN	23AQ CMS	(0,1 ℓ) + ($\ell^{\pm}\ell^{\mp}$) channels		
$17~\pm~4~\pm3$		⁴ TUMASYAN	23AQ CMS	CMS combined		OCCUR=2
$26 \substack{+17\\-15}$		⁵ AAD	21BC ATLS	ℓ or $\ell^+\ell^-+{\rm jets}$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		⁶ AAD	21BC ATLS	combination of $1\ell/2\ell(OS)$ and $2\ell(SS)/3\ell$		OCCUR=2
$24 \begin{array}{r} + 7 \\ - 6 \end{array}$		⁷ AAD	20AR ATLS	(same-sign 2 ℓ) or $\ \geq 3\ell + $ jets		
12.6^{+}_{-} 5.8 5.2		⁸ SIRUNYAN	20C CMS	(same-sign 2 ℓ) or 3 ℓ + jets		
<47 <49	95 95	⁹ AABOUD ¹⁰ AABOUD	19AP ATLS 19AP ATLS	$\ell + \ell^+ \ell^-$ channels combination of ATLAS		OCCUR=2
$13 \begin{array}{c} +11 \\ -9 \end{array}$		¹¹ SIRUNYAN	19CN CMS	combination of CMS		

<48 <69		IRUNYAN ABOUD	19CN CMS 18CE ATLS	ℓ +jets, $\ell^+ \ell^-$ +jets $\geq 2\ell$ (same sign) - > 1bj		OCCUR=2
$16.9^{+13.8}_{-11.4}$		IRUNYAN	18BU CMS	$t \overline{t} t \overline{t} \rightarrow (\text{same sign} \ 3\ell) + \ge 4 \text{ j} (\ge 1)$	<u>2</u> 2b)	
<94 <42	95 ¹⁶ S	IRUNYAN IRUNYAN	17AB CMS 17S CMS	ℓ +jets, $\ell^+ \ell^-$ +jets (same sign 2ℓ)+ $\not\!$	$r + \ge 2j$	
significance	e of 6.1 σ .			result corresponds to		NODE=Q007D13;LINKAGE=O
tion of lept signal-back corresponds (QCD+EW the next-to	cons and jets from ground separation s to the observed s /) SM prediction of -leading logarithmic	<i>b</i> hadrons, an by application significance of $13.4^{+1.0}_{-1.8}$ fb c accuracy.	nd from the rand of machine l f 5.6 σ and it including sof	vements include the evised analysis strate earning techniques. is in agreement with t-gluon emission corr	egy for the The result the NLO rections at	NODE=Q007D13;LINKAGE=P
³ TUMASYA	N 23AQ based on	up to 138 fb	$^{-1}$ of data.	The all-hadronic fin	al state is	NODE=Q007D13;LINKAGE=M
⁴ TUMASYA	r the first time. N 23AQ based on u observed significanc	up to 138 fb ⁻	$^{-1}$ of data. It	combines earlier CN	/IS results,	NODE=Q007D13;LINKAGE=N
⁵ AAD 21 _{BC} to the num	result is based on ber of jets and how criminate the signa	139 fb ^{—1} of v likely to con	tain <i>b</i> -hadron	vents are categorized is and a multivariate result corresponds to	analysis is	NODE=Q007D13;LINKAGE=K
⁶ AAD 21BC sured from (AAD 20AR within 2.0 o	combines the result the $1\ell/opposite-signed$). The result corre σ with the NLO (Q	gn 2ℓ channel sponds to obs QCD+EW) SN	with that fro served signific A prediction o		3ℓ channel consistent	NODE=Q007D13;LINKAGE=L
are used in result corre NLO (QCD	a multivariate an sponds to observed D+EW) SM predict	alysis to disc significance of ion of 12.0 \pm	riminate the s of 4.3 σ and is 2.4 fb.	jet flavor and event signal from backgrou consistent within 1.7	inds. The σ with the	NODE=Q007D13;LINKAGE=J
are taken to the NLO (C top quark It is also u	o discriminate the s QCD+EW) SM pre Yukawa coupling s sed to constrain a	signal from ba ediction of 12.	ackgrounds. $10^{+2.2}_{-2.5}$ fb. Tl	ted and multivariate a Grand multivariate a Grand multivariate a Grand measurement construction $ Y_t/Y_t^{SM} < 1.7$ (a Higgs boson. Suppose the second measurement construction of the second measurement of the second measur	ment with strains the	NODE=Q007D13;LINKAGE=I
	19AP based on 36.1	1 fb $^{-1}$ of dat	a. The upper	limit corresponds to	5.1 times	NODE=Q007D13;LINKAGE=E
¹⁰ AABOUD responds to	o 5.3 times the NL	O SM cross	section. Also	JD 18CE. The upper a limit on the four) is obtained in an E	-top-quark	NODE=Q007D13;LINKAGE=F
¹¹ SIRUNYAN		5.8 fb $^{-1}$ of a	data, combine	d with SIRUNYAN		NODE=Q007D13;LINKAGE=G
¹² SIRUNYAN		.8 fb $^{-1}$ of da	ta. A multiva	riate analysis using gl	obal event	NODE=Q007D13;LINKAGE=H
¹³ AABOUD 1 including a	18CE based on 36.1 same-sign lepton	$\rm fb^{-1}$ of proto	on-proton data	taken at $\sqrt{s}=13$ Te s consistent with the		NODE=Q007D13;LINKAGE=D
¹⁴ SIRUNYAN Yields from combined i prediction 9	n signal regions and n a maximum-likel	d control regio ihood fit. Th measurement	ons defined ba ne result is in constrains th	data taken at \sqrt{s} = ased on N_{jets} , N_b a agreement with the ne top quark Yukawa	and <i>N_I</i> are NLO SM	NODE=Q007D13;LINKAGE=B
¹⁵ SIRUNYAN inate betwe (CMS, KHA	l 17AB based on 2.6 een <i>tītī</i> signal and	6 fb ^{—1} of dat d <i>t t̄</i> backgro) in the same	a. A multivar und. A comb -sign dilepton	iate analysis is used t ination with a previo channel gives an upp	ous search	NODE=Q007D13;LINKAGE=A
¹⁶ SIRUNYAN prediction 9	175 based on 35	5.9 fb $^{-1}$. These ded by SIRU	ne limit is in	agreement with the The signal events are		NODE=Q007D13;LINKAGE=C
t T W Produce VALUE (fb)	tion Cross Secti	ion in ppC		$\sqrt{s} = 8 \text{ TeV}$		NODE=Q007TW8 NODE=Q007TW8
• • • We do n	ot use the following	g data for ave	erages, fits, lin	nits, etc. • • •		
$170^{+90}_{-80}{\pm}70$	1	KHACHATRY	′14N CMS	$t\overline{t} W o$ same sign $+ ot\!$	n dilepton	

¹Based on 19.5 fb⁻¹ of data. The result is consistent with the SM prediction of $\sigma(t\bar{t}W) = 206^{+21}_{-23}$ fb.

NODE=Q007TW8;LINKAGE=A

VALUE (pb)	Section in pp Collisions at $\sqrt{s} = 13$ TeV DOCUMENT ID TECN COMMENT	NODE=Q007TWX NODE=Q007TWX
• • • We do not use the for $0.868 \pm 0.040 \pm 0.051$ $0.87 \pm 0.13 \pm 0.14$	billowing data for averages, fits, limits, etc. • • • ¹ TUMASYAN 23AN CMS 2 or 3 $\ell + \not{\!\! E}_T$ + jets ² AABOUD 19AR ATLS 2,3,4 $\ell + \not{\!\! E}_T$ + jets	
$0.77 \begin{array}{r} +0.12 \\ -0.11 \end{array} \begin{array}{r} +0.13 \\ -0.12 \end{array}$	³ SIRUNYAN 18BS CMS $t \overline{t} W \rightarrow \text{same sign dilepton} + E_T + \text{jets}$	
$t \overline{t} W^-$ production cross and 0.343 \pm 0.026 \pm 0. SM predictions, 0.592 $\frac{4}{2}$	It is based on 138 fb ⁻¹ of proton-proton data. The $t\bar{t}W^+$ and s sections, respectively, are measured as $0.553 \pm 0.030 \pm 0.030$ pb 025 pb. The results are within 2σ deviations from the NLO FxFx -0.155 pb $(t\bar{t}W)$, $0.384^{+}0.053_{-}0.033$ pb $(t\bar{t}W^+)$ and $0.198^{+}0.026_{-}0.017$	NODE=Q007TWX;LINKAGE=D
simultaneously measure The result is consistent to constrain the Wilsor	s based on 35.9 fb ⁻¹ of data. $t\bar{t}W$ and $t\bar{t}Z$ cross sections are d using a combined fit to the events divided into multiple regions. with the SM prediction at NLO $0.60^{+0.08}_{-0.07}$ pb. It is also used a coefficients for dimension-six operators which modify the $t\bar{t}Z$	NODE=Q007TWX;LINKAGE=B
13 TeV. The result is Wilson coefficients for a	t is based on 35.9 fb ⁻¹ of proton-proton data taken at $\sqrt{s} =$ consistent with the SM prediction and is used to constrain the dimension-six operators describing new interactions. The result is prediction at NLO 0.628 \pm 0.082 pb.	NODE=Q007TWX;LINKAGE=A
$t \overline{t} Z$ Production Cross	Section in pp Collisions at $\sqrt{s} = 8$ TeV	NODE=Q007TZ8
VALUE (fb)	DOCUMENT ID TECN COMMENT	NODE=Q007TZ8
	ollowing data for averages, fits, limits, etc. $ullet$ $ullet$	
$200 + 80 + 40 \\ -70 - 30$	1 KHACHATRY14N CMS $t ar t Z o$ 3,4 $\ell + ot\!$	
1 Based on 19.5 fb $^{-1}$ of $= 197^{+22}_{-25}$ fb.	data. The result is consistent with the SM prediction of $\sigma(t \overline{t} Z)$	NODE=Q007TZ8;LINKAGE=A
$t \overline{t} Z$ Production Cross	Section in pp Collisions at $\sqrt{s} = 13$ TeV	
VALUE (pb)	DOCUMENT ID TECN COMMENT	NODE=Q007TZX NODE=Q007TZX
• • • We do not use the fo	ollowing data for averages, fits, limits, etc. • • •	
$\begin{array}{c} 0.99 \!\pm\! 0.05 \!\pm\! 0.08 \\ 0.95 \!\pm\! 0.05 \!\pm\! 0.06 \end{array}$	$ \begin{array}{ccc} 1 \\ AAD \\ 2 \\ SIRUNYAN \\ 20 \\ AB \\ CMS \\ 3,4 \\ \ell + jets \end{array} $	
$0.95\!\pm\!0.08\!\pm\!0.10$	³ AABOUD 19AR ATLS 2,3,4 ℓ + $ ot\!$	
$0.99 \substack{+0.09 + 0.12 \\ -0.08 - 0.10}$	4 SIRUNYAN 18BS CMS $t ar t Z o $ 3,4 $\ell + ot \!$	
1 AAD 21AS based on 139 $0.88\substack{+0.09\\-0.10}$ pb which in	$0~{ m fb}^{-1}$ of data. The result is consistent with the SM prediction of acludes NLO QCD+EW corrections. Also overall the differential	NODE=Q007TZX;LINKAGE=D
² SIRUNYAN 20AB based NLO SM prediction of (od agreement with the SM predictions. on 77.5 fb ⁻¹ of data at 13 TeV. The result is consistent with the 0.84 ± 0.10 pb. Differential cross sections are measured and used	NODE=Q007TZX;LINKAGE=C
³ AABOUD 19AR based taneously measured usi	lous couplings and Wilson coefficients for the $t\bar{t}Z$ interaction. on 35.9 fb ⁻¹ of data. $t\bar{t}W$ and $t\bar{t}Z$ cross sections are simul- ing a combined fit to the events divided into multiple regions. with the SM prediction at NLO $0.88^{+0.09}_{-0.11}$ pb. It is also used n coefficients for dimension-six operators which modify the $t\bar{t}Z$	NODE=Q007TZX;LINKAGE=B
to constrain the Wilsor vertex.	to coefficients for dimension-six operators which modify the $t \overline{t} Z$	
⁴ Based on 35.9 fb ⁻¹ of p with the SM prediction	proton-proton data taken at $\sqrt{s} = 13$ TeV. The result is consistent and is used to constrain the Wilson coefficients for dimension-six w interactions. The result is consistent with the SM prediction at	NODE=Q007TZX;LINKAGE=A
t τ γ Production Cross S	Section in pp Collisions at $\sqrt{s} = 13$ TeV DOCUMENT ID TECN COMMENT	NODE=Q007A01 NODE=Q007A01
• • • We do not use the fo	ollowing data for averages, fits, limits, etc. $ullet$ $ullet$	
	$rac{1}{2}$ TUMASYAN 22W CMS $1\gamma + \ell^+ \ell^- + \ge 1b$ j 2 TUMASYAN 21H CMS $pp o t \overline{t} \gamma$	
	2 TUMASYAN 21H CMS $pp ightarrow tt\gamma$ 3 AABOUD 19AD ATLS $pp ightarrow tar{t}\gamma$	
$t \overline{t} \gamma$ at 13 TeV with 1 predictions. The results	sured fiducial inclusive and differential cross-sections for $pp \rightarrow$ 38 fb ⁻¹ of data. The results are in agreement with the SM s are used to constrain anomalous couplings of the top guark in	NODE=Q007A01;LINKAGE=C
$t \overline{t} \gamma$ at 13 TeV with 1	sured fiducial inclusive and differential cross-sections for $pp \rightarrow$.37 fb ⁻¹ of data. The results are in agreement with the SM s are used to constrain anomalous couplings of the top quark in	NODE=Q007A01;LINKAGE=B
	ed fiducial inclusive and differential cross-sections for $pp \to t \bar{t} \gamma$ p^{-1} of data. The results are in agreement with the theoretical	NODE=Q007A01;LINKAGE=A

3/18/2024 16:16 Page 42

 $f(Q_0)$: $t \bar{t}$ Fraction of Events with a Veto on Additional Central Jet Activity in pp Collisions at $\sqrt{s} = 7$ TeV

Q ₀ denotes the threshold	l of the additional	jet p _T .	
VALUE (%)	DOCUMENT ID	TECN	COMMENT
\bullet \bullet We do not use the follow	ing data for avera	ges, fits, limit	s, etc. ● ● ●
$80.0 \pm 1.1 \pm 1.6$	¹ CHATRCHYAN	14AE CMS	$Q_0 = 75 \text{ GeV} (y < 2.4)$
$92.0\!\pm\!0.7\!\pm\!0.8$	¹ CHATRCHYAN		$f Q_0 = 75 \; GeV \; (y < 2.4) \ Q_0 = 150 \; GeV \; (y < 2.4)$
$98.0 \pm 0.3 \pm 0.3$	¹ CHATRCHYAN	14AE CMS	$Q_0 = 300 \text{ GeV} (y < 2.4)$
$56.4{\pm}1.3{+2.6\atop-2.8}$	² AAD	12BL ATLS	$Q_0 = 25 \text{ GeV} (y < 2.1)$
$84.7\!\pm\!0.9\!\pm\!1.0$	² AAD	12BL ATLS	$Q_0 = 75 \text{ GeV} (y < 2.1)$
$95.2^{+0.5}_{-0.6}{\pm}0.4$	² AAD	12BL ATLS	$Q_0 = 150 \text{ GeV} (y < 2.1)$

¹CHATRCHYAN 15 based on 5.0 fb⁻¹ of data. The $t \bar{t}$ events are selected in the dilepton and lepton + jets decay channels. For other values of Q_0 see Table 5.

²Based on 2.05 fb⁻¹ of data. The $t\bar{t}$ events are selected in the dilepton decay channel with two identified *b*-jets.

VALUE	DOCUMENT ID TECN	COMMENT	NODE=Q007T
• • • We do not u	se the following data for averages, f	its, limits, etc. • • •	
		$\ell + \not \! E_T$ + nj (n=3 to 8)	
$0.332\!\pm\!0.090$	² CHATRCHYAN 14AE CMS	$t \overline{t}(\ell \overline{\ell}) + 0$ jet ($E_T > 30$ GeV)	
$0.436 \!\pm\! 0.098$	² CHATRCHYAN 14AE CMS	$t\overline{t}(\ell\ell)+1$ jet $(\overline{E_T}>30{ m GeV})$	OCCUR=2
$0.232 \!\pm\! 0.125$	² CHATRCHYAN 14AE CMS	$t \overline{t}(\ell \ell) + \geq 2 \text{ jet } (E_T > 30 \text{GeV})$	OCCUR=3

¹Based on 4.6 fb⁻¹ of data. Fiducial $t\bar{t}$ production cross section is presented as a function of the jet multiplicity for up to eight jets with the jet p_T threshold of 25, 40, 60, and 80 GeV, and as a function of jet p_T up to the 5th jet. MC models can be discriminated by using data for high jet multiplicity and by p_T distributions of the leading and 5th jet.

jets with at least 1 b-tag are used to measure the fraction of $t\bar{t}$ plus additional jets. The gap fraction (n=0 jet rate) as a function of the jet p_T and that of H_T , the scalar sum of the p_T 's of additional jets, is shown in Fig. 8.

$t\bar{t}$ Charge Asymmetry (A_C) in pp Collisions at $\sqrt{s} = 7$ TeV

NODE=Q007AC7 $\mathsf{A}_C=(\mathsf{N}(\Delta|\mathsf{y}|>0)$ – $\mathsf{N}(\Delta|\mathsf{y}|<0)$) / $(\mathsf{N}(\Delta|\mathsf{y}|>0)$ + $\mathsf{N}(\Delta|\mathsf{y}|<0)$) where $\Delta|\mathsf{y}|$ NODE=Q007AC7 $= |y_t| - |y_{\overline{t}}|$ is the difference between the absolute values of the top and antitop rapidities and N is the number of events with $\Delta |y|$ positive or negative. DOCUMENT ID TECN COMMENT NODE=Q007AC7 VALUE (%) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD $0.5 \pm 0.7 \pm 0.6$ 18AM LHC ATLAS+CMS combination (lepton + jets) ² AAD 15aj ATLS $2.1\!\pm\!2.5\!\pm\!1.7$ ³ AAD 14I ATLS $0.6\!\pm\!1.0$ $\ell + \not\!\! E_T + \ge 4 \mathsf{j} \ (\ge 1 \mathsf{b})$ ⁴ CHATRCHYAN 14D CMS $-1.0\pm1.7\pm0.8$ ⁵ AAD 12вк ATLS $\ell + \not\!\!\! E_T + \ge 4$ ј (≥ 1 b) $-1.9\!\pm\!2.8\!\pm\!2.4$ $0.4 \pm 1.0 \pm 1.1$ $-1.3\pm2.8^{+2.9}_{-3.1}$ ⁷ CHATRCHYAN 12BS CMS $\ell + \not\!\! E_T + \ge 4j \ (\ge 1b)$

 1 ATLAS and CMS combination based on the data of AAD 14I and CHATRCHYAN 12BB. It takes into account the correlations of the measurements and systematic errors. The result is in agreement with the SM prediction (NLO QCD + NLO EW).

- 2 AAD 15AJ based on 4.6 fb $^{-1}$ of data. After kinematic reconstruction the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. The lepton charge asymmetry is measured as A_{C}^{\ell} = 0.024 \pm 0.015 \pm 0.009. All the measurements are consistent with the SM predictions.
- $^3\,{\rm Based}$ on 4.7 fb $^{-1}$ of data. The result is consistent with the SM prediction of ${\rm A}_C=$ 0.0123 ± 0.0005 . The asymmetry is 0.011 ± 0.018 if restricted to those events where $\beta_Z(t\,\overline{t})>$ 0.6, which is also consistent with the SM prediction of 0.020 $^{+0.006}_{-0.007}$
- 4 Based on 5.0 fb $^{-1}$ of data. The lepton charge asymmetry is measured as A $_C^\ell$ = 0.009 \pm 0.0010 \pm 0.006. A^l_C dependences on $m_{t\bar{t}}$, $|y(t\bar{t})|$, and $p_T(t\bar{t})$ are given in Fig. 5. All measurements are consistent with the SM predictions.
- ⁵Based on 1.04 fb⁻¹ of data. The result is consistent with $A_C = 0.006 \pm 0.002$ (MC at NLO). No significant dependence of A_C on $m_t \bar{t}$ is observed.

⁶Based on 5.0 fb⁻¹ of data at 7 TeV.

⁷Based on 1.09 fb⁻¹ of data. The result is consistent with the SM predictions.

NODE=Q007FQ7

NODE=Q007FQ7 NODE=Q007FQ7

OCCUR=2 OCCUR=3

OCCUR=2 OCCUR=3

NODE=Q007FQ7;LINKAGE=A

NODE=Q007FQ7;LINKAGE=AA

NODE=Q007TJ7 T 17

NODE=Q007TJ7;LINKAGE=A

NODE=Q007TJ7;LINKAGE=B

NODE=Q007AC7;LINKAGE=D

NODE=Q007AC7;LINKAGE=B

NODE=Q007AC7;LINKAGE=A

NODE=Q007AC7;LINKAGE=C

NODE=Q007AC7;LINKAGE=AA

NODE=Q007AC7;LINKAGE=CH NODE=Q007AC7;LINKAGE=CA

				3/18/2024 16:16 Page 4
t t Charge Asymmet	ry (A _C) in pp Co	•		NODE=Q007AC8 NODE=Q007AC8
\bullet \bullet \bullet We do not use the	ne following data for a	averages, fits, li	mits, etc. • • •	
$0.55\!\pm\!0.23\!\pm\!0.25$	¹ AABOUD	18AM LHC	ATLAS+CMS combination (lepton + jets)	
2.1 ±1.6	² AAD		$\ell\ell + \not\!$	
$\begin{array}{ccc} 0.9 \ \pm 0.5 \\ 4.2 \ \pm 3.2 \end{array}$	³ AAD ⁴ AAD		$\ell + ot\!$	
4.2 ±3.2				
$1.1 \ \pm 1.1 \ \pm 0.7$	⁵ KHACHATR	Y16AD CMS	$egin{aligned} & y_{\overline{t}} < 2, \ \ell + ot\!$	
$\begin{array}{c} 0.33 \!\pm\! 0.26 \!\pm\! 0.33 \\ 0.10 \!\pm\! 0.68 \!\pm\! 0.37 \end{array}$	⁶ KHACHATR ⁷ KHACHATR	Y16AH CMS Y16⊤ CMS	$\ell + \not\!\!\! E_T + \ge 4 \mathrm{j} \ (\ge 1 \mathrm{b}) \ \ell + \not\!\!\! E_T + \ge 4 \mathrm{j} \ (\ge 1 \mathrm{b})$	OCCUR=2
TRYAN 16AH. It tal errors. A combinati	kes into account the co on of the differential	orrelations of th measurements	of AAD 16AZ and KHACHA- ne measurements and systematic of the charge asymmetry is also prediction (NNLO QCD + NLO	NODE=Q007AC8;LINKAGE=H
momenta are correc parton level informa	ted for detector resolution of the MC genera	ition and accep tors. The lepto	ic reconstruction, the top quark tance effects by unfolding, using n charge asymmetry is measured sistent with the SM predictions.	NODE=Q007AC8;LINKAGE=A
are statistically limi	ted and consistent wi	th the SM pred		NODE=Q007AC8;LINKAGE=C
topology of highly unfolding to a part with the NLO SM p	boosted top quarks. on-level result in the prediction.	The observed shown fiducial	uction techniques for the decay I asymmetry is transformed by region. The result is consistent	NODE=Q007AC8;LINKAGE=B
⁵ KHACHATRYAN 1 measured as $A_C^{\ell \ell}$ = the SM predictions.	$0.003 \pm 0.006 \pm 0.006$	p^{-1} of data. T 003. All the me	he lepton charge asymmetry is easurements are consistent with	NODE=Q007AC8;LINKAGE=E
⁶ KHACHATRYAN 1 TRYAN 16T is use anti-symmetric com	6AH based on 19.6 fb⁻ d. A template techn	ique is used, v lity distribution	e same data set as in KHACHA- vhich is sensitive to the charge s and statistically advantageous.	NODE=Q007AC8;LINKAGE=F
TRYAN 16AH is use rected for detector	ed. After kinematic r resolution and accep	econstruction t tance effects b	same data set as in KHACHA- he top quark momenta are cor- y unfolding, using parton level nts are consistent with the SM	NODE=Q007AC8;LINKAGE=G
t T Charge Asymmet	ry (A _C) in pp Co	llisions at √s TECN CC		NODE=Q007ACX NODE=Q007ACX
• • • We do not use th				
$0.68 {\pm} 0.15$	¹ AAD 2	3BA ATLS sir	ngle lepton $+$ dilepton channels	
$0.42^{+0.64}_{-0.69}$	² TUMASYAN 2	3BD CMS M	$t_{\overline{t}} > 750$ GeV, single- ℓ channel	
¹ AAD 23BA is based on nonzero with 4.7 σ s	on 139 fb ^{—1} of data. I ignificance. Also diffe ne results are consister	nclusive $t \overline{t}$ char rential $t \overline{t}$ as we	rge asymmetry is measured to be ell as lepton charge asymmetries predictions which include NNLO	NODE=Q007ACX;LINKAGE=A
² TUMASYAN 23BD Lorentz-boosted to	is based on 138 fb ⁻ o quarks is measured SM prediction of 0.94	and is in agree	\overline{t} charge asymmetry for highly ement with the NNLO QCD + event selection is optimized for	NODE=Q007ACX;LINKAGE=B
t t W leptonic Charg	ge Asymmetry (A ^ℓ		sions at $\sqrt{s} = 13$ TeV	NODE=Q007A06 NODE=Q007A06
$\bullet \bullet \bullet$ We do not use the	ne following data for a			
$-0.12\!\pm\!0.14\!\pm\!0.05$	1 AAD		ATLS $\ell\ell\ell\ell+\geq 1b$	
particle level is also		0.17 ± 0.05 . A	ymmetry in a fiducial volume at II the results are consistent with V corrections.	NODE=Q007A06;LINKAGE=A
$t\bar{t}\gamma$ Charge Asymm	etry (A _C) in pp C		√s = 13 TeV □ <u>COMMENT</u>	NODE=Q007A07 NODE=Q007A07
• • • We do not use th	ne following data for a			
-0.003 ± 0.029	1 AAD	23AW A	ATLS $\gamma \ell + \ge 4 j \ (\ge 1 b)$	
1 AAD 22 MAY is been	1 an 120 fb-1 af dat			

 1 AAD 23AW is based on 139 fb $^{-1}$ of data. The measurement is in agreement with the Standard Model expectation.

NODE=Q007A07;LINKAGE=A

t-quark Polarization in $t\bar{t}$ Events in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV NODE=Q007PL2 VALUE DOCUMENT ID ___<u>TECN</u>___COMMENT NODE=Q007PL2 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABAZOV D0 0.070 ± 0.055 17 $\ell + \not\!\!\! E_T + \ge 3 \mathsf{j} (\ge 1 b)$ 2 ABAZOV 17 -0.102 ± 0.061 D0 OCCUR=2 0.040 ± 0.035 ³ ABAZOV D0 $\ell + \not\!\!\! E_T + \ge 3 \mathsf{j} (\ge 1 b)$ 17 OCCUR=3 ⁴ ABAZOV 15K D0 $0.113 \pm 0.091 \pm 0.019$ 1 ABAZOV 17 based on 9.7 fb $^{-1}$ of data. The value is top quark polarization times NODE=Q007PL2;LINKAGE=B spin analyzing power in the beam basis. Combination with the result of ABAZOV 15K yields 0.081 \pm 0.048. This result together with the helicity polarization is shown in a 2-dimensional plot in Fig.4. These results are consistent with the SM prediction. $^2\mathrm{ABAZOV}$ 17 based on 9.7 fb^{-1} of data. The value is top quark polarization times spin NODE=Q007PL2;LINKAGE=C analyzing power in the helicity basis. The result is consistent with the SM prediction. This result together with the beam polarization is shown in a 2-dimensional plot in Fig.4. 3 ABAZOV 17 based on 9.7 fb⁻¹ of data. The value is top quark polarization times spin analyzing power in the transverse basis. The result is consistent with the SM prediction. NODE=Q007PL2;LINKAGE=D 4 ABAZOV 15K based on 9.7 fb $^{-1}$ of data. The value is top quark polarization times spin NODE=Q007PL2;LINKAGE=A analyzing power in the beam basis. The result is consistent with the SM prediction of $-0.0019 \pm 0.0005.$ *t*-quark Polarization in $t\bar{t}$ Events in *pp* Collisions at $\sqrt{s} = 7$ TeV NODE=Q007PL7 The double differential distribution in polar angles, θ_1 (θ_2) of the decay particle of NODE=Q007PL7 the top (anti-top) decay products, is parametrized as $(1/\sigma)d\sigma/(d\cos\theta_1 \ d\cos\theta_2) =$ (1/4) ($1 + A_t \cos\theta_1 + A_{\overline{t}} \cos\theta_2 - C \cos\theta_1 \cos\theta_2$). The charged lepton is used to tag t or \overline{t} . The coefficient A_t and $A_{\overline{t}}$ measure the average helicity of t and \overline{t} , respectively. $A_{CPC} = A_t = A_{\overline{t}}$ assumes CP conservation, whereas $A_{CPV} = A_t =$ $-A_{\overline{t}}$ corresponds to maximal CP violation. VALUE DOCUMENT ID TECN COMMENT NODE=Q007PL7 • • • We do not use the following data for averages, fits, limits, etc. • • ¹ AAD 13BE ATLS A_{CPC} $-0.035 \pm 0.014 \pm 0.037$ $0.020 \pm 0.016 \substack{+0.013 \\ -0.017}$ OCCUR=2 1 AAD 13BE ATLS A_{CPV} 1 Based on 4.7 fb $^{-1}$ of data using the final states containing one or two isolated electrons NODE=Q007PL7;LINKAGE=AA or muons and jets with at least one b-tag. *t*-quark Polarization in $t\bar{t}$ Events in pp Collisions at $\sqrt{s} = 8$ TeV NODE=Q007PL8 A_t, A_{\overline{t}}, A_{CPC}, A_{CPV}, and A_C are defined in header texts in the subsections, just NODE=Q007PL8 above. <u>VAL</u>UE DOCUMENT ID NODE=Q007PL8 ____<u>TECN___COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.044 \pm 0.038 \pm 0.027$ ¹ AABOUD 17G ATLS A_t ¹ AABOUD 17G ATLS $A_{\overline{t}}$ $-0.064 \pm 0.040 \pm 0.027$ OCCUR=2 ¹ AABOUD $0.296 \pm 0.093 \pm 0.037$ OCCUR=3 17G ATLS A_C ² KHACHATRY...16AI CMS -0.022 ± 0.058 A_{CPC} ² KHACHATRY...16AI CMS 0.000 ± 0.016 OCCUR=2 A_{CPV} 1 AABOUD 17G based on 20.2 fb $^{-1}$ of pp data, using events with two leptons and two or NODE=Q007PL8;LINKAGE=B more jets with at least one b-tag. Determined from measurements of 15 top quark spin observables. The second error corresponds to a variation of m_t about 172.5 GeV by 0.7 GeV. The values are consistent with the NLO SM predictions. 2 KHACHATRYAN 16AI based on 19.5 fb $^{-1}$ of pp data at $\sqrt{s}=$ 8 TeV, using events with NODE=Q007PL8;LINKAGE=A two leptons and two or more jets with at least one *b*-tag. Determined from the lepton angular distributions as a function of the $t\bar{t}$ -system kinematical variables. *t*-quark Polarization in Single Top Events in pp Collisions at $\sqrt{s} = 8$ TeV NODE=Q007A00 NODE=Q007A00 VALUE DOCUMENT ID TECN COMMENT <u>CL%</u> • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD 17BB ATLS $\alpha_{\ell} P$; t-channel >0.72 95 ² AABOUD $0.97\!\pm\!0.05\!\pm\!0.11$ 17I ATLS $\alpha_{\ell} P$; t-channel ³ AABOUD $0.25\!\pm\!0.08\!\pm\!0.14$ 171 ATLS $(F_++F_-)P$; t-channel OCCUR=2 $(\alpha_{\mu}P)/2$; t-channel ⁴ KHACHATRY...16B0 CMS $0.26\!\pm\!0.03\!\pm\!0.10$ ¹AABOUD 17BB based on 20.2 fb⁻¹ of *pp* data. Triple-differential decay rate of top NODE=Q007A00;LINKAGE=D quark is used to simultaneously determine five generalized W t b couplings as well as the top polarization. α_ℓ denotes the spin analyzing power of charged lepton, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top

rest frame. The value is compatible with the SM prediction of about 0.9. 2 AABOUD 17I based on 20.2 fb $^{-1}$ of $p\,p$ data. A cut-based analysis is used to discriminate between signal and backgrounds. α_ℓ denotes the spin analyzing power of charged lepton, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top rest frame. See this paper for a number of other asymmetries and measurements that are not included here.

NODE=Q007A00;LINKAGE=B

3/18/2024 16:16

Page 44

NODE=Q007A00;LINKAGE=A

NODE=Q007A04 NODE=Q007A04

OCCUR=2 OCCUR=3 OCCUR=4 OCCUR=5 OCCUR=6

NODE=Q007A04;LINKAGE=B

NODE=Q007A04;LINKAGE=A

NODE=Q007TXG NODE=Q007TXG

NODE=Q007TFB

NODE=Q007TXG;LINKAGE=LT

NODE=Q007TXG;LINKAGE=AA

³AABOUD 17I based on 20.2 fb⁻¹ of *pp* data. A cut-based analysis is used to discriminate between signal and backgrounds. F_{\pm} denotes *W* helicity fraction, and the spin axis of the top polarization *P* is taken along the spectator-quark momentum in the top rest frame. See this paper for a number of other asymmetries and measurements that are not included here. ⁴KHACHATRYAN 16BO based on 19.7 fb⁻¹ of data. A high-purity sample with a muon

⁴ KHACHATRYAN 16BO based on 19.7 fb⁻¹ of data. A high-purity sample with a muon is selected by a multivariate analysis. The value is the top spin asymmetry, given by one half of the spin analyzing power α_{μ} (=1 at LO of SM) times the top polarization, *P*, where the spin axis is defined as the direction of the untagged jet in the top rest frame. The value is compatible with the SM prediction of 0.44 with a 2.0 σ deviation.

t-quark Polarizatio	n in Single Top Even DOCUMENT ID	ents ir	п рр С тесм	collisions at $\sqrt{s} = 13$ TeV
• • • We do not use	the following data for a	average	es, fits,	limits, etc. • • •
$0.01 \ \pm 0.18$	¹ AAD	22z	ATLS	$P_{x'}$ (t, transverse component)
-0.029 ± 0.027	¹ AAD	22z	ATLS	$P_{v'}^{x}$ (t, normal component)
$0.91 \hspace{0.1 cm} \pm 0.10$	¹ AAD			$P_{z'}^{y}$ (t, parallel component)
-0.02 ± 0.20	¹ AAD	22z	ATLS	$P_{x'}^{2}$ (\overline{t} , transverse component)
-0.007 ± 0.051	¹ AAD	22z	ATLS	$P_{y'}^{x}$ (\overline{t} , normal component)
-0.79 ± 0.16	¹ AAD	22z	ATLS	$P_{z'}^{y}$ (\overline{t} , parallel component)
0.440 ± 0.070	² SIRUNYAN			$(\alpha_{\ell} P)/2$; t-channel

coefficients of SMEFT are obtained as -0.9 < C_{tW} < 1.4 and -0.8 < C_{itW} < 0.2. ² SIRUNYAN 20R based on 36.1 fb⁻¹ of data. Differential cross sections for *t*-channel single top production are measured using 1ℓ + 2,3-jet mode and found to be in good agreement with SM predictions. The value is the top spin asymmetry, given by 1/2 of the spin analyzing power α_{ℓ} (=1 at LO of SM) times the top polarization *P*, where the spin axis is defined as the direction of the spectator quark in the top rest frame at the parton level. It is in good agreement with the NLO SM prediction of 0.436.

$gg \rightarrow t\bar{t}$ Fraction in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use t	he following	data for averag	es, fits, limits,	etc. • • •
<0.33	68 1	AALTONEN	09F CDF	$t \overline{t}$ correlations
$0.07\!\pm\!0.14\!\pm\!0.07$	2	AALTONEN	08AG CDF	low p_T number of tracks
	1			

¹Based on 955 pb⁻¹. AALTONEN 09F used differences in the $t\bar{t}$ production angular distribution and polarization correlation to descriminate between $gg \rightarrow t\bar{t}$ and $q\bar{q} \rightarrow t\bar{t}$ subprocesses. The combination with the result of AALTONEN 08AG gives 0.07 + 0.15 - 0.07.

² Result is based on 0.96 fb⁻¹ of data. The contribution of the subprocesses $gg \rightarrow t\bar{t}$ and $q\bar{q} \rightarrow t\bar{t}$ is distinguished by using the difference between quark and gluon initiated jets in the number of small p_T (0.3 GeV $< p_T < 3$ GeV) charged particles in the central region ($|\eta| < 1.1$).

A_{FB} of $t \bar{t}$ in $p \bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

$A_{FB} = Forwar$	d-backward asymm	etry.		NODE=Q007TFB
VALUE (%)	DOCUMENT ID	TECN	COMMENT	NODE=Q007TFB
• • • We do not use	the following data f	or averages, f	its, limits, etc. • • •	
$12.8 \pm 2.1 \pm 1.4$	¹ AALTONEN	18 TEVA	CDF, D0 combination	
$17.5 \pm 5.6 \pm 3.1$	² ABAZOV	15K D0	A $_{FB}^\ell$ in $\ell\ell\!+\! ot\!$	
$7.2\pm$ 6.0	³ AALTONEN	14F CDF	A_{FB}^{ℓ} in dilepton channel	
7.6± 8.2	³ AALTONEN	14F CDF	$egin{aligned} & I & \mathcal{U}\ell + ot\!$	OCCUR=2
$4.2\pm\ 2.3^{+1.7}_{-2.0}$	⁴ ABAZOV	14G D0	${\it A}_{FB}^\ell$ $(\ell+ ot\!\!\!/_T+\geq$ 3j (0,1 \geq 2b))	
$\begin{array}{c} 10.6 \pm \ 3.0 \\ 20.1 \pm \ 6.7 \\ - \ 0.2 \pm \ 3.1 \\ 16.4 \pm \ 4.7 \end{array}$	⁵ ABAZOV ⁶ AALTONEN ⁶ AALTONEN ⁷ AALTONEN	13AD CDF	$\begin{array}{l} A_{FB} \ (\ell + \not\!\! E_T + \geq 3 \mathbf{j} \ (\geq 1b)) \\ a_1/a_0 \ \mathrm{in} \ \ell + \not\!\! E_T + \geq 4 \mathbf{j} \ (\geq 1b) \\ a_3, a_5, a_7 \ \mathrm{in} \ \ell + \not\!\! E_T + \geq 4 \mathbf{j} \ (\geq 1b) \\ \ell + \not\!\! E_T + \geq 4 \ \mathrm{jets}(\geq 1b \text{-tag}) \end{array}$	OCCUR=2
9.4^{+}_{-} $\overset{3.2}{2.9}$	⁸ AALTONEN	13X CDF	$\ell + ot\!$	
$ \begin{array}{r} 11.8 \pm 3.2 \\ -11.6 \pm 15.3 \\ 47.5 \pm 11.4 \\ 19.6 \pm 6.5 \\ 17 \pm 8 \end{array} $	 ⁹ ABAZOV ¹⁰ AALTONEN ¹⁰ AALTONEN ¹¹ ABAZOV ¹² AALTONEN 	13A D0 11F CDF 11F CDF 11AH D0 08AB CDF	$\ell\ell \& \ell+$ jets comb. $m_{t\overline{t}} < 450 \text{ GeV}$ $m_{t\overline{t}} > 450 \text{ GeV}$ $\ell + \not\!$	OCCUR=2
17 ± 8 24 ±14 12 ± 8 ±1	¹² AALTONEN ¹³ ABAZOV	08AB CDF 08AB CDF 08L D0	p p frame $t \overline{t}$ frame $\ell + E T + \ge 4$ jets	OCCUR=2

				3/18/2024 16:16	Page 46	
¹ AALTONEN 18 based or asymmetry in the numbe with $y_t < y_{\overline{t}}$. The comb	n 9–10 fb ⁻¹ of $p\overline{p}$ data a er of reconstructed $t\overline{t}$ ever ined fits to CDF and D0 si	t $\sqrt{s}=$ nts with ngle lept	1.96 TeV. The value is the rapidity $y_t > y_{\overline{t}}$ and those on and $\ell\ell$ asymmetries give	NODE=Q007TFB;LI	NKAGE=F	
			\pm 0.016, respectively. The			
² ABAZOV 15K based on dictions. By combining	9.7 fb ^{-1} of data. The re	sult is co asureme	possistent with the SM prent in the ℓ + jet channel	NODE=Q007TFB;LINKAGE=C		
³ AALTONEN 14F based of asymmetries ($N(x>0)-N$ $\eta_{\ell}-$. Both results are of	on 9.1 fb $^{-1}$ of data. A_{FB}^ℓ $J(x{<}0))/N_{tot}$ for $x{=}q_\ell\eta_\ell$ (consistent with the SM pr	r_B^{ℓ} denote, respectively, the charge of ℓ) and $x=\eta_{\ell^+}$ – s. By combining with the 13x A^{ℓ} – 0.008 \pm 0.028	NODE=Q007TFB;LI	NKAGE=B		
is obtained. The combin $A_{FB}^{\ell} = 0.038 \pm 0.003.$	ed result is about two sign	na larger	13x, $A_{FB}^{\ell} = 0.098 \substack{+0.028 \\ -0.026}$ than the SM prediction of			
production level for event are given in Figs. 7 and	ts with $\left {{ extsf{y}}_l} ight < 1.5.$ Asymm 8, respectively. Combination AZOV 13P] gives $A_{FB}^\ell = 4$	netry as f on with t	mmetry is corrected for the functions of $E_T(\ell)$ and $ y_l $ the asymmetry measured in \pm 1.4 %, in agreement with	NODE=Q007TFB;LI	NKAGE=G	
⁵ Based on 9.7 fb ⁻¹ of dat agreement with the SM p	ta of $p \overline{p}$ data at $\sqrt{s}{=}1.96$ oredictions of 8.8 ± 0.9 % [E endences of the asymmetry	BERNRE	e measured asymmetry is in UTHER 12], which includes $- y(\bar{t}) $ and $m_{t \overline{t}}$ are shown	NODE=Q007TFB;LI	NKAGE=H	
			om the determination of a_i nt. The result of $a_1/a_0 = r + 7 \log c$	NODE=Q007TFB;LI	NKAGE=A	
7 Based on 9.4 fb ⁻¹ of da	r than the NLO SM predict			NODE=Q007TFB;LI		
⁸ Based on 9.4 fb ⁻¹ of da prediction of $A_{FB}^{\ell} = 0.0$	ata. The observed asymme	etry is to	be compared with the SM	NODE=Q007TFB;LI		
⁹ Based on 5.4 fb ⁻¹ of dat and measured the leptonic which is consistent with is obtained after combin ABAZOV 11AH. The top	ta. ABAZOV 13A studied t c forward-backward asymm the SM (QCD+EW) pre ing the measurement (15.	etry to be diction o $2 \pm 4.0\%$ ed by us	on channel of the $t\bar{t}$ events $A_{FB}^{\ell} = 5.8 \pm 5.1 \pm 1.3\%$, f 4.7 \pm 0.1%. The result 6) in the ℓ + jets channel ing the neutrino weighting iets channels	NODE=Q007TFB;LI	NKAGE=AZ	
¹⁰ Based on 5.3 fb ⁻¹ of da with lepton + $\not\!\!\!E_T$ + \geq asymmetry as a function	ata. The error is statistica 2 4jets($\geq 1b$) are used. of the rapidity difference y	I and system $AALTON$ $y_t - y_{\overline{t}} .$		NODE=Q007TFB;LI	NKAGE=AL	
¹¹ Based on 5.4 fb ⁻¹ of dat. asymmetry is obtained af (5.0 ± 0.1) %. No signific samples is found. A corre	a. The error is statistical ar ter unfolding to be compa cant difference between the ected asymmetry based on t	nd system red with e <i>m_t T < the lepton</i>	hatic combined. The quoted the MC@NLO prediction of < 450 and > 450 GeV data in from a top quark decay of prediction of $(2.1 \pm 0.1)\%$.	NODE=Q007TFB;LI	NKAGE=BZ	
¹² Result is based on 1.9 fl measured in the ℓ + jets asymmetry in the $p\overline{p}$ fran momentum, whereas tha	b ⁻¹ of data. The <i>FB</i> asy mode, where the lepton c ne is defined in terms of cos	(mmetry) harge is (θ) of hat and in ter	in the $t\bar{t}$ events has been used as the flavor tag. The adronically decaying <i>t</i> -quark ms of the <i>t</i> and \bar{t} rapidity	NODE=Q007TFB;LI	NKAGE=AA	
13 Result is based on 0.9 fb y _t > y _t and those with The observed value is contained.	y_t^{-1} of data. The asymmetry $y_t < y_{\overline{t}}$ has been measunsistent with the SM predict $t \overline{t}$ contribution for the S	try in the red in th ction of	e number of $t\overline{t}$ events with e lepton + jets final state. 0.8% by MC@NLO, and an couplings is given in in Fig.	NODE=Q007TFB;LI	NKAGE=AB	
				NODE=Q007TQ		
t-Quark Electric Charge	DOCUMENT ID	TECN	COMMENT	NODE=Q007TQ		
0.64±0.02±0.08			$\overline{\ell {+} { ot\!$			
• • • We do not use the foll						
	2	D0 CDF	$\ell {+} ot\!$			
	⁴ AALTONEN 10s	CDF	Repl. by AALTONEN 13J			
	⁵ ABAZOV 07c	D0	fraction of $ q =4e/3$ pair			

NODE=Q007TQ;LINKAGE=A

NODE=Q007TQ;LINKAGE=C

NODE=Q007TQ;LINKAGE=B

NODE=Q007TQ;LINKAGE=AA

NODE=Q007TQ;LINKAGE=AB

- ¹ AAD 13AY result is based on 2.05 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV, the result is obtained by reconstructing $t\bar{t}$ events in the lepton + jets final state, where *b*-jet charges are tagged by the jet-charge algorithm. This measurement excludes the charge -4/3 assignment to the top quark at more than 8 standard deviations.
- ²ABAZOV 14D result is based on 5.3 fb⁻¹ of $p\bar{p}$ data at \sqrt{s} =1.96 TeV. The electric charge of b + W system in $t\bar{t}$ candidate events is measured from the charges of the leptons from W decay and in b jets. Under the assumption that the b + W system consists of the sum of the top quark and the charge -4/3 quark b'(-4/3) of the same mass, the top quark fraction is found to be $f = 0.88 \pm 0.13$ (stat) ± 0.11 (syst), or the upper bound for the b'(-4/3) contamination of 1 f < 0.46 (95% CL).
- ³ AALTONEN 13J excludes the charge -4/3 assignment to the top quark at 99% CL, using 5.6 fb⁻¹ of data in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Result is obtained by reconstructing $t\bar{t}$ events in the lepton + jets final state, where *b*-jet charges are tagged by the jet-charge algorithm.
- ⁴ AALTONEN 10S excludes the charge -4/3 assignment for the top quark [CHANG 99] at 95%CL, using 2.7 fb⁻¹ of data in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Result is obtained by reconstructing $t\bar{t}$ events in the lepton + jets final state, where *b*-jet charges are tagged by the SLT (soft lepton tag) algorithm.
- ⁵ABAZOV 07C reports an upper limit $\rho < 0.80$ (90% CL) on the fraction ρ of exotic quark pairs $Q \overline{Q}$ with electric charge $|\mathbf{q}| = 4e/3$ in $t \overline{t}$ candidate events with high p_T lepton, missing E_T and ≥ 4 jets. The result is obtained by measuring the fraction of events in which the quark pair decays into $W^- + b$ and $W^+ + \overline{b}$, where b and \overline{b} jets are discriminated by using the charge and momenta of tracks within the jet cones. The maximum CL at which the model of CHANG 99 can be excluded is 92%. Based on 370 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.

t-Quark REFERENCES

			-		
AAD	24	PL B848 138376		G. Aad <i>et al.</i>	(ATLAS Collab.)
AABOUD	23	PR D108 032014		M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	23	PL B842 137379		G. Aad et al.	(ATLAS Collab.)
Also		PL B847 138286 (er			(ATLAS Collab.)
AAD	23AA	JHEP 2307 033	,	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AS	PR D108 032019		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PL B843 137848		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AY	JHEP 2307 213		G. Aad <i>et al.</i>	(ATLAS and CMS Collabs.)
AAD		JHEP 2308 077		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C83 496		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PRL 131 181901		G. Aad	(ATLAS Collab.)
AAD		JHEP 2312 195		G. Aad et al.	(ATLAS Collab.)
AAD	23E	JHEP 2306 191		G. Aad et al.	(ATLAS Collab.)
AAD	23H	JHEP 2306 155		G. Aad et al.	(ATLAS Collab.)
AAD	23J	JHEP 2306 138		G. Aad et al.	(ATLAS Collab.)
AAD AAD	23N 23S	JHEP 2306 019		G. Aad et al.	(ATLAS Collab.)
HAYRAPETY		JHEP 2307 141 PL B847 138290		G. Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN		JHEP 2307 219		A. Hayrapetyan <i>et al.</i> A. Tumasyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
TUMASYAN		PL B844 138076		A. Tumasyan <i>et al.</i> A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN		EPJ C83 963		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN		PL B846 137703		A. Tumasyan et al.	(CMS Collab.)
TUMASYAN	23DD 23J	JHEP 2306 081		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	235 23R	JHEP 2307 077		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23T	JHEP 2307 046		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	230	JHEP 2307 023		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23Z	EPJ C83 560		A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	22Q	JHEP 2208 175		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	22T	EPJ C82 334		G. Aad et al.	(ATLAS Collab.)
AAD	22Z	JHEP 2211 040		G. Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN	22A	PRL 129 032001		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22K	JHEP 2202 169		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22L	JHEP 2202 107		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22T	JHEP 2204 144		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22W	JHEP 2205 091		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22Z	JHEP 2206 082		A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD		EPJ C81 737		G. Aad et al.	(ATLAS Collab.)
AAD		EPJ C81 720		G. Aad et al.	(ATLAS Collab.)
AAD		JHEP 2111 118		G. Aad et al.	(ATLAS Collab.)
TUMASYAN	21E	JHEP 2111 111		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21G	JHEP 2112 161		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21H 21J	JHEP 2112 180		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN AAD		PR D104 092013 JHEP 2007 124		A. Tumasyan <i>et al.</i> G. Aad <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
AAD		PL B810 135797		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C80 1085		G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20AR	PL B800 135082		G. Aad et al.	(ATLAS Collab.)
AAD	20Q	EPJ C80 528		G. Aad et al.	(ATLAS Collab.)
AAD	20Y	JHEP 2008 051		G. Aad et al.	(ATLAS and CMS Collabs.)
AAD	20Z	PRL 125 061802		G. Aad <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	20AB	JHEP 2003 056		A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20AM	JHEP 2006 146		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 124 202001		A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 125 061801		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B808 135609		A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 125 222001		A.M. Sirunyan	(CMS Collab.)
SIRUNYAN		PR D102 092013		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		EPJ C80 658		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20C	EPJ C80 75		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20D	PL B800 135042		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20R 20V	EPJ C80 370		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20V	JHEP 2002 191		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)

NODE=Q007

	•
DEE	
REF	D=62569
REF	D = 62352
REF	D=62100
REF	D=62603
REF	D=62162
	D 62202
REF	D = 62356 D = 62366
REF	ID=62366
REF	D = 62371
REF	D=62371 D=62377
	D = 62381
	D = 02381
	D=62461
REF	D=62578
REF	D=62578 D=62118 D=62121 D=62124 D=62135 D=62142
REF	D = 62121
	D 62121
REF	D = 02124
REF	D = 62135
REF	D=62133 D=62142 D=62478 D=62370
REF	D-62478
REF	D = 62370
	D = 02370
REF	D = 62407
REF	D = 62552
REF	D-62601
REF	D = 62128 D = 62155
	D-02120
REF	D=02155
REF	D = 62160 D = 62163
REF	D = 62163
REF	D=62183
REF	D=61819
REF	D=61830
REF	D=61973
REF	D=61696
REF	D_61776
REF	
REF	D=61794 D=61800 D=61805 D=61407 D=61408
REF	D = 61800
REF	D_61000
	D = 01003
REF	D = 61407
REF	D=61408
REE	$U = 0 \downarrow 0 0 U$
REF	D_61561
	D 61567
REF	D=61561 D=61567
RFF	10 = 61568
REF	D=61589
REF	D=60623
	D=60707
REF	
REF	D=60771
REF	D=60145
REF	D=60442
	D = 60525
	D = 60525 D = 60576
REF	
REF	D=60477
REF	D=60506
REF	D=60561
REF	D=60575
REF	D=60698
REF	D=60736
REF	D = 6104
REF	D=60736 D=61044 D=60222
REF	D = 60222 D = 60141 D = 60432
REF	ID=60432
REF	D = 60471

AABOUD	19AC	EPJ C79 290	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
		EPJ C79 382	M. Aaboud et al.	(ATLAS Collab.)
		PR D99 052009	M. Aaboud et al.	(ATLAS Collab.)
		PR D99 072009	M. Aaboud et al.	(ATLAS Collab.)
	19R	JHEP 1905 088		ATLAS and CMS Collabs.)
	19S	JHEP 1905 123	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	19G	JHEP 1911 150 EPJ C79 313	G. Aad <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(ATLAS Collab.) (CMS Collab.)
		EPJ C79 313 EPJ C79 368	A.M. Sirunyan et al.	(CMS Collab.)
		PRL 122 132003	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		PR D100 072002	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		PR D100 072007	A.M. Sirunyan et al.	(CMS Collab.)
		JHEP 1911 082	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19P	JHEP 1902 149	A.M. Sirunyan et al.	(CMS Collab.)
	19R		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		PL B780 557	M. Aaboud et al.	(ATLAS Collab.)
		JHEP 1804 033		ATLAS and CMS Collabs.)
		JHEP 1807 176	M. Aaboud et al.	(ATLAS Collab.)
		EPJ C78 129	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
			M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
		JHEP 1809 139	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
		JHEP 1812 039	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	18H	JHEP 1801 063	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	18X		M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	18	PRL 120 042001	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
SIRUNYAN	18AQ	JHEP 1803 115	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BC	JHEP 1806 102	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BD	JHEP 1806 101	A.M. Sirunyan et al.	(CMS Collab.)
			A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
			A.M. Sirunyan et al.	(CMS Collab.)
	18DE	EPJ C78 891	A.M. Sirunyan et al.	(CMS Collab.)
Also	100.	EPJ C82 323 (errat.)	A.M. Sirunyan et al.	(CMS Collab.)
		JHEP 1810 117	A.M. Sirunyan et al.	(CMS Collab.)
	18L	PRL 120 231801	A.M. Sirunyan et al.	(CMS Collab.)
	18Z	PL B779 358	A.M. Sirunyan et al.	(CMS Collab.)
		JHEP 1709 118 JHEP 1710 129	M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
		JHEP 1712 017	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.)
		EPJ C77 804	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	17G		M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	17H		M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	171	JHEP 1704 124	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	17T		M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17Z	PR D95 072003	M. Aaboud et al.	(ATLAS Collab.)
ABAZOV	17	PR D95 011101	V.M. Abazov et al.	(D0 Collab.)
	17B		V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN		PL B770 50	S. Chatrchyan et al.	(CMS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		JHEP 1702 028	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		JHEP 1702 079	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
			A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
	17AD		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	17L		A.M. Sirunyan et al.	(CMS Collab.)
	17N		A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	170		A.M. Sirunyan et al.	(CMS Collab.)
	17S		A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17W	JHEP 1709 051	A.M. Sirunyan et al.	(CMS_Collab.)
AABOUD	16R	PL B761 136	M. Aaboud et al.	(ATLAS Collab.)
	16T	PL B761 350	M. Aaboud et al.	(ATLAS Collab.)
		PR D94 032006	G. Aad <i>et al.</i>	(ATLAS Collab.)
			G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD Also	1042		G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
	1647		G. Aad et al.	(ATLAS Collab.)
	16B		G. Aad et al.	(ATLAS Collab.)
			G. Aad et al.	(ATLAS Collab.)
AAD	16D			(ATLAS Collab.)
AAD	16T	PL B756 52	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PL B756 228	G. Aad et al.	(ATLAS Collab.)
AALTONEN ABAZOV	16	PR D93 032011	T. Aaltonen <i>et al.</i>	(CDF Collab.)
		PL B752 18	V.M. Abazov et al.	(D0 Collab.)
ABAZOV			V.M. Abazov et al.	(D0 Collab.)
ABAZOV ABAZOV	(61)	PR D94 032004 PR D94 092004	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	100			(D0 Collab.)
	16F		V.M. Abazov et al.	(CMC C-11-L)
	16F 16AD	PL B760 365	V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
	16F 16AD 16AH	PL B760 365 PR D93 034014	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.)
NDAL DATE 1	16F 16AD 16AH 16AI	PL B760 365 PR D93 034014 PR D93 052007	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
	16F 16AD 16AH 16AI 16AK	PL B760 365 PR D93 034014	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029	 V. Khachatryan <i>et al.</i> 	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC 16BJ	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 439	V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC 16BJ 16BO	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 128 JHEP 1604 073	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC 16BJ 16BO 16BU	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC 16BJ 16BO 16BU 16CB	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1604 035 JHEP 1609 027 EPJ C76 128 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AK 16AS 16AW 16AZ 16BC 16BJ 16BO 16BU 16CB 16J	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AK 16AK 16AS 16AW 16AZ 16BC 16BJ 16BO 16BU 16CB 16J 16C	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002 PL B757 154	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	16F 16AD 16AH 16AI 16AK 16AK 16AK 16AS 16AW 16AZ 16BC 16BJ 16BO 16BU 16CB 16J 16C	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002 PL B757 154 PL B758 321	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY TEVEWWG	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC 16BD 16BU 16BU 16BU 16CB 16J 16T	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002 PL B757 154	 V. Khachatryan et al. 	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY TEVEWWG AAD AAD	16F 16AD 16AH 16AI 16AK 16AK 16AX 16AW 16AZ 16BU 16BU 16BU 16BU 16CB 16J 16T 16X 16 16X 16 15	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1608 029 JHEP 1608 029 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002 PL B757 154 PL B758 321 arXiv:1608.01881 PL B740 222 PL B740 118	 V. Khachatryan et al. G. Kad et al. G. Aad et al. 	(CMS Collab.) (CMS Collab.) (ATLAS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY TEVEWWG AAD AAD AAD	16F 16AD 16AH 16AI 16AK 16AL 16AS 16AW 16AZ 16BC 16BU 16BU 16BU 16BU 16BU 16CB 16J 16T 16X 16 15 15A 15AJ	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1604 035 JHEP 1604 035 JHEP 1604 073 PL J76 128 EPJ C76 128 EPJ C76 439 JHEP 1612 123 PRL 116 052002 PL B757 154 PL B758 321 arXiv:1608.01881 PL B740 222 PL B740 118 JHEP 1505 061	 V. Khachatryan et al. Tevatron Electroweak Working G. Aad et al. G. Aad et al. 	(CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY TEVEWWG AAD AAD AAD AAD	16F 16AD 16AH 16AI 16AK 16AZ 16BC 16BU 16BU 16BU 16BU 16BU 16BU 16BU 16BU	PL B760 365 PR D93 034014 PR D93 052007 PR D93 072004 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002 PL B757 154 PL B758 321 arXiv:1608.01881 PL B760 222 PL B740 118 JHEP 1505 061 JHEP 1508 105	 V. Khachatryan et al. G. Khachatryan et al. G. Aad et al. G. Aad et al. G. Aad et al. 	(CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY TEVEWWG AAD AAD AAD AAD	16F 16AD 16AH 16AI 16AK 16AZ 16BC 16BU 16BU 16BU 16BU 16BU 16BU 16BU 16BU	PL B760 365 PR D93 034014 PR D93 052007 PR D93 052007 PR D93 092006 JHEP 1604 035 JHEP 1608 029 JHEP 1609 027 EPJ C76 128 EPJ C76 439 JHEP 1604 073 PL B762 512 JHEP 1612 123 PRL 116 052002 PL B757 154 PL B758 321 arXiv:1608.01881 PL B740 222 PL B740 118 JHEP 1505 061 JHEP 1508 105	 V. Khachatryan et al. Tevatron Electroweak Working G. Aad et al. G. Aad et al. 	(CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)

REFID=5154 REFID=61829 REFID=59353 REFID=59837 REFID=59002 REFID=58306 REFID=58334 REFID=58353 REFID=57802 REFID=57807 REFID=57807 REFID=57872 REFID=57777 REFID=57634 REFID=57790 REFID=57790 REFID=57790 REFID=57790 REFID=57819 REFID=57819 REFID=57819 REFID=57861 REFID=577861 REFID=57861 REFID=57861 REFID=57780 REFID=	REFID=59717 REFID=59845 REFID=59845 REFID=59863 REFID=59683 REFID=59683 REFID=59720 REFID=59722 REFID=59722 REFID=59771 REFID=50104 REFID=50104 REFID=50151 REFID=59097 REFID=59155 REFID=59182 REFID=59182 REFID=59182 REFID=59369 REFID=59389 REFID=59389 REFID=58727 REFID=5972 REFID=59728 REFID=59728 REFID=58727 REFID=59115 REFID=59115 REFID=59116 REFID=59148	
REFID=58192 REFID=57567 REFID=57569 REFID=57311 REFID=57326 REFID=57361 REFID=57363 REFID=57023 REFID=57027 REFID=57027 REFID=57213 REFID=57213 REFID=57217 REFID=57217 REFID=57209 REFID=57209 REFID=57266 REFID=57266 REFID=57279 REFID=57279 REFID=57279 REFID=57279 REFID=57282	REFID=59324 REFID=59353 REFID=59353 REFID=59353 REFID=58206 REFID=58206 REFID=58334 REFID=57802 REFID=57802 REFID=57802 REFID=57807 REFID=57877 REFID=57877 REFID=57877 REFID=57791 REFID=57790 REFID=57794 REFID=57794 REFID=57794 REFID=57848 REFID=58238 REFID=58238 REFID=58245 REFID=57861 REFID=57861 REFID=57861	
REEID-57328	REFID=58192 REFID=57567 REFID=57567 REFID=57569 REFID=57361 REFID=57361 REFID=57361 REFID=57023 REFID=57023 REFID=57027 REFID=57027 REFID=57211 REFID=57213 REFID=57217 REFID=57217 REFID=57217 REFID=57243 REFID=57226 REFID=57226 REFID=57226 REFID=57226 REFID=57226 REFID=57226	

AAD 15BF EPJ C75 330 G. Aad et al.	(ATLAS Collab.)
AAD 15BO PR D91 052005 G. Aad et al.	(ATLAS Collab.)
AAD 15BP PR D91 112013 G. Aad et al.	(ATLAS Collab.)
AAD 15BW JHEP 1510 121 G. Aad et al. AAD 15BY JHEP 1510 150 G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD 15C PR D92 072005 G. Aad et al.	(ATLAS Collab.)
AAD 15CO JHEP 1512 061 G. Aad et al.	(ATLAS Collab.)
AAD 15D JHEP 1501 020 G. Aad et al.	(ATLAS Collab.)
AAD 15J PRL 114 142001 G. Aad et al.	(ATLAS Collab.)
AAIJ 15R PRL 115 112001 R. Aaij et al.	(LHCb Collab.)
AALTONEN 15D PR D92 032003 T. Aaltonen et a	
AALTONEN 15H PRL 115 152003 T. Aaltonen et a	
ABAZOV 15G PR D91 112003 V.M. Abazov et	
ABAZOV 15K PR D92 052007 V.M. Abazov et CHATRCHYAN 15 EPJ C75 216 (errat.) S. Chatrchyan et	
AAD 14 PL B728 363 G. Aad et al.	(ATLAS Collab.)
AAD 14AA JHEP 1406 008 G. Aad et al.	(ATLAS Collab.)
AAD 14AY EPJ C74 3109 G. Aad et al.	(ATLAS Collab.)
AAD 14BB PR D90 112016 G. Aad et al.	(ATLAS Collab.)
AAD 14BI PR D90 112006 G. Aad et al.	(ATLAS Collab.)
AAD 14I JHEP 1402 107 G. Aad et al.	(ATLAS Collab.)
AALTONEN 14A PR D89 091101 T. Aaltonen et a AALTONEN 14F PRL 113 042001 T. Aaltonen et a	
AALTONEN 14F PRL 113 042001 T. Aaltonen et a Also PRL 117 199901 (errat.) T. Aaltonen et a	
AALTONEN 14G PRL 112 221801 T. Aaltonen et a	
AALTONEN 14H PR D89 072001 T. Aaltonen et a	
AALTONEN 14K PRL 112 231805 T. Aaltonen et a	
AALTONEN 14L PRL 112 231804 T. Aaltonen et a	
AALTONEN 14M PRL 112 231803 T. Aaltonen et a	
AALTONEN 14N PR D90 091101 T. Aaltonen et a	
AALTONEN 140 PRL 113 261804 T. Aaltonen et a ABAZOV 14C PRL 113 032002 V.M. Abazov et	
ABAZOV 14C PRL 113 032002 V.M. Abazov et Also PR D91 112003 V.M. Abazov et	
ABAZOV 14D PR D91 112005 V.M. Abazov et ABAZOV 14D PR D90 051101 V.M. Abazov et	
ABAZOV 14G PR D90 072001 V.M. Abazov et	
ABAZOV 14H PR D90 072011 V.M. Abazov et	al. (D0 Collab.)
ABAZOV 14K PR D90 092006 V.M. Abazov et	
CHATRCHYAN 14 PL B728 496 S. Chatrchyan et	
CHATRCHYAN 14AC PRL 112 231802 S. Chatrchyan et	
CHATRCHYAN 14AE EPJ C74 3014 S. Chatrchyan er Also EPJ C75 216 (errat.) S. Chatrchyan er	
Also EPJ C75 216 (errat.) S. Chatrchyan er CHATRCHYAN 14C EPJ C74 2758 S. Chatrchyan er	
CHATRCHYAN 14D JHEP 1404 191 S. Chatrchyan en	
CHATRCHYAN 14F JHEP 1402 024 S. Chatrchyan et	
CHATRCHYAN 140 PL B731 173 S. Chatrchyan et	
CHATRCHYAN 14R PR D90 032006 S. Chatrchyan et	
CHATRCHYAN 14S PRL 112 171802 S. Chatrchyan et	
KHACHATRY 14E PL B736 33 V. Khachartryan	
KHACHATRY 14F JHEP 1406 090 V. Khachartryan KHACHATRY 14H JHEP 1409 087 V. Khachartryan	
KHACHATRY 14K PL B738 526 (errat.) S. Chatrchyan er	
KHACHATRY 14N EPJ C74 3060 V. Khachartryan	
KHACHATRY 14Q PR D90 112013 V. Khachatryan	
KHACHATRY 14R JHEP 1411 154 V. Khachartryan	
KHACHATRY 14S PL B739 23 V. Khachartryan	
AAD 13AY JHEP 1311 031 G. Aad et al.	(ATLAS Collab.)
AAD 13BE PRL 111 232002 G. Aad et al. AAD 13X EPJ C73 2328 G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD 13A EFJ C73 2326 G. Aad et al. AALTONEN 13AB PR D88 091103 T. Aaltonen et a	al. (CDF Collab.)
AALTONEN 13AD PRL 111 182002 T. Aaltonen et a	al. (CDF Collab.)
AALTONEN 13D PR D87 031104 T. Aaltonen et a	al. (CDF Collab.)
AALTONEN 13E PR D87 052013 T. Aaltonen et a	al. (CDF Collab.)
AALTONEN 13G PR D87 111101 T. Aaltonen et a	al. (CDF Collab.)
AALTONEN 13H PR D88 011101 I. Aaltonen et a	al. (CDF Collab.)
	al. (CDF Collab.) al. (CDF Collab.)
AALTONEN 133 PR D88 072003 T Aaltonen et	al. (CDF Collab.)
AALTONEN 13Z PRL 111 202001 T Aaltonen et	
	al. (CDF Collab.)
ABAZOV 13A PR D87 011103 V.M. Abazov et	al. (CDF Collab.) al. (DD Collab.)
ABAZOV 13A PR D87 011103 V.M. Abazov et ABAZOV 13O PL B726 656 V.M. Abazov et	al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.)
ABAZOV 13A PR D87 011103 V.M. Abazov et ABAZOV 13O PL B726 656 V.M. Abazov et ABAZOV 13P PR D88 112002 V.M. Abazov et	al. (CDF Collab.) al. (DD Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.)
AALTONEN13ADPRL111182002I. Aaltonen et aAALTONEN13DPRD87031104T. Aaltonen et aAALTONEN13EPRD87052013T. Aaltonen et aAALTONEN13EPRD87052013T. Aaltonen et aAALTONEN13GPRD88031001T. Aaltonen et aAALTONEN13JPRD88032003T. Aaltonen et aAALTONEN13JPRD88032003T. Aaltonen et aAALTONEN13SPRD87092002T. Aaltonen et aAALTONEN13XPRD88072003T. Aaltonen et aAALTONEN13ZPRLD1102001T. Aaltonen et aABAZOV13APRD87011103V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305055S. Chatrchyan etCHATRCHYAN13APDRD70S3S. Chatrchyan et	al. (CDF Collab.) al. (DD Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.)
ABAZOV 13A PR D87 01103 V.M. Abazov et ABAZOV 13O PL B726 656 V.M. Abazov et ABAZOV 13P PR D88 112002 V.M. Abazov et CHATRCHYAN 13AY JHEP 1305 065 S. Chatrchyan et CHATRCHYAN 13BE PL B720 83 S. Chatrchyan et	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) t al. (CMS Collab.) t al. (CMS Collab.) t al. (CMS Collab.)
ABAZOV 13A PR D87 01103 V.M. Abazov et ABAZOV 13O PL B726 656 V.M. Abazov et ABAZOV 13P PR D88 112002 V.M. Abazov et CHATRCHYAN 13AY JHEP 1305 065 S. Chatrchyan ei CHATRCHYAN 13BE PL B720 83 S. Chatrchyan ei CHATRCHYAN 13BE JHEP 1310 167 S. Chatrchyan ei	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.)
ABAZOV 13A PR D87 01103 V.M. Abazov et ABAZOV 13O PL B726 656 V.M. Abazov et ABAZOV 13P PR D88 112002 V.M. Abazov et CHATRCHYAN 13AY JHEP 1305 065 S. Chatrchyan et CHATRCHYAN 13BB PL B720 83 S. Chatrchyan et CHATRCHYAN 13BE EPJ C73 2386 S. Chatrchyan et CHATRCHYAN 13BH JHEP 1310 167 S. Chatrchyan et CHATRCHYAN 13C PRL 110 022003 S. Chatrchyan et	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.)
ABAZOV13APRD8701103V. M. Abazov etABAZOV13OPLB726656V. M. Abazov etABAZOV13OPLB726656V. M. Abazov etABAZOV13PPRD88112002V. M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEJHEP1310167S. Chatrchyan etCHATRCHYAN13CPRL110022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan et	al. (CDF Collab.) al. (DD Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.)
ABAZOV132FRC 181 202001F. Matolich et al.ABAZOV130PL B726 656V.M. Abazov etABAZOV130PL B726 656V.M. Abazov etCHATRCHYAN 13AYJHEP 1305 065S. Chatrchyan etCHATRCHYAN 13BBPL B720 83S. Chatrchyan etCHATRCHYAN 13BBJHEP 1310 167S. Chatrchyan etCHATRCHYAN 13BHJHEP 1310 167S. Chatrchyan etCHATRCHYAN 13CPRL 110 022003S. Chatrchyan etCHATRCHYAN 13FPL B718 1252S. Chatrchyan etCHATRCHYAN 13SEPJ C73 2494S. Chatrchyan et	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) t al. (CMS Collab.)
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BEPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEJHEP1310167S. Chatrchyan etCHATRCHYAN13CPRLB710022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13SEPJC732494S. Chatrchyan etAAD12BPLPL970459G. Aad et al.	al. (CDF Collab.) al. (DD Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11AFILE 12000FILE 12000ABAZOV13APRD87011103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BEPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN12BPLB707459G. Aad et al.AAD12BEJHEP1206650C. Aad et al.AAD12BEJHEP1206650C. Aad et al.	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BEPLB72083S. Chatrchyan etCHATRCHYAN13BEPLD732386S. Chatrchyan etCHATRCHYAN13BEJHEP1310167S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etAAD12BPLB707459G. Aad et al.AAD12BFJHEP1204069G. Aad et al.AAD12BFJHEP1206088G. Aad et al.AAD12BFJHEP1206088G. Aad et al.	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEFPJC732386S. Chatrchyan etCHATRCHYAN13BEJHEP1310167S. Chatrchyan etCHATRCHYAN13CPL110022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13EEPJC732494S. Chatrchyan etAAD12BJHEP1206059G. Aad et al.AAD12BEJHEP1205059G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BKEPJC722039G. Aad et al.	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11AFILE 110FILE 12000ABAZOV13APRD87011103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13APJHEP1305065S. Chatrchyan etCHATRCHYAN13BEPLB72083S. Chatrchyan etCHATRCHYAN13BEFLC732386S. Chatrchyan etCHATRCHYAN13EEPJC732386S. Chatrchyan etCHATRCHYAN13CPL110022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB707459G. Aad et al.AAD12BEJHEP1206069G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BKEPJC722039G. Aad et al.AAD12BLEPJC722043G. Aad et al.	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11AFILE1103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etAAD12BJHEP1204069G. Aad et al.AAD12BJHEP1205059G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BKEPJC722043G. Aad et al.AAD12BOPLB711244G. Aad et al.	al. (CDF Collab.) al. (DO Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11APRD87011103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13APJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEPLB710100S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13SEPJC732494S. Chatrchyan etAAD12BEJHEP1200059G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BGPLB711244G. Aad et al.AAD12BOPLB711244G. Aad et al.AAD12BOPLD712251G. Aad et al.AAD </td <td>al. (CDF Collab.) al. (DD Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)</td>	al. (CDF Collab.) al. (DD Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11AFILE11D11D11DABAZOV13APRD87011103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13APJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEPLB71010022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13SEPJC732494S. Chatrchyan etAAD12BEJHEP1204069G. Aad et al.AAD12BEJHEP1206059G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BOPLB711244G. Aad et al.AAD12BFJHEP1205130G. Aad et al.AAD12BPPLB712351G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD12BFJHEP1209139G. Aad et al. <td>al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)</td>	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11A11A11D11D11DABAZOV13APRD87011103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13EEPJC732494S. Chatrchyan etCHATRCHYAN13FPLB710167S. Chatrchyan etCHATRCHYAN13FPLB707459G. Aad et al.AAD12BJHEP1206069G. Aad et al.AAD12BEJHEP1205059G. Aad et al.AAD12BFJEPJC722039G. Aad et al.AAD12BCPLB711244G. Aad et al.AAD12BPPLB712351G. Aad et al.AAD12BPJHEP1209139G. Aad et al.AAD12BP <td>al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)</td>	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV11A11D11D11DABAZOV13APRD87011103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BHJHEP1310167S. Chatrchyan etCHATRCHYAN13CPLB110022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB707459G. Aad et al.AAD12BEJHEP1205059G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BKEPJ <c72< td="">2039G. Aad et al.AAD12BNPLB712351G. Aad et al.AAD12BPPLB712351G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD12BFJ</c72<>	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (CMS Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13EEPJC732386S. Chatrchyan etCHATRCHYAN13CPL110022003S. Chatrchyan etCHATRCHYAN13FPLB707459G. Aad et al.AAD12BEJHEP1206069G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BEPLC722043G. Aad et al.AAD12BDPLB712351G. Aad et al.AAD12BPPLB712351G. Aad et al.AAD12CGPLB71789G. Aad et al.AAD12CGPLB71789G. Aad et al.AAD12LFJC722046G. Aad et al.AAD12LFJC722046G. Aad et al.AAD12LFJC722046G. Aad et al.AAD12L	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.)
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13APJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13EEPJC732386S. Chatrchyan etCHATRCHYAN13CPL110022003S. Chatrchyan etCHATRCHYAN13FPLB707459G. Aad et al.AAD12BEJHEP1206069G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BKEPJC722043G. Aad et al.AAD12BKEPJC722043G. Aad et al.AAD12BDPLB711244G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD <td>al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Co</td>	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Co
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13AYJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEPLB710100S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etAAD12BEJHEP1206069G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BLEPJC722043G. Aad et al.AAD12BDPLB711244G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD12BFJHEP1209139G. Aad et al.AAD12BFJHEP1209139G. Aad et	al. (CDF Collab.) al. (DD Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
ABAZOV13APRD8701103V.M. Abazov etABAZOV13OPLB726656V.M. Abazov etABAZOV13PPRD88112002V.M. Abazov etCHATRCHYAN13APJHEP1305065S. Chatrchyan etCHATRCHYAN13BBPLB72083S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13BEEPJC732386S. Chatrchyan etCHATRCHYAN13CPRL110022003S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etCHATRCHYAN13FPLB7181252S. Chatrchyan etAAD12BEJHEP1200069G. Aad et al.AAD12BEJHEP1206088G. Aad et al.AAD12BGJHEP1206088G. Aad et al.AAD12BGPLB712251G. Aad et al.AAD12BGPLB712251G. Aad et al.AAD12BOPLB71730G. Aad et al.AAD12CGPLB71730G. Aad et al.AAD12CHPLD722046G. Aad et al.AAD12CHPLD722046G. Aad et al.AAD12CHPLD722046G. Aad et al.<	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
CHATRCHYAN 13BB PL B720 83 CHATRCHYAN 13BB PL B720 83 CHATRCHYAN 13BE EPJ C73 2386 CHATRCHYAN 13BH JHEP 1310 167 CHATRCHYAN 13C PRL 110 022003 CHATRCHYAN 13C PRL 110 022003 CHATRCHYAN 13F PL B718 1252 S. Chatrchyan et S. Chatrchyan et	al. (CDF Collab.) al. (CDF Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) al. (D0 Collab.) t al. (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)

REF	ID=56673 ID=56723
REF REF REF	
	ID=56892 ID=57020 ID=56300
REF REF	ID=56466 ID=56494
REF REF REF	
REF	ID=56883 ID=56650 ID=55627
REF REF	D=55987 D=56184
REF	ID=56285 ID=56332 ID=55721
REF	ID=55803 ID=55851 ID=57709
REF REF	D=55852 D=56026
	D=56062
REF	ID=56149 ID=56256 ID=55857
REF	D=56584 D=55879 D=56137
REF	D=56144 D=56225
REF	D=55628 D=56058 D=56091
REF	D=56650
REF REF	D=55712 D=55755
REF REF	D=55838 D=55759
	ID=55999 ID=56014 ID=56128
REF	D=56180 D=56287 D=56294
REF REF	D=56334 D=55478
	ID=55614 ID=54964 ID=55554
REF	D=55570 D=55124 D=55131
RFF	D=55152 D=55163 D=55175
REF REF	ID=55292 ID=55456 ID=55473
REF	D=54855 D=55575
REF	D=56427 D=55253 D=55334
REF	D=55353 D=55425 D=54835
REF REF	D=54842 D=55014 D=54068
REF	ID=54458 ID=54466 ID=54467
REF	D=54522 D=54523
REF	D=54543 D=54545 D=54580
REF REF	ID=54685 ID=54686 ID=54125
RFF	D=54597 D=54600 D=54700
REF	D=54192 D=54365 D=54604

AHRENS 1 AHRENS 1 AHRENS 1 AALTONEN 0 AALTONEN 0 AALTON	80 0.0A 09AD 09AK 09AL 09F 09F 09F 09B 09B 09B 09B 09B 09A 09AA 09AAG 09AAG 09AAG	JHEP 1009 097 NPBPS 205-206 48 PR D79 112007 PR D80 051104 PR D80 052001 PRL 103 092002 PR D79 031101 PR D79 072010 PR D79 072010 PR D79 072010 PRL 102 151801 PRL 102 151801 PRL 102 152001 PL B674 160 PR D79 072005 PL B678 450 PRL 103 132001 PR D80 07102 PR D80 092006 PRL 102 092002	 V.M. Abazov et al. V.M. Abazov et al. V.M. Abazov et al. V.M. Abazov et al. W. Bernreuther, ZG. Si S. Chatrchyan et al. G. Chatrchyan et al. G. Chatrchyan et al. G. Aad et al. T. Aaltonen et al. W.M. Abazov et al. V.M. Abazov et al. V.
AALTONEN 0	190	PRL 102 152001	T. Aaltonen <i>et al.</i>
AALTONEN 0	19Q	PL B674 160	T. Aaltonen <i>et al.</i>
AALTONEN 0	19X	PR D79 072005	T. Aaltonen <i>et al.</i>
AARON 0	19A	PL B678 450	F.D. Aaron <i>et al.</i>
ABAZOV 0 ABAZOV 0 ABAZOV 0 ABAZOV 0	19AG 19AH 19J 19R 19Z	PR D80 071102 PR D80 092006	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>
AALTONEN 0	08AB	PRL 101 202001	T. Aaltonen <i>et al.</i>
AALTONEN 0	08AD	PRL 101 192002	T. Aaltonen <i>et al.</i>
AALTONEN 0	08AG	PR D78 111101	T. Aaltonen <i>et al.</i>
AALTONEN 0	08AH	PRL 101 252001	T. Aaltonen <i>et al.</i>
AALTONEN 0	08C	PRL 100 062005	T. Aaltonen <i>et al.</i>
ABAZOV 0	08AH	PRL 101 182001	V.M. Abazov <i>et al.</i>
ABAZOV 0	18A1	PRL 101 221801	V.M. Abazov <i>et al.</i>
	18B	PRL 100 062004	V.M. Abazov <i>et al.</i>
	181	PR D78 012005	V.M. Abazov <i>et al.</i>

REFID=54050 REFID=54050 REFID=54051 REFID=53018 REFID=53019 REFID=53019 REFID=52802 REFID=52802 REFID=52805 REFID=52805 REFID=52852 REFID=52852 REFID=52854 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=53066 REFID=53066 REFID=53066 REFID=53067 REFID=5307 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52548	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\begin{array}{l} D = 53708\\ D = 53770\\ D = 53772\\ D = 53817\\ D = 53817\\ D = 53817\\ D = 53897\\ D = 53957\\ D = 163577\\ D = 53877\\ D = 53620\\ D = 53478\\ D = 53558\\ D = 53558\\ D = 53558\\ D = 53559\\ D = 53266\\ D = 53267\\ D = 53268\\ D = 53308\\ D = 53308\\ D = 53308\\ D = 53308\\ D = 53400\\ D =$
REFID=16467 REFID=53708 REFID=53708 REFID=53710 REFID=53710 REFID=53717 REFID=53819 REFID=53817 REFID=53877 REFID=53877 REFID=53877 REFID=53877 REFID=53878 REFID=53878 REFID=53878 REFID=53861 REFID=53267 REFID=53205 REFID=53406 REFID=53406 REFID=53406 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53002 REFID=52804 REFID=52805 REFID=52804 REFID=52805 REFID=52804 REFID=52805 REFID=52806 REFID=52807 REFID=52807 REFID=52807 REFID=52807 REFID=52807 REFID=52807 REFID=52807 REFID=52807 REFID=52807 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627			
REFID=53708 REFID=53705 REFID=53795 REFID=53817 REFID=53817 REFID=53817 REFID=53817 REFID=53817 REFID=53817 REFID=53817 REFID=53817 REFID=5380 REFID=5380 REFID=53859 REFID=53558 REFID=53558 REFID=53266 REFID=53266 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53424 REFID=53405 REFID=53405 REFID=53405 REFID=53405 REFID=53405 REFID=53406 REFID=53407 REFID=53407 REFID=53407 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=53408 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52806 REFID=52806 REFID=52807 REFID=52807 REFID=52807 REFID=53008 REFID=52807 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627	RE	EFI EFI	D=16467 D=16483
REFID=53782 REFID=53795 REFID=53817 REFID=53817 REFID=53817 REFID=53777 REFID=53777 REFID=53777 REFID=53777 REFID=53478 REFID=53561 REFID=53267 REFID=53266 REFID=53267 REFID=53470 REFID=53401 REFID=53401 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53401 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=52800 REFID=	RE	EFI EFI	D = 53708 D = 53710
REFID=53819 REFID=53957 REFID=53877 REFID=53800 REFID=53800 REFID=53478 REFID=53559 REFID=53559 REFID=53561 REFID=53266 REFID=53267 REFID=53301 REFID=53401 REFID=53401 REFID=53401 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=54050 REFID=54050 REFID=53019 REFID=52805 REFID=52805 REFID=52807 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52854 REFID=52853 REFID=52853 REFID=52853 REFID=52807 REFID=52807 REFID=52807 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52627 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027	RE	EFI	D=53782 D=53795
REFID=16357 REFID=53777 REFID=53890 REFID=53620 REFID=5359 REFID=5359 REFID=5359 REFID=5359 REFID=53266 REFID=53267 REFID=53306 REFID=53307 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53400 REFID=53002 REFID=53002 REFID=52800 REFID=52803 REFID=52807 REFID=52803 REFID=52807 REFID=5280	RE	=+I	D = 53819
REFID=53361 REFID=53266 REFID=53267 REFID=53368 REFID=53368 REFID=53368 REFID=53300 REFID=53400 REFID=53400 REFID=53400 REFID=53424 REFID=53424 REFID=54050 REFID=54051 REFID=54051 REFID=54051 REFID=52018 REFID=5200 REFID=5200 REFID=52803 REFID=52804 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52863 REFID=52863 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=52863 REFID=52863 REFID=52863 REFID=52627 REFID=52623 REFID=52627 REFID=52627 REFID=52027 REFID=52027	RE	EFI EFI	D=53957 D=16357 D=53777
REFID=53361 REFID=53266 REFID=53267 REFID=53368 REFID=53368 REFID=53368 REFID=53300 REFID=53400 REFID=53400 REFID=53400 REFID=53424 REFID=53424 REFID=54050 REFID=54051 REFID=54051 REFID=54051 REFID=52018 REFID=5200 REFID=5200 REFID=52803 REFID=52804 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52863 REFID=52863 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=52863 REFID=52863 REFID=52863 REFID=52627 REFID=52623 REFID=52627 REFID=52627 REFID=52027 REFID=52027	RE	EFI	D=53890 D=53620
REFID=53361 REFID=53266 REFID=53267 REFID=53368 REFID=53368 REFID=53368 REFID=53300 REFID=53400 REFID=53400 REFID=53400 REFID=53424 REFID=53424 REFID=54050 REFID=54051 REFID=54051 REFID=54051 REFID=52018 REFID=5200 REFID=5200 REFID=52803 REFID=52804 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52853 REFID=52863 REFID=52863 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=53000 REFID=52863 REFID=52863 REFID=52863 REFID=52627 REFID=52623 REFID=52627 REFID=52627 REFID=52027 REFID=52027	RE	EFI EFI	D=53478 D=53558
REFID=53267 REFID=53268 REFID=533166 REFID=533166 REFID=533106 REFID=53401 REFID=53400 REFID=53400 REFID=53420 REFID=53420 REFID=53420 REFID=54050 REFID=54050 REFID=54051 REFID=52016 REFID=52017 REFID=52002 REFID=52002 REFID=52002 REFID=52002 REFID=52002 REFID=52002 REFID=52002 REFID=52003 REFID=52062 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52627 REFID=520627 REFID=520627 REFID=520627 REFID=520627 REFID=520627 REFID=520627			D=33301
REFID=53208 REFID=53316 REFID=53316 REFID=53310 REFID=53401 REFID=53401 REFID=53400 REFID=53420 REFID=53420 REFID=53420 REFID=54051 REFID=54051 REFID=54051 REFID=54051 REFID=5201 REFID=53019 REFID=53019 REFID=52802 REFID=52802 REFID=52803 REFID=52803 REFID=52805 REFID=52853 REFID=52854 REFID=52854 REFID=52856 REFID=52863 REFID=53006 REFID=53007 REFID=53007 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52627 REFID=52067 REFID=52067 REFID=52067 REFID=52067 REFID=52067 REFID=52067	RE	FFI	D=53267
REFID=53401 REFID=53405 REFID=53406 REFID=53420 REFID=53420 REFID=53429 REFID=54050 REFID=54050 REFID=52000 REFID=52000 REFID=52000 REFID=52800 REFID=52800 REFID=52800 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52856 REFID=52856 REFID=53066 REFID=53007 REFID=52007 REFID=52627 REFID=52627 REFID=52627 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027 REFID=52027	RE	EFI EFI	D=53208 D=53316
REFID=53410 REFID=53406 REFID=53406 REFID=53420 REFID=53420 REFID=54050 REFID=54050 REFID=54050 REFID=54050 REFID=53019 REFID=53019 REFID=52802 REFID=52802 REFID=52802 REFID=52803 REFID=52803 REFID=52853 REFID=52854 REFID=52854 REFID=52854 REFID=52863 REFID=53006 REFID=53007 REFID=53007 REFID=52627 REFID=52623 REFID=52623 REFID=52627 REFID=52627 REFID=52067 REFID=52067 REFID=52067 REFID=52067	RE	FFI	D-53401
REFID=53406 REFID=53424 REFID=53424 REFID=53427 REFID=53479 REFID=54050 REFID=52046 REFID=52046 REFID=52040 REFID=52800 REFID=52800 REFID=52800 REFID=52800 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52854 REFID=52856 REFID=53006 REFID=53007 REFID=52020 REFID=52623 REFID=52623 REFID=52623 REFID=52623 REFID=52627 REFID=52027 REFID=52027	RE	EFI	D=53410 D=53205
REFID=53479 REFID=54050 REFID=52946 REFID=52946 REFID=53019 REFID=53019 REFID=52802 REFID=52802 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52853 REFID=52854 REFID=52854 REFID=52856 REFID=53080 REFID=53080 REFID=53080 REFID=53080 REFID=53080 REFID=53080 REFID=52863 REFID=5262 REFID=52623 REFID=52623 REFID=52627 REFID=52067 REFID=52067 REFID=52067 REFID=52067	RF	FFI	D = 53406
REFID=53019 REFID=53019 REFID=52800 REFID=52802 REFID=52802 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52854 REFID=52856 REFID=52856 REFID=53086 REFID=53007 REFID=53007 REFID=52920 REFID=52623 REFID=52562 REFID=52623 REFID=52623 REFID=52627 REFID=52163	RE	EFI EFI	D=53424 D=53479
REFID=53019 REFID=53019 REFID=52800 REFID=52802 REFID=52802 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52854 REFID=52856 REFID=52856 REFID=53086 REFID=53007 REFID=53007 REFID=52920 REFID=52623 REFID=52562 REFID=52623 REFID=52623 REFID=52627 REFID=52163	RE	EFI	D=54050 D=54051
REFID=53092 REFID=52800 REFID=52802 REFID=52804 REFID=52805 REFID=52805 REFID=52853 REFID=52853 REFID=52853 REFID=52856 REFID=52856 REFID=53080 REFID=53007 REFID=53007 REFID=52920 REFID=5262 REFID=52623 REFID=52623 REFID=52627 REFID=52027 REFID=52027 REFID=52027	R		
REFID=52802 REFID=52804 REFID=52806 REFID=52855 REFID=52852 REFID=52853 REFID=52854 REFID=52854 REFID=52854 REFID=53028 REFID=53028 REFID=53060 REFID=53007 REFID=52863 REFID=52862 REFID=52562 REFID=52562 REFID=52623 REFID=52623 REFID=52627 REFID=52193	R	EFI	D=53092 D=52800
REFID=52806 REFID=52853 REFID=52853 REFID=52854 REFID=52856 REFID=52856 REFID=53028 REFID=53028 REFID=53066 REFID=52863 REFID=52920 REFID=52920 REFID=52920 REFID=52920 REFID=52564 REFID=52623 REFID=52623 REFID=52627 REFID=52193	RE RE	FFI	D = 52802
REFID=52853 REFID=52854 REFID=52856 REFID=52856 REFID=53026 REFID=53066 REFID=53066 REFID=52863 REFID=52920 REFID=52920 REFID=52562 REFID=52562 REFID=52623 REFID=52623 REFID=52627 REFID=52103	RE	EFI EFI	D=52805 D=52806
REFID=52856 REFID=52856 REFID=53028 REFID=53028 REFID=53066 REFID=528633 REFID=52920 REFID=52920 REFID=52920 REFID=52920 REFID=52564 REFID=52623 REFID=52623 REFID=52627 REFID=52193	RE	EFI	D = 52853
REFID=52915 REFID=53066 REFID=53066 REFID=53080 REFID=52920 REFID=52920 REFID=53007 REFID=52920 REFID=52562 REFID=525623 REFID=52627 REFID=52103	RE	EFI	D = 52856
REFID=52920 REFID=52920 REFID=53007 REFID=54049 REFID=52562 REFID=52564 REFID=52623 REFID=52627 REFID=52627	RE	EFI EFI	D=52915 D=53028
REFID=52920 REFID=52920 REFID=53007 REFID=54049 REFID=52562 REFID=52564 REFID=52623 REFID=52627 REFID=52627	RE	EFI EFI	D=53066 D=53080
REFID=54049 REFID=52562 REFID=52564 REFID=52623 REFID=52627 REFID=52193	RE	F	D=52003 D=52020
REFID=52564 REFID=52623 REFID=52627 REFID=52193	RE	EFI	D=53007 D=54049
REFID=52627 REFID=52193	RE	EFI	D = 52562 D = 52564
REFID=52548 REFID=52549	RE	EFI	D = 52627 D = 52193
	RE	EFI EFI	D=52548 D=52549
REFID=52183 REFID=52387	RE	EFI EFI	D=52183 D=52387

ABAZOV ABAZOV ABAZOV ABULENCIA CACCIARI	08L 08M 08N 08 08	PRL 100 142002 PRL 100 192003 PRL 100 192004 PR D78 012003 JHEP 0809 127	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> A. Abulencia <i>et al.</i> M. Cacciari <i>et al.</i>	(D0 Collab.) (D0 Collab.) (D0 Collab.) (CDF Collab.)
KIDONAKIS MOCH AALTONEN AALTONEN AALTONEN AALTONEN	08 08 07 07B 07D 07I	PR D78 074005 PR D78 034003 PRL 98 142001 PR D75 111103 PR D76 072009 PRL 99 182002	N. Kidonakis, R. Vogt S. Moch, P. Uwer T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(BERL, KARLE) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABAZOV ABAZOV ABAZOV ABAZOV	07C 07D 07F 07H	PRL 98 041801 PR D75 031102 PR D75 092001 PRL 98 181802	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.)
ABAZOV ABAZOV ABAZOV ABAZOV	07O 07P 07R 07V	PR D76 052006 PR D76 072007 PR D76 092007 PRL 99 191802	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.)
ABAZOV ABULENCIA ABULENCIA ABULENCIA	07W 07D 07G 07I	PL B655 7 PR D75 031105 PRL 98 072001 PR D75 052001	V.M. Abazov <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i>	(D0 Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABULENCIA ABAZOV ABAZOV ABAZOV	07J 06K 06U 06X	PR D75 071102 PL B639 616 PR D74 092005 PR D74 112004	A. Abulencia <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(CDF Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.)
ABULENCIA Also Also ABULENCIA	06D 06G	PRL 96 022004 PR D73 032003 PR D73 092002 PRL 96 152002	A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i>	(CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
Also ABULENCIA ABULENCIA ABULENCIA	06R 06U 06V	PR D74 032009 PL B639 172 PR D73 111103 PR D73 112006	A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i>	(CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABULENCIA ABULENCIA,A ABULENCIA,A ABULENCIA,A	06E	PRL 97 082004 PRL 96 202002 PR D74 072005 PR D74 072006	 A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> A. Abulencia <i>et al.</i> 	(CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABAZOV ABAZOV ABAZOV ABAZOV	05 05G 05L 05P	PL B606 25 PL B617 1 PR D72 011104 PL B622 265	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.)
Also Also Also ABAZOV	05Q	PL B517 282 PR D63 031101 PR D75 092007 PL B626 35	V.M. Abazov <i>et al.</i> B. Abbott <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.)
ABAZOV ABAZOV ACOSTA ACOSTA	05R 05X 05A 05D	PL B626 55 PL B626 45 PRL 95 102002 PR D71 031101	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> D. Acosta <i>et al.</i> D. Acosta <i>et al.</i>	(D0 Collab.) (D0 Collab.) (CDF Collab.) (CDF Collab.)
ACOSTA ACOSTA ACOSTA ACOSTA ACOSTA	05N 05S 05T 05U 05V	PR D71 012005 PR D72 032002 PR D72 052003 PR D71 072005 PR D71 052003	D. Acosta <i>et al.</i> D. Acosta <i>et al.</i> D. Acosta <i>et al.</i> D. Acosta <i>et al.</i> D. Acosta <i>et al.</i>	(CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ABAZOV ABDALLAH ACOSTA ACOSTA	04G 04C 04H 04I	NAT 429 638 PL B590 21 PR D69 052003 PRL 93 142001	V.M. Abazov <i>et al.</i> J. Abdallah <i>et al.</i> D. Acosta <i>et al.</i> D. Acosta <i>et al.</i>	(DD Collab.) (DELPHI Collab.) (CDF Collab.) (CDF Collab.)
AKTAS ABAZOV CHEKANOV ACHARD	04 03A 03 02J	EPJ C33 9 PR D67 012004 PL B559 153 PL B549 290	A. Aktas et al. V.M. Abazov et al. S. Chekanov et al. P. Achard et al.	(H1 Collab.) (D0 Collab.) (ZEUS Collab.) (L3 Collab.)
ACOSTA HEISTER ABBIENDI AFFOLDER	02 02Q 01T 01	PR D65 091102 PL B543 173 PL B521 181 PR D63 032003	D. Acosta <i>et al.</i> A. Heister <i>et al.</i> G. Abbiendi <i>et al.</i> T. Affolder <i>et al.</i>	(CDF Collab.) (ALEPH Collab.) (OPAL Collab.) (CDF Collab.)
AFFOLDER AFFOLDER AFFOLDER BARATE	01A 01C 00B 00S	PR D64 032002 PRL 86 3233 PRL 84 216 PL B494 33 PR D50 052001	T. Affolder <i>et al.</i> T. Affolder <i>et al.</i> T. Affolder <i>et al.</i> S. Barate <i>et al.</i>	(CDF Collab.) (CDF Collab.) (CDF Collab.) (ALEPH Collab.)
ABBOTT ABE Also CHANG ABBOTT	99G 99B 99 98D	PR D60 052001 PRL 82 271 PRL 82 2808 (errat.) PR D59 091503 PRL 80 2063	 B. Abbott <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i> D. Chang, W. Chang, E. Ma B. Abbott <i>et al.</i> 	(D0 Collab.) (CDF Collab.) (CDF Collab.) (D0 Collab.)
ABBOTT ABE ABE ABE	98F 98E 98F 98G	PR D58 052001 PRL 80 2767 PRL 80 2779 PRL 80 2525	B. Abbott et al. F. Abe et al. F. Abe et al. F. Abe et al.	(D0 Collab.) (D0 Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
BHAT ABACHI ABE ABE	98B 97E 97R 97V	IJMP A13 5113 PRL 79 1197 PRL 79 1992 PRL 79 3585 PR 054 1	P.C. Bhat, H.B. Prosper, S.S. Snyder S. Abachi <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(D0 Collab.) (CDF Collab.) (CDF Collab.)
PDG ABACHI ABE ABE Also	96 95 95F 94E	PR D54 1 PRL 74 2632 PRL 74 2626 PR D50 2966 PRL 73 225	R. M. Barnett <i>et al.</i> S. Abachi <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(PDG Collab.) (D0 Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)

DEE	
	ID=52390
REFI	ID=52391
REF	D = 52392
REF	D=52392
REFI	D=52413
REFI	D = 54052
	D 54052
REF	D=54053
REFI	D = 54048
DEE	D=51684
REF	D=51084
REFI	D=51802
REFI	D=51996
	D_51990
	ID=52044
REFI	D=51681
REFI	D=51682
RFFI	ID=51792
DEE	D=51792 D=51807
NEF!	D-51007
REFI	D=51007 D=51975 D=51995 D=52003
REFI	D-51005
	D-31993
REFI	D=51995 D=52003 D=52018
REF	D = 52018
	D 52010
REF	D=52026
REEL	D-51736
	D_51750
REFI	D=51730 D=51780
	111 - 51782
REFI	D=51703 D=51377
REFI	D=51377
REFI	D = 51503
REF	D=51604
	D_E1100
REF	D=51102
RFFI	D = 51103
REFI	D=51306
	D-21200
REFI	ID=51104
REFI	D=51300 D=51104 D=51329 D=51264
BEE	D_51064
REFI	D=51204
	D=51277
REFI	D=51285
DEEL	D=51344
REF	D=51344
REFI	D=51477
REFI	D-51530
	D=513477 D=51539 D=51540 D=50386
REFI	D=51540
REFI	D=50386
REF	D=50613 D=50703 D=50872
	D_30013
REFI	D = 50703
REFI	D=50872
REFI	D=48381
REFI	D=48048
RFFI	D=51797
REFI	D=50883
REFI	D=50882
REFI	D=51116
NEL:	
REFI	D=50564
REFI	D=50615
REFI	D=50887
	D_50007
REFI	D=51117
REFI	D = 51118
REF	D=51119
	D-51119
REFI	D=51121
REFI	D=50556
NEL I	D=49907
REFI	D=50886
REFI	D=51120
DEF	D = 49845
	L - 49043
REFI	D=52194 D=49387
REFI	D=49387
REFI	D=49092 D=48685
	L-49092
REFI	D=48685
REFI	D=48961 D=48471
REFI	D_40471
REFI	U=404/1
RFFI	D = 48049
REFI	D=52195
	D_40117
REF	D=48117
REFI	ID=47354
REFI	ID=47354 ID=47838
	U-4/030
REFI	D=47135
REFI	D=46548
DEF	D = 46822
REF	D=40022
REFI	D=46999
REF	D=45940
REF	D=45967
REFI	D=45941
	D=45942
REFI	D=46013
REFI	D=46531
DEF	
	D=45590
REFI	ID=45594
REFI	D=45716
	D=45594 D=45716 D=44495
REFI	D=44495
REFI	D=44167
REF	D 44170
D	D = 44170
REFI	D=44170 D=43810
REFI REFI	D=44170 D=43810 D=43823
REFI REFI	D=44495 D=44167 D=44170 D=43810 D=43823