NODE=Q009

t' (4th Generation) Quark, Searches for

+1(2/2)	guark /badron	mass limits in $p\overline{p}$	and an coll	icions	
VALUE (Ge	· ·	DOCUMENT ID		COMMENT	NODE=Q009TPP NODE=Q009TPP;CHECK LIMITS
	<u> </u>			95%) OUR 2023 BEST	
LIMIT]	00 × 10 (CE =	3370) [>1.200 × 10		3370) OOK 2023 DEST	
>1600	95	¹ AAD	23AV ATLS	B(t' ightarrow Zt) = 1	
> 960	95	² TUMASYAN	23AX CMS	EW production, $t' \rightarrow Ht$ $(H \rightarrow \gamma \gamma)$	i
>1500	95	³ TUMASYAN	23V CMS	$B(t' \rightarrow ht) = 1$	
> 980	95	⁴ AABOUD	18ce ATLS	$\geq 2\ell + ot\!$	-
>1030	95	^{5,6} AABOUD	18CP ATLS	$2,3\ell$, singlet model	
>1210	95	^{5,7} AABOUD	18CP ATLS	2,3 ℓ , doublet model	OCCUR=2
>1310	95	^{8,9} AABOUD	18CR ATLS	singlet t' . ATLAS combina-	
>1370	95	^{8,10} AABOUD	18CR ATLS	tion t' in a weak isospin doublet (t',b'). ATLAS combina-	OCCUR=2
>1140	95	¹¹ SIRUNYAN	18BM CMS	tion. W b, Z t, ht modes	
> 845	95	¹² SIRUNYAN	18Q CMS	$B(t' \rightarrow Wq) = 1 \ (q=d,s)$	
>1295	95	¹³ SIRUNYAN	18W CMS	$B(t' \rightarrow Wb) = 1$	
> 860	95	¹⁴ SIRUNYAN	17AU CMS		
> 735	95	¹⁵ AAD	14AZ ATLS	B(b' ightarrow Wt) = 1	
> 350	95	¹⁶ AAD	12BC ATLS	$B(t' \rightarrow Wq) = 1 (q = d, s, b)$	
> 420	95	¹⁷ AAD	12c ATLS	$t' \rightarrow X t \ (m_X < 140 \text{ GeV})$	
> 685	95	¹⁸ CHATRCHYA		$m_{b'} = m_{t'}$	
> 557	95	¹⁹ CHATRCHYA		$t' \overline{t}' \rightarrow W^+ b W^- \overline{b} \rightarrow$	
• • • We	e do not use the f	following data for ave	erages, fits, lim	$b\ell^+\nu b\ell^-\overline{\nu}$ nits, etc. • • •	
>1470	95	20 AAD	23AG ATLS	$B(t' \rightarrow Zt) = 1$	1
>1280	95	²¹ SIRUNYAN	19AQ CMS	$B(t \rightarrow Zt) = 1$ $B(t' \rightarrow Zt) = 1$	•
>1200	95	²² SIRUNYAN	19BWCMS	$B(t' \rightarrow ht) = 1$	
>1010	95	²³ AABOUD	18CL ATLS	$B(t' \rightarrow ht) = 1$ $B(t' \rightarrow ht) = 1$	
>1160	95	²⁴ AABOUD	17L ATLS	$B(t' \rightarrow Zt) = 1$	
> 770	95	²⁵ AAD		$B(t' \rightarrow Wb) = 1$	
> 590	95	²⁶ AAD		W b, Z t, ht modes	
> 745	95	²⁷ KHACHATRY		$B(t' \rightarrow ht) = 1$	
> 700	95	²⁸ CHATRCHYA		$B(t' \rightarrow Wb) = 1$	
> 706	95	²⁸ CHATRCHYA		$B(t' \rightarrow Zt) = 1$	OCCUR=2
> 782	95	²⁸ CHATRCHYA	N14A CMS	$B(t' \rightarrow ht) = 1$	OCCUR=3
> 656	95	²⁹ AAD	13F ATLS	$B(t' \rightarrow Wb) = 1$	
> 625	95	³⁰ CHATRCHYA	N 13I CMS	$B(t' \rightarrow Zt) = 1$	
> 404	95	³¹ AAD	12AR ATLS	$B(t' \rightarrow Wb) = 1$	
> 570	95	³² CHATRCHYA	N 12BC CMS	$t'\overline{t}' \rightarrow W^+bW^-\overline{b}$	
> 400	95	³³ AALTONEN	11AH CDF	$t' ightarrow X t \; (m_X <$ 70 GeV)	
> 358	95	³⁴ AALTONEN	11AL CDF	$t' \rightarrow Wb$	
> 340	95	³⁴ AALTONEN		$t' ightarrow Wq \; (q{=}d,s,b)$	OCCUR=2
> 360	95	³⁵ AALTONEN	110 CDF	$t' ightarrow X t \ (m_X < 100 \ { m GeV})$	
> 285	95	³⁶ ABAZOV	11Q D0	$t' \rightarrow Wq (q=d,s,b)$	
> 256	95	^{37,38} AALTONEN	08H CDF	$t' \rightarrow Wq$	
¹ AAD	23AV based on 13	$19 \text{ fb}^{-1} \text{ of } pp \text{ data at}$	$\sqrt{s} = 13$ TeV	. Pair production of vector-like	NODE=Q009TPP;LINKAGE=X
+' ic c	earched for in the	e mode $\ell \pm \ell \pm \ell \pm 2$	(> 1b-tagge	ed) + $ ot\!$	

are consistent with the SM background predictions and limits are obtained for different branching ratios.

²TUMASYAN 23AX based on 138 fb⁻¹ of pp data at \sqrt{s} = 13 TeV. A vector-like t' is seached for in the t + H ($H \rightarrow \gamma \gamma$) decay channel. EW production via a coupling to third-generation quarks of $\kappa_T = 0.25$ is assumed. The branching fractions are assumed to be 50, 25, and 25%, respectively, for bW, tZ, and tH decays. ³TUMASYAN 23V based on 138 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of

NODE=Q009TPP;LINKAGE=V vector-like t' is seached for in the single-lepton, same-sign charge dilepton and multilepton channels. The data are consistent with the SM background predictions and limits are obtained for different branching ratios. Masses below 1.48 TeV are excluded for all decays to third generation quarks.

⁴AABOUD 18CE based on 36.1 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of t' into Zt, Wb and Ht as predicted by the model.

NODE=Q009TPP;LINKAGE=S

NODE=Q009TPP;LINKAGE=Y

⁵ AABOUD 18CP based on 36.1 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair and single production of vector-like t' are seached for with at least one t' decaying into Zt . In the	NODE=Q009TPP;LINKAGE=M
case of B $(t' \rightarrow Z t) = 1$, the limit is $m_{t'} > 1340$ GeV.	
 ⁶ The limit is for the singlet model, assuming that the branching ratios into Z t, W b, and H t add up to one. ⁷ The limit is for the doublet model, assuming that the branching ratios into Z t, W b, and 	NODE=Q009TPP;LINKAGE=O
Ht add up to one.	NODE=Q009TPP;LINKAGE=N
⁸ AABOUD 18CR based on 36.1 fb ⁻¹ of <i>pp</i> data at $\sqrt{s} = 13$ TeV. A combination of searches for the pair-produced vector-like t' in various decay channels ($t' \rightarrow Wb$, Zt , <i>ht</i>). Also a model-independent limit is obtained as $m_{t'} > 1.31$ TeV, assuming that the branching ratios into Zt , Wb and <i>ht</i> add up to one.	NODE=Q009TPP;LINKAGE=P
⁹ The limit is for the singlet t' .	NODE=Q009TPP;LINKAGE=R
10 The limit is for t' in a weak isospin doublet (t',b') and $ V_{t'b} \ll V_{tb'} $.	NODE=Q009TPP;LINKAGE=Q
¹¹ SIRUNYAN 18BM based on 35.9 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like t' . Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming	NODE=Q009TPP;LINKAGE=I
B(tH) = 1, the limit is 1270 GeV and for $B(tZ) = 1$ it is 1300 GeV. ¹² SIRUNYAN 18Q based on 19.7 fb ⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The limit is for the	
pair-produced vector-like t' that couple only to light quarks. Constraints for other decay	NODE=Q009TPP;LINKAGE=J
channels (Z q and H q) are also given in the paper. ¹³ SIRUNYAN 18w based on 35.8 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for	
The vector-like t' pair-produced by strong interaction using lepton-plus-jets mode and	NODE=Q009TPP;LINKAGE=H
assuming that $B(t' \rightarrow Wb)$ is 100product of the production cross section and branching faction to Wb for any new pair-produced heavy quark decaying to this channel as a narrow resonance.	
¹⁴ SIRUNYAN 17AU based on 2.3-2.6 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Limit on pair- produced singlet vector-like t' using one lepton and several jets. The mass bound is given for a t' transforming as a singlet under the electroweak symmetry group, assumed to decay through W , Z or Higgs boson (which decays to jets) and to a third generation	NODE=Q009TPP;LINKAGE=G
quark. For a doublet, the limit is >830 GeV. Other limits are also given in the paper.	
¹⁵ Based on 20.3 fb ⁻¹ of pp data at $\sqrt{s} = 8$ TeV. No significant excess over SM expectation is found in the search for pair production or single production of t' in the events with	NODE=Q009TPP;LINKAGE=B
dilepton from a high $p_T Z$ and additional jets ($\geq 1 b$ -tag). If instead of B($b' \rightarrow W t$) = 1 an electroweak singlet with B($b' \rightarrow W t$) ~ 0.45 is assumed, the limit reduces to	
685 GeV. ¹⁶ Based on 1.04 fb ⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons,	NODE=Q009TPP;LINKAGE=GA
large $\not\!$	
followed by t' decaying into a top quark and X, an invisible particle, in a final state with an isolated high-P _T lepton, four or more jets, and a large missing transverse energy. No	NODE=Q009TPP;LINKAGE=AD
excess over the SM $t \bar{t}$ production gives the upper limit on $t' \bar{t}'$ production cross section as a function of $m_{t'}$ and m_X . The result is obtained for B($t' \rightarrow W t$) = 1.	
¹⁸ Based on 5 fb ⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to Wb or Wt . Absence of signal in events with one lepton, same-sign dileptons or tri-	NODE=Q009TPP;LINKAGE=CT
leptons gives the bound. With a mass difference of 25 GeV/c ² between $m_{t'}$ and $m_{b'}$,	
the corresponding limit shifts by about $\pm 20 \text{ GeV/c}^2$. ¹⁹ Based on 5.0 fb ⁻¹ of <i>pp</i> data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12P looked for $t'\bar{t}'$ production events with two isolated high p_T leptons, large $\not{\!\!E}_T$, and 2 high p_T jets with	NODE=Q009TPP;LINKAGE=CH
<i>b</i> -tag. The absence of signal above the SM background gives the limit for B($t' ightarrow W$ <i>b</i>)	
= 1. 20 AAD 23AG based on 139 fb ⁻¹ of <i>pp</i> data at $\sqrt{s} = 13$ TeV. Pair production of vector- like top or bs is searched for in the mode $1\ell + \ge 4j(\ge 1b$ -tagged) + $\not\!\!\!E_T$. The data are consistent with the SM background predictions and limits are obtained for different branching ratios. Masses below 1.59 TeV are excluded assuming a mass-degenerate	NODE=Q009TPP;LINKAGE=W
vector-like doublet (t',b') model.	
²¹ SIRUNYAN 19AQ based on 35.9 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like t' is seached for with one t' decaying into Zt and the other t' decaying into $W(t, Zt, b, t)$.	NODE=Q009TPP;LINKAGE=T
<i>W b</i> , <i>Z t</i> , <i>h t</i> . Events with an opposite-sign lepton pair consistent with coming from <i>Z</i> and jets are used. Mass limits are obtained for a variety of branching ratios of t' . ²² SIRUNYAN 19BW based on 35.9 fb ⁻¹ of <i>pp</i> data at $\sqrt{s} = 13$ TeV. The limit is for the	NODE=Q009TPP;LINKAGE=U
pair-produced vector-like t' using all-hadronic final state. The analysis is made for the $W b$, $Z t$, $h t$ modes and mass limits are obtained for a variety of branching ratios.	
²³ AABOUD 18CL based on 36.1 fb ⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like t' using all-hadronic final state. The analysis is also made for	NODE=Q009TPP;LINKAGE=L
the W b, Z t, ht modes and mass limits are obtained for a variety of branching ratios.	
²⁴ AABOUD 17L based on 36.1 fb ⁻¹ of <i>pp</i> data at $\sqrt{s} = 13$ TeV. No signal is found in the search for heavy quark pair production that decay into <i>Z</i> t followed by <i>Z</i> $\rightarrow \nu \nu$ in	NODE=Q009TPP;LINKAGE=F

3/18/2024 16:16

Page 2

NODE=Q009TPP;LINKAGE=C

NODE=Q009TPP;LINKAGE=D

NODE=Q009TPP;LINKAGE=E

NODE=Q009TPP;LINKAGE=HA

NODE=Q009TPP;LINKAGE=AG

NODE=Q009TPP;LINKAGE=A

NODE=Q009TPP;LINKAGE=GD

NODE=Q009TPP;LINKAGE=CA

NODE=Q009TPP;LINKAGE=TN

NODE=Q009TPP;LINKAGE=ON

NODE=Q009TPP;LINKAGE=LT

NODE=Q009TPP;LINKAGE=AB

NODE=Q009TPP;LINKAGE=AA

NODE=Q009TPP;LINKAGE=HU

TeV is obtained for the singlet (doublet) model with other possible decay modes.

- $^{25}\,{\rm AAD}$ 15AR based on 20.3 fb $^{-1}$ of $\it p\,p$ data at $\sqrt{\it s}$ = 8 TeV. Used lepton-plus-jets final state. See Fig. 20 for mass limits in the plane of $B(t' \rightarrow Ht)$ vs. $B(t' \rightarrow Wb)$ from a combination of $t'\bar{t}' \rightarrow Wb + X$ and $t'\bar{t}' \rightarrow Ht + X$ searches. Any branching ratio scenario is excluded for mass below 715 GeV. ²⁶ AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-produced
- vector-like t' assuming the branching fractions to W, Z, and h modes of the singlet model. Used events containing $\geq 2\ell+\not\!\!E_T+ \geq 2j$ ($\geq 1~b$) and including a same-sign lepton pair.
- $^{27}\,\rm KHACHATRYAN$ 15AI based on 19.7 fb $^{-1}$ of pp data at \sqrt{s} = 8 TeV. The search exploits all-hadronic final states by tagging boosted Higgs boson using jet substructure and b-tagging.
- $^{28}\,\textsc{Based}$ on 19.5 fb $^{-1}$ of pp data at \sqrt{s} = 8TeV. The t' quark is pair produced and is assumed to decay into three different final states of bW, tZ, and th. The search is
- carried out using events with at least one isolated lepton. ²⁹ Based on 4.7 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a b quark in the events with a high p_T isolated lepton, large ${\it E}_T$ and at least 3 jets ($\geq~1$ b-tag). Vector-like quark of charge 2/3 with 400 < $m_{t^{\prime}}$ $\,<$ 550 GeV and B(t^{\prime} $\rightarrow~$ W b) > 0.63 is excluded at 95% CL.
- $^{30}\,\text{Based}$ on 5.0 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 7 TeV. CHATRCHYAN 13I looked for events with one isolated electron or muon, large E_T , and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
- $^{31}\,\text{Based}$ on 1.04 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 7 TeV. No signal is found in the search for pair produced heavy quarks that decay into W boson and a b quark in the events with
- 32 Based on 5.0 fb $^{-1}$ of pp data at \sqrt{s} = 7 TeV. CHATRCHYAN 12BC looked for $t' \bar{t}'$ production events with a single isolated high $\textit{p}_{\mathcal{T}}$ lepton, large $\not\!\!\!E_T$ and at least 4 high p_T jets with a *b*-tag. The absence of signal above the SM background gives the limit for $B(t' \rightarrow Wb) = 1$.
- $^{33}\textsc{Based}$ on 5.7 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV. AALTONEN 11AH looked for $t'\bar{t}'$ production followed by t' decaying into a top quark and X, an invisible particle, in the all hadronic decay mode of $t\bar{t}$. No excess over the SM $t\bar{t}$ production gives the upper limit on $t' \bar{t}'$ production cross section as a function of $m_{t'}$ and m_X . The result is obtained for $B(t' \rightarrow Xt) = 1$.
- $^{34}\,\textsc{Based}$ on 5.6 fb $^{-1}$ of data in ppbar collisions at 1.96 TeV. AALTONEN 11AL looked for $\ell + \geq 4j$ events and set upper limits on $\sigma(t'\bar{t}')$ as functions of $m_{t'}$.
- 35 Based on 4.8 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV. AALTONEN 110 looked for $t'\bar{t}'$ production signal when t' decays into a top quark and X, an invisible particle, in $\ell + E_T + jets$ channel. No excess over the SM $t \bar{t}$ production gives the upper limit on $t'\bar{t}'$ production cross section as a function of $m_{t'}$ and m_X . The result is obtained for $\mathsf{B}(t' \to Xt) = 1.$
- $^{36}\,\textsc{Based}$ on 5.3 fb $^{-1}$ of data in $p\,\overline{p}$ collisions at 1.96 TeV. ABAZOV 11Q looked for ℓ +
- 37 Searches for pair production of a new heavy top-like quark t^\prime decaying to a W boson and another quark by fitting the observed spectrum of total transverse energy and reconstructed t' mass in the lepton + jets events.
- 38 HUANG 08 reexamined the t^\prime mass lower bound of 256 GeV obtained in AALTONEN 08H that assumes B($b' \rightarrow q Z$) = 1 for q = u, c which does not hold when $m_{b'} < m_{t'} - m_W$ or the mixing $\sin^2(\theta_{bt'})$ is so tiny that the decay occurs outside of the vertex detector. Fig. 1 gives that lower bound on $m_{t'}$ in the plane of $\sin^2(\theta_{bt'})$ and $m_{b'}$.

t'(5/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

$t'(5/3)$ -quark/hadron mass limits in $p\overline{p}$ and pp collisions						NODE=Q009TP5	
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT		NODE=Q009TP5	
> 1.460 × 10 ³ (CL LIMIT]	= 95%)	$[>1.350 \times 10^3 \text{ G}]$	eV (CL = 95%)	%) OUR 2023 BEST			
>1460	95	¹ AAD	23AG ATLS	$t'(5/3) \rightarrow tW^+$			
>1330	95	² SIRUNYAN	19⊤ CMS	$t'_R(5/3) \rightarrow tW^+$			
>1300	95	² SIRUNYAN		$t'_{I}(5/3) \rightarrow t W^+$		OCCUR=2	
>1190	95	³ AABOUD		$\geq 2\ell + ot\!$			
>1020	95	⁴ SIRUNYAN	17J CMS	$t'_R(5/3) \rightarrow tW^+$			
> 990	95	⁴ SIRUNYAN	17J CMS			OCCUR=2	
> 750	95	⁵ AAD	15BY ATLS	$t^{\prime}(5/3) \rightarrow t W^+$			
> 840	95	⁶ AAD	15z ATLS	$t'(5/3) \rightarrow tW^+$			
> 800	95	⁷ CHATRCHYA	N14T CMS	$t'(5/3) \rightarrow t W^+$			
• • • We do not use t	ne followi	ng data for average	es, fits, limits,	etc. • • •			
>1350	95	⁸ AABOUD	18AW ATLS	$t'(5/3) \rightarrow tW^+$			

¹AAD 23AG based on 139 fb⁻¹ of pp data at \sqrt{s} = 13 TeV. Pair production of vector-NODE=Q009TP5;LINKAGE=J are consistent with the SM background predictions and limits are obtained for different branching ratios. ²SIRUNYAN 19T based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Signals are searched NODE=Q009TP5;LINKAGE=G in the final states of t' pair production, with same-sign leptons (which come from a t'decay) or a single lepton (which comes from a W out of 4Ws), along with jets, and no excess over the SM expectation is found. 3 AABOUD 18CE based on 36.1 fb $^{-1}$ of proton-proton data taken at $\sqrt{s}=$ 13 TeV. Events NODE=Q009TP5;LINKAGE=F including a same-sign lepton pair are used. The limit is for the pair-produced vector-like t'. With single t' production included, assuming t'tW coupling of one, the limit is $m_{t'}$ > 1.6 TeV. ⁴SIRUNYAN 17J based on 2.3 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Signals are searched NODE=Q009TP5;LINKAGE=D in the final states of t' pair production, with same-sign leptons (which come from a t'decay) or a single lepton (which comes from a W out of 4Ws), along with jets, and no excess over the SM expectation is found. ⁵ AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on t'(5/3) in pair and NODE=Q009TP5;LINKAGE=B single production assuming its coupling to Wt is equal to one. Used events containing ⁶AAD 15Z based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used events with $\ell + \not\!\!E_T + \not\!$ NODE=Q009TP5;LINKAGE=C \geq 6j (\geq 1 b) and at least one pair of jets from weak boson decay, sensitive to the final , state $b \overline{b} W^+ W^- W^+ W^-$. 7 CHATRCHYAN 14T based on 19.5 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Non-observation of NODE=Q009TP5;LINKAGE=A anomaly in H_T distribution in the same-sign dilepton events leads to the limit when pair produced t'(5/3) quark decays exclusively into t and W^+ , resulting in the final state 8 with $b \overline{b} W^{+} W^{-} W^{+} W^{-}$ AABOUD 18AW based on 36.1 fb⁻¹ of pp data at \sqrt{s} = 13 TeV. Limit on t'(5/3) in NODE=Q009TP5;LINKAGE=E pair production assuming its coupling to Wt is equal to one. Lepton-plus-jets final state is used, characterized by $\ell+{\not\!\! E}_T$ + jets (≥ 1 b-tagged). t'(2/3) mass limits from single production in $p\overline{p}$ and pp collisions NODE=Q009TPS NODE=Q009TPS;CHECK LIMITS DOCUMENT ID TECN COMMENT VALUE (GeV) CL% qg
ightarrow q't'b, B(t'
ightarrow¹ AAD 16AV ATLS 95 >950 W b)=0.5 ² ABAZOV $q d \rightarrow q' t' \rightarrow q'(W d)$ >403 95 11F D0 $\widetilde{\kappa}_{dt'} = 1, B(t' \to Wd) = 1$ $q u \to q t' \to q(Zu)$ $\widetilde{\kappa}_{ut'} = \sqrt{2}, B(t' \to Zu) = 1$ ² ABAZOV 11F D0 OCCUR=2 >551 95 • • • We do not use the following data for averages, fits, limits, etc. • • • ³ AAD 22G ATLS $t' \rightarrow Ht$, singlet t'⁴ TUMASYAN 22X CMS $t' \rightarrow Z t$ $^1\,\text{AAD}$ 16AV based on 20.3 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 8 TeV. No significant excess over NODE=Q009TPS;LINKAGE=A SM expectation is found in the search for a fully reconstructed vector-like t' in the mode background. 2 ABAZOV 11F based on 5.4 fb $^{-1}$ of data in ppbar collisions at 1.96 TeV. It looked for NODE=Q009TPS;LINKAGE=AB single production of t' via the Z or E coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\overline{p} \rightarrow t'q \rightarrow (Wd)q$, and $p\overline{p} \rightarrow t'q \rightarrow (Zd)q$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks. 3 AAD 22G based on 139 fb $^{-1}$ of pp data at \sqrt{s} = 13 TeV. No significant excess over NODE=Q009TPS;LINKAGE=B SM expectation is found in the search for a vector-like t' in the Ht decay channel, where H and t are reconstructed as single jets. The mass range between 1.0 and 2.3 TeV is targeted and 95% CL limits on the production section times the decay branching fraction are set depending on the coupling and mass of t'. ⁴TUMASYAN 22X based on 137 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. No significant excess NODE=Q009TPS;LINKAGE=C over SM expectation is found in the search for a vector-like t' in the Z t decay channel, where Z decays to neutrinos and t decays hadronically. The 95% CL limits on the production section times the decay branching fraction are set depending on the coupling and mass of t'. t'(5/3) mass limits from single production in $p\overline{p}$ and pp collisions NODE=Q009T5S DOCUMENT ID TECN COMMENT NODE=Q009T5S VALUE (GeV) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ SIRUNYAN 19AI CMS $tW \rightarrow t'(5/3) \rightarrow tW$ 1 SIRUNYAN 19AI based on 35.9 fb $^{-1}$ of $\it p\, p$ data at $\sqrt{s}=$ 13 TeV. Exclusion limits are set NODE=Q009T5S;LINKAGE=A on the product of the production cross section and branching fraction for the b'(-1/3) + b'(-1/3)t and t'(5/3) + t modes as a function of the vector-like quark mass in Fig. 8 and Tab.

2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.

3/18/2024 16:16

Page 4

NODE=Q009

REFERENCES FOR Searches for (Fourth Generation) t' Quark

AAD2TUMASYAN2TUMASYAN2AAD2SIRUNYAN1SIRUNYAN1SIRUNYAN1SIRUNYAN1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1AABOUD1SIRUNYAN1SIRUNYAN1SIRUNYAN1AAD1AALTONEN1AALTONEN1AALTONEN0AALTONEN0AALTONEN0	44AZ JHEP 1411 104 14A PL B729 149 14T PRL 112 171801 13F PL B718 1284 13J JHEP 1301 154 12AR PRL 108 261802 12BC PR D86 012007 12BC PL B718 307 12BC PL B718 307 12BC PR D86 112003	 G. Aad et al. G. Aad et al. A. Tumasyan et al. A. Tumasyan et al. G. Aad et al. A. Tumasyan et al. A.M. Sirunyan et al. M. Aaboud et al. A.M. Sirunyan et al. A.Aboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. A.M. Sirunyan et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. S. Chatrchyan et al. S. Chatrchyan et al. G. Aad et al. G. Aad et al. S. Chatrchyan et al. A. Altonen et al. T. Aaltonen et al. T. Aaltonen et al. P.Q. Hung, M. Sher 	(ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (CMS Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)	REFID=62172 REFID=62165 REFID=61744 REFID=61744 REFID=59702 REFID=59721 REFID=59721 REFID=59721 REFID=59369 REFID=59369 REFID=59369 REFID=59532 REFID=59532 REFID=59532 REFID=59532 REFID=57829 REFID=57829 REFID=57829 REFID=57833 REFID=56636 REFID=54921 REFID=54843 REFID=54843 REFID=54843 REFID=54934 REFID=54934 REFID=54934 REFID=54934 REFID=54772 REFID=54772 REFID=54772 REFID=54770 REFID=547223 REFID=547223 REFID=547223 REFID=547223 REFID=54723 REFID=54723 REFID=54723 REFID=54723 RE
--	--	--	--	--