b' (4th Generation) Quark, Searches for

NODE=Q008

b'(-1/3)-quark	k/hadror CL%	n mass limits in $p\overline{p}$ and pp co	llisions COMMENT	NODE=Q008BPP NODE=Q008BPP;CHECK LIMITS
>1530	95	1 AAD 24BP ATLS	$B(b' \to Wu) = 1$	NODE—QUOODIT, CITECIN ENVITS
>1540	95 95	² HAYRAPETY24AQ CMS	$B(b' \rightarrow VV u) = 1$ $B(b' \rightarrow Z b) = 1$	
>1570	95 95	² HAYRAPETY24AQ CMS	$B(b' \rightarrow Bb) = 1$ $B(b' \rightarrow Hb) = 1$	OCCUR=2
>1560	95 95	³ TUMASYAN 23V CMS	$B(b' \to Wt) = 1$ $B(b' \to Wt) = 1$	000011-2
>1570	95	⁴ SIRUNYAN 20BI CMS	$B(b' \rightarrow Hb) = 1$	
>1000	95	⁵ AABOUD 18CE ATLS	$\geq 2\ell + \cancel{E}_T + \geq 1$ bj	
> 950	95	⁶ AABOUD 18CL ATLS	Wt, Zb , hb modes	
>1010	95	7,8 AABOUD 18CP ATLS	$2,3\ell$, singlet model	
>1140	95	6,9 AABOUD 18CP ATLS	2,3ℓ, doublet model	OCCUR=2
>1220	95	10,11 AABOUD 18CR ATLS	singlet b' . ATLAS Combi-	
>1370	95	10,12 AABOUD 18CR ATLS	nation b' in a weak isospin doublet (t',b') . ATLAS combination.	OCCUR=2
> 730	95	¹³ SIRUNYAN 17AU CMS	combination.	
> 810	95	14 AAD 15Z ATLS		
> 190	95	¹⁵ ABAZOV 08X D0	c $ au$ = 200mm	
> 190	95	¹⁶ ACOSTA 03 CDF	quasi-stable b^\prime	
• • • We do not	use the fo	ollowing data for averages, fits, limit	s, etc. • • •	
>1460	95	17 AAD 23AG ATLS	$B(b'_{\cdot} \to W t) = 1$	
>1420	95	¹⁸ AAD 23AV ATLS		
>1390	95	⁴ SIRUNYAN 20BI CMS	$B(b' \to Zb) = 1$	OCCUR=2
>1130	95	¹⁹ SIRUNYAN 19AQ CMS	$B(b'_{\cdot} o \ Zb) = 1$	
>1230	95	²⁰ SIRUNYAN 19BWCMS	$B(b' \to W t) = 1$	
>1350	95	21 AABOUD 18AW ATLS	$B(b'\to Wt)=1$	
> 910	95	²² SIRUNYAN 18BM CMS	Wt, Zb, hb modes	
> 845	95	²³ SIRUNYAN 18Q CMS	$B(b'\to Wu)=1$	
> 880	95	 24 KHACHATRY16AN CMS 25 AAD 15AR ATLS 	$B(b'\to Wt)=1$	
<350, 580–635, >		26	$B(b'\to Hb)=1$	
> 620 > 730	95 95	26 AAD 15BY ATLS 27 AAD 15BY ATLS	W t, $Z b$, $h b$ modes $B(b' \rightarrow W t) = 1$	OCCUR=2
> 690	95 95	28 AAD 15CN ATLS	$B(b' \rightarrow W t) = 1$ $B(b' \rightarrow W q) = 1 (q=u)$	OCCON=2
> 755	95 95	29 AAD 14AZ ATLS		
> 675	95 95	30 CHATRCHYAN 131 CMS	$B(b' \to Wt) = 1$ $B(b' \to Wt) = 1$	
> 480	95 95	31 AAD 12AT ATLS	$B(b' \to Wt) = 1$ $B(b' \to Wt) = 1$	
> 400	95 95	32 AAD 12AU ATLS	$B(b' \rightarrow VV t) = 1$ $B(b' \rightarrow Z b) = 1$	
> 350	95	33 AAD 12BC ATLS	$B(b' \rightarrow Wq) = 1$ $(q=u,c)$	
> 450	95	34 AAD 12BE ATLS	$B(b'\to Wt)=1$	
> 685	95	35 CHATRCHYAN 12BH CMS	$m_{t'} = m_{b'}$	
> 611	95	³⁶ CHATRCHYAN 12X CMS	$B(b' \rightarrow Wt) = 1$	
> 372	95	37 AALTONEN 11J CDF	$b' \rightarrow Wt$	
> 361	95	³⁸ CHATRCHYAN 11L CMS	Repl. by CHA- TRCHYAN 12X	
> 338	95	³⁹ AALTONEN 10H CDF	$b' \rightarrow Wt$	
> 380–430	95	⁴⁰ FLACCO 10 RVUE	$m_{h'} > m_{t'}$	
> 268	95	41,42 AALTONEN 07C CDF	$B(b'\to~Zb)=1$	
> 199	95	⁴³ AFFOLDER 00 CDF	$NC: b' \rightarrow Zb$	
> 148	95	44 ABE 98N CDF	NC: $b' \rightarrow Zb + \text{vertex}$	
> 96	95	45 ABACHI 97D D0	NC: $b' \rightarrow b\gamma$	
> 128	95	46 ABACHI 95F D0	$\ell\ell$ + jets, ℓ + jets	
> 75	95	47 MUKHOPAD 93 RVUE		
> 85	95	⁴⁸ ABE 92 CDF	CC: <i>ℓℓ</i>	
> 72	95 05	49 ABE 90B CDF	CC: $e + \mu$	
> 54	95 95	⁵⁰ AKESSON 90 UA2 ⁵¹ ALBAJAR 90B UA1	CC: $e + \text{jets} + \cancel{E}_T$	
> 43 > 34	95 95	52 ALBAJAR 88 UA1	CC: μ + jets	
> 34	95	ALDAJAK 88 UAI	CC: e or μ + jets	

- ² HAYRAPETYAN 24AQ based on 138 fb⁻¹ of pp data at $\sqrt{s}=13$ TeV. Pair production of vector-like b' is searched for in the fully hadronic final states and those containing $\ell^+\ell^-$ from a Z boson. The data are consistent with the SM background predictions and limits are obtained for different branching ratios B($b' \rightarrow Hb$), B($b' \rightarrow Zb$), B($b' \rightarrow Wt$).
- 3 TUMASYAN 23V based on 138 fb $^{-1}$ of pp data at $\sqrt{s}=13$ TeV. Pair production of vector-like b' is seached for in the single-lepton, same-sign charge dilepton and multi-lepton channels. The data are consistent with the SM background predictions and limits are obtained for different branching ratios.
- ⁴ SIRUNYAN 20BI based on 137 fb⁻¹ of pp data at $\sqrt{s}=13$ TeV. Pair production of vector-like b' is seached for with each b' decaying into Zb or hb. Analysis focuses on final states consisting of jets from six quarks. Mass limits are obtained for a variety of branching ratios of b' decays.
- ⁵ AABOUD 18CE based on $36.1~{\rm fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13~{\rm TeV}$. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of b' into Zb, Wt and Hb as predicted by the model.
- the branching ratios of b' into $Z\,b,\,W\,t$ and $H\,b$ as predicted by the model. 6 AABOUD 18CL, AABOUD 18CP based on $36.1~{\rm fb}^{-1}$ of $p\,p$ data at $\sqrt{s}=13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is particularly powerful for the $b'\to h\,b$ mode. Assuming the pure decay only in this mode sets a limit $m_{b'}>1010~{\rm GeV}.$
- ⁷ AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s}=13$ TeV. Pair and single production of vector-like b' are seached for with at least one b' decaying into Zb. In the case of B($b' \rightarrow Zb$) = 1, the limit is $m_{h'}>1220$ GeV.
- 8 The limit is for the singlet model, assuming that the branching ratios into $W\,t,\,Z\,b,\,h\,b$ add up to one.
- 9 The limit is for the doublet model, assuming that the branching ratios into $W\,t,\,Z\,b,\,h\,b$ add up to one.
- 10 AABOUD 18CR based on 36.1 fb $^{-1}$ of pp data at $\sqrt{s}=13$ TeV. A combination of searches for the pair-produced vector-like b' in various decay channels ($b' \rightarrow Wt, Zb, hb$). Also a model-independent limit is obtained as $m_{b'} > 1.03$ TeV, assuming that the branching ratios into $Zb, \, Wt, \, {\rm and} \, hb$ add up to one.
- ¹¹The limit is for the singlet b'.
- 12 The limit is for b' in a weak isospin doublet (t',b') and $|V_{t'b}| \ll |V_{tb'}|.$ For a b' in a doublet with a charge -4/3 vector-like quark, the limit $m_{b'} > 1.14$ TeV is obtained.
- 13 SIRUNYAN 17AU based on 2.3–2.6 fb $^{-1}$ of pp data at $\sqrt{s}=13$ TeV. Limit on pair-produced singlet vector-like b' using one lepton and several jets. The mass bound is given for a b' transforming as a singlet under the electroweak symmetry group, assumed to decay through $W,\,Z$ or Higgs boson (which decays to jets) and to a third generation quark.
- ¹⁴ AAD 15Z based on 20.3 fb⁻¹ of $p\,p$ data at $\sqrt{s}=8$ TeV. Used events with $\ell+\not\!\! E_T+$ \geq 6j (\geq 1 b) and at least one pair of jets from weak boson decay, primarily designed to select the signature $b'\,\overline{b}' \to W\,W\,t\,\overline{t} \to W\,W\,W\,b\,\overline{b}$. This is a limit on pair-produced vector-like b'. The lower mass limit is 640 GeV for a vector-like singlet b'.
- 15 Result is based on $1.1~{\rm fb}^{-1}$ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for $2 < c\tau < 7000~{\rm mm}$; see Fig. 3. 95% CL excluded region of b' lifetime and mass is shown in Fig. 4.
- 16 ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb $^{-1}$ of $\sqrt{s}{=}1.8$ TeV $p\overline{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.
- 17 AAD 23AG based on 139 fb $^{-1}$ of pp data at $\sqrt{s}=13$ TeV. Pair production of vector-like top or bs is searched for in the mode $1\ell+\geq 4\mathrm{j}(\geq 1\mathrm{b\text{-}tagged})+\cancel{E}_T.$ The data are consistent with the SM background predictions and limits are obtained for different branching ratios. Masses below 1.59 TeV are excluded assuming a mass-degenerate vector-like doublet (t',b') model.
- 18 AAD 23 AV based on 13 9 fb $^{-1}$ of pp data at $\sqrt{s}=13$ TeV. Pair production of vector-like b' is searched for in the mode $\ell^{\pm}\ell^{\mp}+\geq 2\mathrm{j}$ (\geq 1b-tagged) + $\not\!\!E_T$ or with 3ℓ . The data are consistent with the SM background predictions and limits are obtained for different branching ratios.
- ¹⁹ SIRUNYAN 19AQ based on 35.9 fb⁻¹ of pp data at $\sqrt{s}=13$ TeV. Pair production of vector-like b' is seached for with one b' decaying into Zb and the other b' decaying into Wt, Zb, hb. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of b'.

- NODE=Q008BPP;LINKAGE=JA
- NODE=Q008BPP;LINKAGE=KA
- NODE=Q008BPP;LINKAGE=EA
- NODE=Q008BPP;LINKAGE=DA
- NODE=Q008BPP;LINKAGE=Y
- NODE=Q008BPP;LINKAGE=Q
- NODE=Q008BPP;LINKAGE=R
- NODE=Q008BPP;LINKAGE=T
- NODE=Q008BPP;LINKAGE=S
- NODE=Q008BPP;LINKAGE=V
- NODE=Q008BPP;LINKAGE=W NODE=Q008BPP;LINKAGE=X
- NODE=Q008BPP;LINKAGE=M
- NODE=Q008BPP;LINKAGE=K
- NODE=Q008BPP;LINKAGE=AA
- NODE=Q008BPP;LINKAGE=CS
- NODE=Q008BPP;LINKAGE=FA
- NODE=Q008BPP;LINKAGE=IA
- NODE=Q008BPP;LINKAGE=Z

- ²⁰ SIRUNYAN 19BW based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is made for the Zb, Wt, hb modes and mass limits are obtained for a variety of branching ratios.
- 21 AABOUD 18AW based on 36.1 fb $^{-1}$ of pp data at $\sqrt{s}=13$ TeV. The limit is for the pair-produced vector-like b^\prime using lepton-plus-jets final state. The search is also sensitive to the decays into $Z\,b$ and $H\,b$ final states.
- 22 SIRUNYAN 18BM based on $35.9~{\rm fb}^{-1}$ of $p\,p$ data at $\sqrt{s}=13$ TeV. The limit is for the pair-produced vector-like b'. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming ${\rm B}(t\,W)=1$, the limit is 1240 GeV and for ${\rm B}(b\,Z)=1$ it is 960 GeV.
- 23 SIRUNYAN 18Q based on 19.7 fb $^{-1}$ of pp data at $\sqrt{s}=8$ TeV. The limit is for the pair-produced vector-like b' that couple only to light quarks. Upper cross section limits on the single production of a b' and constraints for other decay channels (Z q and Hq) are also given in the paper.
- 24 KHACHATRYAN 16AN based on 19.7 fb $^{-1}$ of pp data at $\sqrt{s}=8$ TeV. Limit on pair-produced vector-like b' using 1, 2, and $>\!\!2$ leptons as well as fully hadronic final states. Other limits depending on the branching fractions to $tW,\,bZ,$ and bH are given in Table IX.
- ²⁵ AAD 15AR based on 20.3 fb⁻¹ of pp data at $\sqrt{s}=8$ TeV. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of B($b' \rightarrow Wt$) vs. B($b' \rightarrow Hb$) from $b' \overline{b}' \rightarrow Hb + X$ searches.
- $26~{\rm AAD}~15{\rm BY}$ based on $20.3~{\rm fb}^{-1}$ of pp data at $\sqrt{s}=8~{\rm TeV}.$ Limit on pair-produced vector-like b' assuming the branching fractions to W,~Z, and h modes of the singlet model. Used events containing $\geq 2\ell + E_T + \geq 2{\rm j}~(\,\geq 1~b)$ and including a same-sign lepton pair.
- 27 AAD 15BY based on 20.3 fb $^{-1}$ of pp data at $\sqrt{s}=8$ TeV. Limit on pair-produced chiral b'-quark. Used events containing $\geq 2\ell+\not\!\!E_T+\geq 2{\rm j}$ (≥ 1 b) and including a same-sign lepton pair.
- 28 AAD 15CN based on 20.3 fb $^{-1}$ of $p\,p$ data at $\sqrt{s}=8$ TeV. Limit on pair-production of chiral b'-quark. Used events with $\ell+\not\!\!E_T+\geq 4j$ (non-b-tagged). Limits on a heavy vector-like quark, which decays into $W\,q$, $Z\,q$, $h\,q$, are presented in the plane B($Q\to W\,q$) vs. B($Q\to h\,q$) in Fig. 12.
- ²⁹ Based on 20.3 fb⁻¹ of $p\,p$ data at $\sqrt{s}=8$ TeV. No significant excess over SM expectation is found in the search for pair production or single production of b' in the events with dilepton from a high p_T Z and additional jets (≥ 1 b-tag). If instead of B($b' \to W\,t$) = 1 an electroweak singlet with B($b' \to W\,t$) ~ 0.45 is assumed, the limit reduces to 685 GeV
- 30 Based on 5.0 fb $^{-1}$ of pp data at $\sqrt{s}=7$ TeV. CHATRCHYAN 131 looked for events with one isolated electron or muon, large E_T , and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
- ³¹ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s}=7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_T isolated lepton, large $\not\!\!E_T$, and at least 6 jets in which one, two or more dijets are from W
- ³²Based on 2.0 fb⁻¹ of pp data at $\sqrt{s}=7$ TeV. No $b'\to Zb$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in events with $Z\to e^+e^-$ and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b' mixing solely with the third SM generation.
- ³³ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s}=7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large E_T , and ≥ 2 jets.
- 34 Based on 1.04 fb $^{-1}$ of pp data at $\sqrt{s}=7$ TeV. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large $\not\!\!E_T$ and H $_T>350$ GeV.
- 35 Based on 5 fb $^{-1}$ of pp data at $\sqrt{s}=7$ TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to bW or tW. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of 25 GeV/c 2 between $m_{t'}$ and $m_{b'}$, the corresponding limit shifts by about $\pm 20~{\rm GeV/c}^2$.
- $^{36}\,\mathrm{Based}$ on $4.9~\mathrm{fb}^{-1}$ of pp data at $\sqrt{s}=7~\mathrm{TeV}.$ CHATRCHYAN 12X looked for events with trileptons or same-sign dileptons and at least one b jet.
- 37 Based on 4.8 fb $^{-1}$ of data in $p\,\overline{p}$ collisions at 1.96 TeV. AALTONEN 11J looked for events with $\ell+\not\!\!E_T+\,\geq$ 5j (\geq 1 b or c). No signal is observed and the bound $\sigma(b'\,\overline{b}')$ < 30 fb for $m_{b'}$ > 375 GeV is found for B(b' \rightarrow $W\,t)=1.$
- ³⁸ Based on 34 pb⁻¹ of data in pp collisions at 7 TeV. CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b'}$ between 255 and 361 GeV at 95% CL for B($b' \rightarrow Wt$) = 1.
- ³⁹ Based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. AALTONEN 10H looked for pair production of heavy quarks which decay into $t\,W^-$ or $t\,W^+$, in events with same sign dileptons (e or μ), several jets and large missing E_T . The result is obtained for b' which decays into $t\,W^-$. For the charge 5/3 quark ($T_{5/3}$) which decays into $t\,W^+$,

- NODE=Q008BPP;LINKAGE=BA
- NODE=Q008BPP;LINKAGE=O
- NODE=Q008BPP;LINKAGE=N
- NODE=Q008BPP;LINKAGE=P
- NODE=Q008BPP;LINKAGE=L
- NODE=Q008BPP;LINKAGE=G
- NODE=Q008BPP;LINKAGE=H
- NODE=Q008BPP;LINKAGE=I
- NODE=Q008BPP;LINKAGE=J
- NODE=Q008BPP;LINKAGE=E
- NODE=Q008BPP;LINKAGE=B
- NODE=Q008BPP;LINKAGE=GD
- NODE=Q008BPP;LINKAGE=DG
- NODE=Q008BPP;LINKAGE=GA
- NODE=Q008BPP;LINKAGE=AD
- NODE=Q008BPP;LINKAGE=CT
- NODE=Q008BPP;LINKAGE=CA
- NODE=Q008BPP;LINKAGE=AO
- NODE=Q008BPP;LINKAGE=CH
- NODE=Q008BPP;LINKAGE=AT

 $m_{T_{5/3}} > 365$ GeV (95% CL) is found when it has the charge -1/3 partner B of the same mass

⁴⁰ FLACCO 10 result is obtained from AALTONEN 10H result of $m_{b'}>338$ GeV, by relaxing the condition B($b'\to Wt$) = 100% when $m_{b'}>m_{t'}$.

⁴¹ Result is based on 1.06 fb⁻¹ of data. No excess from the SM Z+jet events is found when Z decays into $e\,e$ or $\mu\mu$. The $m_{b'}$ bound is found by comparing the resulting upper bound on $\sigma(b'\,\overline{b}')$ [1-(1-B($b'\to Z\,b$))²] and the LO estimate of the b' pair production cross section shown in Fig. 38 of the article.

 42 HUANG 08 reexamined the b' mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes B($b' \to Z\,b$) = 1, which does not hold for $m_{b'} >$ 255 GeV. The lower mass bound is given in the plane of $\sin^2(\theta_{t\,b'})$ and $m_{b'}$.

⁴³ AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZ events where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes $B(b'\to Zb)=100\%$. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b'\to \overline{b}')\times B^2(b'\to Zb)$ is also given (see their Fig. 2).

⁴⁴ ABE 98N looked for $Z \to e^+e^-$ decays with displaced vertices. Quoted limit assumes B($b' \to Zb$)=1 and $c\tau_{b'}$ =1 cm. The limit is lower than $m_Z + m_b$ (\sim 96 GeV) if $c\tau >$ 22 cm or $c\tau <$ 0.009 cm. See their Fig. 4.

⁴⁵ ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\bar{b}' \to \gamma + 3$ jets) and B($b'\bar{b}' \to 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_b$.

 46 ABACHI 95F bound on the top-quark also applies to b^\prime and t^\prime quarks that decay predominantly into W. See FROGGATT 97.

47 MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes B($b' \rightarrow b\ell^+\ell^-$)=1%. For an exotic quark decaying only via virtual Z [B($b\ell^+\ell^-$) = 3%], the limit is 85 GeV.

 48 ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b^\prime quarks, as discussed in ABE 90B.

 $^{49}\,\mathrm{ABE}$ 90B exclude the region 28–72 GeV.

 50 AKESSON 90 searched for events having an electron with $p_T>12$ GeV, missing momentum > 15 GeV, and a jet with $E_T>10$ GeV, $\left|\eta\right|<2.2$, and excluded $m_{b'}$ between 30 and 69 GeV.

51 For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBA JAR 90B

 52 ALBAJAR 88 study events at $E_{\rm cm}=546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b'\,\overline{b}'$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_3^2)$ cross section of ALTARELLI 88.

b'(-1/3) mass limits from single production in $p\overline{p}$ and pp collisions

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3000	95	$^{ m 1}$ TUMASYAN	220	CMS	$g b \xrightarrow{b'} b' \rightarrow t W, B(b' \rightarrow b')$
> 693	95	² ABAZOV	11F	D0	$egin{array}{l} tW){=}1\ qu ightarrow \;\;q'b' ightarrow \;\;q'(Wu) \end{array}$
> 430	95	² ABAZOV	11F	D0	$\widetilde{\kappa}_{u b'} = 1$, B($b' \rightarrow W u$)=1 $q d \rightarrow q b' \rightarrow q(Z d)$
, 100	30	7.157.120		20	$\widetilde{\kappa}_{db'} = \sqrt{2}, \ B(b' \to Zd) = 1$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		³ AAD	23cQ ATLS	$b' ightarrow b h (h ightarrow b \overline{b})$
>2600	95	⁴ SIRUNYAN	21AG CMS	gb o b' o tW, $B(b' o$
		5		tW)=1
		⁵ SIRUNYAN	19AL CMS	$bZ/tW \rightarrow b' \rightarrow tW$
>1500	95	⁶ AAD	16AH ATLS	$gb ightarrow b' ightarrow tW,\; B(b' ightarrow$
				tW)=1
>1390	95	⁷ KHACHATRY	16ı CMS	$gb \rightarrow b_I' \rightarrow tW, B(b_I' \rightarrow$
				tW)=1
>1430	95	⁸ KHACHATRY	16ı CMS	$gb ightarrow b_R' ightarrow tW,B(b_R' ightarrow$
				tW)=1
>1530	95	⁹ KHACHATRY	16ı CMS	$g b \rightarrow b' \rightarrow t W, B(b' \rightarrow$
				tW)=1

NODE=Q008BPP;LINKAGE=FL

NODE=Q008BPP;LINKAGE=AL

NODE=Q008BPP;LINKAGE=HU

NODE=Q008BPP;LINKAGE=EB

NODE=Q008BPP;LINKAGE=AN

NODE=Q008BPP;LINKAGE=K2

NODE=Q008BPP;LINKAGE=1K

NODE=Q008BPP;LINKAGE=C

NODE=Q008BPP;LINKAGE=U

NODE=Q008BPP;LINKAGE=AB NODE=Q008BPP;LINKAGE=F

NODE=Q008BPP;LINKAGE=A

NODE=Q008BPP;LINKAGE=D

NODE=Q008BPS NODE=Q008BPS

OCCUR=2

OCCUR=2

OCCUR=3

 1 TUMASYAN 220 based on 138 fb $^{-1}$ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using a t-tagged jet and a lepton from W. The model assumes that the b' has the excited quark couplings. The bound is from a statistical combination with an earlier analysis by SIRUNYAN 21AG. The 95% CL bounds are also set as 3.0, 3.0, and 3.2 TeV, respectively, for left-handed, right-handed, and vector-like couplings.

 2 ABAZOV 11F based on 5.4 fb $^{-1}$ of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of b' via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\bar{p}\to b'q\to Wuq$, and $p\bar{p}\to b'q\to Zdq$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.

 3 AAD 23CQ based on 139 fb $^{-1}$ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found. Limits on mass and production cross section of a vector-like b' are obtained in several theoretical scenarios determined by the couplings betwen b' and W, Z, h.

 4 SIRUNYAN 21AG based on 137 fb $^{-1}$ of data in $p\,p$ collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to $t\,W$ using all hadronic final states, where t and W are tagged as single jets, respectively. The model assumes that the b' has the excited quark couplings. The 95% CL bounds are also set as 2.8 and 3.1 TeV, respectively, for the right-handed and vector-like couplings.

 5 SIRUNYAN 19AI based on 35.9 fb $^{-1}$ of pp data at $\sqrt{s}=13\,$ TeV. Exclusion limits are set on the product of the production cross section and branching fraction for the b'(-1/3)+b and b'(-1/3)+t modes as a function of the vector-like quark mass in Figs. 7 and 8 and in Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.

⁶ AAD 16AH based on 20.3 fb⁻¹ of data in pp collisions at 8 TeV. No significant excess over SM expectation is found in the search for a vector-like b' in the single-lepton and dilepton channels (ℓ or $\ell\ell$) + 1,2,3 j (\geq 1b). The model assumes that the b' has the excited quark couplings.

⁷ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on left-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.

⁸ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on right-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.

 9 Based on 19.7 fb $^{-1}$ of data in pp collisions at 8 TeV. Limit on vector-like b' assuming 100% decay to tW and using all-hadronic, lepton+jets, and dilepton final states.

NODE=Q008BPS;LINKAGE=F

NODE=Q008BPS;LINKAGE=AB

NODE=Q008BPS;LINKAGE=H

NODE=Q008BPS;LINKAGE=G

NODE=Q008BPS;LINKAGE=E

NODE=Q008BPS;LINKAGE=D

NODE=Q008BPS;LINKAGE=A

NODE=Q008BPS;LINKAGE=B

NODE=Q008BPS;LINKAGE=C

NODE=Q008BPE

NODE=Q008BPE

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	NODE=Q008BPE
>46.0	95	$^{ m 1}$ DECAMP	90F	ALEP	any decay	
• • • We do not us	e the followi	ng data for average	es, fits,	limits, e	etc. • • •	
none 96-103	95	² ABDALLAH	07	DLPH	$b' \rightarrow bZ, cW$	
		³ ADRIANI	93G	L3	Quarkonium	
>44.7	95	ADRIANI	93M	L3	$\Gamma(Z)$	
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$	
none 19.4-28.2	95	ABE	90 D	VNS	Any decay; event shape	
>45.0	95	ABREU	90 D	DLPH	B(CC) = 1; event shape	
>44.5	95	⁴ ABREU	90 D	DLPH	$b' \rightarrow cH^-, H^- \rightarrow \overline{c}s, \tau^- \nu$	OCCUR=2
>40.5	95	⁵ ABREU	90 D	DLPH	$\Gamma(Z \rightarrow hadrons)$	OCCUR=3
>28.3	95	ADACHI	90		B(FCNC)=100%; isol. γ or 4 jets	
>41.4	95	⁶ AKRAWY	90 B	OPAL	Any decay; acoplanarity	
>45.2	95	⁶ AKRAWY	90 B	OPAL	B(CC) = 1; acoplanarity	OCCUR=2
>46	95	⁷ AKRAWY	90J	OPAL	$b' ightarrow \gamma + any$	
>27.5	95	⁸ ABE	89E	VNS	$B(CC) = 1; \mu, e$	
none 11.4–27.3	95	⁹ ABE	89G	VNS	$B(b' o b\gamma) > 10\%;$ isolated γ	
>44.7	95	¹⁰ ABRAMS	89 C	MRK2	B(CC) = 100%; isol.	
>42.7	95	¹⁰ ABRAMS	89C	MRK2	B(bg) = 100%; event shape	OCCUR=2

>42.0	95 10	ABRAMS	89c MRK2	Any decay; event shape	OCCUR=3
>28.4			89c TOPZ	$B(CC) = 1; \mu$	
>28.8		ENO	89 AMY	B(CC) \gtrsim 90%; μ , e	
>27.2	95 13,14		89 AMY	any decay; event shape	OCCUR=2
>29.0	95 13	ENO	89 AMY	$B(b' \rightarrow bg) \gtrsim 85\%;$ event shape	OCCUR=3
>24.4			88 AMY	μ ,e	
>23.8			88 AMY	event shape	
>22.7			86 MRKJ	•	
>21 >19			84C TASS 84I TASS	R, event shape Aplanarity	
				•	
final states. The m	odes $b' o b_{\ell}$. Charged Hig	g for B($b' o b_{ar{arrho}}$ gs decay were no	g) > 65% b' of discussed.	I photons, and for four-jet $b \rightarrow b \gamma$ for B($b' \rightarrow b \gamma$) physical B($b' \rightarrow b \gamma$) physical B($b' \rightarrow b \gamma$).	NODE=Q008BPE;LINKAGE=DC
				and B($b' \rightarrow cW$) for $m_{b'}$	NODE=Q008BPE;LINKAGE=DA
= 96 to 103 GeV.			7 .		
7 mixing paramete	In for vector quark $s_m = \frac{10}{2}$	uarkonium states 30) CoV2 (05%)	near∠and TI) for tho r	give limit on quarkonium- nass 88–94.5 GeV. Using	NODE=Q008BPE;LINKAGE=TB
				ass range 87.7–94.7 GeV.	
This range depends	on the poten	tial choice.	a for the fin	ass range of it sair dev.	
⁴ ABREU 90D assum	$ed m_{H^-} < n$	n _{b'} – 3 GeV.			NODE=Q008BPE;LINKAGE=AB
⁵ Superseded by ABI					NODE=Q008BPE;LINKAGE=AF
				at $E_{ m cm}=91.26~{ m GeV}$ at	NODE=Q008BPE;LINKAGE=AK
				no H^+ decays exist. For	
GeV.	iys the exclud	ed regions are b	etween (mH	+ + 1.5 GeV) and 45.5	
⁷ AKRAWY 90J sear B($Z \rightarrow b' \overline{b}'$)·B(b'	$\rightarrow \gamma X)/B(Z)$			and derive ³ . Mass limit assumes	NODE=Q008BPE;LINKAGE=T
$B(b' \rightarrow \gamma X) > 10$	%. · <i>F</i> — 56_	-57 GeV at TRIS	STAN for m	ultihadron events with a	NODE COORDELINIOS A
spherical shape (us	ng thrust and	acoplanarity) or	containing i	ultihadron events with a solated leptons.	NODE=Q008BPE;LINKAGE=A
⁹ ABE 89G search wa	s at $E_{\rm cm}=5$	55–60.8 GeV at T	RISTAN.		NODE=Q008BPE;LINKAGE=B
¹⁰ If the photonic dec 45.4 GeV. The limi	NODE=Q008BPE;LINKAGE=G				
¹¹ ADACHI 890 searc	h was at E_{cn}	$_{\rm n} = 56.5-60.8$ (GeV at TRIS	STAN using multi-hadron	NODE=Q008BPE;LINKAGE=C
events accompanyi 12 ADACHI 89C also	ng muons.		C C and b =	da.aaa	NODE OCCUPE UNIVACE E
¹³ ENO 89 search at	= 50-60	8 at TRISTAN	C and Dg	uecays.	NODE=Q008BPE;LINKAGE=F
14 ENO 89 considers	rbitrarv mixtu	re of the charge	d current. b	r . and $b\gamma$ decays.	NODE=Q008BPE;LINKAGE=D NODE=Q008BPE;LINKAGE=E
¹⁵ IGARASHI 88 sear	hes for lepton	s in low-thrust ev	vents and giv	$\Delta R(b') < 0.26 (95\%)$	NODE=Q008BPE;LINKAGE=S
CL) assuming char	ged current de	cay, which transl	ates to $m_{b'}$	> 24.4 GeV.	, , , , , , , , , , , , , , , , , , ,
from event shape a	nalyses at $E_{_{ extsf{C}I}}$ r threshold, th	$_{m}=$ 52 GeV. By	/ using the c	avored hadron production luark parton model cross- mass bounds of 23.8 GeV	NODE=Q008BPE;LINKAGE=Q
¹⁷ ADEVA 86 give 95	%CL upper bo e minimum c.r	n. energy (see th	neir figure 3)	nalized cross section, ΔR , . Production of a pair of	NODE=Q008BPE;LINKAGE=J
¹⁸ ALTHOFF 84C nar and heavy charge 1	ow state searc	ch sets limit Γ(e ⁺	e^-)B(hadr	ons) $<$ 2.4 keV CL $=$ 95%.	NODE=Q008BPE;LINKAGE=K
	ude heavy qu	ark pair producti		n < 19 GeV (1/3 charge)	NODE=Q008BPE;LINKAGE=L
REFERENC	ES FOR Sea	rches for (Fou	rth Genera	tion) <i>b</i> ' Quark	NODE=Q008
AAD 24BP PR I		G. Aad et al.		(ATLAS Collab.)	REFID=63079
HAYRAPETY 24AQ PR [AAD 23AG EPJ		A. Hayrapetyan (G. Aad <i>et al.</i>	et al.	(CMS Collab.) (ATLAS Collab.)	REFID=63077 REFID=62172
AAD 23AV PL E AAD 23CQ JHEF		G. Aad <i>et al.</i> G. Aad <i>et al.</i>		(ATLAS Collab.) (ATLAS Collab.)	REFID=62364 REFID=62612
TUMASYAN 23V JHEF	2307 020	A. Tumasyan et		` (CMS Collab.)	REFID=62165
TUMASYAN 220 JHEF SIRUNYAN 21AG JHEF	2112 106	A. Tumasyan <i>et</i> A.M. Sirunyan <i>e</i>		(CMS Collab.) (CMS Collab.)	REFID=61788 REFID=61565
SIRUNYAN 20BI PR [102 112004	A.M. Sirunyan e	t al.	(CMS Collab.)	REFID=60740

HAYRAPETY AAD AAD AAD TUMASYAN TUMASYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN ABOUD AABOUD AABOUD AABOUD AABOUD AABOUD	24AQ 23AG 23AV 23CQ 23V 22O 21AG 20BI 19AQ 19BW 18AW 18CE 18CL 18CP	EPJ C83 719 PL B843 138019 JHEP 2311 168 JHEP 2307 020 JHEP 2204 048 JHEP 2112 106 PR D102 112004 EPJ C79 90 EPJ C79 364 PR D100 072001 JHEP 1808 048 JHEP 1812 039 PR D98 092005 PR D98 112010 PRL 121 211801	G. Aad et al. A. Hayrapetyan et al. G. Aad et al. G. Aad et al. A. Tumasyan et al. A. Tumasyan et al. A. M. Sirunyan et al. A.M. Sirunyan et al. M. Aboud et al. M. Aaboud et al.	(AŤLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS (CMS (CMS (ATLAS (ATLAS (ATLAS (ATLAS	Collab.)	REFID=63079 REFID=63077 REFID=62172 REFID=62364 REFID=62612 REFID=61788 REFID=61788 REFID=59702 REFID=59701 REFID=59721 REFID=59369 REFID=59472 REFID=59500 REFID=59532
	18CR			(ATLAS		

SIRUNYAN	18Q	PR D97 072008	A.M. Sirunyan et al.	(CMS Collab.)	REFID=58920
SIRUNYAN		JHEP 1711 085	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)	REFID=58344
AAD	16AH	JHEP 1602 110	G. Aad et al.	(ATLAS Collab.)	REFID=57318
KHACHATRY	16AN	PR D93 112009	V. Khachatryan et al.	` (CMS Collab.)	REFID=57295
KHACHATRY		JHEP 1601 166	V. Khachatryan <i>et al.</i>	(CMS Collab.)	REFID=57141
AAD	15AR	JHEP 1508 105	G. Aad <i>et al.</i>	(ATLAS Collab.)	REFID=56648
AAD	15RY	JHEP 1510 150	G. Aad et al.	(ATLAS Collab.)	REFID=56863
					REFID=57013
AAD		PR D92 112007	G. Aad et al.	(ATLAS Collab.)	
AAD	15Z	PR D91 112011	G. Aad et al.	(ATLAS Collab.)	REFID=56592
AAD	14AZ	JHEP 1411 104	G. Aad et al.	(ATLAS Collab.)	REFID=56201
CHATRCHYAN		JHEP 1301 154	S. Chatrchyan et al.	(CMS Collab.)	REFID=54941
AAD		PRL 109 032001	G. Aad <i>et al.</i>	(ATLAS Collab.)	REFID=54229
AAD	12AU	PRL 109 071801	G. Aad et al.	(ATLAS Collab.)	REFID=54230
AAD		PR D86 012007	G. Aad et al.	(ATLAS Collab.)	REFID=54358
					REFID=54458
AAD		JHEP 1204 069	G. Aad et al.	(ATLAS Collab.)	
CHATRCHYAN	12BH	PR D86 112003	S. Chatrchyan <i>et al.</i>	(CMS Collab.)	REFID=54772
CHATRCHYAN	12X	JHEP 1205 123	S. Chatrchyan et al.	(CMS Collab.)	REFID=54460
AALTONEN	11J	PRL 106 141803	T. Aaltonen <i>et al.</i>		REFID=16439
				(CDF Collab.)	
ABAZOV	11F	PRL 106 081801	V.M. Abazov et al.	(D0 Collab.)	REFID=16469
CHATRCHYAN	11L	PL B701 204	S. Chatrchyan et al.	(CMS Collab.)	REFID=16643
AALTONEN	10H	PRL 104 091801	T. Aaltonen et al.	(CDF Collab.)	REFID=53271
FLACCO	10	PRL 105 111801	C.J. Flacco et al.	(UCI, HAIF)	REFID=53412
ATRE	09	PR D79 054018	A. Atre et al.		REFID=54081
ABAZOV	08X	PRL 101 111802	V.M. Abazov et al.	(D0 Collab.)	REFID=52402
					REFID=52505
HUANG	08	PR D77 037302	P.Q. Hung, M. Sher	(UVA, WILL)	
AALTONEN	07C	PR D76 072006	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=51994
ABDALLAH	07	EPJ C50 507	J. Abdallah et al.	(DELPHI Collab.)	REFID=51764
ACOSTA	03	PRL 90 131801	D. Acosta et al.	` (CDF Collab.)	REFID=49298
				\ /	
AFFOLDER	00	PRL 84 835	A. Affolder et al.	(CDF Collab.)	REFID=47308
ABE	98N	PR D58 051102	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=46140
ABACHI	97D	PRL 78 3818	S. Abachi et al.	(D0 Collab.)	REFID=45459
	97				REFID=45376
FROGGATT		ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B.		
ABACHI	95F	PR D52 4877	S. Abachi <i>et al.</i>	(D0 Collab.)	REFID=44482
ADRIANI	93G	PL B313 326	O. Adriani et al.	(L3 Collab.)	REFID=43472
ADRIANI	93M	PRPL 236 1	O. Adriani et al.	(L3 Collab.)	REFID=43644
		PR D48 2105	B. Mukhopadhyaya, D.P. Roy	(TATA)	REFID=43481
ABE	92	PRL 68 447	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=41874
Also		PR D45 3921	F. Abe et al.	(CDF Collab.)	REFID=42068
ABE	92G	PR D45 3921	F. Abe et al.	(CDF Collab.)	REFID=42068
				. \	
ABREU	91F	NP B367 511	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=41840
ABE	90B	PRL 64 147	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=40986
ABE	90D	PL B234 382	K. Abe et al.	(VÈNUS Collab.)	REFID=41105
ABREU	90D	PL B242 536	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=41317
ADACHI	90	PL B234 197	I. Adachi <i>et al.</i>	(TOPAZ Collab.)	REFID=41106
AKESSON	90	ZPHY C46 179	T. Akesson et al.	(UA2 Collab.)	REFID=41051
AKRAWY	90B	PL B236 364	M.Z. Akrawy et al.	(ÒPAL Collab.)	REFID=40987
AKRAWY	90J	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.)	REFID=41336
ALBAJAR	90B	ZPHY C48 1	C. Albajar <i>et al.</i>	(UA1 Collab.)	REFID=41312
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)	REFID=41035
ABE	89E	PR D39 3524	K. Abe <i>et al.</i>	(VENUS Collab.)	REFID=40844
ABE	89G	PRL 63 1776	K. Abe <i>et al.</i>	(VENUS Collab.)	REFID=40951
ABRAMS	89C	PRL 63 2447	G.S. Abrams et al.	(Mark II Collab.)	REFID=40966
ADACHI	89C	PL B229 427	I. Adachi et al.	(TOPAZ Collab.)	REFID=40952
	89		S. Eno et al.		REFID=40953
ENO		PRL 63 1910		(AMY Collab.)	
ALBAJAR	88	ZPHY C37 505	C. Albajar <i>et al.</i>	(UA1 Collab.)	REFID=40464
ALTARELLI	88	NP B308 724	G. Altarelli et al.	(CERN, ROMA, ETH)	REFID=40899
IGARASHI	88	PRL 60 2359	S. Igarashi et al.	(AMY Collab.)	REFID=40606
					REFID=40453
SAGAWA	88	PRL 60 93	H. Sagawa et al.	(AMY Collab.)	
ADEVA	86	PR D34 681	B. Adeva <i>et al.</i>	(Mark-J Collab.)	REFID=40171
ALTHOFF	84C	PL 138B 441	M. Althoff et al.	(TASSO Collab.)	REFID=12195
ALTHOFF	841	ZPHY C22 307	M. Althoff et al.	(TASSO Collab.)	REFID=12196
	J 11	622 501	,ion et al.	(17.555 Collab.)	NEI 15-12130