NODE=S043

W

J = 1

See the related review(s): Mass and Width of the W Boson

W MASS

The W-mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world average of various measurements, common systematic uncertainties between experiments are evaluated and accounted for in combinations [SCHAEL 13A, AMOROSO 24]. Until 2022, the measurements of the W-boson mass at lepton and hadron colliders, LEP-2 (ALEPH, DELPHI, L3, and OPAL), Tevatron (CDF and D0), and LHC (ALEPH and LHCb), were in good agreement with each other [PDG 22]. However, with the new CDF result [AALTONEN 22] based on their complete Run-II data set, this is no longer the case. The LHC-TeV MW Working Group, including Wmass experts from CDF, D0, ATLAS, CMS and LHCb [AMOROSO 24], has examined this issue in depth. They report that a combination of all Wmass measurements corrected to a common theory description and PDF set, has a probability of compatibility of 0.5% only, and is therefore disfavoured. A 91% probability of compatibility is obtained when the CDF-II measurement is removed. The corresponding value of the ${\it W}$ boson mass is 80369.2 \pm 13.3 MeV, which we quote as the World Average. More information is given in [M. Grunewald and A. Gurtu, "Mass and Width of the W Boson" review, PDG 24] and in [AMOROSO 24]. Since then, an improved mass determination was published by the ATLAS collaboration [AAD 24CJ], superseding their previous result [AABOUD 18J]. A new combination is in preparation by the LHC-TeV MW Working Group.

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT
80.3692± 0.0133 OUR E		(24)		
80.4335± 0.0094 (AALT	ONEN 22	,			22
$80.354 ~\pm~ 0.023 ~\pm 0.022$	2.4M	¹ AAIJ	22C	LHCB	$E^{pp}_{ ext{cm}} = 13 ext{ TeV}$
$80.4335 \pm 0.0064 \pm 0.0069$	4.2M	² AALTONEN	22	CDF	$E^{pp}_{cm} = 1.96 \text{ TeV}$
$80.370~\pm~0.007~\pm0.017$	13.7M	³ AABOUD	18J	ATLS	$E_{\rm cm}^{pp} = 7 { m TeV}$
$80.375~\pm~0.011~\pm0.020$	2177k	⁴ ABAZOV	12F	D0	$E_{ m cm}^{m p \overline p} = 1.96 \; { m TeV}$
$80.336~\pm~0.055~\pm0.039$	10.3k	⁵ ABDALLAH	08A	DLPH	$E_{\rm cm}^{ee} = 161 - 209$
$80.415~\pm~0.042~\pm0.031$	11830	⁶ ABBIENDI	06	OPAL	${ m GeV} E^{ee}_{ m cm} = 170$ –209 GeV
$80.270~\pm~0.046~\pm0.031$	9909	⁷ ACHARD	06	L3	$E_{cm}^{ee} = 161 - 209$ GeV
$80.440~\pm~0.043~\pm0.027$	8692	⁸ SCHAEL	06	ALEP	$E_{\rm cm}^{ee} = 161 - 209$ <u>Gev</u>
80.483 ± 0.084	49247	⁹ ABAZOV	02D		$E_{\rm cm}^{pp}$ = 1.8 TeV
• • • We do not use the f	ollowing d	ata for averages, fi	ts, lim	its, etc.	• • •
$80.3665 \pm \ 0.0098 \pm 0.0125$	13.7M	¹⁰ AAD	24CJ	ATLS	$E_{\rm cm}^{pp} = 7 { m TeV}$
$80.520~\pm~0.070~\pm0.092$		¹¹ ANDREEV	18A	H1	$e^{\pm}p$
$80.387~\pm~0.012~\pm0.015$	1095k	¹² AALTONEN	12E	CDF	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$80.367~\pm~0.013~\pm0.022$	1677k	¹³ ABAZOV	12F	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$80.401~\pm~0.021~\pm0.038$	500k	¹⁴ ABAZOV	09AE	3 D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$80.413~\pm~0.034~\pm0.034$	115k	¹⁵ AALTONEN	07F	CDF	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1500	¹⁶ AKTAS	06	H1	$e^{\pm} p ightarrow ~ar{ u}_e(u_e) X, \ \sqrt{s} pprox$ 300 GeV
$80.3 \pm 2.1 \pm 1.2 \pm 1.0$	645	¹⁷ CHEKANOV	02C	ZEUS	$e^-p ightarrow u_e X, \sqrt{s} = 318 \text{ GeV}$
$80.433 ~\pm~ 0.079$	53841	¹⁸ AFFOLDER	01E	CDF	$E_{cm}^{p\overline{p}}$ = 1.8 TeV
$81.4^{+2.7}_{-2.6}\pm2.0^{+3.3}_{-3.0}$	1086	¹⁹ BREITWEG	00 D	ZEUS	$e^+ p ightarrow ~ar{ u}_e X, \ \sqrt{s} pprox 300 \ { m GeV}$
$80.84 \pm 0.22 \pm 0.83$	2065	²⁰ ALITTI	92 B	UA2	See W/Z ratio below
$80.79 ~\pm~ 0.31 ~\pm 0.84$		²¹ ALITTI	90 B	UA2	$E_{\rm cm}^{p\bar{p}} = 546,630 {\rm GeV}$
$80.0 \pm 3.3 \pm 2.4$	22	²² ABE	891	CDF	$E_{ m cm}^{p\overline{p}}=1.8~ m TeV$
$82.7 \pm 1.0 \pm 2.7$	149	²³ ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV

NODE=S043M

NODE=S043M

NODE=S043M \rightarrow UNCHECKED \leftarrow \rightarrow UNCHECKED \leftarrow OCCUR=2

81.8	$^{+}$ 6.0 $^{-}$ 5.3	± 2.6	46	²⁴ ALBAJAR	89	UA1	<i>E</i> ^{<i>pp</i>} _{cm} = 546,630 GeV	OCCUR=2
89	± 3	± 6	32	²⁵ ALBAJAR	89	UA1	<i>E</i> ^{<i>pp</i>} _{cm} = 546,630 GeV	OCCUR=3
81.	\pm 5.		6	ARNISON	83	UA1	$E_{\rm cm}^{ee}$ = 546 GeV	
80.	+10. - 6.		4	BANNER	83 B	UA2	Repl. by ALITTI 90B	
¹ AAIJ 22C analyse <i>W</i> production in the muon decay channel, with the transverse momentum of the muon required to be between 28 and 52 GeV. Analysing the distribution of the muon charge divided by the muon transverse momentum of approximately 2.4 million selected <i>W</i> candidates, a value of $M_W = 80354 \pm 23(\text{stat.})\pm 10(\text{exp.})\pm 17(\text{theo.})\pm 9(\text{PDF})$ MeV is obtained; we combine the three systematic uncertainties in guadrature.								
² AALTONEN 22 select a data sample of about 4 million <i>W</i> boson candidates in 8.8 fb ⁻¹ of Run-II data. The mass is determined using the transverse mass, transverse lepton momentum and transverse missing momentum distributions of <i>W</i> decays into electrons or muons, accounting for correlations. This measurement supersedes AALTONEN 12E, but is not used in OUR EVALUATION.								
³ A ⁄	ABOUD 18	BJ select 4.	61M W+	$^- ightarrow \ \mu^+ u_\mu$, 3.4			$e^+ u_e$, 3.23M $W^- ightarrow$ t 7 TeV. The W mass	NODE=S043M;LINKAGE=D

 $\mu^-\overline{\nu}_\mu$ and 2.49M $W^- \to e^-\overline{\nu}_e$ events in 4.6 fb⁻¹ pp data at 7 TeV. The W mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations. The systematic error includes 0.011 GeV experimental and 0.014 GeV modelling uncertainties.

⁴Combination of results from ABAZOV 12F and ABAZOV 09AB as quoted in _ABAZOV 12F.

⁵ABDALLAH 08A use direct reconstruction of the kinematics of $W^+W^- \rightarrow q\bar{q}\ell\nu$ and $W^+W^- \rightarrow q\bar{q}q\bar{q}$ events for energies 172 GeV and above. The W mass was also extracted from the dependence of the WW cross section close to the production threshold and combined appropriately to obtain the final result. The systematic error includes ± 0.025 GeV due to final state interactions and ± 0.009 GeV due to LEP energy uncertainty.

⁶ABBIENDI 06 use direct reconstruction of the kinematics of $W^+ W^- \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^+ W^- \rightarrow q \bar{q} q \bar{q}$ events. The result quoted here is obtained combining this mass value with the results using $W^+ W^- \rightarrow \ell \nu_{\ell} \ell' \nu_{\ell'}$ events in the energy range 183–207 GeV (ABBIENDI 03C) and the dependence of the WW production cross-section on m_W at threshold. The systematic error includes ± 0.009 GeV due to the uncertainty on the LEP beam energy.

⁷ ACHARD 06 use direct reconstruction of the kinematics of $W^+W^- \rightarrow q \bar{q} \ell \nu_{\ell}$ and $W^+W^- \rightarrow q \bar{q} q \bar{q}$ events in the C.M. energy range 189–209 GeV. The result quoted here is obtained combining this mass value with the results obtained from a direct W mass reconstruction at 172 and 183 GeV and with those from the dependence of the WW production cross-section on m_W at 161 and 172 GeV (ACCIARRI 99).

⁸SCHAEL 06 use direct reconstruction of the kinematics of $W^+W^- \rightarrow q\bar{q}\ell\nu_\ell$ and $W^+W^- \rightarrow q\bar{q}q\bar{q}$ events in the C.M. energy range 183–209 GeV. The result quoted here is obtained combining this mass value with those obtained from the dependence of the *W* pair production cross-section on m_W at 161 and 172 GeV (BARATE 97 and BARATE 97S respectively). The systematic error includes ± 0.009 GeV due to possible effects of final state interactions in the $q\bar{q}q\bar{q}$ channel and ± 0.009 GeV due to the uncertainty on the LEP beam energy.

⁹ABAZOV 02D improve the measurement of the *W*-boson mass including $W \rightarrow e\nu_e$ events in which the electron is close to a boundary of a central electromagnetic calorimeter module. Properly combining the results obtained by fitting $m_T(W)$, $p_T(e)$, and $p_T(\nu)$, this sample provides a mass value of 80.574 \pm 0.405 GeV. The value reported here is a combination of this measurement with all previous DØ *W*-boson mass measurements.

¹⁰ AAD 24CJ provides an improved determination of the W boson mass using the same data as analysed for AABOUD 18J, thus superseding that W boson mass measurement. The distributions of the transverse lepton momentum and of the transverse mass are analysed to determine the W boson mass.

¹¹ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic e^+p and e^-p neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

¹² AALTONEN 12E select 470k $W \rightarrow e\nu$ decays and 625k $W \rightarrow \mu\nu$ decays in 2.2 fb⁻¹ of Run-II data. The mass is determined using the transverse mass, transverse lepton momentum and transverse missing energy distributions, accounting for correlations. This result supersedes AALTONEN 07F. AALTONEN 14D gives more details on the procedures followed by the authors. This measurement is superseded by AALTONEN 22.

¹³ABAZOV 12F select 1677k $W \rightarrow e\nu$ decays in 4.3 fb⁻¹ of Run-II data. The mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations.

¹⁴ ABAZOV 09AB study the transverse mass, transverse electron momentum, and transverse missing energy in a sample of 0.5 million $W \rightarrow e\nu$ decays selected in Run-II data. The quoted result combines all three methods, accounting for correlations.

NODE=S043M;LINKAGE=V

NODE=S043M;LINKAGE=DA

NODE=S043M;LINKAGE=AI

NODE=S043M;LINKAGE=AH

NODE=S043M;LINKAGE=SC

NODE=S043M;LINKAGE=BG

NODE=S043M;LINKAGE=CA

NODE=S043M;LINKAGE=U

NODE=S043M;LINKAGE=AL

NODE=S043M;LINKAGE=AZ

NODE=S043M;LINKAGE=AB

NODE=S043M;LINKAGE=AA

NODE=S043M;LINKAGE=AK

NODE=S043M;LINKAGE=Z6

NODE=S043M:LINKAGE=EF

- ¹⁵ AALTONEN 07F obtain high purity $W \rightarrow e\nu_e$ and $W \rightarrow \mu\nu_\mu$ candidate samples totaling 63,964 and 51,128 events respectively. The W mass value quoted above is derived by simultaneously fitting the transverse mass and the lepton, and neutrino p_T distributions.
- 16 AKTAS 06 fit the Q^2 dependence (300 $< Q^2 \ <$ 30,000 GeV²) of the charged-current differential cross section with a propagator mass. The first error is experimental and the second corresponds to uncertainties due to input parameters and model assumptions.
- 17 CHEKANOV 02C fit the Q^2 dependence (200< Q^2 <60000 GeV²) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
- ¹⁸ AFFOLDER 01E fit the transverse mass spectrum of 30115 $W \rightarrow e\nu_e$ events ($M_W = 80.473 \pm 0.065 \pm 0.092$ GeV) and of 14740 $W \rightarrow \mu\nu_{\mu}$ events ($M_W = 80.465 \pm 0.100 \pm 0.103$ GeV) obtained in the run IB (1994-95). Combining the electron and muon results, accounting for correlated uncertainties, yields $M_W = 80.470 \pm 0.089$ GeV. They combine this value with their measurement of ABE 95P reported in run IA (1992-93) to obtain the quoted value.
- 19 BREITWEG 00D fit the Q^2 dependence (200 $< Q^2 < 22500 \mbox{ GeV}^2$) of the charged-current differential cross sections with a propagator mass fit. The last error is due to the uncertainty on the probability density functions.
- ²⁰ ALITTI 92B result has two contributions to the systematic error (±0.83); one (±0.81) cancels in m_W/m_Z and one (±0.17) is noncancelling. These were added in quadrature. We choose the ALITTI 92B value without using the LEP m_Z value, because we perform our own combined fit.
- ²¹ There are two contributions to the systematic error (±0.84): one (±0.81) which cancels in m_W/m_Z and one (±0.21) which is non-cancelling. These were added in quadrature.
- $\overset{22}{}\mathsf{ABE}$ 891 systematic error dominated by the uncertainty in the absolute energy scale.
- 23 ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e \nu$ events.
- 24 ALBAJAR 89 result is from a total sample of 67 $W \rightarrow ~\mu \nu$ events.
- ²⁵ ALBAJAR 89 result is from $W \rightarrow \tau \nu$ events.

W/Z MASS RATIO

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT			
0.88136 ± 0.00015		¹ PDG	24					
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet								
$0.8821\ \pm 0.0011\ \pm 0.0008$	28323	² ABBOTT	98N	D0	$E_{ m cm}^{p\overline{p}}=$ 1.8 TeV			
$0.88114 \pm 0.00154 \pm 0.00252$	5982	³ ABBOTT	98 P		$E_{ m cm}^{p\overline{p}}=$ 1.8 TeV			
$0.8813\ \pm 0.0036\ \pm 0.0019$	156	⁴ ALITTI	9 2B	UA2	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV			

¹ This value was obtained using the world average values of m_Z and m_W as presented in these listings.

²ABBOTT 98N obtain this from a study of 28323 $W \rightarrow e\nu_e$ and 3294 $Z \rightarrow e^+e^-$ decays. Of this latter sample, 2179 events are used to calibrate the electron energy scale.

³ABBOTT 98P obtain this from a study of 5982 $W \rightarrow e\nu_e$ events. The systematic error includes an uncertainty of ± 0.00175 due to the electron energy scale.

 $m_Z - m_W$

⁴Scale error cancels in this ratio.

1				N
¹ PDG	24			
ng data for averag	es, fits	, limits,	etc. • • •	
ALBAJAR	89	UA1	$E_{ m cm}^{p\overline{p}}=$ 546,630 GeV	
ANSARI	87	UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV	
	ALBAJAR ANSARI	ALBAJAR 89 ANSARI 87	ALBAJAR 89 UA1 ANSARI 87 UA2	ng data for averages, fits, limits, etc. • • • ALBAJAR 89 UA1 $E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$ ANSARI 87 UA2 $E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$ g the world average values of m_Z and m_W as presented in

these listings.

<i>m</i> _{W+}	—	m _W -
------------------------	---	------------------

Test of CPT invariance.

<u>VALUE (G</u> eV) −0.029±0.028 OUR A	<u>EVTS</u> VERAGE	DOCUMENT ID		TECN	COMMENT	N
$-0.029\!\pm\!0.013\!\pm\!0.025$	13.7M	¹ AABOUD	18J	ATLS	$E^{pp}_{cm} = 7 \text{TeV}$	
-0.19 ± 0.58	1722	ABE	90 G	CDF	$E_{ m cm}^{p\overline{p}}$ = 1.8 TeV	

NODE=S043M;LINKAGE=K
NODE=S043M;LINKAGE=EA

NODE=S043M;LINKAGE=Z5

NODE=S043M;LINKAGE=I NODE=S043M;LINKAGE=B NODE=S043M;LINKAGE=G NODE=S043M;LINKAGE=H

NODE=S043MR

NODE=S043MR

NODE=S043MR;LINKAGE=PD

NODE=S043MR;LINKAGE=C

NODE=S043MR;LINKAGE=B

NODE=S043MR;LINKAGE=A

NODE=S043MDZ

NODE=S043MDZ

NODE=S043MDZ;LINKAGE=PD

NODE=S043MD NODE=S043MD

NODE=S043MD

¹AABOUD 18J select 4.61M $W^+ \rightarrow \mu^+ \nu_{\mu}$, 3.40M $W^+ \rightarrow e^+ \nu_e$, 3.23M $W^- \rightarrow \mu^- \overline{\nu}_{\mu}$ and 2.49M $W^- \rightarrow e^- \overline{\nu}_e$ events in 4.6 fb⁻¹ pp data at 7 TeV. The W mass is determined using the transverse mass and transverse lepton momentum distributions, accounting for correlations. The systematic error includes 0.007 GeV experimental and 0.024 GeV modelling uncertainties.

W WIDTH

The W width listed here corresponds to the width parameter in a Breit-Wigner distribution with mass-dependent width. To obtain the world average, common systematic uncertainties between experiments are properly taken into account. The LEP-2 average W width based on published results is 2.195 \pm 0.083 GeV [SCHAEL 13A]. The combined Tevatron data yields an average W width of 2.046 \pm 0.049 GeV [TEVEWWG 10]. OUR AVERAGE uses these average LEP and Tevatron width values and combines them together with the ATLAS result, assuming no correlations.

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT		NODE=S043W
2.14 ±0.05 OUR AV	ERAGE	Error includes scale			See the ideogram below.		
$2.202\!\pm\!0.032\!\pm\!0.034$	13.7M	¹ AAD			$E^{pp}_{cm} =$ 7 TeV	ļ.	
$2.195 \!\pm\! 0.083$		² SCHAEL			E_{cm}^{ee} = 170–209 GeV		
2.046 ± 0.049		³ TEVEWWG			$E^{p\overline{p}}_{ m cm}=$ 1.8–1.96 TeV		
• • • We do not use t	he follow	ing data for average	s, fits,	limits, e	etc. • • •		
$2.028 \!\pm\! 0.072$	5272	⁴ ABAZOV	09 AK		$E_{ m cm}^{p\overline{p}}=1.96{ m GeV}$		
$2.032\!\pm\!0.045\!\pm\!0.057$	6055	⁵ AALTONEN			$E^{p\overline{p}}_{ m cm}=1.96{ m TeV}$		
$2.404 \pm 0.140 \pm 0.101$	10.3k	⁶ ABDALLAH	08A		$E_{\rm cm}^{ee}$ = 183–209 GeV		
$1.996\!\pm\!0.096\!\pm\!0.102$	10729	⁷ ABBIENDI	06	OPAL	$E_{\rm cm}^{ee}$ = 170–209 GeV		
$2.18\ \pm 0.11\ \pm 0.09$	9795	⁸ ACHARD	06	L3	$E_{\rm cm}^{ee}$ = 172–209 GeV		
$2.14 \pm 0.09 \pm 0.06$	8717	⁹ SCHAEL	06	ALEP	$E_{cm}^{ee} = 183-209 \text{ GeV}$		
$2.23 \begin{array}{c} +0.15 \\ -0.14 \end{array} \pm 0.10$	294	¹⁰ ABAZOV	02E	D0	${\cal E}_{\sf Cm}^{{m p}{\overline{m p}}}=1.8{ m TeV}$		
$2.152\!\pm\!0.066$	79176	11 ABBOTT	00 B	D0	Extracted value		
$2.05\ \pm 0.10\ \pm 0.08$	662	¹² AFFOLDER	00M	CDF	$E^{pp}_{ m cm}=$ 1.8 TeV		
$2.064\!\pm\!0.060\!\pm\!0.059$		¹³ ABE	95W	CDF	Extracted value		
$2.10 \begin{array}{c} +0.14 \\ -0.13 \end{array} \pm 0.09$	3559	¹⁴ ALITTI	92	UA2	Extracted value		
$2.18 \begin{array}{c} +0.26 \\ -0.24 \end{array} \pm 0.04$		¹⁵ ALBAJAR	91	UA1	Extracted value		
data as analysed for momentum and of ² SCHAEL 13A resu	r AABOU the trans It combin	JD 18J. In addition, t sverse mass are analy nes the measuremen	the dis ysed to nts fro	tribution determ m the l	son mass using the same ns of the transverse lepton ine the <i>W</i> boson width. LEP experiments ALEPH		NODE=S043W;LINKAGE=G
The average of thes of 27%.	se four re	sults takes correlation	ns into	accoun	nd OPAL(ABBIENDI 06). t and has a χ^2 probability		
(ABE 95c, AFFOLI	DER 00M	, AALTONEN 08в) а	and D0) (ABAZ	evtatron experiments CDF OV 02E, ABAZOV 09AK).		NODE=S043W;LINKAGE=H
of 84%.	se five res	suits takes correlation	ns into	accoun	t and has a χ^2 probability		
⁴ ABAZOV 09AK obt mass spectrum in V			end ta	il (100-2	200 GeV) of the transverse		NODE=S043W;LINKAGE=BA
⁵ AALTONEN 08B o	btain thi		igh-en and	d tail (9 $W ightarrow ~\mu$	0–200 GeV) of the trans- $_{\mu} u_{\mu}$ decays.		NODE=S043W;LINKAGE=AA
					f $W^+W^- ightarrow q \overline{q} \ell \nu$ and		NODE=S043W;LINKAGE=DA
$W^+ W^- \rightarrow q \overline{q} q$ _state interactions.	$q \overline{q}$ events	s. The systematic e	error in	ncludes	± 0.065 GeV due to final		
⁷ ABBIENDI 06 use	direct re	construction of the l	kinema	atics of	$W^+W^- o ~ q\overline{q}\ell u_\ell$ and		NODE=S043W;LINKAGE=AI
uncertainty on the	LEP bea	m energy.			$\pm 0.003~\text{GeV}$ due to the		
					$W^+W^- ightarrow \; q\overline{q}\ell u_\ell$ and		NODE=S043W;LINKAGE=AH
$W^+W^- \rightarrow q \bar{q} q \bar{q}$ events in the C.M. energy range 189–209 GeV. The result quoted here is obtained combining this value of the width with the result obtained from a direct W mass reconstruction at 172 and 183 GeV (ACCIARRI 99).							
					$W^+W^- \rightarrow q \overline{q} \ell \nu_\ell$ and		NODE=S043W;LINKAGE=SC
					± 0.05 GeV due to possi-		10002-00-000,ENVIAGE-0C
	state int	eractions in the $q \overline{q} q$			d ± 0.01 GeV due to the		
¹⁰ ABAZOV 02E obta	in this re		end tai ys.	il (90–20	00 GeV) of the transverse-		NODE=S043W;LINKAGE=BG

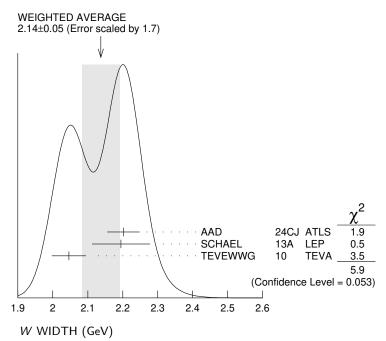
NODE=S043MD;LINKAGE=A

NODE=S043W NODE=S043W

NODE=S043W;LINKAGE=B2

NODE=S043W;LINKAGE=AB

NODE=S043W;LINKAGE=KC


NODE=S043W;LINKAGE=C

NODE=S043W;LINKAGE=D

¹¹ABBOTT 00B measure $R = 10.43 \pm 0.27$ for the $W \rightarrow e\nu_e$ decay channel. They use the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $\Gamma(W \rightarrow e\nu_e)$ and the world average for $B(Z \rightarrow ee)$. The value quoted here is obtained combining this result (2.169 \pm 0.070 GeV) with that of ABBOTT 99H.

 12 AFFOLDER 00M fit the high transverse mass (100–200 GeV) $W \rightarrow e\nu_e$ and $W \rightarrow \mu\nu_\mu$ events to obtain $\Gamma(W){=}2.04\pm0.11({\rm stat}){\pm}0.09({\rm syst})$ GeV. This is combined with the earlier CDF measurement (ABE 95C) to obtain the quoted result.

- 13 ABE 95W measured $R = 10.90 \pm 0.32 \pm 0.29$. They use $m_W {=} 80.23 \pm 0.18$ GeV, $\sigma(W)/\sigma(Z) = 3.35 \pm 0.03, \ \Gamma(W \to e\nu) = 225.9 \pm 0.9 \ \text{MeV}, \ \Gamma(Z \to e^+e^-) = 225.9 \pm 0.9 \ \text{MeV}$ 83.98 ± 0.18 MeV, and $\Gamma(Z) = 2.4969 \pm 0.0038$ GeV.
- ¹⁴ALITTI 92 measured $R = 10.4^{+0.7}_{-0.6} \pm 0.3$. The values of $\sigma(Z)$ and $\sigma(W)$ come from ${\it O}(lpha_{
 m S}^2)$ calculations using m_W = 80.14 \pm 0.27 GeV, and m_Z = 91.175 \pm 0.021 GeV
- along with the corresponding value of $\sin^2\theta_W = 0.2274$. They use $\sigma(W)/\sigma(Z) = 3.26 \pm 0.07 \pm 0.05$ and $\Gamma(Z) = 2.487 \pm 0.010$ GeV. ¹⁵ ALBAJAR 91 measured R = 9.5 + 1.1 + 1.1 (stat. + syst.). $\sigma(W)/\sigma(Z)$ is calculated in QCD at the parton level using $m_W = 80.18 \pm 0.28$ GeV and $m_Z = 91.172 \pm 0.031$ GeV along with sin $^2 heta_W=0.2322\pm0.0014$. They use $\sigma(W)/\sigma(Z)=3.23\pm0.05$ and $\Gamma(Z)$ = 2.498 \pm 0.020 GeV. This measurement is obtained combining both the electron and muon channels.

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

NODE=S043220;NODE=S043

NODE=S043

	Mode	Fraction (Γ_i/Γ)	Confidenc	e level	
Γ_1	$\ell^+ \nu$	$[a]$ (10.86 \pm 0.09)	%		DESIG=7
Γ2	$e^+ \nu$	(10.71 ± 0.16)	%		DESIG=1
Γ ₃	$\mu^+ \nu$	(10.63 ± 0.15)		DESIG=2	
Г ₄	$\tau^+ \nu$	$(11.38\pm~0.21)$	%		DESIG=5
Γ ₅	hadrons	(67.41 ± 0.27)	%		DESIG=8
Г ₆	$\pi^+\gamma$	< 1.9	imes 10 ⁻⁶	95%	DESIG=6
Γ ₇	$\rho^+\gamma$	< 5.2	$\times 10^{-6}$	95%	DESIG=14
Г ₈	$\mathcal{K}^+\gamma$	< 1.7	$\times 10^{-6}$	95%	DESIG=15
Γ ₉	$D_s^+ \gamma$	< 6	imes 10 ⁻⁴	95%	DESIG=9
Γ ₁₀	cX	$(33.3~\pm~2.6$ $)$	%		DESIG=12
Γ_{11}	cs	$(31 {+13 \atop -11})$	%		DESIG=10
Γ_{12}	invisible	$[b]$ (1.4 \pm 2.8)	%		DESIG=11
Γ ₁₃	$\pi^+\pi^+\pi^-$	< 1.01	imes 10 ⁻⁶	95%	DESIG=13

7/16/2025 12:14 Page 6

LINKAGE=DXX

LINKAGE=WIN

NODE=S043222

NODE=S043WIN

NODE=S043WIN

NODE=S043WIN

[a] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

[b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p < 200 MeV.

W PARTIAL WIDTHS

$\Gamma(invisible)$

This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV. VALUE (MoV) COMMENT TECN

VALUE (INEV)	DOCOMENTID		TLCN	COMMENT
$30^{+52}_{-48}\pm33$	¹ BARATE	991	ALEP	$E_{\rm cm}^{ee} = 161 + 172 + 183 {\rm ~GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

² BARATE 99L ALEP $E_{cm}^{ee} = 161 + 172 + 183 \text{ GeV}$

 1 BARATE 991 measure this quantity using the dependence of the total cross section σ_{WW} upon a change in the total width. The fit is performed to the WW measured cross sections at 161, 172, and 183 GeV. This partial width is < 139 MeV at 95%CL.

 2 BARATE 99L use W-pair production to search for effectively invisible W decays, tagging with the decay of the other W boson to Standard Model particles. The partial width for effectively invisible decay is < 27 MeV at 95%CL.

W BRANCHING RATIOS

Overall fits are performed to determine the branching ratios of the Wboson. Averages on $W \rightarrow e\nu$, $W \rightarrow \mu\nu$, and $W \rightarrow \tau\nu$, and their correlations are obtained by combining results from the four LEP experiments properly taking into account the common systematic uncertainties and their correlations [SCHAEL 13A]. A first fit determines the three individual leptonic braching ratios B($W \rightarrow e\nu$), B($W \rightarrow \mu\nu$), and B($W \rightarrow$ au
u). This fit has a $\chi^2=$ 6.3 for 9 degrees of freedom. The correlation coefficients between the branching fractions are 0.14 $(e - \mu)$, $-0.20 (e - \tau)$, -0.12 ($\mu - \tau$). A second fit assumes lepton universality and determines the leptonic branching ratio $B(W \rightarrow \ell \nu)$ and the hadronic branching ratio is derived as B($W \rightarrow$ hadrons) = 1 - 3 B($W \rightarrow \ell \nu$). This fit has a χ^2 = 15.4 for 11 degrees of freedom.

$\Gamma(\ell^+\nu)/\Gamma_{\rm total}$

 ℓ indicates average over *e*, μ , and τ modes, not sum over modes.

<u>VALUE</u> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT		
10.86±0.09 OUR FIT							
$10.89\!\pm\!0.01\!\pm\!0.08$		TUMASYAN	22F	CMS	$E^{pp}_{ m cm}=13~{ m TeV}$		
$10.86\!\pm\!0.12\!\pm\!0.08$	16438	ABBIENDI	07A	OPAL	$E_{\rm cm}^{ee}$ = 161–209 GeV		
$10.85\!\pm\!0.14\!\pm\!0.08$	13600	ABDALLAH	04G	DLPH	$E_{\rm cm}^{ee}$ = 161–209 GeV		
$10.83\!\pm\!0.14\!\pm\!0.10$	11246	ACHARD	04J	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV		
$10.96\!\pm\!0.12\!\pm\!0.05$	16116	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV		
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet							
11.02 ± 0.52	11858	¹ ABBOTT	99н		$E_{ m cm}^{p\overline{p}}=1.8~ m TeV$		
$10.4 \pm 0.8 $	3642	² ABE	921	CDF	$E^{p\overline{p}}_{ m cm}$ = 1.8 TeV		

¹ABBOTT 99H measure $R \equiv [\sigma_W \ B(W \to \ell \nu_\ell)]/[\sigma_Z \ B(Z \to \ell \ell)] = 10.90 \pm 0.52$ combining electron and muon channels. They use $M_W = 80.39 \pm 0.06$ GeV and the SM theoretical predictions for $\sigma(W)/\sigma(Z)$ and $B(Z \to \ell \ell)$.

 2 1216 \pm 38 $^{+27}_{-31}$ $W \rightarrow \mu \nu$ events from ABE 92I and 2426 $W \rightarrow e \nu$ events of ABE 91C. ABE 921 give the inverse quantity as 9.6 \pm 0.7 and we have inverted.

$\Gamma(e^+ u)/\Gamma_{total}$					Г2/Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
10.71 \pm 0.16 OUR FIT					
$10.83\!\pm\!0.01\!\pm\!0.10$		TUMASYAN	22F	CMS	$E^{pp}_{ m cm}=13~{ m TeV}$
$10.71\!\pm\!0.25\!\pm\!0.11$	2374	ABBIENDI	07A	OPAL	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.55\!\pm\!0.31\!\pm\!0.14$	1804	ABDALLAH	0 4G	DLPH	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.78\!\pm\!0.29\!\pm\!0.13$	1576	ACHARD	04J	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV
$10.78\!\pm\!0.27\!\pm\!0.10$	2142	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV
$\bullet \bullet \bullet$ We do not use the	following da	ata for averages,	fits, l	imits, eto	C. ● ● ●
10.61 ± 0.28		¹ ABAZOV	04 D	TEVA	$E_{ m cm}^{p\overline{p}}=1.8~ m TeV$

- 6	•	_
	1	2

 Γ_1/Γ

NODE=S043WIN;LINKAGE=A

NODE=S043WIN;LINKAGE=B

NODE=S043225

NODE=S043225

NODE=S043R10 NODE=S043R10 NODE=S043R10

NODE=S043R10;LINKAGE=B

NODE=S043R10;LINKAGE=A

NODE=S043R1 NODE=S043R1 ¹ABAZOV 04D take into account all correlations to properly combine the CDF (ABE 95W) and DØ (ABBOTT 00B) measurements of the ratio R in the electron channel. The ratio R is defined as $[\sigma_W \cdot B(W \rightarrow e\nu_e)] / [\sigma_Z \cdot B(Z \rightarrow ee)]$. The combination gives $R^{Tevatron} = 10.59 \pm 0.23$. σ_W / σ_Z is calculated at next-to-next-to-leading order (3.360 \pm 0.051). The branching fraction $B(Z \rightarrow ee)$ is taken from this *Review* as (3.363 \pm 0.004)%.

$\Gamma(\mu^+ u)/\Gamma_{ ext{total}}$					Г ₃ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT I	D	TECN	COMMENT
10.63±0.15 OUR FIT	•				
$10.94\!\pm\!0.01\!\pm\!0.08$		TUMASYAN	1 22F	CMS	$E^{pp}_{ m cm}=$ 13 TeV
$10.78\!\pm\!0.24\!\pm\!0.10$	2397	ABBIENDI	07A	OPAL	$E_{\rm cm}^{ee} = 161 - 209 {\rm GeV}$
$10.65\!\pm\!0.26\!\pm\!0.08$	1998	ABDALLAH	0 4G	DLPH	$E_{cm}^{ee} = 161-209 \text{ GeV}$
$10.03\!\pm\!0.29\!\pm\!0.12$	1423	ACHARD	04J	L3	$E_{\rm cm}^{ee} = 161 – 209 \; { m GeV}$
$10.87\!\pm\!0.25\!\pm\!0.08$	2216	SCHAEL	04A	ALEP	$E_{cm}^{ee} = 183-209 \text{ GeV}$
$\Gamma(\mu^+ u)/\Gamma(e^+ u)$					Γ ₃ /Γ ₂
VALUE	EVTS	DOCUMENT ID	7	ECN	COMMENT
1.000 ± 0.004 OUR	AVERAGE				
$0.9995 \!\pm\! 0.0045$		¹ AAD	24cg A	TLS	$E^{pp}_{cm} = 13 \text{ TeV}$
$1.009 \ \pm 0.009$		TUMASYAN	22F C	MS	$E^{pp}_{cm} = 13 { m TeV}$
1.003 ± 0.010		² AABOUD	17Q A	TLS	E ^{pp} _{cm} = 7 TeV
$0.980 \ \pm 0.018$		³ AAIJ	16aj L	НСВ	$E_{\rm cm}^{pp}$ = 8 TeV
0.993 ± 0.019		SCHAEL	13A L	EP	$E_{\rm cm}^{ee} = 130-209 {\rm GeV}$
0.89 ±0.10	13k	⁴ ABACHI	95d C	00	$E_{\rm cm}^{p\overline{p}} = 1.8 {\rm TeV}$
1.02 ±0.08	1216	⁵ ABE	921 C	DF	$E_{\rm cm}^{p\overline{p}} = 1.8 {\rm TeV}$
$1.00 \pm 0.14 \pm 0.08$	67	ALBAJAR	89 U	IA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV
• • • We do not use	the followin	g data for average	s, fits, l	imits, e	etc. ● ● ●

¹ AAD 24CG analyse $t\bar{t}$ production rates in the ee, $e\mu$ and $\mu\mu$ dilepton final states. Using the ratio of B($Z \rightarrow \mu\mu$)/B($Z \rightarrow ee$) measured precisely at e^+e^- colliders, the ratio B($W \rightarrow \mu\nu$)/B($W \rightarrow e\nu$) is determined.

²AABOUD 17Q make a precise determination of $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ production in the follwoing fiducial phase space: lepton pseudo-rapidity range $|\eta| < 2.5$, lepton and neutrino transverse momenta larger than 25 GeV each, and W transverse mass larger than 25 GeV. They determine the ratio of the W branching fractions B($W \rightarrow e\nu$)/B($W \rightarrow \mu\nu$) = 0.9967 \pm 0.0004 \pm 0.0101 = 0.997 \pm 0.010.

³AAIJ 16AJ make precise measurements of forward $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ production in proton-proton collisions at 8 TeV and determine the ratio of the *W* branching fractions $B(W \rightarrow e\nu)/B(W \rightarrow \mu\nu) = 1.020 \pm 0.002 \pm 0.019$.

⁴ABACHI 95D obtain this result from the measured $\sigma_W B(W \rightarrow \mu\nu) = 2.09 \pm 0.23 \pm 0.11$ nb and $\sigma_W B(W \rightarrow e\nu) = 2.36 \pm 0.07 \pm 0.13$ nb in which the first error is the combined statistical and systematic uncertainty, the second reflects the uncertainty in the luminosity.

⁵ABE 92I obtain $\sigma_W B(W \rightarrow \mu \nu) = 2.21 \pm 0.07 \pm 0.21$ and combine with ABE 91c $\sigma_W B((W \rightarrow e\nu))$ to give a ratio of the couplings from which we derive this measurement.

$\Gamma(au^+ u)/\Gamma_{ ext{total}}$					Γ ₄ /Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
11.38 ± 0.21 OUR FIT					
$10.77\!\pm\!0.05\!\pm\!0.21$		TUMASYAN	22F	CMS	$E^{pp}_{ m cm}=$ 13 TeV
$11.14\!\pm\!0.31\!\pm\!0.17$	2177	ABBIENDI	07A	OPAL	$E_{\rm cm}^{ee}$ = 161–209 GeV
$11.46\!\pm\!0.39\!\pm\!0.19$	2034	ABDALLAH	04G	DLPH	$E_{\mathrm{cm}}^{ee}=161209~\mathrm{GeV}$
$11.89\!\pm\!0.40\!\pm\!0.20$	1375	ACHARD	04J	L3	$E_{\rm cm}^{ee}=$ 161–209 GeV
$11.25\!\pm\!0.32\!\pm\!0.20$	2070	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee} = 183$ –209 GeV

$\Gamma(au^+ u)/\Gamma(e^+ u)$					Γ_4/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.015 ± 0.020 OUR A	/ERAGE	Error includes scal	e fact	or of 1.3	. See the ideogram below.
$0.994 \!\pm\! 0.021$		TUMASYAN	22F	CMS	$E^{pp}_{ m cm}=13~{ m TeV}$
$1.063 \!\pm\! 0.027$		SCHAEL	13A	LEP	$E_{\rm cm}^{ee}$ = 130–209 GeV
$0.961 \!\pm\! 0.061$	980	¹ ABBOTT	00 D	D0	$E_{ m cm}^{p\overline{p}}=$ 1.8 TeV

NODE=S043R1;LINKAGE=AB

NODE=S043R9 NODE=S043R9

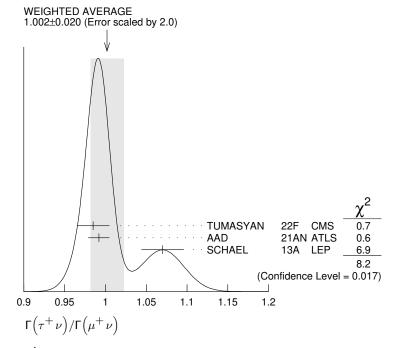
NODE=S043R3 NODE=S043R3

NODE=S043R3;LINKAGE=E

NODE=S043R3;LINKAGE=D

NODE=S043R3;LINKAGE=C

NODE=S043R3;LINKAGE=B


NODE=S043R3;LINKAGE=A

NODE=S043R11 NODE=S043R11

NODE=S043R7 NODE=S043R7

0.94 ± 0.14	179 ² AB	E 92E	CDF	$E_{ m cm}^{p\overline{p}}=1.8~ m TeV$	
$1.04\ \pm 0.08\ \pm 0.08$	754 ³ AL	TTI 92F	UA2	$E_{\rm cm}^{p\overline{p}}$ = 630 GeV	
$1.02 \ \pm 0.20 \ \pm 0.12$	32 AL	BAJAR 89	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV	
• • • We do not use the	e following data	for averages, fits	, limits,	etc. • • •	
$\begin{array}{c} 0.995 \!\pm\! 0.112 \!\pm\! 0.083 \\ 1.02 \ \pm\! 0.20 \ \pm\! 0.10 \end{array}$		TTI 91c BAJAR 87	UA2 UA1	Repl. by ALITTI 92F Repl. by ALBAJAR 89	
¹ ABBOTT 00D measu ABBOTT 00B result the ratio of the coup	$\sigma_{W} \times B(W \rightarrow$	$e\nu_{o}) = 2.31 \pm$	0.01 ± 0	0.10 ± 0.10 nb. Using the 0.05 \pm 0.10 nb, they quote	NODE=S043R7;LINKAGE=C
2 ABE 92E use two pr leads to 132 \pm 14 \pm 8 systematic correlatio	ocedures for sel events and the ns are taken inte ABE 91C result	ecting $W \rightarrow \tau \nu$ τ trigger to 47 ± 0 σ account to arrive τ on $\sigma B(W \rightarrow e^{-1})$	$\sigma_{ au}$ events 9 ± 4 events we at σ B(The missing E_T trigger ents. Proper statistical and $W \rightarrow \tau \nu$) = 2.05 ± 0.27 E 92E quote a ratio of the	NODE=S043R7;LINKAGE=B
³ This measurement is	derived by us f	rom the ratio of t	the coup	lings of ALITTI 92F.	NODE=S043R7;LINKAGE=A
WEIGHTED A\ 1.015±0.020 (E	VERAGE Error scaled by 1	.3)			
0.7 0.8 0		TUMASY SCHAEL ABBOTT ABE ALITTI ALBAJA 1 1.2 1.3	- 1 0 9 8 8 8	$\begin{array}{c} \chi^{2} \\ \chi^{2} \\$	
$\Gamma(\tau^+\nu)/\Gamma(\epsilon)$	$e^+\nu$				
$\frac{\Gamma(\tau^+\nu)}{\Gamma(\mu^+\nu)}$ $\frac{VALUE}{1.002\pm 0.020 \text{ OUR AVE}}$		D <u>CUMENT ID</u>	_ <u>TECN</u> or of 2.0	Γ4/Γ3 <u>COMMENT</u> See the ideogram below.	NODE=S043R16 NODE=S043R16
0.985±0.020			CMS	$E_{\rm cm}^{pp} = 13 {\rm TeV}$	
$0.992 \pm 0.007 \pm 0.011$	1 A/		N ATLS	$E_{\rm cm}^{pp} = 13 \text{ TeV}$	
1.070 ± 0.026			LEP	$E_{cm}^{ee} = 130-209 \text{ GeV}$	
1 AAD 21AN study $t\bar{t}$	production, w	ith the W bosor	is in top	-quark decay decaying to	NODE=S043R16;LINKAGE=A

AAD 21AN study *tt* production, with the *W* bosons in top-quark decay decaying to electrons or taus, with the tau decaying further into a muon. Analyzing the muon impact parameter and its transverse momentum, the contributions from prompt muons (arising from *W* decay) and non-prompt muons (arising from tau decay) are separated, allowing a measurement of the ratio of the *W* branching fractions into taus and muons, $R(\tau/\mu) = 0.992 \pm 0.007 \pm 0.011$ where the first error is statistical and the second systematic.

$\Gamma(hadrons)/\Gamma_{total}$

Г₅/Г

OUR FIT value is obtained by a fit to the lepton branching ratio data assuming lepton universality.

VALUE (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S043R12
67.41±0.27 OUR FIT						
$67.32\!\pm\!0.02\!\pm\!0.23$		TUMASYAN	22F	CMS	$E_{ m cm}^{pp}=$ 13 TeV	
$67.41 \!\pm\! 0.37 \!\pm\! 0.23$	16438	ABBIENDI	07A	OPAL	$E_{\rm Cm}^{ee}=$ 161–209 GeV	
$67.45 \!\pm\! 0.41 \!\pm\! 0.24$	13600	ABDALLAH	0 4G	DLPH	$E_{Cm}^{ee} = 161209 \; GeV$	
$67.50\!\pm\!0.42\!\pm\!0.30$	11246	ACHARD	04J	L3	$E_{Cm}^{ee} = 161209 \; GeV$	
$67.13 {\pm} 0.37 {\pm} 0.15$	16116	SCHAEL	04A	ALEP	$E_{\rm cm}^{ee}=$ 183–209 GeV	

$\Gamma(\pi^+\gamma)/\Gamma_{\text{total}}$

 Γ_6/Γ

I

				•/	
A stronger limit o	f < 1.9 imes	10^{-6} is obtained from	om $\Gamma(W^+ \rightarrow$	$\pi^+ \gamma) / \Gamma(W^+ \rightarrow e^+ \nu)$	·)
measurements.					
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	_
<1.9 × 10 ⁻⁶	95	¹ AAD	24BO ATLS	$E^{pp}_{ m cm}=13~{ m TeV}$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$< \! 1.5 imes 10^{-5}$	95	² SIRUNYAN	211	CMS	$E^{pp}_{ m cm}=13~{ m TeV}$
--------------------------	----	-----------------------	-----	-----	------------------------------

¹AAD 24BO search for exclusive hadronic decays of the W boson into a charged meson plus a photon, where the meson is a π^{\pm} , K^{\pm} or ρ^{\pm} . The meson-photon invariant mass distribution is used to set the limit on the branching fraction.

²SIRUNYAN 21I search for the rare decay of a *W* boson into a charged pion accompanied by a photon. A signal is not observed, and an upper limit on the branching fraction $B(W \rightarrow \pi \gamma) < 1.50 \times 10^{-5}$ is obtained at 95% C.L.

$\Gamma(ho^+\gamma)/\Gamma_{ ext{total}}$					Г ₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<5.2 × 10 ⁻⁶	95	¹ AAD	24BO ATLS	$E^{pp}_{ m cm}=13~{ m TeV}$	

¹AAD 24BO search for exclusive hadronic decays of the W boson into a charged meson plus a photon, where the meson is a π^{\pm} , K^{\pm} or ρ^{\pm} . The meson-photon invariant mass distribution is used to set the limit on the branching fraction.

$\Gamma(K^+\gamma)/\Gamma_{total}$					Г ₈ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<1.7 × 10 ⁼⁶	95	¹ AAD	24BO ATLS	$E^{pp}_{cm} = 13 { m TeV}$	I

¹ AAD 24BO search for exclusive hadronic decays of the W boson into a charged meson plus a photon, where the meson is a π^{\pm} , K^{\pm} or ρ^{\pm} . The meson-photon invariant mass distribution is used to set the limit on the branching fraction.

NODE=S043R01 NODE=S043R01 NODE=S043R01

NODE=S043R12

NODE=S043R12

NODE=S043R01;LINKAGE=B

NODE=S043R01;LINKAGE=A

NODE=S043R03 NODE=S043R03

NODE=S043R03;LINKAGE=A

NODE=S043R04 NODE=S043R04

NODE=S043R04;LINKAGE=A

	CL%	DOCUMENT ID	TEC	N COMMENT	Γ_6/Γ_2	NODE=S043R8 NODE=S043R8
$< 6.4 \times 10^{-5}$	95	AALTONEN	12w CD	F $E_{\rm cm}^{p\overline{p}} = 1.96$	Tev	
• • We do not use t	the followir	ng data for average	es, fits, limi [.]	ts, etc. • • •		
$< 7 \times 10^{-4}$	95	ABE	98н CD	$F E_{cm}^{p\overline{p}} = 1.8 T$	eV	
$< 4.9 \times 10^{-3}$	95	¹ ALITTI	92D UA	$2 E_{\rm cm}^{p\overline{p}} = 630 \ G$	GeV	
$< 58 \times 10^{-3}$	95	² ALBAJAR	90 UA	1 $E_{\rm cm}^{p\overline{p}} = 546, 6$	530 GeV	
¹ ALITTI 92D limit i ² ALBAJAR 90 obta	is $3.8 imes10$ and < 0.048	^{—3} at 90%CL. 8 at 90%CL.				NODE=S043R8;LINKAGE=B NODE=S043R8;LINKAGE=A
$(D_s^+\gamma)/\Gamma(e^+\nu)$					Γ_9/Γ_2	NODE=S043R13
ALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		NODE=S043R13
• • We do not use t	the followir	ng data for average		_		
1.2×10^{-2}	95	ABE	98P CD	F $E_{cm}^{pp} = 1.8 \text{ T}$	eV	
$(D^+_s \gamma) / \Gamma(\mu^+ \nu)$					Γ9/Γ3	
LUE	<u>CL%</u>	DOCUMENT ID	<u>TEC</u>	<u>COMMENT</u>		NODE=S043R02 NODE=S043R02
(6.1×10^{-3})	95	¹ AAIJ	23AMLH	CB $E_{cm}^{pp} = 13$ T	eV	
¹ AAIJ 23AM also quue using the known V			limit B(<i>W</i> ⁻	$^+ \rightarrow D_s^+ \gamma) < 6$	$1.5 imes 10^{-4}$,	NODE=S043R02;LINKAGE=A
(cX)/Γ(hadrons)					Γ ₁₀ /Γ ₅	NODE=S043R15
LUE 49 ±0.04 OUR AV	<u>EVTS</u>	DOCUMENT ID	<u>TEC</u>	<u>COMMENT</u>		NODE=S043R15
49 ± 0.04 OOR AV $481 \pm 0.042 \pm 0.032$	3005	¹ ABBIENDI	00V OP	AL $E_{cm}^{ee} = 183 +$	- 189 GeV	
$51 \pm 0.05 \pm 0.03$	746	² BARATE		$EP E_{cm}^{ee} = 172 + 172$		
$0.969 \pm 0.045 \pm 0$ ² BARATE 99M tag is determined to be	c jets using e 1.00 ± 0		algorithm. F	⁻ rom this measure		NODE=S043R15;LINKAGE=#
{cs} = Г(с з)/Г(ha Alue	drons)	DOCUMENT ID	TEC	<u>COMMENT</u>	Γ{11}/Γ_5	NODE=S043R14 NODE=S043R14
$46^{+0.18}_{-0.14}\pm 0.07$		¹ ABREU	98N DLI	PH $E_{cm}^{ee} = 161 +$	172 GeV	
¹ ABREU 98N tag c particle in a hadro	nic jet. Th act parame	ey also use a lifeti eter distribution o	me tag to i	on as the highest	momentum tify a c iet.	
based on the importance of the measurement $ V_{cs} $; is detern	nined to be 0.94 $^+$		particles in a jet.	From this	NODE=5043R14;LINKAGE=/
measurement $ V_{cs} $ $(\pi^+\pi^+\pi^-)/\Gamma_{total}$		DOCUMENT ID	0.32 ± 0.13	oarticles in a jet. 3. <u></u>	From this F13/F	NODE=S043R14;LINKAGE=A NODE=S043R00 NODE=S043R00
measurement $ V_{cs}$ $(\pi^+\pi^+\pi^-)/\Gamma_{tota}$ ALUE (units 10 ⁻⁶) <1.01	al <u>CL%</u> 95	<u>DOCUMENT ID</u> ¹ SIRUNYAN	$\frac{0.32}{0.26} \pm 0.13$	oarticles in a jet. 3. <u>5. COMMENT</u> S E ^{PP} _{cm} = 13 T	From this Γ₁₃/Γ eV	NODE=S043R00
measurement $ V_{cs} $ $(\pi^+\pi^+\pi^-)/\Gamma_{tota}$	al <u>CL%</u> 95 search for the required GeV, respecto be larg red in the V	<u>DOCUMENT ID</u> ¹ SIRUNYAN he rare decay of a in each event, wi ectively, while the ger than 40 GeV. A	$\begin{array}{c} 0.32\\ 0.26 \pm 0.13\\\\\hline \\ 19 \text{ BG CM}\\\\ \text{W boson int}\\\\ \text{transverse}\\\\ $	barticles in a jet. 3. EN = COMMENT $S = E_{cm}^{PP} = 13 \text{ T}$ to three charged p se momentum large momentum of the he three-pion inva	From this F13/F eV ions. Three ger than 35 three-pion riant mass,	NODE=S043R00 NODE=S043R00
measurement $ V_{CS} $ $(\pi^+\pi^+\pi^-)/\Gamma_{tota}$ <u>ALUE (units 10⁻⁶)</u> (1.01 ¹ SIRUNYAN 19BG s pion candidates ar GeV, 35 GeV, 18 system is required no excess is observed branching fraction.	al <u>CL%</u> 95 search for tl re required GeV, respe to be larg red in the V	<u>DOCUMENT ID</u> ¹ SIRUNYAN he rare decay of a in each event, wi ectively, while the ger than 40 GeV. A	0.32 ± 0.13 0.26 ± 0.13 19BG CM W boson int th transverse transverse t Analyzing th ading to the	barticles in a jet. 3. $\frac{EN}{S} = \frac{COMMENT}{E_{cm}^{PP}} = 13 \text{ T}$ to three charged p se momentum large momentum of the he three-pion inva 95% C.L. upper large	From this F13/F eV ions. Three ger than 35 three-pion riant mass, limit on the	NODE=S043R00 NODE=S043R00
measurement $ V_{CS} $ $(\pi^+\pi^+\pi^-)/\Gamma_{tota}$ ALUE (units 10 ⁻⁶) (1.01 ¹ SIRUNYAN 19BG s pion candidates ar GeV, 35 GeV, 18 system is required no excess is observed branching fraction. AVERAGE PAI	al <u>CL%</u> 95 search for the required GeV, respecto to be larg red in the N	<u>DOCUMENT ID</u> ¹ SIRUNYAN he rare decay of a in each event, wi ectively, while the ger than 40 GeV. A W mass region, lea	0.32 ± 0.13 0.26 ± 0.13 19 BG CM W boson int th transverse transverse t Analyzing th ading to the ES IN HAI	barticles in a jet. 3. $\frac{COMMENT}{S} = \frac{PP}{Cm} = 13 \text{ T}$ to three charged p see momentum large momentum of the he three-pion inva 95% C.L. upper large DRONIC W DE	From this F13/F eV ions. Three ger than 35 three-pion riant mass, limit on the	NODE=S043R00 NODE=S043R00 NODE=S043R00;LINKAGE=A
measurement $ V_{cs} $ $(\pi^+\pi^+\pi^-)/\Gamma_{total}$ <u>ALUE (units 10⁻⁶)</u> (1.01 ¹ SIRUNYAN 19BG s pion candidates ar GeV, 35 GeV, 18 system is required no excess is observ branching fraction. AVERAGE PAI Summed over $N_{\pi\pm}$	al <u>CL%</u> 95 search for the required GeV, respecto to be larg red in the N	DOCUMENT ID ¹ SIRUNYAN he rare decay of a in each event, wi ectively, while the ger than 40 GeV. A W mass region, lea MULTIPLICITIE nd antiparticle, wh	0.32 ± 0.13 0.26 ± 0.13 19BG CM W boson int th transverse transverse transverse transverse transverse transverse transverse transverse transverse transverse transverse to the the transverse transverse to the transverse transverse to the transverse transverse to the transverse to the transvers	barticles in a jet. 3. $\frac{COMMENT}{S} = \frac{PP}{Cm} = 13 \text{ T}$ to three charged p see momentum large momentum of the he three-pion inva 95% C.L. upper large DRONIC W DE	From this F13/F eV ions. Three ger than 35 three-pion riant mass, limit on the	NODE=S043R00 NODE=S043R00;LINKAGE=A NODE=S043228
measurement $ V_{cs} $ $(\pi^+\pi^+\pi^-)/\Gamma_{tota}$ ALUE (units 10 ⁻⁶) (1.01 ¹ SIRUNYAN 19BG s pion candidates ar GeV, 35 GeV, 18 system is required no excess is observ branching fraction. AVERAGE PAI	al <u>CL%</u> 95 search for the required GeV, respecto to be larg red in the N	DOCUMENT ID ¹ SIRUNYAN he rare decay of a in each event, wi ectively, while the ger than 40 GeV. A W mass region, lea MULTIPLICITIE nd antiparticle, wh <u>DOCUMENT ID</u>	0.32 ± 0.13 0.26 ± 0.13 19BG CM W boson int th transverse transverse t Analyzing th ading to the ES IN HAI hen appropri	barticles in a jet. 3. EN COMMENT $S E_{cm}^{PP} = 13 T$ to three charged p se momentum large momentum of the he three-pion inva 95% C.L. upper large DRONIC W DE jate.	From this F13/F eV ions. Three ger than 35 e three-pion riant mass, limit on the ECAY	NODE=S043R00 NODE=S043R00;LINKAGE=A NODE=S043228 NODE=S043228 NODE=S043228

$\frac{\langle N_{K^{\pm}} \rangle}{2.20 \pm 0.19}$	DOCUMENT ID ¹ ABREU,P 00F			NODE=S043KC NODE=S043KC
1 ABREU,P 00F measure $\langle N_{K}$ fully hadronic and semileptor average without assuming an	ic final states respectively			NODE=S043KC;LINKAGE=C
(Ν_p) <u>VALUE</u> 0.92±0.14	DOCUMENT ID 1 ABREU,P 00F	<u>tecn</u> DLPH	<u>COMMENT</u> E ^{ee} _{CM} = 189 GeV	NODE=S043PRO NODE=S043PRO
1 ABREU,P 00F measure $\langle \textit{N_p}$ fully hadronic and semilepton				NODE=S043PRO;LINKAGE=C

(N _{charged}) VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S043CHG NODE=S043CHG
19.39±0.08 OUR AVERAGE					
$19.38\!\pm\!0.05\!\pm\!0.08$	¹ ABBIENDI	06A	OPAL	$E_{\rm Cm}^{ee}=$ 189–209 GeV	
19.44 ± 0.17	² ABREU,P	00F	DLPH	<i>E^{ee}</i> _{cm} = 183+189 GeV	
$19.3 \ \pm 0.3 \ \pm 0.3$	³ ABBIENDI	99N	OPAL	$E_{\rm cm}^{ee} = 183 \; { m GeV}$	
19.23±0.74	⁴ ABREU	98C	DLPH	$E_{\rm cm}^{ee} = 172 \; {\rm GeV}$	
	> 20.74	0 1			

¹ABBIENDI 06A measure $\langle N_{charged} \rangle = 38.74 \pm 0.12 \pm 0.26$ when both *W* bosons decay hadronically and $\langle N_{charged} \rangle = 19.39 \pm 0.11 \pm 0.09$ when one *W* boson decays semileptonically. The value quoted here is obtained under the assumption that there is no color reconnection between *W* bosons; the value is a weighted average taking into account correlations in the systematic uncertainties.

²ABREU,P 00F measure $\langle N_{charged} \rangle = 39.12 \pm 0.33 \pm 0.36$ and $38.11 \pm 0.57 \pm 0.44$ in the fully hadronic final states at 189 and 183 GeV respectively, and $\langle N_{charged} \rangle = 19.49 \pm 0.31 \pm 0.27$ and $19.78 \pm 0.49 \pm 0.43$ in the semileptonic final states. The value quoted is a weighted average without assuming any correlations.

³ABBIENDI 99N use the final states $W^+ W^- \rightarrow q \overline{q} \ell \overline{\nu}_{\ell}$ to derive this value.

average without assuming any correlations.

1 . .

⁴ ABREU 98C combine results from both the fully hadronic as well semileptonic WW final states after demonstrating that the W decay charged multiplicity is independent of the topology within errors.

TRIPLE GAUGE COUPLINGS (TGC'S)

Revised April 2017 by M.W. Grünewald (U. College Dublin) and A. Gurtu (Formerly Tata Inst.).

Fourteen independent couplings, seven each for ZWW and γWW , completely describe the VWW vertices within the most general framework of the electroweak Standard Model (SM) consistent with Lorentz invariance and U(1) gauge invariance. Of each of the seven TGCs, three conserve C and P individually, three violate CP, and one violates C and P individually while conserving CP. Assumption of C and P conservation and electromagnetic gauge invariance reduces the number of independent VWW couplings to five: one common set [1,2] is $(\kappa_{\gamma}, \kappa_Z, \lambda_{\gamma}, \lambda_Z, g_1^Z)$, where $\kappa_{\gamma} = \kappa_Z = g_1^Z = 1$ and $\lambda_{\gamma} = \lambda_Z = 0$ in the Standard Model at tree level. The parameters κ_Z and λ_Z are related to the other three due to constraints of gauge invariance as follows: $\kappa_Z = g_1^Z - (\kappa_{\gamma} - 1) \tan^2 \theta_W$ and $\lambda_Z = \lambda_{\gamma}$, where θ_W is the weak mixing angle. The W magnetic dipole moment, μ_W , and the W electric quadrupole

NODE=S043CHG;LINKAGE=AB

NODE=S043CHG;LINKAGE=C

NODE=S043CHG;LINKAGE=B NODE=S043CHG;LINKAGE=A

NODE=S043240 NODE=S043240

NODE-5043DC1

moment, q_W , are expressed as $\mu_W = e (1 + \kappa_{\gamma} + \lambda_{\gamma})/2M_W$ and $q_W = -e (\kappa_{\gamma} - \lambda_{\gamma})/M_W^2$.

Precision measurements of suitable observables at LEP1 has already led to an exploration of much of the TGC parameter space. At LEP2, the VWW coupling arises in W-pair production via s-channel exchange, or in single W production via the radiation of a virtual photon off the incident e^+ or e^- . At the Tevatron and the LHC, hard-photon bremsstrahlung off a produced W or Z signals the presence of a triple-gauge vertex. In order to extract the value of one TGC, the others are generally kept fixed to their SM values. While most analyses use the above gauge constraints in the extraction of TGCs, one analysis of W-pair events also determines the real and imaginary parts of all 14 couplings using unconstrained single-parameter fits [3]. The results are consistent. Some experiments have determined limits on the couplings under various non-LEP scenarios and assuming different values of the form factor Λ , where the coupling parameters are scaled by $1/(1+s/\Lambda^2)^2$. For practical reasons it is not possible to quote all such determinations in the listings. For that the individual papers may be consulted. Recently, EFT-inspired sets of couplings [4,5], such as c_{WWW}/Λ^2 , c_W/Λ^2 , c_B/Λ^2 which are linearly related to the couplings discussed above, are also determined by the LHC experiments.

References

- 1. K. Hagiwara *et al.*, Nucl. Phys. **B282**, 253 (1987).
- 2. G. Gounaris et al., CERN 96-01 p. 525.
- S. Schael *et al.* (ALEPH Collab.), Phys. Lett. B614, 7 (2005).
- 4. K. Hagiwara *et al.*, Phys. Rev. **D48**, 2182 (1993).
- 5. C. Degrande et al., Annals Phys. 335 (2013) 21-32.

g_1^Z

U	OUR FIT below is taken from [SCHAEL 13A].									
OUR FIT below	NODE=S043DG1									
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S043DG1				
$0.984^{+0.018}_{-0.020}$ OUR FI	т									
$0.975^{+0.033}_{-0.030}$	7872	¹ ABDALLAH	10	DLPH	<i>E^{ee}</i> _{CM} = 189–209 GeV					
$1.001\!\pm\!0.027\!\pm\!0.013$	9310	² SCHAEL	05A	ALEP	$E_{\rm cm}^{ee}$ = 183–209 GeV					
$0.987 \substack{+ 0.034 \\ - 0.033}$	9800	³ ABBIENDI	04 D	OPAL	$E_{\rm cm}^{ee}$ = 183–209 GeV					
$0.966^{+0.034}_{-0.032}{\pm}0.015$	8325	⁴ ACHARD	0 4D	L3	$E_{\rm cm}^{ee}$ = 161–209 GeV					

NODE=S043DG1;LINKAGE=N

• • • We do not use	the follow	ving data for averag	es, fit	s, limits	, etc. ● ● ●	
		⁵ SIRUNYAN	20BA	CMS	$E^{pp}_{ m cm}=13~ m TeV$	
		⁶ SIRUNYAN	19CL	CMS	$E_{\rm cm}^{pp} = 13 { m TeV}$	
		⁷ SIRUNYAN	18 _{B2}	CMS	$E_{\rm cm}^{pp} = 13 {\rm TeV}$	
		⁸ AABOUD	17s	ATLS	$E_{\rm cm}^{pp} = 7+8 { m TeV}$	
		⁹ AABOUD			$E_{\rm cm}^{pp} = 8 {\rm TeV}$	
		¹⁰ KHACHATRY.	170	CMS	$E_{\rm cm}^{pp} = 8 {\rm TeV}$	
		¹¹ SIRUNYAN	17X	CMS	$E_{\rm cm}^{pp} = 8 {\rm TeV}$	
		¹² AAD			$E_{\rm cm}^{pp} = 8 {\rm TeV}$	
		¹³ AAD			$E_{\rm cm}^{pp} = 8 {\rm TeV}$	
		¹⁴ AAD	14Y	ATLS	$E_{\rm cm}^{pp} = 8 {\rm TeV}$	
		¹⁵ AAD			$E_{\rm cm}^{pp} = 7 {\rm TeV}$	
		¹⁶ CHATRCHYAN				
		¹⁷ AAD			$E_{\rm cm}^{pp} = 7 {\rm TeV}$	
		¹⁸ AALTONEN		CDF	$E_{\rm cm}^{p\overline{p}} = 1.96 \text{ TeV}$	
		¹⁹ ABAZOV	12A0	D0	$E_{\rm cm}^{p\overline{p}} = 1.96 \text{ TeV}$	
	34	²⁰ ABAZOV	11	D0	$E_{p\bar{p}}^{p\bar{p}} = 1.96 \text{ TeV}$	
	334	²¹ AALTONEN	10ĸ	CDF	$E_{\rm cm}^{p\overline{p}} = 1.96 \text{ TeV}$	
1.04 ±0.09		²² ABAZOV	09A[D0	$E_{\rm cm}^{p\overline{p}} = 1.96 \text{ TeV}$	
		²³ ABAZOV	09AJ	D0	$E_{\rm cm}^{p\overline{p}} = 1.96 \text{ TeV}$	
$1.07 \begin{array}{c} +0.08 \\ -0.12 \end{array}$	1880	²⁴ ABDALLAH	0 8C	DLPH	Superseded by ABDAL-	
	13	²⁵ ABAZOV	07z	D0	$\frac{L}{E_{cm}^{pp}} = 1.96 \text{ TeV}$	
	2.3	²⁶ ABAZOV	05 S	D0	$E_{ m cm}^{p\overline{p}}=1.96~ m TeV$	
$0.98\ \pm 0.07\ \pm 0.01$	2114	²⁷ ABREU	011	DLPH	$E_{Cm}^{ee} = 183 {+} 189 \; GeV$	
	331	²⁸ ABBOTT	991	D0	$E_{ m cm}^{p\overline{p}}=$ 1.8 TeV	
of-mass energies represents missing at their SM value ² SCHAEL 05A stu	between g moment s. dy single	189–209 GeV at Ll um. The fit is carri -photon, single–W,	EP2, ed ou and	where j t keeping WW–pa	$(f, jjjj, jjX, \ell X, at center-= jet, \ell = lepton, and Xg all other parameters fixedair production from 183 toW-pair production sample.$	NODE=S043DG1;LINKAGE=AH NODE=S043DG1;LINKAGE=SC
			ramet	er fit in	which the other parameters	
assume their Star ³ ABBIENDI 04D co	ombine re	sults from W^+W^-	in all	decay ch	annels. Only CP-conserving	NODE=S043DG1;LINKAGE=D4
which the other p	parameter	s assume their Stan			om a single-parameter fit in alues. The 95% confidence	
		.054.		/ 1		
duction with mise	idy <i>W W</i> – sing energ	pair production, sing y from 189 to 209	gie- <i>V</i> i GeV.	/ produc The res	tion and single–photon pro- ult quoted here is obtained	NODE=S043DG1;LINKAGE=AC
from the $WW-p$ RRI 99Q. Each p	air produ arameter	ction sample includ is determined from	ing da a sing	ata from	n 161 to 183 GeV, ACCIA- neter fit in which the other	
⁵ SIRUNYAN 20BA	study ele	andard Model value ectroweak productio	n of a	a W bos	son in association with two	NODE=S043DG1;LINKAGE=P
jets, using W dec required to have momentum of th (1.051) million e Model expectation momentum distri limit is obtained:	ays in the a transver vents are n of 2.39] bution of 0.971 <	electron or muon ch se momentum large is has to be larger selected in the mu $\pm 0.17 (1.054 \pm 0.058)$ the charged leptons $g_1^Z < 1.044$. C	annel er than ion (e 3) mill s fron Combi	The isc 25 (30 50 and electron) ion even W dec ning this	blated muons (electrons) are) GeV, while the transverse 30 GeV. A total of 2.382 channel, with a Standard ts. Analyzing the transverse cay, the following 95% C.L. is result with that from the	
closely-related ele $0.979 < g_1^Z < g_1^Z$		∠-jet-jet productio	on SIF	KUNYAN	I 18BZ, the limit becomes:	
		W and WZ produce	ction	in lepton	$\mathbf{n}+jet$ events, with one W	NODE=S043DG1;LINKAGE=O
boson decaying l	entonically	v (electron or muor	n) an	d anothe	er W or Z boson decaying	

- ⁶SIRUNYAN 19CL study WW and WZ production in lepton + jet events, with one W boson decaying leptonically (electron or muon), and another W or Z boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel 2,456 (2,235) events are selected in the WW(WZ) category, while in the muon channel 3,996 (3572) events are selected in the WW(WZ) category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limit is obtained: 0.9939 $< g_1^Z < 1.0074$.
- 1.0074. 7 SIRUNYAN 18BZ study $pp \rightarrow Z$ jet jet events at 13 TeV where $Z \rightarrow e^+e^-/\mu^+\mu^-$. Isolated electrons and muons are selected with p_T of the leading/sub-leading lepton > 30/20 GeV and $|\eta| < 2.4$, with the di-lepton invariant mass within 15 GeV of the Z mass. The two highest p_T jets are selected with p_T of the leading/sub-leading jet > 50/30 GeV respectively and dijet invariant mass > 200 GeV. Templates in the transverse

momentum of the Z are utilized to set limits on the triple gauge couplings in the EFT and the LEP parametrizations. The following 95% C.L. limit is obtained: 0.965 $\,<\,$ $g_1^Z < 1.042.$ 8 AABOUD 17S analyze electroweak production of a W boson in association with two NODE=S043DG1;LINKAGE=J jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than 600 GeV, 30 events are observed in the data with 39 \pm 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: 0.87 < $g_1^Z < 1.12$. ⁹AABOUD 17U analyze production of WW or WZ boson pairs with one W boson NODE=S043DG1:LINKAGE=K decaying to electron or muon plus neutrino, and the other W or Z boson decaying hadronically. The hadronic decay system is reconstructed as either a resolved two-jet system or as a single large jet. Analysing the transverse momentum distribution of the hadronic system above 100 GeV yields the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF}
ightarrow \infty$: 0.979 $< g_1^Z <$ 1.024. 10 KHACHATRYAN 170 analyse WZ production where each boson decays into electrons NODE=S043DG1;LINKAGE=L or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV, with one of the lepton pairs having an invariant mass within 20 GeV of the Z boson mass. The Z transverse momentum spectrum is analyzed to set a 95% C.L. limit of: 0.982 $< g_1^Z < 1.035.$ ¹¹SIRUNYAN 17X study $pp \rightarrow WW/WZ \rightarrow \ell \nu q \overline{q}$ production at 8 TeV where ℓ is an NODE=S043DG1;LINKAGE=M electron or muon with $p_T~>$ 30 or 25 GeV respectively. Suitable cuts are put on the p_T of the dijet system and the missing E_T of the event yielding a total of 285 and 204 WV events observed in the electron and muon channels. The following 95% C.L. limit is obtained: 0.9913 $< g_1^Z < 1.024$. $^{12}\,{\rm AAD}$ 16AR study $W\,W$ production in $p\,p$ collisions and select 6636 $W\,W$ candidates NODE=S043DG1;LINKAGE=H in decay modes with electrons or muons with an expected background of 1546 \pm 157 events. Assuming the LEP formulation and setting the form-factor Λ to infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95%C.L. range of 0.984 $< g_1^Z < 1.027$. 13 AAD 16P study WZ production in pp collisions and select 2091 WZ candidates in 4 NODE=S043DG1;LINKAGE=I decay modes with electrons and muons, with an expected background of 1825 ± 7 events. Analyzing the WZ transverse momentum distribution, the resulting 95% C.L. limit is: $0.981 < g_1^Z < 1.029.$ ¹⁴ AAD 14Y determine the electroweak Z-dijet cross section in 8 TeV pp collisions. $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ decays are selected with the di-lepton $p_T > 20$ GeV and mass in the NODE=S043DG1;LINKAGE=DT 81–101 GeV range. Minimum two jets are required with $\dot{p_T}$ > 55 and 45 GeV and no additional jets with $p_T > 25$ GeV in the rapidity interval between them. The normalized p_T balance between the Z and the two jets is required to be < 0.15. This leads to a selection of 900 events with dijet mass > 1 TeV. The number of signal and background events expected is 261 and 592 respectively. A Poisson likelihood method is used on an event by event basis to obtain the 95% CL limit $0.5 < g_1^Z < 1.26$ for a form factor value $\Lambda = \infty$. 15 AAD 13AL study WW production in pp collisions and select 1325 WW candidates in NODE=S043DG1;LINKAGE=F decay modes with electrons or muons with an expected background of 369 \pm 61 events. Assuming the LEP formulation and setting the form-factor Λ = infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95% C.L. range of 0.961 $< g_1^Z < 1.052$. Supersedes AAD 12AC. 16 CHATRCHYAN 13BF determine the W^+W^- production cross section using unlike sign NODE=S043DG1;LINKAGE=E di-lepton (e or μ) events with high p_T' . The leptons have p_T > 20 GeV/c and are isolated. 1134 candidate events are observed with an expected SM background of 247 \pm 34. The p_T distribution of the leading lepton is fitted to obtain 95% C.L. limits of 0.905 $\leq g_1^Z \leq 1.095.$ 17 AAD 12CD study WZ production in pp collisions and select 317 WZ candidates in three NODE=S043DG1;LINKAGE=AA $\ell \nu$ decay modes with an expected background of 68.0 ± 10.0 events. The resulting 95% C.L. range is: 0.943 $< g_1^Z < 1.093$. Supersedes AAD 12V. ¹⁸AALTONEN 12AC study WZ production in $p\overline{p}$ collisions and select 63 WZ candidates NODE=S043DG1;LINKAGE=AL in three $\ell\,\nu$ decay modes with an expected background of 7.9 \pm 1.0 events. Based on the cross section and shape of the Z transverse momentum spectrum, the following 95% C.L. range is reported: 0.92 < g_1^Z < 1.20 for a form factor of Λ = 2 TeV. $^{19}\,{\rm ABAZOV}$ 12AG combine new results with already published results on $W\,\gamma,\,W\,W$ and NODE=S043DG1;LINKAGE=AV WZ production in order to determine the couplings with increased precision, superseding ABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result for a formfactor cutoff of $\Lambda=2~{\rm TeV}$ is $g_1^Z=1.022{+0.032 \atop -0.030}$ ²⁰ABAZOV 11 study the $p\bar{p} \rightarrow 3\ell\nu$ process arising in WZ production. They observe 34 WZ candidates with an estimated background of 6 events. An analysis of the p_T NODE=S043DG1;LINKAGE=AO spectrum of the Z boson leads to a 95% C.L. limit of 0.944 $<~g_{1}^{Z}$ < 1.154, for a form factor $\Lambda = 2$ TeV. ²¹AALTONEN 10K study $p\overline{p} \rightarrow W^+W^-$ with $W \rightarrow e/\mu\nu$. The p_T of the leading NODE=S043DG1;LINKAGE=LA (second) lepton is required to be > 20 (10) GeV. The final number of events selected is 654 of which 320 \pm 47 are estimated to be background. The 95% C.L. interval is 0.76 $<~g_1^Z < 1.34$ for $\Lambda = 1.5$ TeV and $0.78 <~g_1^Z < 1.30$ for $\Lambda = 2$ TeV.

						7/16/2025	12:14	Page 15
They select 12,473 di-boson signal of 4 from an analysis of	(14,392) 36 (527) the <i>pT</i> 2 TeV. T	W and WZ production. channel with an expected lous couplings are derived quoted at 68% C.L. and bbtaining the mean as it is $\sigma_{x}^{Z} \leq 1.20$	NODE=S043I	DG1;LINKA	GE=BA			
					/ production. They select	NODE=S043[CE-BO
100 events with an	expected	WW signal of 65 e	events	. An ana	alysis of the p_T spectrum	NODE-30431	JGI,LINKA	GL-DO
factor $\Lambda = 2$ TeV.					$< \hspace{0.1 cm} g_{1}^{Z} \hspace{0.1 cm} < \hspace{0.1 cm} 1.3, \hspace{0.1 cm}$ for a form	NODE=S043I) DG1:LINKA	GE=AD
density matrix elem	ents in <i>e</i> -	$^{+}e^{-} \rightarrow W^{+}W^{-}$	\rightarrow (q	$q)(\ell \nu),$	where $\ell = e$ or μ . Values		- ,	
distribution in WZ electrons and muor	nits on ar producti ns. Settir	omalous TGCs using on with both the <i>V</i> og the other couplin	g the r V and gs to	neasured the Z their st	d cross section and $p_T(Z)$ decaying leptonically into andard model values, the	NODE=S043	DG1;LINKA	GE=BZ
95% C.L. limit for a								
$(\ell \text{ and } \ell' = e \text{ or } \mu)$ decay characteristic couplings. The 95%	. Three e s are obse % CL limi	vents (estimated ba rved from which the t for a form factor	ckgrou y deriv scale	and 0.71 ve limits $\Lambda = 1.5$	trilepton decay to $\ell \nu \ell' \overline{\ell}' \pm 0.08$ events) with WZ on the anomalous WWZ o TeV is 0.51 $< g_1^Z <$	NODE=S043I	DG1;LINKA	GE=AB
1.66, fixing λ_Z and 27 ABREU 011 combin					GeV leading to W^+W^-	NODE=S043I		
and $We\nu_e$ final sta	ates with	results from ABREU	J 99L	at 183 (GeV. The 95% confidence	NODE-30431	JGI,LINKA	GE-01
interval is 0.84 < g								
e <i>vjj, WW/WZ -</i> 95%CL limits are 0.	$ \rightarrow \mu \nu j j, .63 < g_1^Z $	and $WZ \rightarrow \text{ trilept}$ < 1.57, fixing λ_Z a	on datand κ_2	ta samp <u>7</u> to the	dilepton, $WW/WZ \rightarrow$ les. For $\Lambda = 2.0$ TeV, the ir Standard Model values,	NODE=S043I	DG1;LINKA	GE=D
and assuming Stand	dard Mod	el values for the <i>W</i>	Wγc	ouplings	5.			
κ_{γ}						NODE=S043	OKG	
OUR FIT below i	is taken f	rom [SCHAEL 13A].				NODE=S043		
VALUE 0.982±0.042 OUR FIT	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT	NODE=S043I	OKG	
$1.024 \substack{+0.077 \\ -0.081}$	7872	¹ ABDALLAH	10	DLPH	$E_{\rm cm}^{ee}$ = 189–209 GeV			
$0.971\!\pm\!0.055\!\pm\!0.030$	10689	² SCHAEL	05A	ALEP	$E_{\rm Cm}^{ee}$ = 183–209 GeV			
$0.88 \begin{array}{c} +0.09 \\ -0.08 \end{array}$	9800	³ ABBIENDI	0 4D	OPAL	$E_{\rm cm}^{ee}$ = 183–209 GeV			
$1.013^{+0.067}_{-0.064}{\pm}0.026$	10575	⁴ ACHARD	04 D	L3	<i>E^{ee}</i> = 161–209 GeV			
• • • We do not use th	ne followi	ng data for averages	s, fits,	limits, e	etc. • • •			
		⁵ AABOUD	17 ∪	ATLS	$E^{pp}_{cm} = 8 \text{ TeV}$			
		⁶ SIRUNYAN			$E_{\rm cm}^{pp} = 8 {\rm TeV}$			
		⁷ CHATRCHYAN						
		⁸ AAD	13AN	ATLS	$E^{pp}_{ m cm}=$ 7 TeV			
		⁹ CHATRCHYAN	V 13 BF	CMS	$E_{ m cm}^{pp}=$ 7 TeV			
		¹⁰ ABAZOV	12AG	D0	$E_{cm}^{p\overline{p}} = 1.96 \text{ TeV}$			
		¹¹ ABAZOV	11AC		$E_{Cm}^{p\overline{p}}=1.96\;TeV$			
		¹² CHATRCHYAN			$E_{\rm cm}^{pp} = 7 {\rm TeV}$			
	334	¹³ AALTONEN		CDF	$E_{\rm cm}^{p\overline{p}} = 1.96 {\rm TeV}$			
	53	¹⁴ AARON	09 B	H1	$E_{\rm cm}^{ep} = 0.3 { m TeV}$			

	53	¹⁴ AARON	09в H1	$E_{\rm cm}^{ep} = 0.3 {\rm TeV}$
$1.07 \begin{array}{c} +0.26 \\ -0.29 \end{array}$		¹⁵ ABAZOV	09AD D0	$E_{ m cm}^{p\overline{p}}=$ 1.96 TeV
		¹⁶ ABAZOV	09AJ D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
		¹⁷ ABAZOV	08R D0	$E_{Cm}^{p\overline{p}}=$ 1.96 TeV
$0.68 \begin{array}{c} +0.17 \\ -0.15 \end{array}$	1880	¹⁸ ABDALLAH	08c DLPH	Superseded by ABDAL- LAH 10
	1617	¹⁹ AALTONEN	07L CDF	$\frac{L}{E_{cm}^{pp}}$ = 1.96 GeV
	17	²⁰ ABAZOV	06H D0	$E^{p\overline{p}}_{ m cm}=1.96~{ m TeV}$
	141	²¹ ABAZOV	05J D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$1.25 \ {}^{+0.21}_{-0.20} \ {}^{\pm 0.06}_{-0.20}$	2298	²² ABREU	011 DLPH	$E_{\mathrm{Cm}}^{ee} = 183 {+} 189 \; \mathrm{GeV}$
		²³ BREITWEG	00 ZEUS	$e^+ p ightarrow e^+ W^\pm X, \ \sqrt{s} pprox 300 \ { m GeV}$
0.92 ± 0.34	331	²⁴ ABBOTT	991 D0	$\sqrt{s} \approx 300 \text{ GeV}$ $E_{\text{cm}}^{p\overline{p}} = 1.8 \text{ TeV}$

¹ABDALLAH 10 use data on the final states $e^+e^- \rightarrow jj\ell\nu, jjjj, jjX, \ell X$, at center-of-mass energies between 189–209 GeV at LEP2, where $j = \text{jet}, \ell = \text{lepton}$, and X NODE=S043DKG;LINKAGE=AH represents missing momentum. The fit is carried out keeping all other parameters fixed at their SM values. 2 SCHAEL 05A study single-photon, single-W, and WW-pair production from 183 to NODE=S043DKG;LINKAGE=SC 209 GeV. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. ³ABBIENDI 04D combine results from W^+W^- in all decay channels. Only *CP*-conserving NODE=S043DKG;LINKAGE=D4 couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is 0.73 $<\kappa_{\gamma}<$ 1.07. ⁴ ACHARD 04D study WW-pair production, single-W production and single-photon pro-NODE=S043DKG;LINKAGE=AC duction with missing energy from 189 to 209 GeV. The result quoted here is obtained including data from 161 to 183 GeV, ACCIARRI 99Q. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. 5 AABOUD 17U analyze production of WW or WZ boson pairs with one W boson NODE=S043DKG;LINKAGE=K decaying to electron or muon plus neutrino, and the other W or Z boson decaying hadronically. The hadronic decay system is reconstructed as either a resolved two-jet system or as a single large jet. Analysing the transverse momentum distribution of the hadronic system above 100 GeV yields the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF}
ightarrow \infty$: 0.939 $< \kappa_{\gamma} <$ 1.064. ⁶SIRUNYAN 17X study $pp \rightarrow WW/WZ \rightarrow \ell \nu q \overline{q}$ production at 8 TeV where ℓ is an NODE=S043DKG;LINKAGE=M electron or muon with $p_{T}~>$ 30 or 25 GeV respectively. Suitable cuts are put on the p_T of the dijet system and the missing E_T of the event yielding a total of 285 and 204 WV events observed in the electron and muon channels. The following 95% C.L. limit is obtained: 0.956 $<~\kappa_{\gamma}~<$ 1.063. 7 CHATRCHYAN 14AB measure $W\gamma$ production cross section for $p_T^\gamma >$ 15 GeV and R($\ell\gamma$) NODE=S043DKG;LINKAGE=CA > 0.7, which is the separation between the γ and the final state charged lepton (e or μ) in the azimuthal angle-pseudorapidity ($\phi - \eta$) plane. After background subtraction the number of $e\nu\gamma$ and $\mu\nu\gamma$ events is determined to be 3200 \pm 325 and 4970 \pm 543 respectively, compatible with expectations from the SM. This leads to a 95% CL limit of $0.62 < \kappa_{\gamma} < 1.29$, assuming other parameters have SM values. 8 AAD 13AN study $W\gamma$ production in pp collisions. In events with no additional jet, NODE=S043DKG;LINKAGE=J 4449 (6578) W decays to electron (muon) are selected, with an expected background of 1662 \pm 262 (2538 \pm 362) events. Analysing the photon p_{T} spectrum above 100 GeV yields a 95% C.L. limit of 0.59 $<~\kappa_{\gamma}~<$ 1.46. Supersedes AAD 12BX. ⁹CHATRCHYAN 13BF determine the W^+W^- production cross section using unlike sign NODE=S043DKG;LINKAGE=I di-lepton (e or μ) events with high p'_T . The leptons have $p_T > 20$ GeV/c and are isolated. 1134 candidate events are observed with an expected SM background of 247 \pm 34. The p_T distribution of the leading lepton is fitted to obtain 95% C.L. limits of 0.79 $\leq k_{\gamma} \leq 1.22.$ $^{10}\,\mathrm{ABAZOV}$ 12AG combine new results with already published results on $W\,\gamma,\,W\,W$ and NODE=S043DKG;LINKAGE=AV WZ production in order to determine the couplings with increased precision, superseding ABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result for a formfactor cutoff of $\Lambda=2$ TeV is $\kappa_{\gamma}=1.048 {+0.106 \atop -0.105}$ $^{11}{\sf ABAZOV}$ 11AC study $W\gamma$ production in $p\,\overline{p}$ collisions at 1.96 TeV, with the W decay NODE=S043DKG;LINKAGE=OZ products containing an electron or a muon. They select 196 (363) events in the electron (muon) mode, with a SM expectation of 190 (372) events. A likelihood fit to the photon E_T spectrum above 15 GeV yields at 95% C.L. the result: 0.6 $<\kappa_{\gamma}<$ 1.4 for a formfactor $\Lambda = 2$ TeV. ¹² CHATRCHYAN 11M study $W\gamma$ production in *pp* collisions at $\sqrt{s} = 7$ TeV using 36 pb⁻¹ NODE=S043DKG;LINKAGE=CH pp data with the W decaying to electron and muon. The total cross section is measured for photon transverse energy ${\it E}_T^{\gamma}>$ 10 GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell,\gamma) > 0.7$. The number of candidate (background) events is 452 (228 ± 21) for the electron channel and 520 (277 ± 05) for the electron chan (277 ± 25) for the muon channel. Setting other couplings to their standard model value, they derive a 95% CL limit of $-0.11 < \kappa_{\gamma} < 2.04$. ¹³AALTONEN 10K study $p\overline{p} \rightarrow W^+W^-$ with $W \rightarrow e/\mu\nu$. The p_T of the leading NODE=S043DKG;LINKAGE=LA (second) lepton is required to be > 20 (10) GeV. The final number of events selected is 654 of which 320 \pm 47 are estimated to be background. The 95% C.L. interval is 0.37 $<~\kappa_{\gamma}<$ 1.72 for $\Lambda=$ 1.5 TeV and 0.43 $<~\kappa_{\gamma}<$ 1.65 for $\Lambda=$ 2 TeV. ¹⁴AARON 09B study single-W production in ep collisions at 0.3 TeV C.M. energy. They NODE=S043DKG;LINKAGE=AR select 53 $W \rightarrow e/\mu$ events with a standard model expectation of 54.1 \pm 7.4 events. Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a 95% C.L. limit of $-3.7<\kappa_\gamma<-1.5$ or 0.3< $\kappa_\gamma<1.5$, where the ambiguity is due to the quadratic dependence of the cross section to the coupling parameter. $^{15}\text{ABAZOV}$ 09AD study the $p\overline{p} \rightarrow \ \ell \nu$ 2jet process arising in WW and WZ production. NODE=S043DKG;LINKAGE=BA They select 12,473 (14,392) events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived from an analysis of the p_T spectrum of the 2-jet system and quoted at 68% C.L. and for a form factor of 2 TeV. This measurement is not used for obtaining the mean as it is

for a specific form factor. The 95% confidence interval is 0.56 $<~\kappa_{\gamma}<1.55.$

7/16/2025 12:14

Page 16

7/16/2025 12:14 Page 17 16 ABAZOV 09AJ study the $p\,\overline{p} \rightarrow~2\ell 2\nu$ process arising in $W\,W$ production. They select NODE=S043DKG;LINKAGE=BZ 100 events with an expected WW signal of 65 events. An analysis of the p_T spectrum of the two charged leptons leads to 95% C.L. limits of 0.46 $<~\kappa_{\gamma}<$ 1.83, for a form factor $\Lambda = 2$ TeV. $^{17}\,{\sf ABAZOV}$ 08R use 0.7 fb $^{-1}$ $p\,\overline{p}$ data at \sqrt{s} = 1.96 TeV to select 263 $W\,\gamma$ + $\,X$ events, NODE=S043DKG;LINKAGE=AZ of which 187 constitute signal, with the W decaying into an electron or a muon, which is required to be well separated from a photon with $E_T>9$ GeV. A likelihood fit to the photon E_T spectrum yields a 95% CL limit 0.49 $<\kappa_\gamma^- <$ 1.51 with other couplings fixed to their Standard Model values. ¹⁸ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin NODE=S043DKG;LINKAGE=AD density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (qq)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values. ¹⁹AALTONEN 07L set limits on anomalous TGCs using the $p_T(W)$ distribution in WWNODE=S043DKG;LINKAGE=LT and WZ production with the W decaying to an electron or muon and the Z to 2 jets. Setting other couplings to their standard model value, the 95% C.L. limits are 0.54 $<\kappa_{\gamma}<$ 1.39 for a form factor scale $\Lambda=$ 1.5 TeV. ²⁰ ABAZOV 06H study $\overline{p}p \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^{\pm}\nu_{e}e^{-}\overline{\nu}_{e}$, $WW \rightarrow e^{\pm}\nu_{e}\mu^{\mp}\nu_{\mu}$ or $WW \rightarrow \mu^{+}\nu_{\mu}\mu^{-}\overline{\nu}_{\mu}$. The 95% C.L. limit for a form factor scale $\Lambda = 1$ TeV is $-0.05 < \kappa_{\gamma} < 2.29$, fixing $\lambda_{\gamma} = 0$. With the assumption of MNODE=S043DKG;LINKAGE=AA that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit (A = 2 TeV) is 0.68 $< \kappa <$ 1.45. $^{21}{\sf ABAZOV}$ 05J perform a likelihood fit to the photon ${\it E}_T$ spectrum of ${\it W}\gamma$ + X events, NODE=S043DKG;LINKAGE=AB where the W decays to an electron or muon which is required to be well separated from the photon. For Λ = 2.0 TeV the 95% CL limits are 0.12 $~<~\kappa_{\gamma}~<$ 1.96. In the fit λ_{γ} is kept fixed to its Standard Model value. 22 ABREU 011 combine results from e^+e^- interactions at 189 GeV leading to W^+W^- NODE=S043DKG;LINKAGE=UI Wev_e , and $\nu\overline{\nu}\gamma$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is 0.87 $<\kappa_{\gamma}<$ 1.68. ²³BREITWEG 00 search for W production in events with large hadronic p_T . For $p_T > 20$ NODE=S043DKG;LINKAGE=L GeV, the upper limit on the cross section gives the 95%CL limit $-3.7 < \kappa_\gamma < 2.5$ (for $\lambda_{\gamma}=0)$ ²⁴ ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow$ dilepton, $WW/WZ \rightarrow$ NODE=S043DKG;LINKAGE=E $e\,
u jj$, $W\,W/W\,Z
ightarrow \,\mu
u jj$, and $W\,Z
ightarrow \,$ trilepton data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are 0.75 $< \kappa_{\gamma} < 1.39$. λ_{γ} NODE=S043LG OUR FIT below is taken from [SCHAEL 13A]. NODE=S043LG VALUE DOCUMENT ID _____<u>TECN___COMMENT_</u> NODE=S043LG EVTS -0.022±0.019 OUR FIT ¹ ABDALLAH DLPH E^{ee}_{cm} = 189–209 GeV 0.002 ± 0.035 7872 10 ² SCHAEL 05A ALEP $E_{cm}^{ee} = 183-209 \text{ GeV}$ $-0.012 \pm 0.027 \pm 0.011$ 10689 $-0.060\substack{+0.034\\-0.033}$ ³ ABBIENDI 04D OPAL Ecm = 183-209 GeV 9800 $-0.021^{+0.035}_{-0.034}{\pm}0.017\ 10575$ ⁴ ACHARD 04D L3 $E_{cm}^{ee} = 161 - 209 \text{ GeV}$ • • • We do not use the following data for averages, fits, limits, etc. • • •

		⁵ CHATRCHYA	V 14 AB	S CMS	$E^{pp}_{cm} =$ 7 TeV
		⁶ AAD	13AN	ATLS	$E^{pp}_{cm} = 7 \text{ TeV}$
		⁷ ABAZOV	12AG	D0	$E_{ m cm}^{m p\overline{m p}}=1.96{ m TeV}$
		⁸ ABAZOV	11AC	D0	$E_{ m cm}^{m p\overline{m p}}=1.96{ m TeV}$
		⁹ CHATRCHYA	№ 11м	CMS	$E^{pp}_{cm} = 7 \text{ TeV}$
	53	¹⁰ AARON	09 B	H1	$E^{ep}_{ m cm}=$ 0.3 TeV
$0.00 \ \pm 0.06$		11 ABAZOV	09AD	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
		¹² ABAZOV	09AJ	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
		¹³ ABAZOV	08R	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$0.16 \begin{array}{c} +0.12 \\ -0.13 \end{array}$	1880	¹⁴ ABDALLAH	0 8C	DLPH	
	1617	¹⁵ AALTONEN	07L	CDF	LAH 10 $E_{cm}^{p\overline{p}} = 1.96 \text{ GeV}$
	17	¹⁶ ABAZOV	06H	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
	141	¹⁷ ABAZOV	05J	D0	$E_{ m cm}^{p\overline{p}}=1.96~{ m TeV}$
$0.05\ \pm 0.09\ \pm 0.01$	2298	¹⁸ ABREU	011		$E_{\rm cm}^{ee} = 183 + 189 {\rm GeV}$
		¹⁹ BREITWEG	00	ZEUS	$e^+ p ightarrow e^+ W^{\pm} X, \ \sqrt{s} pprox 300 \text{ GeV}$
$0.00 \begin{array}{c} +0.10 \\ -0.09 \end{array}$	331	²⁰ АВВОТТ	991	D0	$E_{ m cm}^{p\overline{p}}=$ 1.8 TeV

¹ABDALLAH 10 use data on the final states $e^+e^- \rightarrow jj\ell\nu, jjjj, jjX, \ell X$, at center-of-mass energies between 189–209 GeV at LEP2, where $j = jet, \ell = lepton$, and X NODE=S043LG;LINKAGE=AH represents missing momentum. The fit is carried out keeping all other parameters fixed at their SM values. 2 SCHAEL 05A study single-photon, single-W, and WW-pair production from 183 to NODE=S043LG;LINKAGE=SC 209 GeV. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. ³ABBIENDI 04D combine results from W^+W^- in all decay channels. Only *CP*-conserving NODE=S043LG;LINKAGE=D4 couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $-0.13 < \lambda_{\gamma} < 0.01.$ ⁴ ACHARD 04D study WW-pair production, single-W production and single-photon pro-NODE=S043LG;LINKAGE=AC duction with missing energy from 189 to 209 GeV. The result quoted here is obtained including data from 161 to 183 GeV, ACCIARRI 99Q. Each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. 5 CHATRCHYAN 14AB measure $W\gamma$ production cross section for $p_T^\gamma>$ 15 GeV and R($\ell\gamma)$ NODE=S043LG;LINKAGE=CA > 0.7, which is the separation between the γ and the final state charged lepton (e or μ) in the azimuthal angle-pseudorapidity ($\phi - \eta$) plane. After background subtraction the number of $e
u \gamma$ and $\mu
u \gamma$ events is determined to be 3200 \pm 325 and 4970 \pm 543 respectively, compatible with expectations from the SM. This leads to a 95% CL limit of - 0.050 $\,<\lambda_{\gamma}<$ 0.037, assuming all other parameters have SM values. 6 AAD 13AN study $W\gamma$ production in pp collisions. In events with no additional jet, NODE=S043LG;LINKAGE=I 4449 (6578) W decays to electron (muon) are selected, with an expected background of 1662 \pm 262 (2538 \pm 362) events. Analysing the photon p_{T} spectrum above 100 GeV yields a 95% C.L. limit of $-0.065~<~\lambda_{\gamma}~<0.061$. Supersedes AAD 12BX. $^7\,{\rm ABAZOV}$ 12AG combine new results with already published results on $W\,\gamma,~W\,W$ and NODE=S043LG;LINKAGE=AV WZ production in order to determine the couplings with increased precision, superseding ABAZOV 08R, ABAZOV 11AC, ABAZOV 09AJ, ABAZOV 09AD. The 68% C.L. result for a formfactor cutoff of $\Lambda=2$ TeV is $\lambda_{\gamma}=0.007 \substack{+0.021\\-0.022}$. ⁸ABAZOV 11AC study $W\gamma$ production in $p\overline{p}$ collisions at 1.96 TeV, with the W decay NODE=S043LG;LINKAGE=OZ products containing an electron or a muon. They select 196 (363) events in the electron (muon) mode, with a SM expectation of 190 (372) events. A likelihood fit to the photon E_T spectrum above 15 GeV yields at 95% C.L. the result: $-0.08~<~\lambda_\gamma~<0.07$ for a formfactor $\Lambda = 2$ TeV. 9 CHATRCHYAN 11M study $W\gamma$ production in pp collisions at \sqrt{s} = 7 TeV using 36 pb⁻¹ NODE=S043LG;LINKAGE=CH pp data with the W decaying to electron and muon. The total cross section is measured for photon transverse energy ${\sf E}_T^\gamma>$ 10 GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell,\gamma) > 0.7$. The number of candidate (background) events is 452 (228 \pm 21) for the electron channel and 520 (277 ± 25) for the muon channel. Setting other couplings to their standard model value, they derive a 95% CL limit of $-0.18~<~\lambda_{\gamma}<0.17.$ 10 AARON 09B study single-W production in ep collisions at 0.3 TeV C.M. energy. They NODE=S043LG;LINKAGE=AR select 53 $W \rightarrow e/\mu$ events with a standard model expectation of 54.1 \pm 7.4 events. Fitting the transverse momentum spectrum of the hadronic recoil system they obtain a 95% C.L. limit of $-2.5 < \lambda_{\gamma} < 2.5$. ¹¹ABAZOV 09AD study the $p\overline{p} \rightarrow \ell \nu$ 2jet process arising in WW and WZ production. NODE=S043LG;LINKAGE=BA They select 12,473 (14,392) events in the electron (muon) channel with an expected di-boson signal of 436 (527) events. The results on the anomalous couplings are derived from an analysis of the p_T spectrum of the 2-jet system and quoted at 68% C.L. and for a form factor of 2 TeV. This measurement is not used for obtaining the mean as it is for a specific form factor. The 95% confidence interval is $-0.10 < \lambda_{\gamma} < 0.11.$ 12 ABAZOV 09AJ study the $p\overline{p} \rightarrow 2\ell 2\nu$ process arising in WW production. They select 100 events with an expected WW signal of 65 events. An analysis of the p_T spectrum of the two charged leptons leads to 95% C.L. limits of $-0.14 < \lambda_{\gamma} < 0.18$, for a form NODE=S043LG;LINKAGE=BZ factor $\Lambda = 2$ TeV. ¹³ABAZOV 08R use 0.7 fb⁻¹ $p\overline{p}$ data at $\sqrt{s} = 1.96$ TeV to select 263 $W\gamma + X$ events, NODE=S043LG;LINKAGE=AZ of which 187 constitute signal, with the ${\it W}$ decaying into an electron or a muon, which is required to be well separated from a photon with $E_T>9$ GeV. A likelihood fit to the photon E_T spectrum yields a 95% CL limit $-0.12<\lambda_\gamma<0.13$ with other couplings fixed to their Standard Model values. $^{14}\,\mathrm{ABDALLAH}$ 08C determine this triple gauge coupling from the measurement of the spin NODE=S043LG;LINKAGE=AD density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (qq)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values. 15 AALTONEN 07L set limits on anomalous TGCs using the $p_{\mathcal{T}}(W)$ distribution in WWNODE=S043LG;LINKAGE=LT and WZ production with the W decaying to an electron or muon and the Z to 2 jets. Setting other couplings to their standard model value, the 95% C.L. limits are $-0.18 < \lambda_{\gamma} < 0.17$ for a form factor scale $\Lambda = 1.5$ TeV. ¹⁶ABAZOV OGH study $\overline{\rho}\rho \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^{\pm}\nu_{e}e^{-}\overline{\nu}_{e}$, $WW \rightarrow e^{\pm}\nu_{e}\mu^{\mp}\nu_{\mu}$ or $WW \rightarrow \mu^{+}\nu_{\mu}\mu^{-}\overline{\nu}_{\mu}$. The 95% C.L. limit for a form factor scale $\Lambda = 1$ TeV is $-0.97 < \lambda_{\gamma} < 1.04$, fixing $\kappa_{\gamma} = 1$. With the assumption of MNODE=S043LG;LINKAGE=AA that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit (A

= 2 TeV) is $-0.29 < \lambda < 0.30$.

7/16/2025 12:14

Page 18

- $^{17}{\sf ABAZOV}$ 05J perform a likelihood fit to the photon ${\it E}_T$ spectrum of ${\it W}\gamma$ + X events, where the W decays to an electron or muon which is required to be well separated from the photon. For $\Lambda=2.0$ TeV the 95% CL limits are $-0.20~<\lambda_{\gamma}~<0.20$. In the fit κ_γ is kept fixed to its Standard Model value.
- 18 ABREU 011 combine results from $e^+\,e^-$ interactions at 189 GeV leading to $W^+\,W^ Wev_{
 m P}$, and $\nu\overline{
 u}\gamma$ final states with results from ABREU 99L at 183 GeV. The 95% confidence interval is $-0.11 < \lambda_{\gamma} < 0.23$.
- $^{19}\,\textsc{BREITWEG}$ 00 search for W production in events with large hadronic p_T . For p_T >20 GeV, the upper limit on the cross section gives the 95%CL limit $-3.2 < \lambda_\gamma < 3.2$ for κ_{γ} fixed to its Standard Model value.
- ²⁰ ABBOTT 991 perform a simultaneous fit to the $W\gamma$, $WW \rightarrow \text{dilepton}$, $WW/WZ \rightarrow e\nu jj$, $WW/WZ \rightarrow \mu\nu jj$, and $WZ \rightarrow \text{trilepton}$ data samples. For $\Lambda = 2.0$ TeV, the 95%CL limits are $-0.18 < \lambda_{\gamma} < 0.19$.

ĸΖ

This coupling is	<i>CP</i> -conse	erving (C- and P- sepa	arately cons	serving).	
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
		-			

0.924+0.059±0.024 7171 ¹ ACHARD 04D L3 $E_{\rm cm}^{ee} = 189-209 \; {\rm GeV}$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

	² SIRUNYAN	20BA CMS	$E^{pp}_{ m cm}=13~{ m TeV}$
	³ SIRUNYAN	19CL CMS	$E^{pp}_{ m cm}=13~{ m TeV}$
	⁴ AABOUD	17s ATLS	$E^{pp}_{cm} =$ 7+8 TeV
	⁵ KHACHATRY.	170 CMS	$E^{pp}_{cm} = 8 \text{ TeV}$
	⁶ AAD	16AR ATLS	$E^{pp}_{cm} = 8 \text{ TeV}$
	⁷ AAD	16P ATLS	$E^{pp}_{cm} = 8 \text{ TeV}$
	⁸ AAD	13AL ATLS	$E^{pp}_{cm} = 7 { m TeV}$
	⁹ AAD	12CD ATLS	$E^{pp}_{cm} = 7 { m TeV}$
	¹⁰ AALTONEN	12AC CDF	$E^{p\overline{p}}_{ m cm}=$ 1.96 TeV
34	¹¹ ABAZOV	11 D0	$E^{p\overline{p}}_{ m cm}=$ 1.96 TeV
17	¹² ABAZOV	06H D0	$E^{p\overline{p}}_{ m cm}=$ 1.96 TeV
2.3	¹³ ABAZOV	05s D0	$E^{p\overline{p}}_{ m cm}=$ 1.96 TeV

¹ACHARD 04D study WW-pair production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained using the WW-pair production sample. Each parameter is determined from a singleparameter fit in which the other parameters assume their Standard Model values.

- 2 SIRUNYAN 20BA study electroweak production of a W boson in association with two jets, using W decays in the electron or muon channel. The isolated muons (electrons) are required to have a transverse momentum larger than 25 (30) GeV, while the transverse momentum of the two jets has to be larger than 50 and 30 GeV. A total of 2.382 (1.051) million events are selected in the muon (electron) channel, with a Standard Model expectation of 2.39 ± 0.17 (1.054 ± 0.058) million events. Analysing the transverse momentum distribution of the charged leptons from W decay, the following 95% C.L. limit is obtained: 0.956 $<\kappa_Z<$ 1.044. Combining this result with that from the closely-related electroweak Z-jet-jet production SIRUNYAN 18BZ, the limit becomes: $0.957 < \kappa_Z < 1.042.$
- 3 SIRUNYAN 19CL study WW and WZ production in lepton + jet events, with one W boson decaying leptonically (electron or muon), and another \tilde{W} or Z boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel 2,456 (2,235) events are selected in the WW(WZ) category, while in the muon channel 3,996 (3572) events are selected in the WW(WZ) category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limit is obtained: 0.9921 $<~\kappa_Z~<$ 1.0082
- ⁴AABOUD 17S analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than 600 GeV, 30 events are observed in the data with 39 \pm 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: 0.85 < κ_Z < 1.16.
- 5 KHACHATRYAN 170 analyse WZ production where each boson decays into electrons or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV, with one of the lepton pairs having an invariant mass within 20 GeV of the Z boson mass. The Z transverse momentum spectrum is analyzed to set a 95% C.L. limit of: $0.79 < \kappa_Z < 1.25.$
- 6 AAD 16AR study WW production in pp collisions and select 6636 WW candidates in decay modes with electrons or muons with an expected background of 1546 \pm 157 events. Assuming the LEP formulation and setting the form-factor Λ to infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95%C.L. range of 0.975 $<\kappa_Z<$ 1.020.

NODE=S043LG;LINKAGE=UI

NODE=S043LG;LINKAGE=L

NODE=S043LG;LINKAGE=E

NODE=S043DKZ NODE=S043DKZ NODE=S043DKZ

NODE=S043DKZ;LINKAGE=AC

NODE=S043DKZ;LINKAGE=G

NODE=S043DKZ;LINKAGE=F

NODE=S043DKZ;LINKAGE=D

NODE=S043DKZ;LINKAGE=E

NODE=S043DKZ;LINKAGE=B

				7/10/2025 12:14 Page 20
7 AAD 16P study WZ prodecay modes with electron Analyzing the WZ trans $0.81 < \kappa_Z < 1.30$.	ns and muons, with an ex	xpected backgr	round of 1825 ± 7 events.	NODE=S043DKZ;LINKAGE=C
8 AAD 13AL study <i>WW</i> p decay modes with electro Assuming the LEP form transverse momentum dis range of 0.957 < κ_Z <	ns or muons with an exp ulation and setting the stribution of the leading	pected backgro form-factor <i>A</i> g charged lepte	pund of 369 \pm 61 events. Δ = infinity, a fit to the	NODE=S043DKZ;LINKAGE=A
⁹ AAD 12CD study WZ pro $\ell \nu$ decay modes with an e C.L. range is: 0.63 < κ_Z	expected background of	68.0 ± 10.0 ev		NODE=S043DKZ;LINKAGE=AD
¹⁰ AALTONEN 12AC study in three $\ell \nu$ decay modes the cross section and shap C.L. range is reported: 0.	WZ production in $p\overline{p}$ c with an expected back pe of the Z transverse m .61 < κ_Z < 1.90 for a	collisions and s ground of 7.9 nomentum spec a form factor of	\pm 1.0 events. Based on ctrum, the following 95% f Λ = 2 TeV.	NODE=S043DKZ;LINKAGE=AL
¹¹ ABAZOV 11 study the μ 34 WZ candidates with spectrum of the Z boson factor $\Lambda = 2$ TeV.	an estimated backgroun leads to a 95% C.L. lir	nd of 6 events mit of 0.600 <	. An analysis of the p_T $\kappa_Z < 1.675$, for a form	NODE=S043DKZ;LINKAGE=AO
¹² ABAZOV 06H study $\overline{p}\mu$ $e^+\nu_e e^-\overline{\nu}_e, WW \rightarrow e^-\mu$ a form factor scale $\Lambda = 2^-\mu$ that the $WW\gamma$ and WV $= 2$ TeV) is 0.68 < $\kappa < -\mu$	${}^{\pm}\nu_{e}\mu^{\mp}\nu_{\mu}$ or $WW \rightarrow$ TeV is 0.55 $<\kappa_{Z}<$ 1. WZ couplings are equal	$\mu^+ \nu_\mu \mu^- \overline{\nu}_\mu$. The 95% C.L. limit for	NODE=S043DKZ;LINKAGE=AA
¹³ ABAZOV 05S study $\overline{\rho}p - (\ell \text{ and } \ell' = e \text{ or } \mu)$. Three	$\rightarrow WZ$ production with ee events (estimated bac	ckground 0.71	\pm 0.08 events) with WZ	NODE=S043DKZ;LINKAGE=AB
couplings. The 95% CL I fixing λ_Z and g_1^Z to the	observed from which they imit for a form factor so ir Standard Model value	cale $\Lambda=1$ TeV		
couplings. The 95% CL I fixing λ_Z and g_1^Z to thei	imit for a form factor so	cale $\Lambda=1$ TeV		
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co	imit for a form factor so ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep	cale $\Lambda=1$ TeV es. parately conserv	\prime is $-1.0 < \kappa_Z < 3.4,$ ving).	NODE=S043LZ NODE=S043LZ NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co VALUE <u>EN</u>	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u>	cale $\Lambda = 1$ TeV es. parately conserv 2 <u>TECN</u>	γ is $-1.0 < \kappa_Z < 3.4$, ring).	
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u>	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS DOCUMENT ID</u> 171 ¹ ACHARD	cale $\Lambda = 1$ TeV es. Description $\Delta = 1$ TeV parately conserv $\Delta = \frac{TECN}{0}$ 04D L3	$r' ext{ is } -1.0 < \kappa_Z < 3.4,$ $r' ext{ is } -1.0 < \kappa_Z < 3.4,$ $r' ext{ comment}$ $E_{ ext{cm}}^{ee} = 189-209 ext{ GeV}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages	cale $\Lambda = 1$ TeV es. Dearately conserv $D = \frac{TECN}{0}$ 04D L3 s, fits, limits, et	$\frac{V_{\text{ing}}}{COMMENT}$ $\frac{COMMENT}{E_{\text{cm}}^{ee} = 189-209 \text{ GeV}}$ $\frac{COMMENT}{CC} \bullet \bullet \bullet$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN	cale $\Lambda = 1$ TeV es. D arately conserved D $TECN04D L35, fits, limits, et20BA CMS$	this $-1.0 < \kappa_Z < 3.4$, thing). COMMENT $E_{Cm}^{ee} = 189-209 \text{ GeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN	cale $\Lambda = 1$ TeV es. D arately conserv D $TECN04D L3s, fits, limits, et20BA CMS19CL CMS$	$\begin{array}{l} \text{fing}).\\ \hline \\ \underline{COMMENT}\\ \hline \\ E_{\text{Cm}}^{ee} = 189-209 \text{ GeV}\\ \text{fc.} \bullet \bullet \bullet\\ \hline \\ E_{\text{Cm}}^{pp} = 13 \text{ TeV}\\ \hline \\ E_{\text{Cm}}^{pp} = 13 \text{ TeV} \end{array}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN	cale $\Lambda = 1$ TeV es. D arately conserv D $TECN04D L3s, fits, limits, et20BA CMS19CL CMS18BZ CMS$	$\begin{aligned} & \text{ving} \text{).} \\ & \underbrace{\text{COMMENT}} \\ & \underbrace{\text{COMMENT}} \\ & E_{\text{cm}}^{\text{cee}} = 189\text{-}209 \text{ GeV} \\ & \text{cc.} \bullet \bullet \bullet \\ & E_{\text{cm}}^{\text{pp}} = 13 \text{ TeV} \\ & E_{\text{cm}}^{\text{pp}} = 13 \text{ TeV} \\ & E_{\text{cm}}^{\text{pp}} = 13 \text{ TeV} \end{aligned}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD	cale $\Lambda = 1$ TeV es. D arately conserved D $TECN04D L35, fits, limits, et20BA CMS19CL CMS18BZ CMS17S ATLS$	$\begin{aligned} &f_{\rm ris} - 1.0 < \kappa_Z < 3.4, \\ &f_{\rm ring} \\ &f_{\rm cm} = 189-209 \; {\rm GeV} \\ &f_{\rm cm} = 189-209 \; {\rm GeV} \\ &f_{\rm cm} = 13 \; {\rm TeV} \\ &f_{\rm cm}^{pp} = 7+8 \; {\rm TeV} \end{aligned}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD	cale $\Lambda = 1$ TeV es. Destination of the formula formula for the formula formula for the formula formula for the formula formula formula for the formula form	$\begin{aligned} f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD	cale $\Lambda = 1$ TeV es. 04D L3 04D L3 s, fits, limits, et 20BA CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS Y170 CMS	$\begin{aligned} &f_{\rm ris} - 1.0 < \kappa_Z < 3.4, \\ &f_{\rm ring} \\ &f_{\rm cm} = 189-209 \; {\rm GeV} \\ &f_{\rm cm} = 189-209 \; {\rm GeV} \\ &f_{\rm cm} = 13 \; {\rm TeV} \\ &f_{\rm cm}^{pp} = 7+8 \; {\rm TeV} \end{aligned}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRY	cale $\Lambda = 1$ TeV es. $\frac{D}{D} = \frac{TECN}{04D}$ 04D L3 04D L3 19CL CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS 17U ATLS 17U CMS 17x CMS	$\begin{aligned} f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline COMMENT \\ \hline E_{\text{cm}}^{ee} = 189-209 \text{ GeV} \\ \hline E_{\text{cm}}^{ep} = 13 \text{ TeV} \\ \hline E_{\text{cm}}^{pp} = 13 \text{ TeV} \\ \hline E_{\text{cm}}^{pp} = 13 \text{ TeV} \\ \hline E_{\text{cm}}^{pp} = 7+8 \text{ TeV} \\ \hline E_{\text{cm}}^{pp} = 8 \text{ TeV} \\ \hline E_{\text{cm}}^{pp} = 8 \text{ TeV} \end{aligned}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor so ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN	cale A = 1 TeV es. parately conserve 0 4D L3 offits, limits, et 20BA CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS Y170 CMS 17X CMS 16AR ATLS	$\begin{aligned} f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value nserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD	cale A = 1 TeV es. Darately conserve 04D L3 04D L3 19CL CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS 17U ATLS 17X CMS 16AR ATLS 16P ATLS	$\begin{aligned} f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline comment \\ \hline COMMENT \\ \hline E_{\text{Cm}}^{ee} = 189-209 \text{ GeV} \end{aligned}$ $\begin{aligned} F_{\text{Cm}}^{pp} = 13 \text{ TeV} \\ F_{\text{Cm}}^{pp} = 13 \text{ TeV} \\ \hline E_{\text{Cm}}^{pp} = 13 \text{ TeV} \\ \hline E_{\text{Cm}}^{pp} = 7+8 \text{ TeV} \\ \hline E_{\text{Cm}}^{pp} = 8 \text{ TeV} \end{aligned}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRN ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD	cale $\Lambda = 1$ TeV es. $\frac{D}{D} = \frac{TECN}{04D}$ 04D L3 04D L3 19CL CMS 19CL CMS 19CL CMS 17S ATLS 17U ATLS 17U ATLS 16AR ATLS 16P ATLS 14Y ATLS	tring). COMMENT $E_{Cm}^{ee} = 189-209 \text{ GeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 7+8 \text{ TeV}$ $E_{Cm}^{pp} = 8 \text{ TeV}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹¹ AAD	cale $\Lambda = 1$ TeV es. $\frac{D}{D} = \frac{TECN}{04D}$ 04D L3 04D L3 19CL CMS 19CL CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS 17V ATLS 16AR ATLS 16P ATLS 14Y ATLS 13AL ATLS	$\begin{aligned} f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD 171 ¹ ACHARD 171 ³ SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD	cale A = 1 TeV es. parately conserv 0 4D L3 0 4D L3 19CL CMS 19CL CMS 19CL CMS 17S ATLS 17U ATLS 17U ATLS 17X CMS 16AR ATLS 16P ATLS 14Y ATLS 13AL ATLS AN 13BF CMS	$\begin{aligned} f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &\text{ is } -1.0 < \kappa_Z < 3.4, \\ \hline f' &$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD ¹³ CHATRCHYA	cale A = 1 TeV es. Darately conserve <i>TECN</i> 04D L3 offits, limits, et 20BA CMS 19CL CMS 19CL CMS 19CL CMS 17S ATLS 17U ATLS 17V ATLS 16AR ATLS 16P ATLS 14Y ATLS 13AL ATLS 13BF CMS 12CD ATLS	$\begin{aligned} f' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} f' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} f' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 5.4, \end{aligned}$ $\begin{aligned} F' i$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> -0.088 +0.060 -0.057 ±0.02371	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD ¹³ CHATRCHYA ¹⁴ AAD ¹⁵ AALTONEN ³⁴ ¹⁶ ABAZOV	cale A = 1 TeV es. Darately conserve <i>TECN</i> 04D L3 offits, limits, et 20BA CMS 19CL CMS 19CL CMS 19CL CMS 17S ATLS 17U ATLS 17V ATLS 16AR ATLS 16P ATLS 14Y ATLS 13AL ATLS 13BF CMS 12CD ATLS	$\begin{aligned} f' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} f' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} f' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$ $\begin{aligned} F' \text{ is } -1.0 &< \kappa_Z &< 3.4, \end{aligned}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> <u>[1]</u> -0.088+0.060 -0.057±0.023 71 ••• We do not use the following the following state of the following state	imit for a form factor sc ir Standard Model value Inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 1 ACHARD I71 1 ACHARD I71 3 SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD ¹³ CHATRCHYA ¹⁴ AAD ¹⁵ AALTONEN	cale $\Lambda = 1$ TeV ess. $\frac{TECN}{04D}$ L3 G_{AD} L3 G_{AD} L3 G_{AD} L3 G_{AD} L3 G_{AD} L3 G_{AD} CMS G_{AD} CMS G_{AD} CMS G_{AD} CMS G_{AD} CMS G_{AD} CMS G_{AD} CMS G_{AD} CMS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} ATLS G_{AD} CMS G_{AD} CM	Aring). Aring). $COMMENT$ $E_{cm}^{ee} = 189-209 \text{ GeV}$ $E_{cm}^{pp} = 13 \text{ TeV}$ $E_{cm}^{pp} = 7+8 \text{ TeV}$ $E_{cm}^{pp} = 8 \text{ TeV}$ $E_{cm}^{pp} = 7 \text{ TeV}$ $E_{cm}^{pp} = 7 \text{ TeV}$ $E_{cm}^{pp} = 1.96 \text{ TeV}$ $E_{cm}^{pp} = 1.96 \text{ TeV}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> [2000] -0.088+0.060 -0.057±0.023 71 ••• We do not use the follow	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD ¹³ CHATRCHYA ¹⁴ AAD ¹⁵ AALTONEN ³⁴ ¹⁶ ABAZOV ¹³ ¹⁸ ABAZOV	cale A = 1 TeV es. parately conservery 04D L3 offits, limits, ett 20BA CMS 19CL CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS 17V ATLS 17X CMS 16AR ATLS 16P ATLS 14Y ATLS 13AL ATLS 13AL ATLS 12CD ATLS 12AC CDF 11 D0	Aring). Aring). $COMMENT$ $E_{Cm}^{ee} = 189-209 \text{ GeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 7+8 \text{ TeV}$ $E_{Cm}^{pp} = 8 \text{ TeV}$ $E_{Cm}^{pp} = 7 \text{ TeV}$ $E_{Cm}^{pp} = 7 \text{ TeV}$ $E_{Cm}^{pp} = 7 \text{ TeV}$ $E_{Cm}^{pp} = 1.96 \text{ TeV}$ $E_{Cm}^{pp} = 1.96 \text{ TeV}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u> <u>[1000000000000000000000000000000000000</u>	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 1 ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD ¹³ CHATRCHYA ¹⁴ AAD ¹⁵ AALTONEN ³⁴ 1 ⁶ ABAZOV ¹³ 1 ⁸ ABAZOV ¹⁷ 1 ⁹ ABAZOV	cale A = 1 TeV parately conserv 04D L3 offits, limits, et 20BA CMS 19CL CMS 19CL CMS 18BZ CMS 17S ATLS 17U ATLS 17X CMS 16AR ATLS 16P ATLS 14Y ATLS 13AL ATLS 13AL ATLS 13BF CMS 12CD ATLS 12AC CDF 11 D0 10K CDF	Aring). Aring). $COMMENT$ $E_{cm}^{ee} = 189-209 \text{ GeV}$ $E_{cm}^{pp} = 13 \text{ TeV}$ $E_{cm}^{pp} = 7+8 \text{ TeV}$ $E_{cm}^{pp} = 8 \text{ TeV}$ $E_{cm}^{pp} = 7 \text{ TeV}$ $E_{cm}^{pp} = 7 \text{ TeV}$ $E_{cm}^{pp} = 1.96 \text{ TeV}$ $E_{cm}^{pp} = 1.96 \text{ TeV}$	NODE=S043LZ
couplings. The 95% CL I fixing λ_Z and g_1^Z to their λ_Z This coupling is <i>CP</i> -co <u>VALUE</u>	imit for a form factor sc ir Standard Model value inserving (<i>C</i> - and <i>P</i> - sep <u>VTS</u> <u>DOCUMENT ID</u> 171 ¹ ACHARD owing data for averages ² SIRUNYAN ³ SIRUNYAN ⁴ SIRUNYAN ⁵ AABOUD ⁶ AABOUD ⁶ AABOUD ⁷ KHACHATRY ⁸ SIRUNYAN ⁹ AAD ¹⁰ AAD ¹⁰ AAD ¹¹ AAD ¹² AAD ¹³ CHATRCHYA ¹⁴ AAD ¹⁵ AALTONEN ³⁴ ¹⁶ ABAZOV ¹³ ¹⁸ ABAZOV	cale $\Lambda = 1$ TeV ess. $\frac{TECN}{04D}$ L3 $\frac{TECN}{04D}$ L3 $\frac{19}{1000}$ CMS 19CL CMS 19CL CMS 18BZ CMS 17U ATLS 17U ATLS 17U ATLS 17V CMS 16AR ATLS 16P ATLS 16P ATLS 14Y ATLS 13AL ATLS 13AL ATLS 12CD ATLS 12AC CDF 11 D0 10K CDF 07Z D0	Aring). Aring). $COMMENT$ $E_{Cm}^{ee} = 189-209 \text{ GeV}$ $E_{Cm}^{pp} = 13 \text{ TeV}$ $E_{Cm}^{pp} = 8 \text{ TeV}$ $E_{Cm}^{pp} = 7 \text{ TeV}$ $E_{Cm}^{pp} = 7 \text{ TeV}$ $E_{Cm}^{pp} = 1.96 \text{ TeV}$	NODE=S043LZ

 $^1\,\rm ACHARD$ 04D study $WW-\rm pair$ production, single-W production and single-photon production with missing energy from 189 to 209 GeV. The result quoted here is obtained using the WW-pair production sample. Each parameter is determined from a single-

parameter fit in which the other parameters assume their Standard Model values. ² SIRUNYAN 20BA study electroweak production of a W boson in association with two jets, using W decays in the electron or muon channel. The isolated muons (electrons) are required to have a transverse momentum larger than 25 (30) GeV, while the transverse momentum of the two jets has to be larger than 50 and 30 GeV. A total of 2.382 (1.051) million events are selected in the muon (electron) channel, with a Standard Model expectation of 2.39 ± 0.17 (1.054 ± 0.058) million events. Analysing the transverse

NODE=S043LZ;LINKAGE=AC

7/16/2025 12:14

Page 20

NODE=S043LZ;LINKAGE=K

NODE=S043LZ;LINKAGE=J

NODE=S043LZ;LINKAGE=I

momentum distribution of the charged leptons from W decay, the following 95% C.L. limit is obtained: -0.0088 $<\lambda_Z <$ 0.0095. Combining this result with that from the closely-related electroweak Z-jet-jet production SIRUNYAN 18BZ, the limit becomes: $-0.0071 < \lambda_Z < 0.0076$.

- ³SIRUNYAN 19CL study *WW* and *WZ* production in lepton + jet events, with one *W* boson decaying leptonically (electron or muon), and another *W* or *Z* boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel 2,456 (2,235) events are selected in the *WW(WZ)* category, while in the muon channel 3,996 (3572) events are selected in the *WW(WZ)* category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limit is obtained: $-0.0065 < \lambda_Z < 0.0066$.
- ⁴ SIRUNYAN 18BZ study $pp \rightarrow Z$ jet jet events at 13 TeV where $Z \rightarrow e^+e^-/\mu^+\mu^-$. Isolated electrons and muons are selected with p_T of the leading/sub-leading lepton > 30/20 GeV and $|\eta| < 2.4$, with the di-lepton invariant mass within 15 GeV of the Z mass. The two highest p_T jets are selected with p_T of the leading/sub-leading jet > 50/30 GeV respectively and dijet invariant mass > 200 GeV. Templates in the transverse momentum of the Z are utilized to set limits on the triple gauge couplings in the EFT and the LEP parametrizations. The following 95% C.L. limit is obtained $-0.010 < \lambda_Z < 0.010$.
- ⁵AABOUD 175 analyze electroweak production of a *W* boson in association with two jets at high dijet invariant mass, with the *W* boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than 600 GeV, 30 events are observed in the data with 39 \pm 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: -0.053 $<\lambda_Z <$ 0.042.
- ⁶AABOUD 17U analyze production of *WW* or *WZ* boson pairs with one *W* boson decaying to electron or muon plus neutrino, and the other *W* or *Z* boson decaying hadronically. The hadronic decay system is reconstructed as either a resolved two-jet system or as a single large jet. Analysing the transverse momentum distribution of the hadronic system above 100 GeV yields the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: $-0.013 < \lambda_Z < 0.013$.
- ⁷ KHACHATRYAN 170 analyse *WZ* production where each boson decays into electrons or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV, with one of the lepton pairs having an invariant mass within 20 GeV of the *Z* boson mass. The *Z* transverse momentum spectrum is analyzed to set a 95% C.L. limit of: $-0.018 < \lambda_Z < 0.016$.
- ⁸ SIRUNYAN 17x study $pp \rightarrow WW/WZ \rightarrow \ell \nu q \overline{q}$ production at 8 TeV where ℓ is an electron or muon with $p_T > 30$ or 25 GeV respectively. Suitable cuts are put on the p_T of the dijet system and the missing E_T of the event yielding a total of 285 and 204 WV events observed in the electron and muon channels. The following 95% C.L. limit is obtained: $-0.011 < \lambda_Z < 0.011$.
- ⁹AAD 16AR study WW production in *pp* collisions and select 6636 *WW* candidates in decay modes with electrons or muons with an expected background of 1546 ± 157 events. Assuming the LEP formulation and setting the form-factor Λ to infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95% C.L. range of $-0.019 < \lambda_Z < 0.019$.
- ¹⁰ AAD 16P study *WZ* production in *pp* collisions and select 2091 *WZ* candidates in 4 decay modes with electrons and muons, with an expected background of 1825 ± 7 events. Analyzing the *WZ* transverse momentum distribution, the resulting 95% C.L. limit is: $-0.016 < \lambda_Z < 0.016$.
- ¹¹ AAD 14Y determine the electroweak Z-dijet cross section in 8 TeV pp collisions. $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ decays are selected with the di-lepton $p_T > 20$ GeV and mass in the 81–101 GeV range. Minimum two jets are required with $p_T > 55$ and 45 GeV and no additional jets with $p_T > 25$ GeV in the rapidity interval between them. The normalized p_T balance between the Z and the two jets is required to be < 0.15. This leads to a selection of 900 events with dijet mass > 1 TeV. The number of signal and background events expected is 261 and 592 respectively. A Poisson likelihood method is used on an event by event basis to obtain the 95% CL limit $-0.15 < \lambda_Z < 0.13$ for a form factor to value $\Lambda = \infty$.
- ¹² AAD 13AL study *WW* production in *pp* collisions and select 1325 *WW* candidates in decay modes with electrons or muons with an expected background of 369 ± 61 events. Assuming the LEP formulation and setting the form-factor Λ = infinity, a fit to the transverse momentum distribution of the leading charged lepton, leads to a 95% C.L. range of $-0.062 < \lambda_7 < 0.059$. Supersedes AAD 12AC.
- ¹³CHATRCHYAN 13BF determine the W⁺W⁻ production cross section using unlike sign di-lepton (e or μ) events with high p/_T. The leptons have p_T > 20 GeV/c and are isolated. 1134 candidate events are observed with an expected SM background of 247 ± 34. The p_T distribution of the leading lepton is fitted to obtain 95% C.L. limits of -0.048 ≤ λ_Z ≤ 0.048.
- ¹⁴ AAD 12CD study *WZ* production in *pp* collisions and select 317 *WZ* candidates in three $\ell\nu$ decay modes with an expected background of 68.0 ± 10.0 events. The resulting 95% C.L. range is: $-0.046 < \lambda_Z < 0.047$. Supersedes AAD 12V.
- ¹⁵ AALTONEN 12AC study *WZ* production in $p\overline{p}$ collisions and select 63 *WZ* candidates in three $\ell\nu$ decay modes with an expected background of 7.9 \pm 1.0 events. Based on the cross section and shape of the *Z* transverse momentum spectrum, the following 95% C.L. range is reported: $-0.08 < \lambda_Z < 0.10$ for a form factor of $\Lambda = 2$ TeV.

NODE=S043LZ;LINKAGE=E

NODE=S043LZ;LINKAGE=F

NODE=S043LZ;LINKAGE=G

NODE=S043LZ;LINKAGE=H

NODE=S043LZ;LINKAGE=C

NODE=S043LZ;LINKAGE=D

NODE=S043LZ;LINKAGE=DT

NODE=S043LZ;LINKAGE=B

NODE=S043LZ;LINKAGE=A

NODE=S043LZ;LINKAGE=AD

NODE=S043LZ;LINKAGE=AL

 $^{16}{\rm ABAZOV}$ 11 study the $p\,\overline{p} \rightarrow ~3\ell\,\nu$ process arising in WZ production. They observe NODE=S043LZ;LINKAGE=AO 34 WZ candidates with an estimated background of 6 events. An analysis of the p_T spectrum of the Z boson leads to a 95% C.L. limit of $-0.077 < \lambda_{7} < 0.093$, for a form factor $\Lambda = 2$ TeV. ¹⁷ AALTONEN 10K study $p\overline{p} \rightarrow W^+W^-$ with $W \rightarrow e/\mu\nu$. The p_T of the leading (second) lepton is required to be > 20 (10) GeV. The final number of events selected NODE=S043LZ;LINKAGE=LA is 654 of which 320 \pm 47 are estimated to be background. The 95% C.L. interval is $-0.16 \ < \ \lambda_Z < 0.16$ for $\Lambda = 1.5$ TeV and $-0.14 \ < \ \lambda_Z < 0.15$ for $\Lambda = 2$ TeV. ¹⁸ ABAZOV 07Z set limits on anomalous TGCs using the measured cross section and $p_T(Z)$ distribution in WZ production with both the W and the Z decaying leptonically into NODE=S043LZ;LINKAGE=BZ electrons and muons. Setting the other couplings to their standard model values, the 95% C.L. limit for a form factor scale Λ = 2 TeV is $-0.17 < \lambda_Z < 0.21$. ¹⁹ABAZOV 06H study $\overline{p}p \rightarrow WW$ production with a subsequent decay $WW \rightarrow e^+\nu_e e^-\overline{\nu}_e$, $WW \rightarrow e^\pm\nu_e \mu^\mp\nu_\mu$ or $WW \rightarrow \mu^+\nu_\mu\mu^-\overline{\nu}_\mu$. The 95% C.L. limit for a form factor scale $\Lambda = 2$ TeV is $-0.39 < \lambda_Z < 0.39$, fixing $\kappa_Z = 1$. With the assumption that the $WW\gamma$ and WWZ couplings are equal the 95% C.L. one-dimensional limit ($\Lambda = 2$ TeV) is $-0.29 < \lambda < 0.30$. NODE=S043LZ;LINKAGE=AA ²⁰ABAZOV 05S study $\overline{p} p \rightarrow WZ$ production with a subsequent trilepton decay to $\ell \nu \ell' \overline{\ell'}$ NODE=S043LZ;LINKAGE=AB (ℓ and $\ell' = e$ or μ). Three events (estimated background 0.71 \pm 0.08 events) with WZdecay characteristics are observed from which they derive limits on the anomalous WWZ couplings. The 95% CL limit for a form factor scale $\Lambda=1.5$ TeV is $-0.48~<~\lambda_Z~<$ 0.48, fixing g_1^Z and κ_Z to their Standard Model values. 85 NODE=S043DG5 NODE=S043DG5 NODE=S043DG5 This coupling is CP-conserving but C- and P-violating. VALUE EVTS DOCUMENT ID TECN COMMENT -0.07±0.09 OUR AVERAGE Error includes scale factor of 1.1. $-0.04\substack{+0.13\\-0.12}$ ¹ ABBIENDI 04D OPAL E^{ee}_{cm}= 183-209 GeV 9800 ² ACHARD $E_{cm}^{ee} = 189 - 209 \text{ GeV}$ $0.00\!\pm\!0.13\!\pm\!0.057171$ 04D L3 $-0.44^{+0.23}_{-0.22}{\pm}0.12~1154$ ³ ACCIARRI 99Q L3 $E_{cm}^{ee} = 161 + 172 + 183 \text{ GeV}$ \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet -0.31 ± 0.23 ⁴ EBOLI 00 THEO LEP1, SLC+ Tevatron ¹ABBIENDI 04D combine results from W^+W^- in all decay channels. Only *CP*-conserving NODE=S043DG5;LINKAGE=D4 couplings are considered and each parameter is determined from a single-parameter fit in which the other parameters assume their Standard Model values. The 95% confidence interval is $-0.28 < g_5^Z < +0.21$. 2 ACHARD 04D study ${WW}$ -pair production, single-W production and single-photon pro-NODE=S043DG5;LINKAGE=AC duction with missing energy from 189 to 209 GeV. The result quoted here is obtained using the WW-pair production sample. Each parameter is determined from a singleparameter fit in which the other parameters assume their Standard Model values. 3 ACCIARRI 99Q study *W*-pair, single-*W*, and single photon events. NODE=S043DG5;LINKAGE=A ⁴ EBOLI 00 extract this indirect value of the coupling studying the non-universal one-loop NODE=S043DG5;LINKAGE=EB contributions to the experimental value of the $Z \rightarrow b\overline{b}$ width (Λ =1 TeV is assumed). g₄Z NODE=S043GZ4 This coupling is CP-violating (C-violating and P-conserving). NODE=S043GZ4 NODE=S043GZ4 DOCUMENT ID TECN COMMENT VALUE EVTS -0.30 ± 0.17 OUR AVERAGE $-0.39\substack{+0.19\\-0.20}$ ¹ ABDALLAH 08C DLPH $E_{cm}^{ee} = 189-209 \text{ GeV}$ 1880 $-0.02\substack{+0.32\\-0.33}$ ² ABBIENDI 01H OPAL E^{ee}_{cm} = 189 GeV 1065 1 ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin NODE=S043GZ4;LINKAGE=AD density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (qq)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values. 2 ABBIENDI 01H study W-pair events, with one leptonically and one hadronically decaying NODE=S043GZ4;LINKAGE=A W. The coupling is extracted using information from the W production angle together with decay angles from the leptonically decaying W. $\tilde{\kappa}_Z$ NODE=S043KAZ This coupling is CP-violating (C-conserving and P-violating). NODE=S043KAZ NODE=S043KAZ TECN COMMENT DOCUMENT ID VALUE ____EVTS $-0.12^{+0.06}_{-0.04}$ OUR AVERAGE $-0.09\substack{+0.08\\-0.05}$ ¹ ABDALLAH 08C DLPH $E_{cm}^{ee} = 189-209 \text{ GeV}$ 1880 $-0.20 \substack{+0.10 \\ -0.07}$ 1065 ² ABBIENDI 01H OPAL $E_{cm}^{ee} = 189 \text{ GeV}$ \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 3

7/16/2025 12:14

Page 22

S AABOOD	175	ATLS	$E_{\rm cm}^{\prime \mu} = 7 + 8 {\rm TeV}$
⁴ BLINOV	11	LEP	$E_{cm}^{ee} = 183 - 207 \text{ GeV}$

- ¹ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (qq)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.
- ² ABBIENDI 01H study *W*-pair events, with one leptonically and one hadronically decaying *W*. The coupling is extracted using information from the *W* production angle together with decay angles from the leptonically decaying *W*.
- ³AABOUD 175 analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than 600 GeV, 30 events are observed in the data with 39 \pm 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: -0.56 $< \widetilde{\kappa}_Z < 0.56$.
- ⁴BLINOV 11 use the LEP-average $e^+e^- \rightarrow W^+W^-$ cross section data for $\sqrt{s} = 183-207$ GeV to determine an upper limit on the TGC $\tilde{\kappa}_Z$. The average values of the cross sections as well as their correlation matrix, and standard model expectations of the cross sections are taken from the LEPEWWG note hep-ex/0612034. At 95% confidence level $|\tilde{\kappa}_Z| < 0.13$.

$\tilde{\lambda}_{Z}$

This coupling is CP-violating (C-conserving and P-violating).

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.09±0.07 OUR AVE	RAGE				
$-0.08\!\pm\!0.07$	1880	¹ ABDALLAH	0 8C	DLPH	$E_{\rm cm}^{ee}$ = 189–209 GeV
$-0.18 \substack{+0.24 \\ -0.16}$	1065	² ABBIENDI	01н	OPAL	$E_{\rm cm}^{ee}$ = 189 GeV

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

³ AABOUD 17s ATLS $E_{cm}^{pp} = 7+8 \text{ TeV}$ ⁴ BLINOV 11 LEP $E_{cm}^{ee} = 183-207 \text{ GeV}$

¹ABDALLAH 08C determine this triple gauge coupling from the measurement of the spin density matrix elements in $e^+e^- \rightarrow W^+W^- \rightarrow (q\,q)(\ell\nu)$, where $\ell = e$ or μ . Values of all other couplings are fixed to their standard model values.

² ABBIENDI 01H study *W*-pair events, with one leptonically and one hadronically decaying *W*. The coupling is extracted using information from the *W* production angle together with decay angles from the leptonically decaying *W*.

³AABOUD 17s analyze electroweak production of a *W* boson in association with two jets at high dijet invariant mass, with the *W* boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than 600 GeV, 30 events are observed in the data with 39 ± 4 events expected in the Standard Model, yielding the following limit at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: $-0.047 < \tilde{\lambda}_{Z} < 0.046$.

factor cut-off scale $\Lambda_{FF} \rightarrow \infty: -0.047 < \tilde{\lambda}_Z < 0.046$. ⁴ BLINOV 11 use the LEP-average $e^+e^- \rightarrow W^+W^-$ cross section data for $\sqrt{s} = 183-207$ GeV to determine an upper limit on the TGC $\tilde{\lambda}_Z$. The average values of the cross sections as well as their correlation matrix, and standard model expectations of the cross sections are taken from the LEPEWWG note hep-ex/0612034. At 95% confidence level $|\tilde{\lambda}_Z| < 0.31$.

W ANOMALOUS MAGNETIC MOMENT

The full magnetic moment is given by $\mu_W=e(1+\kappa+\lambda)/2m_W$. In the Standard Model, at tree level, $\kappa=1$ and $\lambda=0$. Some papers have defined $\Delta\kappa=1-\kappa$ and assume that $\lambda=0$. Note that the electric quadrupole moment is given by $-e(\kappa-\lambda)/m_W^2$. A description of the parameterization of these moments and additional references can be found in HAGIWARA 87 and BAUR 88. The parameter Λ appearing in the theoretical limits below is a regularization cutoff which roughly corresponds to the energy scale where the structure of the W boson becomes manifest.

VALUE (e/2m _W)	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S043WMG
2.22 ^{+0.20} -0.19	2298	¹ ABREU	01	DLPH	$E_{\rm cm}^{ee}$ = 183+189 GeV	
• • • We do not use t	he followir	ng data for average	s, fits,	limits, e	etc. • • •	
		² ABE	95 G	CDF		
		³ ALITTI	92C	UA2		
		⁴ SAMUEL	92	THEO		
		⁵ SAMUEL	91	THEO		
		⁶ GRIFOLS	88	THEO		
		⁷ GROTCH	87	THEO		
		⁸ VANDERBIJ	87	THEO		
		⁹ GRAU	85	THEO		
		¹⁰ SUZUKI	85	THEO		
		¹¹ HERZOG	84	THEO		

NODE=S043KAZ;LINKAGE=AD

NODE=S043KAZ;LINKAGE=A

NODE=S043KAZ;LINKAGE=B

NODE=S043KAZ;LINKAGE=BN

NODE=S043LAZ;LINKAGE=AD

NODE=S043LAZ;LINKAGE=A

NODE=S043LAZ;LINKAGE=B

NODE=S043LAZ;LINKAGE=BN

NODE=S043WMG

NODE=S043WMG

NODE=S043LAZ
NODE=S043LAZ
NODE=S043LAZ

¹ABREU 011 combine results from $e^+\,e^-$ interactions at 189 GeV leading to $W^+\,W^-$, $W\,e\,\nu_e$, and $\nu\,\overline{\nu}\,\gamma$ final states with results from ABREU 99L at 183 GeV to determine NODE=S043WMG;LINKAGE=UI Δg_1^Z , $\Delta \kappa_\gamma$, and λ_γ . $\Delta \kappa_\gamma$ and λ_γ are simultaneously floated in the fit to determine $^{\mu}W^{.}$ ²ABE 95G report $-1.3 < \kappa < 3.2$ for λ =0 and $-0.7 < \lambda < 0.7$ for κ =1 in $p\overline{p} \rightarrow e\nu_e \gamma X$ NODE=S043WMG;LINKAGE=K and $\mu \nu_{\mu} \gamma {\sf X}$ at $\sqrt{s} =$ 1.8 TeV. ³ ALITTI 92C measure $\kappa = 1 + 2.6 = 1 - 2.2$ and $\lambda = 0 + 1.7 = 1.8$ in $p\overline{p} \rightarrow e\nu\gamma + X$ at $\sqrt{s} = 630$ GeV. At 95%CL they report $-3.5 < \kappa < 5.9$ and $-3.6 < \lambda < 3.5$. NODE=S043WMG;LINKAGE=I $^4\,{\sf SAMUEL}$ 92 use preliminary CDF and UA2 data and find $-2.4\,<\,\kappa\,<\,3.7$ at 96%CL NODE=S043WMG;LINKAGE=J and $-3.1 < \kappa <$ 4.2 at 95%CL respectively. They use data for $W\gamma$ production and radiative W decay. 5 SAMUEL 91 use preliminary CDF data for $p\,\overline{p}
ightarrow\,W\,\gamma$ X to obtain $-11.3~\leq~\Delta\kappa~\leq$ NODE=S043WMG;LINKAGE=H 10.9. Note that their $\kappa = 1 - \Delta \kappa$. ⁶GRIFOLS 88 uses deviation from ρ parameter to set limit $\Delta \kappa \lesssim 65 \ (M_{III}^2/\Lambda^2)$. NODE=S043WMG;LINKAGE=G 7 GROTCH 87 finds the limit $-37~<~\Delta\kappa~<$ 73.5 (90% CL) from the experimental limits NODE=S043WMG;LINKAGE=E on $e^+e^-
ightarrow ~
u \overline{
u} \gamma$ assuming three neutrino generations and $-19.5~<~\Delta\kappa~<56$ for four generations. Note their $\Delta \kappa$ has the opposite sign as our definition. 8 VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta\kappa|~<$ 33 NODE=S043WMG;LINKAGE=B (m_W/Λ) . In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta \kappa$. $^9\,\mathrm{GRAU}$ 85 uses the muon anomaly to derive a coupled limit on the anomalous magnetic NODE=S043WMG;LINKAGE=D dipole and electric quadrupole (λ) moments 1.05 > $\Delta \kappa \ln(\Lambda/m_W) + \lambda/2 > -2.77$. In the Standard Model $\lambda = 0$. 10 SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta\kappa|~\lesssim~$ 190 NODE=S043WMG;LINKAGE=C $(m_W/\Lambda)^2$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta\kappa| \lesssim$ 2.2/ln(Λ/m_W). Finally SUZUKI 85 uses deviations from the ho parameter and obtains a very qualitative, order-of-magnitude limit $|\Delta\kappa| \lesssim 150~(m_W/\Lambda)^4$ if $|\Delta\kappa| \ll$ ¹¹ HERZOG 84 consider the contribution of W-boson to muon magnetic moment including NODE=S043WMG;LINKAGE=A anomalous coupling of $W\,W\,\gamma.$ Obtain a limit $-1~<~\Delta\kappa~<$ 3 for $\Lambda~\gtrsim~1$ TeV. c_{WWW}/Λ^2 , c_W/Λ^2 , c_B/Λ^2 NODE=S043A00 These couplings are used in EFT-based approaches to anomalous couplings. They are NODE=S043A00 linearly related to the couplings discussed above. NODE=S043A00 VALUE DOCUMENT ID TECN COMMENT \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ TUMASYAN 22AB CMS $E_{\rm cm}^{pp} = 13 {
m TeV}$ $E^{pp}_{cm} = 13 \; {
m TeV}$ ² TUMASYAN 22E CMS 21AC ATLS $E_{cm}^{pp} = 13 \text{ TeV}$ ³ AAD 21W ATLS $E_{cm}^{pp} = 13 \text{ TeV}$ ⁴ AAD 21G CMS $E_{cm}^{pp} = 13 \text{ TeV}$ 20BA CMS $E_{cm}^{pp} = 13 \text{ TeV}$ 20BF CMS $E_{cm}^{pp} = 13 \text{ TeV}$ ⁵ SIRUNYAN ⁶ SIRUNYAN ⁷ SIRUNYAN 19BA ATLS $E_{cm}^{pp} = 13 \text{ TeV}$ ⁸ AABOUD 19AD CMS $E_{\rm cm}^{pp} = 13 \, {\rm TeV}$ ⁹ SIRUNYAN 19CL CMS $E_{\rm cm}^{pp} = 13 \text{ TeV}$ 18Q ATLS $E_{\rm cm}^{pp} = 13 \text{ TeV}$ ¹⁰ SIRUNYAN ¹¹ AABOUD $E^{pp}_{cm} = 13 \; {
m TeV}$ ¹² SIRUNYAN 18bz CMS 175 ATLS $E_{cm}^{pp} = 7+8 \text{ TeV}$ 170 ATLS $E_{cm}^{pp} = 8 \text{ TeV}$ 170 CMS $E_{cm}^{pp} = 8 \text{ TeV}$

 $E_{\rm cm}^{pp} = 8 \, {\rm TeV}$

16AR ATLS $E_{\rm Cm}^{pp} = 8 \, {\rm TeV}$ 16PATLS $E_{\rm Cm}^{pp} = 8 \, {\rm TeV}$.16BICMS $E_{\rm Cm}^{pp} = 8 \, {\rm TeV}$

¹TUMASYAN 22AB study WZ production, measuring cross sections and various distributions. Analysing the WZ invariant mass distribution, the following 95% C.L. limits are derived in units of TeV⁻²: $-2.5 < c_W/\Lambda^2 < 0.3, -1.0 < c_{WWW}/\Lambda^2 < 1.2, -43 < c_b/\Lambda^2 < 113, -0.62 < \tilde{c}_{WWW}/\Lambda^2 < 0.53, -32 < \tilde{c}_W/\Lambda^2 < 32.$

¹⁵ KHACHATRY...170 CMS

¹⁹ KHACHATRY...16BI CMS

17x CMS

¹³ AABOUD ¹⁴ AABOUD

¹⁶ SIRUNYAN

 17 AAD ¹⁸ AAD

 2 TUMASYAN 22E measure $W\gamma$ production where the W boson decays to electrons or muons. Analysing the photon transverse momentum distribution in bins of lepton azimuth, the following 95% C.L. limit is derived in units of TeV $^{-2}$: $-0.062 < c_{3W}/\Lambda^2 < c_{3W}/\Lambda^2$ 0.052. This limit is derived including the non-SM, SM and their interference effects.

NODE=S043A00:LINKAGE=R

7/16/2025 12:14

Page 24

NODE=S043A00;LINKAGE=S

NODE=S043A00;LINKAGE=O

- ³AAD 21AC study the differential cross-section for the electroweak production of dijets in association with a Z boson, where the Z boson decays to electrons or muons. The number of events selected in the data is 10,870 (12,125) in the electron (muon) channel. Analyzing the distribution of the azimuthal separation of the two jets, the following 95% C.L. limits are derived in units of TeV⁻²: $-2.7 < c_{WWW}/\Lambda^2 < 5.8$, $-1.6 < \tilde{c}_{WWW}/\Lambda^2 < 2.0$, $-0.19 < c_W/\Lambda^2 < 0.41$, $-0.11 < \tilde{c}_W/\Lambda^2 < 0.14$, $-6.31 < c_{HWB}/\Lambda^2 < 1.01$, $0.23 < \tilde{c}_{HWB}/\Lambda^2 < 2.35$.
- ⁴ AAD 21w analyze W^+W^- production in association with at least one jet. Events with exactly one oppositely-charged electron-muon pair and at least one hadronic jet of transverse momentum larger than 30 GeV (120 GeV) are selected. In the data, 89,239 (5,825) events are found, with a total Standard-Model expectation of 91600 \pm 2500 (5980 \pm 150). Analyzing the electron-muon invariant mass distribution, the following limit at 95% C.L. is obtained: $-0.33 < c_W/\Lambda^2 < 0.33 (-0.60 < c_W/\Lambda^2 < 0.58)$, for a fixed choice of $\Lambda = 1$ TeV.
- 5 SIRUNYAN 21G measure $W\,\gamma$ production where the W decays into electrons or muons. In the data, 385,224 (395,818) events are selected in the electron (muon) channel, with a total Standard-Model expectation of 396913 \pm 54686 (396257 \pm 22837) events. Analysing the photon transverse momentum distribution, the following 95% C.L. limits are derived in units of TeV $^{-2}$: $-0.90 < c_{WWW}/\Lambda^2 < 0.91, -40 < c_B/\Lambda^2 < 41, -0.45 < c_{\overline{WWW}}/\Lambda^2 < 0.45, -20 < c_{\overline{W}}/\Lambda^2 < 20.$
- 6 SIRUNYAN 20BA study electroweak production of a W boson in association with two jets, using W decays in the electron or muon channel. The isolated muons (electrons) are required to have a transverse momentum larger than 25 (30) GeV, while the transverse momentum of the two jets has to be larger than 50 and 30 GeV. A total of 2.382 (1.051) million events are selected in the muon (electron) channel, with a Standard Model expectation of 2.39 ± 0.17 (1.054 ± 0.058) million events. Analysing the transverse momentum distribution of the charged leptons from W decay, the following 95% C.L. limits are obtained in units of TeV $^{-2}$: $-2.3 < c_{WWW}/\Lambda^2 < 2.5, -8.8 < <math display="inline">c_W/\Lambda^2 < 16, -45 < c_B/\Lambda^2 < 46$. Combining these results with those from the closely-related electroweak Z-jet-jet production SIRUNYAN 18BZ, the limits become: $-1.8 < c_{WWW}/\Lambda^2 < 2.0, -5.8 < c_W/\Lambda^2 < 10, -43 < c_B/\Lambda^2 < 45$.
- ⁷ SIRUNYAN 20BF study W^+W^- production with the *W* bosons decaying to electrons or muons. The leading (subleading) lepton is required to have a transverse momentum larger than 25 (20) GeV. Events with a same-flavor di-lepton invariant mass within 15 GeV of the *Z* mass are rejected, as are event with a third lepton of transverse momentum larger than 10 GeV. In the same- (different-) flavor category a total of 9,604 (20,270) events are selected while the number of expected events is 9640 ± 490 (20280 ± 430). Analyzing the different-flavor di-lepton invariant mass distribution, the following 95% C.L. limits are obtained in units of TeV⁻²: $-1.8 < c_{WWW}/\Lambda^2 < 1.8, -3.6 < c_W/\Lambda^2 < 2.8, -9.4 < c_B/\Lambda^2 < 8.5.$
- ⁸AABOUD 19BA study *WW* production in decay modes with an electron and a muon. The charged leptons are each required to have a transverse momentum larger than 27 GeV and rapidity less than 2.5. The electron-muon system is required to have a mass larger than 55 GeV and a transverse momentum larger than 30 GeV. The missing transverse energy must be larger than 20 GeV. Events containing a jet with transverse momentum exceeding 35 GeV and rapidity smaller than 4.5 are rejected. A total of 12,659 events are selected in the data, with an expected background of 4240 ± 477 events. Analysing the transverse momentum spectrum of the leading charged lepton, the following 95% C.L. limits are derived in units of TeV⁻²: -3.4 < c_{WWW}/Λ^2 < 3.3, -7.4 < c_W/Λ^2 < 4.1, -21 < c_B/Λ^2 < 18, -1.6 < $c_{\overline{W}WW}/\Lambda^2$ < 1.6, -76 < $c_{\overline{W}}/\Lambda^2$ < 76.
- 9 SIRUNYAN 19AD study inclusive WZ production, with W and Z decaying to electrons or muons. The leading (subleading) charged lepton candidate from the Z boson decay is required to have a transverse momentum larger than 25 GeV (10 GeV). The charged lepton candidate from the W boson decay is required to have a transverse momentum larger than 25 GeV. The invariant mass of the two leptons from Z decay is required to be within 15 GeV of the Z mass, while the invariant mass of the tri-lepton system is required to exceed 100 GeV. A total of 3,831 tri-lepton events are observed, with a fitted SM WZ signal of 3166 \pm 62 events and a fitted background of 666 \pm 45 events. The approximated WZ invariant mass distribution is analyzed to set 95% C.L. limits as follows: $-4.1 < c_W/\Lambda^2 < 1.1, -2.0 < c_{WWW}/\Lambda^2 < 2.1, -100 < c_B/\Lambda^2 < 160$, in units of TeV $^{-2}$.
- ¹⁰ SIRUNYAN 19CL study *WW* and *WZ* production in lepton + jet events, with one *W* boson decaying leptonically (electron or muon), and another *W* or *Z* boson decaying hadronically, reconstructed as a single massive large-radius jet. In the electron channel 2,456 (2,235) events are selected in the *WW(WZ)* category, while in the muon channel 3,996 (3572) events are selected in the *WW(WZ)* category. Analysing the di-boson invariant mass distribution, the following 95% C.L. limits are obtained in units of TeV⁻²: $-1.58 < c_{WWW}/\Lambda^2 < 1.59, -2.00 < c_W/\Lambda^2 < 2.65, -8.78 < c_B/\Lambda^2 < 8.54.$
- ¹¹AABOUD 18Q study $pp \rightarrow ZZ$ events at $\sqrt{s} = 13$ TeV with $Z \rightarrow e^+e^-$ or $Z \rightarrow \mu^+\mu^-$. The number of events observed in the 4e, 2e 2 μ , and 4 μ channels is 249, 465, and 303 respectively. Analysing the p_T spectrum of the leading Z boson, the following

NODE=S043A00:LINKAGE=Q

NODE=S043A00;LINKAGE=P

NODE=S043A00;LINKAGE=M

NODE=S043A00;LINKAGE=N

NODE=S043A00;LINKAGE=K

NODE=S043A00;LINKAGE=J

NODE=S043A00;LINKAGE=L

NODE=S043A00;LINKAGE=H

the following 95% C.L. limits are derived in units of TeV $^{-4}$: $-5.9~< c_{\widetilde{B}W}/\Lambda^4~<~5.9$,	
$\begin{array}{l} -3.0 < c_{WW}/\Lambda^4 < 3.0, -3.3 < c_{BW}/\Lambda^4 < 3.3, -2.7 < c_{BB}/\Lambda^4 < 2.8. \\ \end{array}$ $\begin{array}{l} ^{12} \text{SIRUNYAN 18BZ study } pp \rightarrow Z \text{ jet jet events at 13 TeV where } Z \rightarrow e^+e^-/\mu^+\mu^ \\ \text{Isolated electrons and muons are selected with } p_T \text{ of the leading/sub-leading lepton } > \\ 30/20 \text{ GeV and } \eta < 2.4, \text{ with the di-lepton invariant mass within 15 GeV of the } Z \\ \text{mass. The two highest } p_T \text{ jets are selected with } p_T \text{ of the leading/sub-leading jet } > \\ 50/30 \text{ GeV respectively and dijet invariant mass } 200 \text{ GeV. Templates in the transverse momentum of the } Z \text{ are utilized to set limits on the triple gauge couplings in the EFT and the LEP parametrizations. The following 95% C.L. limits are obtained in units of TeV^{-2}: -2.6 < c_{WWW}/\Lambda^2 < 2.6 \text{ and } -8.4 < c_W/\Lambda^2 < 10.1. \end{array}$	NODE=S043A00;LINKAGE=I
¹³ AABOUD 17S analyze electroweak production of a W boson in association with two jets at high dijet invariant mass, with the W boson decaying to electron or muon plus neutrino. In the signal region of dijet mass larger than 1 TeV and leading-jet transverse momentum larger than 600 GeV, 30 events are observed in the data with 39 ± 4 events expected in the Standard Model, yielding the following limits at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: $-33 < c_W/\Lambda^2 < 30, -170 < c_B/\Lambda^2 < 160, -13 < c_{WWW}/\Lambda^2 < 9, -580 < c_{\widetilde{W}}/\Lambda^2 < 580, -11 < c_{\widetilde{WWW}}/\Lambda^2 < 11,$ in units of TeV ⁻² .	NODE=S043A00;LINKAGE=D
¹⁴ AABOUD 17U analyze production of WW or WZ boson pairs with one W boson decaying to electron or muon plus neutrino, and the other W or Z boson decaying hadronically. The hadronic decay system is reconstructed as either a resolved two-jet system or as a single large jet. Analysing the transverse momentum distribution of the hadronic system above 100 GeV yields the following limits at 95% CL for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty$: $-3.1 < c_{WWW}/\Lambda^2 < 3.1, -19 < c_B/\Lambda^2 < 20, -5.1 < c_W/\Lambda^2 < 5.8$, in units of TeV ⁻² .	NODE=S043A00;LINKAGE=E
¹⁵ KHACHATRYAN 170 analyse <i>WZ</i> production where each boson decays into electrons or muons. Events are required to have a tri-lepton invariant mass larger than 100 GeV, with one of the lepton pairs having an invariant mass within 20 GeV of the <i>Z</i> boson mass. The <i>Z</i> transverse momentum spectrum is analyzed to set 95% C.L. limits of: $-260 < c_B/\Lambda^2 < 210, -4.2 < c_W/\Lambda^2 < 8.0, -4.6 < c_{WWW}/\Lambda^2 < 4.2$, in units of TeV ⁻² .	NODE=S043A00;LINKAGE=F
units of TeV ⁻² . 16 SIRUNYAN 17X study $pp \rightarrow WW/WZ \rightarrow \ell \nu q \overline{q}$ production at 8 TeV where ℓ is an electron or muon with $p_T > 30$ or 25 GeV respectively. Suitable cuts are put on the p_T of the dijet system and the missing E_T of the event yielding a total of 285 and 204 WV events observed in the electron and muon channels. The following 95% C.L. limits in units of TeV ⁻² are obtained: $-2.7 < c_{WWW}/\Lambda^2 < 2.7, -14 < c_B/\Lambda^2 < 17, -2.0 < c_W/\Lambda^2 < 5.7.$	NODE=S043A00;LINKAGE=G
¹⁷ AAD 16AR study <i>WW</i> production in <i>pp</i> collisions and select 6636 <i>WW</i> candidates in decay modes with electrons or muons with an expected background of 1546 ± 157 events. Assuming an EFT formulation, a fit to the transverse momentum distribution of the leading charged lepton, leads to 95% C.L. ranges of: $-4.61 < c_{WWW}/\Lambda^2 < 4.60$, $-5.87 < c_W/\Lambda^2 < 10.54$ and $-20.9 < c_B/\Lambda^2 < 26.3$, in units of TeV ⁻² .	NODE=S043A00;LINKAGE=A
¹⁸ AAD 16P study <i>WZ</i> production in <i>pp</i> collisions and select 2091 <i>WZ</i> candidates in 4 decay modes with electrons and muons, with an expected background of 1825 ± 7 events. Analyzing the <i>WZ</i> transverse momentum distribution, the resulting 95% C.L. limits are: $-3.9 < c_{WWW}/\Lambda^2 < 4.0, -4.3 < c_W/\Lambda^2 < 6.8, \text{ and } -320 < c_B/\Lambda^2 < 210, \text{ in units of TeV}^{-2}$.	NODE=S043A00;LINKAGE=B
¹⁹ KHACHATRYAN 16BI determine the W^+W^- production cross section using unlike sign di-lepton (e or μ) events with high p_T . The leptons have $p_T > 20$ GeV/c and are isolated. Events are required to have no jets above p_T of 30 GeV/c. 4847 (2233) events are selected with different (same) flavor leptons, with an expected total background of 1179 \pm 123 (643 \pm 73) events. Analysing the di-lepton invariant mass spectrum, the following values are obtained: $c_{WWW}/\Lambda^2 = 0.1 \pm 3.2$, $c_W/\Lambda^2 =$ $-3.6^{+5.0}_{-4.5}$ and $c_B/\Lambda^2 = -3.2^{+15.0}_{-14.5}$, in units of TeV ⁻² . The limits at 95% C.L. are: $-5.7 < c_{WWW}/\Lambda^2 < 5.9$, $-11.4 < c_W/\Lambda^2 < 5.4$ and $-29.2 < c_B/\Lambda^2 < 23.9$, in units of TeV ⁻² .	NODE=S043A00;LINKAGE=C
ANOMALOUS W/Z QUARTIC COUPLINGS	NODE=S043245 NODE=S043245
Revised March 2024 by M.W. Grünewald (U. College Dublin)	10DL-3073243

Revised March 2024 by M.W. Grünewald (U. College Dublin) and A. Gurtu (CERN; TIFR Mumbay).

Quartic couplings, WWZZ, $WWZ\gamma$, $WW\gamma\gamma$, and $ZZ\gamma\gamma\gamma$, were studied at LEP and Tevatron at energies at which the Standard Model predicts negligible contributions to multiboson production. Thus, to parametrize limits on these couplings, an effective theory approach is adopted which supplements the Standard Model Lagrangian with higher dimensional operators which include quartic couplings. The LEP collaborations chose the lowest dimensional representation of operators (dimension 6) which presumes the $SU(2) \times U(1)$ gauge symmetry is broken by means other than the conventional Higgs scalar doublet [1–3]. In this representation possible quartic couplings, a_0, a_c, a_n , are expressed in terms of the following dimension-6 operators [1,2];

$$\begin{split} L_{6}^{0} &= -\frac{e^{2}}{16\Lambda^{2}} a_{0} F^{\mu\nu} F_{\mu\nu} W^{\alpha} \cdot \vec{W}_{\alpha} \\ L_{6}^{c} &= -\frac{e^{2}}{16\Lambda^{2}} a_{c} F^{\mu\alpha} F_{\mu\beta} \vec{W^{\beta}} \cdot \vec{W}_{\alpha} \\ L_{6}^{n} &= -i \frac{e^{2}}{16\Lambda^{2}} a_{n} \epsilon_{ijk} W^{(i)}_{\mu\alpha} W^{(j)}_{\nu} W^{(k)\alpha} F^{\mu\nu} \\ \widetilde{L}_{6}^{0} &= -\frac{e^{2}}{16\Lambda^{2}} \widetilde{a}_{0} F^{\mu\nu} \widetilde{F}_{\mu\nu} \vec{W^{\alpha}} \cdot \vec{W}_{\alpha} \\ \widetilde{L}_{6}^{n} &= -i \frac{e^{2}}{16\Lambda^{2}} \widetilde{a}_{n} \epsilon_{ijk} W^{(i)}_{\mu\alpha} W^{(j)}_{\nu} W^{(k)\alpha} \widetilde{F}^{\mu\nu} \end{split}$$

where F, W are photon and W fields, L_6^0 and L_6^c conserve C, P separately (\tilde{L}_6^0 conserves only C) and generate anomalous $W^+W^-\gamma\gamma$ and $ZZ\gamma\gamma$ couplings, L_6^n violates CP (\tilde{L}_6^n violates both C and P) and generates an anomalous $W^+W^-Z\gamma$ coupling, and Λ is an energy scale for new physics. For the $ZZ\gamma\gamma$ coupling the CP-violating term represented by L_6^n does not contribute. These couplings are assumed to be real and to vanish at tree level in the Standard Model.

Within the same framework as above, a more recent description of the quartic couplings [3] treats the anomalous parts of the $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings separately, leading to two sets parametrized as a_0^V/Λ^2 and a_c^V/Λ^2 , where V = W or Z.

With the discovery of a Higgs at the LHC in 2012, it is then useful to go to the next higher dimensional representation (dimension 8 operators) in which the gauge symmetry is broken by the conventional Higgs scalar doublet [3,4]. There are 14 operators which can contribute to the anomalous quartic coupling signal. Some of the operators have analogues in the dimension 6 scheme. The CMS collaboration, [5], have used this parametrization, in which the connections between the two schemes are also summarized:

$$\mathcal{L}_{AQGC} = -\frac{e^2}{8} \frac{a_0^W}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^{+a} W_a^{-} -\frac{e^2}{16} \frac{a_c^W}{\Lambda^2} F_{\mu\nu} F^{\mu a} (W^{+\nu} W_a^{-} + W^{-\nu} W_a^{+}) -e^2 g^2 \frac{\kappa_0^W}{\Lambda^2} F_{\mu\nu} Z^{\mu\nu} W^{+a} W_a^{-} -\frac{e^2 g^2}{2} \frac{\kappa_c^W}{\Lambda^2} F_{\mu\nu} Z^{\mu a} (W^{+\nu} W_a^{-} + W^{-\nu} W_a^{+})$$

$$+\frac{f_{T,0}}{\Lambda^4}Tr[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}]\times Tr[\widehat{W}_{\alpha\beta}\widehat{W}^{\alpha\beta}]$$

The energy scale of possible new physics is Λ , and $g = e/sin(\theta_W)$, e being the unit electric charge and θ_W the Weinberg angle. The field tensors are described in [3,4].

The two dimension 6 operators a_0^W/Λ^2 and a_c^W/Λ^2 are associated with the $WW\gamma\gamma$ vertex. Among dimension 8 operators, κ_0^W/Λ^2 and κ_c^W/Λ^2 are associated with the $WWZ\gamma$ vertex, whereas the parameter $f_{T,0}/\Lambda^4$ contributes to both vertices. There is a relationship between these two dimension 6 parameters and the dimension 8 parameters $f_{M,i}/\Lambda^4$ as follows [3]:

$$\frac{a_0^W}{\Lambda^2} = -\frac{4M_W^2}{g^2} \frac{f_{M,0}}{\Lambda^4} - \frac{8M_W^2}{g'^2} \frac{f_{M,2}}{\Lambda^4}$$
$$\frac{a_c^W}{\Lambda^2} = -\frac{4M_W^2}{g^2} \frac{f_{M,1}}{\Lambda^4} - \frac{8M_W^2}{g'^2} \frac{f_{M,3}}{\Lambda^4}$$

where $g' = e/\cos(\theta_W)$ and M_W is the invariant mass of the W boson. This relation provides a translation between limits on dimension 6 operators $a_{0,c}^W$ and $f_{M,j}/\Lambda^4$. It is further required [4] that $f_{M,0} = 2f_{M,2}$ and $f_{M,1} = 2f_{M,3}$ which suppresses contributions to the $WWZ\gamma$ vertex. The complete set of Lagrangian contributions as presented in [4] corresponds to 19 anomalous couplings in total $-f_{S,i}$, $i = 1, 2, f_{M,i}$, $i = 0, \ldots, 8$ and $f_{T,i}$, $i = 0, \ldots, 9$ – each scaled by $1/\Lambda^4$.

Another approach to couplings is the so called K-matrix framework [7], in which the anomalous couplings can be expressed in terms of two parameters α_4 and α_5 , which account for all BSM effects.

The LHC collaborations have published couplings results based on various theoretical frameworks. It is hoped that the collaborations will agree to use at least one common set of parameters to express these limits to enable the reader to make a comparison, and to allow for a possible LHC combination.

References

- G. Belanger and F. Boudjema, Phys. Lett. **B288**, 201 (1992).
- J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103 (2000);
 LW. Stirling and A. Werthenbach, Phys. Lett. B466, 260.

J.W. Stirling and A. Werthenbach, Phys. Lett. **B466**, 369 (1999);

A. Denner *et al.*, Eur. Phys. J. **C20**, 201 (2001);

G. Montagna *et al.*, Phys. Lett. **B515**, 197 (2001).

- G. Belanger *et al.*, Eur. Phys. J. C13, 283 (2000). 3.
- 4. O.J.P. Éboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys. Rev. **D69**, 095005 (2004); O.J.P. Éboli, M.C. Gonzalez-Garcia, and J.K. Mizukoshi, Phys. Rev. **D77**, 073005 (2006).
- S. Chatrchyan et al., Phys. Rev. D90, 032008 (2014); 5.S. Chatrchyan *et al.*, Phys. Rev. Lett. **114**, 051801 (2015).
- G. Aad *et al.*, Phys. Rev. Lett. **113**, 141803 (2014). 6.
- A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010 7. (2008).

a_0/Λ^2 , a_c/Λ^2 , a_n/Λ^2 , κ_0^W/Λ^2 , κ_c^W/Λ^2 , $f_{T,0}/\Lambda^4$, $f_{M,i}/\Lambda^4$, α_4 , α_5 , $F_{S,i}/\Lambda^4$, $F_{M,i}/\Lambda^4$, $F_{T,i}/\Lambda^4$

Anomalous W quartic couplings are measured by the experiments at LEP, the Tevatron, and the LHC. Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below). As discussed in the review on the "Anomalous W/Z quartic couplings (QGCS)," the measurements are typically done using different operator expansions which then do not allow the results to be compared and averaged. At least one common framework should be agreed upon for the use in the future publications by the experiments.

Some publications from LHC experiments derive limits for various assumed values of the form-factor cutoff Λ_{FF} . The values quoted below are for $\Lambda_{FF} \rightarrow \infty$.

VALUE	DOCUMENT ID	TECN	COMMENT	 NODE=S043AQ
• • • We do not use the	ne following data for averages	s, fits, limits, o	etc. • • •	
	¹ AAD	24AD ATLS	$E^{pp}_{ m cm}=13~{ m TeV}$	
	² AAD	24AMATLS	$E^{pp}_{ m cm}=13~ m TeV$	
	³ AAD	24c ATLS	$E^{pp}_{ m cm}=13~{ m TeV}$	
	⁴ AAD	24сн ATLS	${\it E_{cm}^{pp}=13}$ TeV	
	⁵ AAD	23BH ATLS	${\it E_{cm}^{pp}=13}$ TeV	
	⁶ AAD	23K ATLS	${\it E_{cm}^{pp}=13}$ TeV	
	⁷ TUMASYAN	23AK CMS	${\it E_{cm}^{pp}=13}$ TeV	
	⁸ TUMASYAN	23AM CMS	$E^{pp}_{ m cm}=13~ m TeV$	
	⁹ SIRUNYAN	21 CMS	$E^{pp}_{ m cm}=13~ m TeV$	
	¹⁰ TUMASYAN	21A CMS	$E^{pp}_{ m cm}=13~{ m TeV}$	
	¹¹ TUMASYAN	21B CMS	$E^{pp}_{Cm} = 13 \; TeV$	OCCUR=4
	¹² SIRUNAYN	20 CMS	${\it E_{cm}^{pp}=13}$ TeV	
	¹³ SIRUNYAN	20AL CMS	${\it E_{cm}^{pp}=13}$ TeV	
	¹⁴ SIRUNYAN	20BD CMS	${\it E_{cm}^{pp}=13}$ TeV	
	¹⁵ SIRUNYAN	19BMCMS	$E^{pp}_{ m cm}=13~ m TeV$	
	¹⁶ SIRUNYAN	19BP CMS	$E^{pp}_{ m cm}=13~ m TeV$	
	¹⁷ SIRUNYAN	19cq CMS	$E^{pp}_{ m cm}=13~ m TeV$	
	¹⁸ SIRUNYAN	18cc CMS	$E^{pp}_{ m cm}=13~ m TeV$	
	¹⁹ AABOUD	17AA ATLS	$E^{pp}_{cm} =$ 8 TeV	
	²⁰ AABOUD	17AG ATLS	$E^{pp}_{cm} =$ 8 TeV	
	²¹ AABOUD	17D ATLS	$E^{pp}_{cm} = 8 \; { m TeV}$	
	²² AABOUD	17J ATLS	$E^{pp}_{cm} = 8 \; { m TeV}$	
	²³ AABOUD	17M ATLS	$E^{pp}_{cm} = 8 \; \text{TeV}$	
	²⁴ KHACHATRY.	17AA CMS	$E^{pp}_{cm} = 8 \; \text{TeV}$	
	²⁵ KHACHATRY.	17M CMS	$E^{pp}_{cm} = 8 \; { m TeV}$	
	²⁶ SIRUNYAN	17AD CMS	$E^{pp}_{ m cm}=13~{ m TeV}$	
	²⁷ SIRUNYAN	17AR CMS	$E_{cm}^{pp} = 8 \text{ TeV}$	
	²⁸ AABOUD	16E ATLS	$E_{cm}^{pp} = 8 \text{ TeV}$	
	²⁹ aad	16Q ATLS	$E_{\rm cm}^{pp} = 8 { m TeV}$	

NODE=S043AQC

NODE=S043AQC

)C

³⁰ KHACHATRY	.16AX	CMS	$E_{\rm cm}^{pp} = 8 { m TeV}$
³¹ AAD	15N	ATLS	$E_{\rm cm}^{pp} = 8 { m TeV}$
³² KHACHATRY	. 15 D	CMS	$E_{\rm cm}^{pp} = 8 { m TeV}$
³³ AAD			
³⁴ CHATRCHYAN	14Q	CMS	
³⁵ ABAZOV	13D	D0	
³⁶ CHATRCHYAN	13AA	CMS	
³⁷ ABBIENDI	0 4B	OPAL	
³⁸ ABBIENDI	04L	OPAL	
³⁹ HEISTER	04A	ALEP	
⁴⁰ ABDALLAH	031	DLPH	
11	02F		

¹ AAD 24AD tag same-sign WW production, with the W bosons decaying into	electrons
or muons, in association with at least two jets with large invariant mass and	l rapidity
difference. The di-lepton invariant mass distribution is used to extract the follow	ving 95%
C.L. limits: -4.1 < f_{M,0}/\Lambda^4 < 4.1, -6.8 < f_{M,1}/\Lambda^4 < 7.0, -9.8 < f_M,	$_{7}/\Lambda^{4} <$
9.5, -5.9 < f_{S02}/\Lambda^4 < 5.9, -23.5 < f_{S,1}/\Lambda^4 < 23.6, -0.36 < f_{T,0}/\Lambda^4	< 0.36,
$-0.174 < f_{T 1}/\Lambda^4 < 0.186, -0.63 < f_{T 2}/\Lambda^4 < 0.74$, in units of TeV ⁻⁴ .	

 $^2\,{\rm AAD}$ 24AM tag WZ production, with the bosons decaying into electrons or muons, in association with two jets. The transverse mass of the WZ system is used to extract the following 95% C.L. limits: $-0.57 < f_{T,0}/\Lambda^4 < 0.56, -0.39 < f_{T,1}/\Lambda^4 < 0.35,$ $\begin{array}{rl} -1.2 &< {\rm f}_{T,2}/\Lambda^4 &< 1.0, \ -5.8 &< {\rm f}_{M,0}/\Lambda^4 &< 5.6, \ -8.6 &< {\rm f}_{M,1}/\Lambda^4 &< 8.5, \\ -11.3 &< {\rm f}_{M,7}/\Lambda^4 &< 11.3, \ -10.4 &< {\rm f}_{S02}/\Lambda^4 &< 10.4, \ -30 &< {\rm f}_{S,1}/\Lambda^4 &< 30, \ {\rm in} \end{array}$

units of TeV⁻⁴

³AAD 24C study the production of four charged leptons (electrons or muons) in association with two jets. Analysing the 4-lepton invariant mass distribution and the di-jet invarinat mass distribution leads to the following 95% C.L. limits: $-0.98 < f_{T,0}/\Lambda^4 < 0.93$, $-1.2 < f_{T,1}/\Lambda^4 < 1.2, -2.5 < f_{T,2}/\Lambda^4 < 2.4, -2.5 < f_{T,5}/\Lambda^4 < 2.4, -3.9 < 10^{-1.0}$ $f_{T.6}/\Lambda^4 < 3.9, -8.5 < f_{T.7}/\Lambda^4 < 8.1, -2.1 < f_{T.8}/\Lambda^4 < 2.1, -4.5 < f_{T.9}/\Lambda^4 > 2.$

4.5, in units of TeV $^{-4}$. The article also reports limits on these couplings by cutting the EFT expansion at various values of the cut-off scale.

 4 AAD 24CH study electroweak $W\gamma$ production in association with two jets. The distribution of the transverse momentum of the two-jet system or of the lepton is analysed to set the following 95% C.L. limits: $-1.8 < f_{T,0}/\Lambda^4 < 1.8, -1.1 < f_{T,1}/\Lambda^4 < 1.2$, $-3.1 < f_{T,2}/\Lambda^4 < 3.5, -2.4 < f_{T,3}/\Lambda^4 < 2.6, -2.2 < f_{T,4}/\Lambda^4 < 2.2,$ $-1.2 < f_{T,5}/\Lambda^4 < 1.3, -1.0 < f_{T,6}/\Lambda^4 < 1.1, -2.7 < f_{T,7}/\Lambda^4 < 2.8,$ $-24 < f_{M,0}^{-7.4}/\Lambda^4 < 24, -37 < f_{M,1}^{-7.4}/\Lambda^4 < 38, -8.6 < f_{M,2}^{-7.4}/\Lambda^4 < 8.5,$ $-13 < f_{M,3}/\Lambda^4 < 14, -15 < f_{M,4}/\Lambda^4 < 15, -14 < f_{M,5}/\Lambda^4 < 12, -66 < f_{M,7}/\Lambda^4 < 65, \text{ in units of TeV}^{-4}.$

 5 AAD 23BH study $pp
ightarrow Z\gamma\gamma$ events with the Z boson decaying to electron or muon pairs. The number of observed data events is 148 for the electron mode and 171 for the muon mode. The respective number of (data-background) events is $105.5 \pm 12.2(\text{stat})\pm 8.1(\text{syst})$ and $120.4 \pm 13.1(\text{stat})\pm 9.4(\text{syst})$. The corresponding number of predicted signal events is 91.5 ± 0.9 and 119.5 ± 1.0 using SHERPA (NLO), and 91.0 \pm 1.0 and 118.1 \pm 1.2 using MADGRAPH 5 AMC (NLO), where the error is statistical only. Analysing the transverse momentum distribution of the dilepton system, the following 95% C.L. limits are derived: $-9.87 < f_{T.0}/\Lambda^4 ~<~ 9.33, -9.88 ~<$ $f_{T.1}/\Lambda^4$ < 9.34, -20.31 < $f_{T.2}/\Lambda^4$ < 18.68, -4.64 < $f_{T.5}/\Lambda^4$ < 4.54, -7.04 < $f_{T.6}^{1,17}$ < 6.94, -15.55 < $f_{T,7}^{1,17}$ Λ^4 < 15.04, -1.64 < $f_{T,8}^{1,17}$ Λ^4 < 1.61, -3.26 < $f_{T.9}/\Lambda^4$ < 3.26, in units of TeV⁻⁴.

- 6 AAD 23K measure Z production in association with a photon and two jets in protonproton collisions at 13 TeV CM energy, where the Z boson decays into neutrinos. Within a sensitive fiducial phase-space region, 356 signal events are selected, with an expectation of 357 \pm 30. Analysing the photon transverse energy distribution, the following 95% C.L. limits are derived in units of TeV $^{-4}$: $-0.094~< f_{T.0}/\Lambda^4~<~0.084,~-0.088~<$ $f_{T,5}/\Lambda^4 < 0.099, -0.059 < f_{T,8}/\Lambda^4 < 0.059, -0.13 < f_{T,9}/\Lambda^4 < 0.13, -4.6 < 0.13, -4.6$ $f_{M,0}/\Lambda^4 < 4.6, -7.7 < f_{M,1}/\Lambda^4 < 7.7, -1.9 < f_{M,2}/\Lambda^4 < 1.9$
- 7 TUMASYAN 23AK study electroweak $W\gamma$ production in association with 2 jets. The events selected for the couplings analysis are required to have a dijet invariant mass in excess of 800 GeV, jet-jet separation of at least 2.5 in rapidity, invariant mass of the $W\gamma$ system larger than 150 GeV and transverse photon momentum larger than 100 GeV. Analysing the $W\gamma$ invariant mass distribution, varying one coupling at a time while fixing the others to their Standard Model value, leads to the following 95% C.L. limits: $-5.6 < f_{M,0}/\Lambda^4 < 5.5, -7.8 < f_{M,1}/\Lambda^4 < 8.1, -1.9 < f_{M,2}/\Lambda^4 < 1.9$,

NODE=S043AQC;LINKAGE=LA

NODE=S043AQC;LINKAGE=MA

NODE=S043AQC;LINKAGE=KA

NODE=S043AQC;LINKAGE=NA

NODE=S043AQC;LINKAGE=GA

NODE=S043AQC;LINKAGE=HA

NODE=S043AQC;LINKAGE=IA

⁸TUMASYAN 23AM use the combined CMS-TOTEM detector system to study exclusive $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ production in pp collisions at 13 TeV. The W and Z are identified through their hadronic decays with the added requirements of the invariant mass of the di-boson pair to be larger than 1 TeV, and the relative beam proton momentum loss between 0.04 and 0.20. The following limits are obtained at 95% C.L.: (i) on the dimension-6 (LEP like) couplings, in units of GeV⁻²: $|a_0^W/\Lambda^2| < 4.3 \times 10^{-6}$, $|a_C^W/\Lambda^2| < 1.6 \times 10^{-5}$, $|a_0^Z/\Lambda^2| < 0.9 \times 10^{-5}$, $|a_C^Z/\Lambda^2| < 4.0 \times 10^{-5}$. (ii) on the dimension-8 operators, in units of TeV⁻⁴: $|f_{M,0}/\Lambda^4| < 66.0$, $|f_{M,1}/\Lambda^4| < 245.5$, $|f_{M,2}/\Lambda^4| < 9.8$, $|f_{M,3}/\Lambda^4| < 73.0$, $|f_{M,4}/\Lambda^4| < 36.0$, $|f_{M,5}/\Lambda^4| < 67.0$, $|f_{M,7}/\Lambda^4| < 490.9$.

- 9 SIRUNYAN 21 study electroweak Z-pair production in association with two jets, with the Z bosons decaying to oppositely-charged electron or muon pairs. Leptons with high transverse momentum are selected, with the di-lepton invariant mass of the two Z boson candidates between 60 GeV and 120 GeV, and the four-lepton invariant mass larger than 180 GeV. A total of 365 events are selected in the data, while the number of expected events is 370 \pm 48. Analyzing the four-lepton invariant mass distribution, the following 95% C.L. limits are derived: $-0.24 < {\rm f}_{T,0}/\Lambda^4 < 0.22, -0.31 < {\rm f}_{T,1}/\Lambda^4 < 0.31, -0.63 < {\rm f}_{T,2}/\Lambda^4 < 0.59, -0.43 < {\rm f}_{T,8}/\Lambda^4 < 0.43, -0.92 < {\rm f}_{T,9}/\Lambda^4 < 0.92$, in units of TeV-4.
- 10 TUMASYAN 21A study electroweak $Z\gamma$ production in association with two jets, where the Z boson decays to electron or muon pairs and the pair of two jets has high invariant mass, superseeding SIRUNYAN 20AL. The number of observed (expected) electron events in the barrel and endcap regions are 375 (349 ± 9) and 174 (166 ± 6) events, respectively, while for muon events the respective numbers are 584 (612 ± 13) and 320 (303 ± 8). Analysing the $Z\gamma$ invariant mass distribution, the following 95% C.L. limits are derived: -15.8 < $f_{M,0}/\Lambda^4$ < 16.0, -35.0 < $f_{M,1}/\Lambda^4$ < 34.7, -6.55 < $f_{M,2}/\Lambda^4$ < 6.49, -13.0 < $f_{M,3}/\Lambda^4$ < 13.0, -13.0 < $f_{M,4}/\Lambda^4$ < 12.7, -22.2 < $f_{M,5}/\Lambda^4$ < 21.3, -56.6 < $f_{M,7}/\Lambda^4$ < 55.9, -0.64 < $f_{T,0}/\Lambda^4$ < 0.57, -0.81 < $f_{T,1}/\Lambda^4$ < 0.90, -1.68 < $f_{T,2}/\Lambda^4$ < 1.54, -0.58 < $f_{T,5}/\Lambda^4$ < 0.64, -1.30 < $f_{T,6}/\Lambda^4$ < 1.33, -2.15 < $f_{T,7}/\Lambda^4$ < 2.43, -0.47 < $f_{T,8}/\Lambda^4$ < 0.47, -0.91 < $f_{T,9}/\Lambda^4$ < 0.91, in

units of TeV $^{-4}$.

- ¹¹ TUMASYAN 21B measure *W* or *Z* boson production in association with two photons, using the leptonic decays modes of *W* and *Z* with electrons or muons. The number of selected $W \to e(\mu)\nu$ events is 1987 (2384) and the number of selected $Z \to ee(\mu\mu)$ events is 110 (272) respectively. Analyzing the transverse momentum of the di-photon system, the following 95 % C.L. limits are derived in units of TeV⁻⁴: In the *W* production channel, the observed limits are: $-39.9 < f_{M,2}/\Lambda^4 < 39.5, -63.8 < f_{M,3}/\Lambda^4 < 65.0, -1.30 < f_{T,0}/\Lambda^4 < 1.30, -1.70 < f_{T,1}/\Lambda^4 < 1.66, -3.64 < f_{T,2}/\Lambda^4 < 3.64, -0.52 < f_{T,5}/\Lambda^4 < 0.60, -0.60 < f_{T,6}/\Lambda^4 < 0.68, -1.16 < f_{T,7}/\Lambda^4 < 1.16$. In the *Z* production channel, the observed limits are: $-5.70 < f_{T,1}/\Lambda^4 < 5.46, -11.4 < f_{T,2}/\Lambda^4 < 10.9, -2.92 < f_{T,5}/\Lambda^4 < 2.92, -3.80 < f_{T,6}/\Lambda^4 < 3.88, -7.88 < f_{T,7}/\Lambda^4 < 7.72, -1.06 < f_{T,8}/\Lambda^4 < 1.10, -1.82 < f_{T,9}/\Lambda^4 < 1.82, in units of TeV⁻⁴.$
- 12 SIRUNAYN 20 study WZ and same-sign WW production in association with two jets, using the leptonic decays modes of the W and Z bosons with electrons or muons. Overall, 524 WW events and 229 WZ events are selected, with a Standard Model expectation of 535 \pm 52 and 216 \pm 21 events, respectively. Analyzing the transverse mass spectrum of the di-boson system and the di-jet invariant mass, the following 95% C.L. limits are derived, not using any unitarization procedure: $-0.25 < {\rm f}_{T,0}/\Lambda^4 < 0.28, -0.12 < {\rm f}_{T,1}/\Lambda^4 < 0.14, -0.35 < {\rm f}_{T,2}/\Lambda^4 < 0.48, -2.7 < {\rm f}_{M,0}/\Lambda^4 < 2.9, -4.1 < {\rm f}_{M,1}/\Lambda^4 < 4.2, -5.4 < {\rm f}_{M,6}/\Lambda^4 < 5.8, -5.7 < {\rm f}_{M,7}/\Lambda^4 < 6.0, -5.7 < {\rm f}_{S,0}/\Lambda^4 < 6.1, -16 < {\rm f}_{S,1}/\Lambda^4 < 17$, in units of TeV $^{-4}$. The article also reports limits on these couplings by cutting the EFT expansion at the unitarity limit.
- ¹³ SIRUNYAN 20AL study electroweak production of a Z boson and a photon in association with two jets in the electron and muon decay modes of the Z. A signal with a significance of 3.9 standard deviations is observed, compared to a Standard Model expectation of 5.2 standard deviations. Combining with KHACHATRYAN 17AA data at 8 TeV the final observed and expected signal significance is 4.7 and 5.5 standard deviations. Analyzing the Z-photon invariant mass distribution, the following 95% C.L. limits are derived: $-19.5 < f_{M,0}/\Lambda^4 < 20.3, -40.5 < f_{M,1}/\Lambda^4 < 39.5, -8.22 < f_{M,2}/\Lambda^4 < 8.10, -17.7 < f_{M,3}/\Lambda^4 < 17.9, -15.3 < f_{M,4}/\Lambda^4 < 15.8, -25.1 < f_{M,5}/\Lambda^4 < 24.5$,

NODE=S043AQC;LINKAGE=JA

NODE=S043AQC;LINKAGE=CA

NODE=S043AQC;LINKAGE=DA

NODE=S043AQC;LINKAGE=EA

NODE=S043AQC;LINKAGE=Y

NODE=S043AQC;LINKAGE=Z

$$= 3.9 < f_{M,0} / A^6 < 4.06, -6.03 < f_{M,1} / A^6 < 6.25, -0.74 < f_{M,0} / A^6 < 0.69, -0.75, -1.64 < f_{M,2} / A^6 < 0.55, -1.97 < f_{M,2} / A^6 < 0.47, -1.27 < f_{M,0} / A^6 < 1.66, -0.25 < f_{M,1} / A^6 < 2.62, -0.47 < f_{M,2} / A^6 < 0.47, -1.27 < f_{M,0} / A^6 < 1.27, in units of TeV-1.
$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$= 3.9$$

$$=$$$$

scale factor, $\Lambda_{FF} = \infty$ (all in units of 10^3 TeV^{-4}): $-0.3 < f_{M,0}/\Lambda^4 < 0.3$, $-0.5 < f_{M,1}/\Lambda^4 < 0.5$, $-1.8 < f_{M,2}/\Lambda^4 < 1.8$, $-1.1 < f_{M,4}/\Lambda^4 < 1.1$, $-1.7 < f_{M,5}/\Lambda^4 < 1.7$, $-0.6 < f_{M,6}/\Lambda^4 < 0.6$, $-1.1 < f_{M,7}/\Lambda^4 < 1.1$, $-0.1 < f_{T,0}/\Lambda^4 < 0.1$, $-0.2 < f_{T,1}/\Lambda^4 < 0.2$, $-0.4 < f_{T,4}/\Lambda^4 < 0.4$, $-1.5 < f_{T,5}/\Lambda^4 < 1.6$, $-1.9 < f_{T,6}/\Lambda^4 < 1.9$, $-4.3 < f_{T,7}/\Lambda^4 < 4.3$. ²¹AABOUD 17D analyze electroweak diboson (WV, V = W, Z) production in association NODE=S043AQC;LINKAGE=L with a high-mass dijet system. In the data, 32 events are selected with an expected total background of 32 \pm 12 events. Analysing the transverse mass distribution of the WV system, the following limits are set at 95% C.L.: $-0.024~<~\alpha_{4}~<0.030$ and $-0.028 < \alpha_5 < 0.033.$ $^{22}\,{\sf AABOUD}$ 17J analyze the $Z\gamma$ production in association with a high-mass dijet system, NODE=S043AQC;LINKAGE=N with the Z boson decaying into a pair of electrons, muons, or neutrinos. In the charged lepton (neutrino) channel, events are selected with a dijet mass larger than 500 (600) GeV and a transverse photon energy larger than 250 (150) GeV, with 2 (4) events selected in the data and 0.30 \pm 0.08 (1.6 \pm 0.5) expected background events. The observed event yield is used to determine 95% CL limits as follows: $-4.1 \times 10^3 < f_{T,9}/\Lambda^4 < 4.2 \times 10^3, -1.9 \times 10^3 < f_{T,8}/\Lambda^4 < 2.1 \times 10^3, -1.9 \times 10^1 < f_{T,0}/\Lambda^4 < 1.6 \times 10^1, -1.6 \times 10^2 < f_{M,0}/\Lambda^4 < 1.8 \times 10^2, -3.5 \times 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^2 < 10^$ $f_{M,1}/\Lambda^4$ < 3.4 × 10², -8.9 × 10² < $f_{M,2}/\Lambda^4$ < 8.9 × 10², -1.7 × 10³ < $f_{M,3}/\Lambda^4 < 1.7 \times 10^3$, in units of TeV⁻⁴ and without application of a form factor. 23 AABOUD 17M analyze tri-boson $W^{\pm}W^{\pm}W^{\mp}$ production in decay channels with three NODE=S043AQC;LINKAGE=O charged leptons or two like-sign charged leptons with two jets, where the lepton can be an electron or muon. In the data, 24 tri-lepton events and 21 di-lepton plus jets events are selected, compared to a total event yield expected in the SM of 30.8 ± 3.0 and 21.9 ± 2.0 , respectively. Analysing the tri-lepton transverse mass or the transverse momentum sum of the two leptons, two jets and the missing transverse energy, the following limits at 95%CL are derived for the form factor cut-off scale $\Lambda_{FF} \rightarrow \infty:~-0.13~< f_{S.0}/\Lambda^4~<~0.18,$ $-0.21~< f_{S,1}/\Lambda^4~<~0.27,$ in units of $10^4~{\rm TeV^{-4}},$ which are converted into the following limits: $-0.49 < \alpha_4 < 0.75$ and $-0.48 < \alpha_5 < 0.62$. $^{24}\,\rm KHACHATRYAN$ 17AA analyse electroweak production of $Z\gamma$ in association with two NODE=S043AQC;LINKAGE=P hadronic jets, with the Z boson decaying to electron or muon pairs. Events with photon transverse momentum larger than 60 GeV and di-jet invariant mass larger than 400 GeV are selected. The Z γ inavariant mass spectrum is analysed to set 95% C.L. limits as $\begin{array}{l} \text{follows:} -71 < \mathsf{f}_{M,0}/\Lambda^4 < 75, -190 < \mathsf{f}_{M,1}/\Lambda^4 < 182, -32 < \mathsf{f}_{M,2}/\Lambda^4 < 31, \\ -58 < \mathsf{f}_{M,3}/\Lambda^4 < 59, -3.8 < \mathsf{f}_{T,0}/\Lambda^4 < 3.4, -4.4 < \mathsf{f}_{T,1}/\Lambda^4 < 4.4, -9.9 < 3.4, -4.4 < \mathsf{f}_{M,1}/\Lambda^4 < \mathsf{f}_{M,1}/\Lambda^4 < \mathsf{f}_{M,2}/\Lambda^4 < \mathsf{f}_{M,1}/\Lambda^4 < \mathsf{f}_{M,2}/\Lambda^4 < \mathsf{f}_{M$ $f_{T,2}/\Lambda^4 \ < \ 9.0, \ -1.8 \ < \ f_{T,8}/\Lambda^4 \ < \ 1.8, \ -4.0 \ < \ f_{T,9}/\Lambda^4 \ < \ 4.0, \ in \ units \ of \ TeV^{-4}$ and without application of a form factor. $^{25}\,\rm KHACHATRYAN$ 17M analyse electroweak production of $W\,\gamma$ in association with two NODE=S043AQC;LINKAGE=Q hadronic jets, with the W boson decaying to electrons or muons. Events with photon transverse momentum larger than 200 GeV and di-jet invariant mass larger than 200 GeV are selected. The W transverse momentum spectrum is analysed to set 95% C.L. limits as follows: $-77 < f_{M,0}/\Lambda^4 < 74, -125 < f_{M,1}/\Lambda^4 < 129, -26 < f_{M,2}/\Lambda^4 < 26,$ $-43 < f_{M,3}/\Lambda^4 < 44, -40 < f_{M,4}/\Lambda^4 < 40, -65 < f_{M,5}/\Lambda^4 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 65, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -129 < 75, -12$ $f_{M,6}/\Lambda^4 < 129, -164 < f_{M,7}/\Lambda^4 < 162, -5.4 < f_{T,0}/\Lambda^4 < 5.6, -3.7 < 0.5$ $f_{T,1}/\Lambda^4$ < 4.0, -11 < $f_{T,2}/\Lambda^4$ < 12, -3.8 < $f_{T,5}/\Lambda^4$ < 3.8, -2.8 < $f_{T,6}/\Lambda^4$ < 3.0, -7.3 < $f_{T,7}/\Lambda^4$ < 7.7, in units of TeV⁻⁴ and without application of a form factor. 26 SIRUNYAN 17AD study *pp* collisions at $\sqrt{s} = 13$ TeV to determine the cross section of NODE=S043AQC:LINKAGE=T ZZjj with the Z decaying to e or $\mu\mu$. The ZZ mass distribution is used to set upper limits on the anomalous quartic couplings. The 95% upper limits for the relevant quartic couplings in units of TeV⁻⁴ are: $-0.46 < f_{T,0}/\Lambda^4 < 0.44, -0.61 < f_{T,1}/\Lambda^4 < 0.44$ $0.61, -1.2 < \mathsf{f}_{T,2}/\Lambda^4 < 1.2, -0.84 < \mathsf{f}_{T,8}/\Lambda^4 < 0.84, -1.8 < \mathsf{f}_{T,9}/\Lambda^4 < 1.8.$ 27 SIRUNYAN 17AR study pp collisions at \sqrt{s} = 8 TeV to determine the cross section of NODE=S043AQC;LINKAGE=S $pp \rightarrow W\gamma\gamma$ and $pp \rightarrow Z\gamma\gamma$ where $W \rightarrow \ell\nu$ and $Z \rightarrow \ell^+\ell^-$, ℓ being an electron or a muon. The number of W events in the e and μ channels is 63 and 108 respectively, and the number of Z events in the e and μ channels is 117 and 141. To increase sensitivity, the transverse momentum of the leading photon is required to be larger than 70 GeV. The 95% C.L. upper limits in units of TeV⁻⁴ are $-701~< f_{M,2}/\Lambda^4~< 683, -1170~<$ ${\rm f}_{M,3}/{\rm \Lambda}^4 \ < 1220, \ -33.5 < {\rm f}_{T,0}/{\rm \Lambda}^4 \ < 34.0, \ -44.3 \ < {\rm f}_{T,1}/{\rm \Lambda}^4 \ < 44.8, \ -93.8 \ < 6.5$ $f_{T.2}/\Lambda^4 < 93.2.$ ²⁸AABOUD 16E study WW production in two-photon mediated pp collisions at 8 TeV NODE=S043AQC;LINKAGE=I where the W boson decays into an electron or muon, probing the $\gamma\gamma\,W\,W$ vertex for anomalous quartic gauge couplings. The lepton p_T is required to be larger than 30 GeV. Limits on anomalous couplings are determined from events with p_{T} larger than 120 GeV where the aQGC effect is enhanced and the SM background reduced; in the data corresponding to an integrated luminosity of 20.2fb⁻¹, 1 event is selected with an expected SM background of 0.37 \pm 0.13 events. The 95% C.L. limits without a form-factor cutoff ($\Lambda_{cutoff} \rightarrow \infty$) are as follows: $-1.7 < a_0^W / \Lambda^2 < 1.7$ and $-6.4 < a_C^W / \Lambda^2 < 6.3$ in units of 10^{-6} GeV^{-2} . In terms of another set of variables: $-6.6 < \Delta_{cutoff} = 0.3$

- $f_{M,0}/\Lambda^4 < 6.6$ and $-24 < f_{M,1}/\Lambda^4 < 25$ in units of 10^{-11} GeV⁻⁴. ²⁹ AAD 16Q study $Z\gamma\gamma$ production in *pp* collisions. In events with no additional jets, 29
- (22) Z decays to electron (muon) pairs are selected, with an expected background of

NODE=S043AQC;LINKAGE=K

 $3.3\pm1.1~(6.5\pm2.0)$ events, as well as 19 Z decays to netrino pairs with an expected background of 8.3 ± 4.4 events. Analysing the photon transverse momentum distribution for $m_{\gamma\gamma}$ above 200 GeV (300 GeV) for lepton (neutrino) events, yields the 95% C.L. limits: $-1.6\times10^4~< f_{M,2}/\Lambda^4~< 1.6\times10^4, -2.9\times10^4~< f_{M,3}/\Lambda^4~< 2.7\times10^4, -0.86\times10^2~< f_{T,0}/\Lambda^4~< 1.03\times10^2, -0.69\times10^3~< f_{T,5}/\Lambda^4~< 0.68\times10^3, -0.74\times10^4~< f_{T,9}/\Lambda^4~< 0.74\times10^4$ in units of TeV $^{-4}$ and without application of a form factor $\Lambda_{\rm FE}$.

- 30 KHACHATRYAN 16AX searches for anomalous $WW\gamma\gamma$ quartic gauge couplings in the two-photon-mediated process $pp \to ppWW$, assuming the $WW\gamma$ triple gauge boson couplings to be at their Standard Model values. 13 events containing an $e^{\pm}\mu^{\mp}$ pair with $p_T(e,\mu) > 30$ GeV are selected in a total luminosity of 19.7 fb $^{-1}$, with an expected $\gamma\gamma \to WW$ signal of 5.3 ± 0.1 events and an expected background of 3.9 ± 0.5 events. When combining with the data collected at 7 TeV (CHATRCHYAN 13AA), and not assuming a form factor, the following 1-parameter limits at 95% C.L. are obtained from the $p_T(e,\mu)$ spectrum: $|a_0^W/\Lambda^2| < 1.1\times10^{-6}~{\rm GeV}^{-2}$ ($a_C^W=0$), and $|a_C^W/\Lambda^2| < 4.1\times10^{-6}~{\rm GeV}^{-2}$ ($a_0^W=0$). In terms of another set of variables: $|{\rm f}_{M,0}/\Lambda^4| < 4.2\times10^{-12}~{\rm GeV}^{-4}$, $|{\rm f}_{M,1}/\Lambda^4| < 16\times10^{-12}~{\rm GeV}^{-4}$, $|{\rm f}_{M,2}/\Lambda^4| < 2.1\times10^{-12}~{\rm GeV}^{-4}$.
- ³¹ AAD 15N study $W\gamma\gamma$ events in 8 TeV pp interactions, where the W decays into an electron or a muon. The events are characterized by an isolated lepton, a missing transverse energy due to the decay neutrino, and two isolated photons, with the p_T of the lepton and the photons being > 20 GeV. The number of candidate events observed in the electron channel for N(jet) ≥ 0 and N(jet) = 0 is 47 and 15, the corresponding numbers for the muon channel being 110 and 53. The backgrounds expected are 30.2 ± 7.4 , 8.7 ± 3.0 , 52.1 ± 12.2 , and 24.4 ± 8.3 respectively. The 95% C.L. limits on the values of the parameters $f_{T,0}/\Lambda^4$, $f_{M,2}/\Lambda^4$ and $f_{M,3}/\Lambda^4$ are $-0.9-0.9 \times 10^2$, $-0.8-0.8 \times 10^4$, and $-1.5-1.4 \times 10^4$ respectively, without application of a form factor $\Lambda_{\rm FF}$.
- ³² KHACHATRYAN 15D study vector-boson-scattering tagged by two jets, requiring two same-sign charged leptons arising from W^{\pm} W^{\pm} production and decay. The two jets must have a transverse momentum larger than 30 GeV, while the leptons, electrons or muons, must have a transverse momentum > 20 GeV. The dijet mass is required to be > 500 GeV, the dilepton mass > 50 GeV, with additional requirement of differing from the Z mass by > 15 GeV. In the two categories $W^+ W^+$ and $W^- W^-$, 10 and 2 data events are observed in a data sample corresponding to an integrated luminosity of 19.4 fb⁻¹, with an expected background of 3.1 ± 0.6 and 2.6 ± 0.5 events. Analysing the distribution of the dilepton invariant mass, the following limits at 95% C.L. are obtained, in units of TeV⁻⁴: $-38 < F_{S,0}/\Lambda^4 < 40$, $-118 < F_{S,1}/\Lambda^4 < 120$, $-33 < F_{M,0}/\Lambda^4 < 32$, $-44 < F_{M,1}/\Lambda^4 < 47$, $-65 < F_{M,6}/\Lambda^4 < 63$, $-70 < F_{M,7}/\Lambda^4 < 66$, $-4.2 < F_{T,0}/\Lambda^4 < 4.6$, $-1.9 < F_{T,1}/\Lambda^4 < 2.2$, $-5.2 < F_{T,2}/\Lambda^4 < 6.4$.
- 33 AAD 14AM analyze electroweak production of $W\,W$ jet jet same-charge diboson plus two jets production, with the W bosons decaying to electron or muon, to study the quartic $W\,W\,W\,W$ coupling. In a kinematic region enhancing the electroweak production over the strong production, 34 events are observed in the data while 29.8 \pm 2.4 events are expected with a backgound of 15.9 \pm 1.9 events. Assuming the other QGC coupling to have the SM value of zero, the observed event yield is used to determine 95% CL limits on the quartic gauge couplings: $-0.14 < \alpha_4 < 0.16$ and $-0.23 < \alpha_5 < 0.24$.
- 34 CHATRCHYAN 14Q study $W\,V\,\gamma$ production in 8 TeV $p\,p$ collisions, in the single lepton final state, with $W \to \ell\nu, Z \to$ dijet or $W \to \ell\nu, W \to$ dijet, the dijet mass resolution precluding differentiation between the W and Z. p_T and pseudo-rapidity cuts are put on the lepton, the photon and the two jets to minimize backgrounds. The dijet mass is required to be between 70–100 GeV and $\left|\Delta\eta_{jj}\right|<$ 1.4. The selected number of muon (electron) events are 183 (139), with SM expectation being 194.2 \pm 11.5 (147.9 \pm 10.7) including signal and background. The photon E_T distribution is used to set limits on the anomalous quartic couplings. The following 95% CL limits are deduced (all in units of TeV $^{-2}$ or TeV $^{-4}$): $-21 < a_0^W/\Lambda^2 < 20, -34 < a_c^W/\Lambda^2 < 32, -12 < \kappa_0^W/\Lambda^2 < 10$ and $-18 < \kappa_c^W/\Lambda^2 < 17$; and $-25 < f_{T,0}/\Lambda^4 < 24$ TeV $^{-4}$.
- ³⁵ABAZOV 13D searches for anomalous $WW\gamma\gamma$ quartic gauge couplings in the twophoton-mediated process $pp \rightarrow ppWW$, assuming the $WW\gamma$ triple gauge boson couplings to be at their Standard Model values. 946 events containing an e^+e^- pair with missing energy are selected in a total luminosity of 9.7 fb⁻¹, with an expectation of 983 \pm 108 events from Standard-Model processes. The following 1-parameter limits at 95% CL are otained: $|a_0^W/\Lambda^2| < 4.3 \times 10^{-4} \text{ GeV}^{-2}$ $(a_c^W = 0), |a_c^W/\Lambda^2| < 1.5 \times 10^{-3} \text{ GeV}^{-2}$ $(a_0^W = 0).$
- ³⁶ CHATRCHYAN 13AA searches for anomalous $WW\gamma\gamma$ quartic gauge couplings in the two-photon-mediated process $pp \rightarrow ppWW$, assuming the $WW\gamma$ triple gauge boson couplings to be at their Standard Model values. 2 events containing an $e^{\pm}\mu^{\mp}$ pair with $p_T(e, \mu) > 30$ GeV are selected in a total luminosity of 5.05 fb⁻¹, with an expected ppWW signal of 2.2 \pm 0.4 events and an expected background of 0.84 \pm 0.15 events. The following 1-parameter limits at 95% CL are otained from the $p_T(e, \mu)$ spectrum:

NODE=S043AQC;LINKAGE=J

NODE=S043AQC;LINKAGE=H

NODE=S043AQC;LINKAGE=G

NODE=S043AQC;LINKAGE=CH

NODE=S043AQC;LINKAGE=AA

NODE=S043AQC;LINKAGE=E

NODE=S043AQC;LINKAGE=F

$$|a_0^W/\Lambda^2| < 4.0 \times 10^{-6} \text{ GeV}^{-2} (a_c^W = 0), |a_c^W/\Lambda^2| < 1.5 \times 10^{-5} \text{ GeV}^{-2} (a_0^W = 0).$$

- 37 ABBIENDI 04B select 187 $e^+e^-
 ightarrow W^+W^-\gamma$ events in the C.M. energy range 180–209 GeV, where E_{γ} >2.5 GeV, the photon has a polar angle $|{\rm cos}\theta_{\gamma}|$ < 0.975 and is well isolated from the nearest jet and charged lepton, and the effective masses of both fermion-antifermion systems agree with the W mass within 3 Γ_W . The measured differential cross section as a function of the photon energy and photon polar angle is used to extract the 95% CL limits: $-0.020 \text{ GeV}^{-2} < a_0/\Lambda^2 < 0.020 \text{ GeV}^{-2}$, $-0.053 \text{ GeV}^{-2} < a_c/\Lambda^2 < 0.037 \text{ GeV}^{-2}$ and $-0.16 \text{ GeV}^{-2} < a_n/\Lambda^2 < 0.15 \text{ GeV}^{-2}$.
- 38 ABBIENDI 04L select 20 $e^+\,e^- \rightarrow ~\nu \overline{\nu} \gamma \gamma$ acoplanar events in the energy range 180–209 GeV and 176 $e^+e^-
 ightarrow q \overline{q} \gamma \gamma$ events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous $W^+W^-\gamma\gamma$ and $ZZ\gamma\gamma$ quartic couplings. Further combining with the $W^+W^-\gamma$ sample of ABBIENDI 04B the following one-parameter 95% CL limits are obtained: $-0.007 < a_0^Z/\Lambda^2 < 0.023 \text{ GeV}^{-2}$, $-0.029 < a_c^Z/\Lambda^2 < 0.029 \text{ GeV}^{-2}$, $-0.020 < a_0^W/\Lambda^2 < 0.020 \text{ GeV}^{-2}$, $-0.052 < a_c^W/\Lambda^2 < 0.020 \text{ GeV}^{-2}$, $-0.052 < a_c^W/\Lambda^2$, $-0.052 < a_c^W$
- 0.037 GeV⁻². ³⁹ In the CM energy range 183 to 209 GeV HEISTER 04A select 30 $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ events <u>by the transmission momentum photons</u>. The photonwith two acoplanar, high energy and high transverse momentum photons. The photon-photon acoplanarity is required to be $>5^\circ$, $E_\gamma/\sqrt{s}~>0.025$ (the more energetic photon having energy > 0.2 $\sqrt{s}),~{\rm p}_{T_\gamma}/{\rm E_{beam}}~>$ 0.05 and $\left|\cos\theta_\gamma\right|~<$ 0.94. A likelihood fit to the photon energy and recoil missing mass yields the following one-parameter 95% CL limits: $-0.012 < a_0^Z/\Lambda^2 < 0.019 \text{ GeV}^{-2}$, $-0.041 < a_c^Z/\Lambda^2 < 0.044 \text{ GeV}^{-2}$, $-0.060 < a_0^W/\Lambda^2 < 0.055 \text{ GeV}^{-2}$, $-0.099 < a_c^W/\Lambda^2 < 0.093 \text{ GeV}^{-2}$. ⁴⁰ ABDALLAH 03I select 122 $e^+e^- \rightarrow W^+W^-\gamma$ events in the C.M. energy range 189-209 GeV, where $E_{\gamma} > 5$ GeV, the photon has a polar angle $|\cos\theta_{\gamma}| < 0.95$ and is well isolated from the nearest charged fermion. A fit to the photon correst space
- is well isolated from the nearest charged fermion. A fit to the photon energy spectra yields $a_c/\Lambda^2 = 0.000 + 0.019 \text{ GeV}^{-2}$, $a_0/\Lambda^2 = -0.004 + 0.018 \text{ GeV}^{-2}$, $\tilde{a}_0/\Lambda^2 = -0.007 + 0.019 \text{ GeV}^{-2}$, $a_n/\Lambda^2 = -0.09 + 0.16 \text{ GeV}^{-2}$, and $\tilde{a}_n/\Lambda^2 = +0.05 + 0.07 0.018 \text{ GeV}^{-2}$, $a_n/\Lambda^2 = -0.09 + 0.16 \text{ GeV}^{-2}$, and $\tilde{a}_n/\Lambda^2 = +0.05 + 0.07 0.018 \text{ GeV}^{-2}$. GeV⁻², keeping the other parameters fixed to their Standard Model values (0). The 95% CL limits are: $-0.063 \text{ GeV}^{-2} < a_c/\Lambda^2 < +0.032 \text{ GeV}^{-2}$, $-0.020 \text{ GeV}^{-2} < a_0/\Lambda^2 < +0.020 \text{ GeV}^{-2}$, $-0.102 \text{ GeV}^{-2} < a_0/\Lambda^2 < +0.020 \text{ GeV}^{-2}$, $-0.18 \text{ GeV}^{-2} < a_n/\Lambda^2 < +0.14 \text{ GeV}^{-2}$, $-0.16 \text{ GeV}^{-2} < a_n/\Lambda^2 < +0.17 \text{ GeV}^{-2}$. $^{41}{\rm ACHARD}$ 02F select 86 $e^+\,e^ \rightarrow~$ $W^+\,W^-\,\gamma$ events at 192–207 GeV, where E_γ >5

GeV and the photon is well isolated. They also select 43 acoplanar $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ events in this energy range, where the photon energies are >5 GeV and >1 GeV and the photon polar angles are between 14° and 166° . All these 43 events are in the recoil mass region corresponding to the Z (75–110 GeV). Using the shape and normalization of the photon spectra in the $W^+\,W^-\,\gamma$ events, and combining with the 42 event sample from 189 GeV data (ACCIARRI 00T), they obtain: $a_0/\Lambda^2 = 0.000 \pm 0.010 \text{ GeV}^{-2}$, $a_c/\Lambda^2 =$ -0.013 ± 0.023 GeV⁻², and $a_n/\Lambda^2 = -0.002 \pm 0.076$ GeV⁻². Further combining the analyses of $W^+ W^- \gamma$ events with the low recoil mass region of $\nu \overline{\nu} \gamma \gamma$ events (including samples collected at 183 + 189 GeV), they obtain the following one-parameter 95% CL limits: $-0.015 \text{ GeV}^{-2} < a_0/\Lambda^2 < 0.015 \text{ GeV}^{-2}$, $-0.048 \text{ GeV}^{-2} < a_c/\Lambda^2 < 0.026 \text{ GeV}^{-2}$, and $-0.14 \text{ GeV}^{-2} < a_n/\Lambda^2 < 0.13 \text{ GeV}^{-2}$.

W REFERENCES				
AAD AAD AAD AAD AAD AAD AAD AAD AAD AAD	24AD JHEP 2404 026 24AM JHEP 2406 192 24BO PRL 133 161804 24C JHEP 2401 004 24CG EPJ C84 993 24CH EPJ C84 1064 24CJ EPJ C84 1309 24 EPJ C84 451 24 PR D110 030001 23BH EPJ C83 539 23K JHEP 2306 082 23AM CP C47 093002 23AK PR D108 032017	V REFERENCES G. Aad et al. S. Amoroso et al. S. Navas et al. G. Aad et al. G. Aad et al. S. Amoroso et al. S. Aad et al. G. Aad et al. M. Tumasyan et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (DESY, SACL, EDIN+) (PDG Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (LHCb Collab.) (CMS Collab.)	
TUMASYAN AALTONEN PDG TUMASYAN TUMASYAN TUMASYAN AAD AAD SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN TUMASYAN	23AM JHEP 2307 229 22C JHEP 2201 036 22 SCI 376 170 22 PTEP 2022 083C01 22AB JHEP 2207 032 22E PR D105 052003 22F PR D105 052003 21AC EPJ C81 163 21AN NATP 17 813 21W JHEP 2106 003 21 PL B812 135992 21G PRL 126 252002 21I PL B819 136409 21A PR D104 072001 21B JHEP 2110 174	 A. Tumasyan et al. R. Aaij et al. R. Aaitonen et al. R.L. Workman et al. A. Tumasyan et al. A. Tumasyan et al. A. Tumasyan et al. G. Aad et al. G. Aad et al. G. Aad et al. A. Sirunyan et al. A.M. Sirunyan et al. A. Tumasyan et al. A. Tumasyan et al. A. Tumasyan et al. 	(CMS Collab.) (LHCb Collab.) (CDF Collab.) (PDG Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)	

NODE=S043AQC;LINKAGE=D

NODE=S043AQC:LINKAGE=AB

NODE=S043AQC;LINKAGE=HE

NODE=S043AQC;LINKAGE=QI

NODE=S043AQC:LINKAGE=C

NODE=S043

REFID=62844 REFID=62868 REFID=63056 REFID=62618 REFID=63147 REFID=63150 REFID=63153 REFID=62628 REFID=62629 REFID=62400 REFID=62127 REFID=62388 REFID=62355 REFID=62368 REFID=61632 REFID=61846 REFID=61634 REFID=61808 REFID=61727 REFID=61739 REFID=61325 REFID=61395 REFID=61316 REFID=60712 REFID=61188 REFID=61271 REFID=61521 RFFID=61551

SIRUNAYN	20	PL B809 135710	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 2006 076	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C80 43	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PL B811 135988	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN AABOUD		PR D102 092001 EPJ C79 884	A.M. Sirunyan <i>et al.</i> M. Aaboud <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
SIRUNYAN		JHEP 1904 122	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 122 151802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		I PR D100 012004	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19BP	PL B795 281	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1912 062	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B798 134985	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	18J	EPJ C78 110	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
Also	100	EPJ C78 898 (errat.)	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18Q	PR D97 032005 EPJ C78 777	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
ANDREEV SIRUNYAN	18A	EPJ C78 589	V. Andreev <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(H1 Collab.) (CMS Collab.)
SIRUNYAN		PRL 120 081801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		PR D96 012007	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		EPJ C77 646	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17D	PR D95 032001	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17J	JHEP 1707 107	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17M	EPJ C77 141	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17Q	EPJ C77 367	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17S	EPJ C77 474	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17U	EPJ C77 563	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
KHACHATRY.			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY KHACHATRY		JHEP 1706 106 EPJ C77 236	V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN		PL B774 682	V. Khachatryan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1710 072	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17X	PL B772 21	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	16E	PR D94 032011	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	16AR	JHEP 1609 029	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16P	PR D93 092004	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16Q	PR D93 112002	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ		JHEP 1610 030	R. Aaij <i>et al.</i>	(LHCb Collab.)
		JHEP 1608 119	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY.			V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	15N	PRL 115 031802	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY AAD		PRL 114 051801 I PRL 113 141803	V. Khachatryan <i>et al.</i> G. Aad <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
AAD	14AW	JHEP 1404 031	G. Aad et al.	(ATLAS Collab.)
AALTONEN	14D	PR D89 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
		PR D89 092005	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PR D90 032008	S. Chatrchyan et al.	(CMS Collab.)
AAD	13AL	PR D87 112001	G. Aad et al.	(ATLAS Collab.)
Also		PR D88 079906 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13AN	PR D87 112003	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also	100	PR D91 119901 (errat.)		(ATLAS Collab.)
ABAZOV	13D	PR D88 012005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
		JHEP 1307 116 EPJ C73 2610	S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	(CMS Collab.)
SCHAEL	13BF	PRPL 532 119		(CMS Collab.) DELPHI, L3, OPAL+)
AAD		PL B712 289	G. Aad et al.	(ATLAS Collab.)
AAD		PL B717 49	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C72 2173	G. Aad et al.	(ATLAS Collab.)
AAD	12V	PL B709 341	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN		PR D86 031104	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12E	PRL 108 151803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12W		T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV ABAZOV	12AG 12F	PL B718 451 PRL 108 151804	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.)
Also	121	PR D89 012005	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	11	PL B695 67	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PRL 107 241803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
BLINOV	11	PL B699 287	A.E. Blinov, A.S. Rudenko	(NOVO)
CHATRCHYAN		PL B701 535	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN	10K	PRL 104 201801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
Also	10	PRL 105 019905(errat.)	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABDALLAH TEVEWWG	10 10	EPJ C66 35 arXiv: 1003.2826	J. Abdallah <i>et al.</i> TEVEWWG	(DELPHI Collab.) (CDF, D0 Collab)
AARON	09B	EPJ C64 251	F.D. Aaron <i>et al.</i>	(H1 Collab.)
ABAZOV		PRL 103 141801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PR D80 053012	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PRL 103 191801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PRL 103 231802	V.M. Abazov et al.	(D0 Collab.)
AALTONEN	08B	PRL 100 071801	T. Aaltonen <i>et al.</i>	(CDF_Collab.)
ABAZOV	08R	PRL 100 241805	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	08A	EPJ C55 1	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
	08C	EPJ C54 345	J. Abdallah <i>et al.</i> T. Aaltonen <i>et al.</i>	(DELPHI Collab.)
AALTONEN Also	07F	PRL 99 151801 PR D77 112001	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.) (CDF Collab.)
7130	07L	PR D76 111103	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN			V.M. Abazov <i>et al.</i>	(D0 Collab.)
AALTONEN ABAZOV	07Z	PR D76 111104		(20 cond2.)
ABAZOV ABBIENDI	07Z 07A	EPJ C52 767	G. Abbiendi et al.	(OPAL Collab.)
ABAZOV ABBIENDI ABAZOV	07Z	EPJ C52 767 PR D74 057101	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i>	(OPAL Collab.) (D0 Collab.)
ABAZOV ABBIENDI ABAZOV Also	07Z 07A 06H	EPJ C52 767 PR D74 057101 PR D74 059904(errat.)	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(OPAL Collab.) (D0 Collab.) (D0 Collab.)
ABAZOV ABBIENDI ABAZOV Also ABBIENDI	07Z 07A 06H 06	EPJ C52 767 PR D74 057101 PR D74 059904(errat.) EPJ C45 307	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.) (D0 Collab.) (D0 Collab.) (OPAL Collab.)
ABAZOV ABBIENDI ABAZOV Also ABBIENDI ABBIENDI	07Z 07A 06H 06 06A	EPJ C52 767 PR D74 057101 PR D74 059904(errat.) EPJ C45 307 EPJ C45 291	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> G. Abbiendi <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.) (D0 Collab.) (D0 Collab.) (OPAL Collab.) (OPAL Collab.)
ABAZOV ABBIENDI ABAZOV Also ABBIENDI ABBIENDI ACHARD	07Z 07A 06H 06 06A 06	EPJ C52 767 PR D74 057101 PR D74 059004(errat.) EPJ C45 307 EPJ C45 291 EPJ C45 569	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> G. Abbiendi <i>et al.</i> G. Abbiendi <i>et al.</i> P. Achard <i>et al.</i>	(OPAL Collab.) (D0 Collab.) (D0 Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.)
ABAZOV ABBIENDI ABAZOV Also ABBIENDI ABBIENDI ACHARD AKTAS	07Z 07A 06H 06 06A	EPJ C52 767 PR D74 057101 PR D74 059004(errat.) EPJ C45 307 EPJ C45 291 EPJ C45 569 PL B632 35	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> G. Abbiendi <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.) (D0 Collab.) (D0 Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (H1 Collab.)
ABAZOV ABBIENDI ABAZOV Also ABBIENDI ABBIENDI ACHARD	07Z 07A 06H 06 06A 06 06	EPJ C52 767 PR D74 057101 PR D74 059004(errat.) EPJ C45 307 EPJ C45 291 EPJ C45 569	G. Abbiendi <i>et al.</i> V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i> G. Abbiendi <i>et al.</i> G. Abbiendi <i>et al.</i> P. Achard <i>et al.</i> A. Aktas <i>et al.</i>	(OPAL Collab.) (D0 Collab.) (D0 Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.)

REFID=60627 REFID=60502 REFID=60629 REFID=60709
REFID=60732 REFID=60115 REFID=59677 REFID=59975 REFID=59902 REFID=59928
REFID=60099 REFID=60136 REFID=58798 REFID=59325 REFID=58879 REFID=59317
REFID=59189 REFID=59202 REFID=58014 REFID=58187 REFID=57751 REFID=57751
REFID=57842 REFID=57862 REFID=57871 PEFID=57873
REFID=57906 REFID=57806 REFID=57815 REFID=57853 REFID=58257 REFID=58338 REFID=58229 REFID=57312
REFID=57355 REFID=57355 REFID=57170 REFID=57171 REFID=57553 REFID=57347
REFID=57380 REFID=56479 REFID=56436 REFID=56068 REFID=55984
REFID=55806 REFID=56034 REFID=55824 REFID=55153 REFID=55465 REFID=55155 REFID=56591
REFID=55691 REFID=55170 REFID=55041 REFID=55417 REFID=55475 REFID=54176 REFID=54176
REFID=54585 REFID=54675 REFID=54156 REFID=54368 REFID=54113 REFID=54362
REFID=54726 REFID=54114 REFID=56339 REFID=53563
REFID=53948 REFID=16673 REFID=16673 REFID=53274 REFID=53275 REFID=5320;ERROR=1 REFID=53029 REFID=53040 REFID=53040 REFID=53040
REFID=53154
REFID=52184 REFID=52186 REFID=52396 REFID=52481 REFID=52009 REFID=52099 REFID=52098
REFID=52099 REFID=52034 REFID=51342 REFID=51459 REFID=50084
REFID=51223 REFID=51224 REFID=51024 REFID=51010 REFID=51099

ABAZOV 65. PR D71 091108 V.M. Abzave et al. (D0 Collab.) SCHAEL 05. PR D50 092008 S. Schael et al. (ALEPH Collab.) ABAZOV 05. PR D50 092008 G. Abbendi et al. (D0 Collab.) ABBENDI 04. PR D50 092008 G. Abbendi et al. (DPAL Collab.) ABBENDI 04. PR D50 07003005 G. Abbendi et al. (D2 Collab.) ABBENDI 04. PR D50 107003005 G. Abbendi et al. (D2 Collab.) ASDALLAH 04. PR D50 1201 J. Abdollah et al. (D2 Collab.) ACHARD 04. PL B500 1201 P. Abchad et al. (D2 Collab.) SCHAEL 05. PR D60 12001 V.M. Abzave et al. (D0 Collab.) ABAZOV 022 PR D60 12001 V.M. Abzave et al. (D0 Collab.) ABAZOV 022 PR D60 12001 V.M. Abzave et al. (D0 Collab.) ABAZOV 022 PR D60 12001 V.M. Abzave et al. (D0 Collab.) ABAZOV 022 PR D60 72001 R. Abbottet al.<					
ABAZOV OSS PHL 95 141802 V.M. Abazov et al. (DD Collab.) ABBIERDI MB PL BS8 17, G. Abbiendi et al. (OPAL Collab.) ABBIERDI MB PL BS8 17, G. Abbiendi et al. (OPAL Collab.) ABBIERDI MG FPL 707 032005 G. Abbiendi et al. (OELPHI Collab.) ABDALLAH MG FPL 707 032005 G. Abbiendi et al. (US Collab.) ACHARD MO PL BS6 151 P. Achard et al. (US Collab.) ACHARD MA PL B60 22 P. Achard et al. (US Collab.) ACHARD MA PL B60 231 A. Heister et al. (ALEPH Collab.) ABZOV C2E PR D66 032008 V.M. Abazov et al. (DC Collab.) ABAZOV C2E PR D60 032008 V.M. Abazov et al. (DC Collab.) ABAZOV C2E PR D60 032008 V.M. Abazov et al. (DC Collab.) ABAZOV C2E PR D60 032008 V.M. Abazov et al. (DC Collab.) ABAZOV C2E PR D60 032008 V.M. Abazov et al.		051	PR D71 001108	VM Abazov et al	(D0 Collab.)
Schalt OSA PR D70 02005 V. Abazov et al. (DC Collab.) ABBIEND OH PR D70 02005 V. Abazov et al. (DPAL Collab.) ABBIEND OH PL D580 17 G. Abbiendi et al. (DPAL Collab.) ABBIEND OH PL D586 151 P. Achard et al. (DE CPL) ACHARD OH PL D586 151 P. Achard et al. (L3 Collab.) ACHARD OH PL D586 151 P. Achard et al. (DEPL CSL) ACHARD OH PL D580 231 A Heister et al. (ALEPH Collab.) SCHALL OHA PL D500 231 A Heister et al. (DEPL CSL) ABAZOV OZ PR D50 012001 V.M. Abazov et al. (DPL Collab.) ABAZOV OZ PR D50 012001 V.M. Abazov et al. (DELPH Collab.) ABAZOV OZ PL B537 29 P. Achard et al. (DPL Collab.) ABAZOV OZ PL B530 2000 T. Acheard et al. (DE Collab.) ABBENDT OD PL B40 71 C. Abbiendi et al. (DPL Collab.)					
ABAZOV OLD PR 170 092008 V.M. Abzov et al. (DC Calub.) ABBIENDI OLD PP 123 463 C. Abbendi et al. (DFAL Calub.) ABBIENDI OLD PP 123 463 C. Abbendi et al. (DFAL Calub.) ACHARD OLD PP 123 463 J. Acbahendi et al. (DFAL Calub.) ACHARD OLD PE 123 147 S. Schael et al. (ALEPH Calub.) ACHARD OLD PP 1263 211 C. Abbendi et al. (DELPH Calub.) ABBLALLAH EP 1256 321 C. Abbendi et al. (DELPH Calub.) ABBLALLAH EP 1257 229 P. Abdulat et al. (DELPH Calub.) ABBLALAH EP 1257 229 P. Abrou et al. (DELPH Calub.) ABBLENDI OD EP 1257 229 P. Abrou et al. (DPL Calub.) ABBLENDI OD EP 1257 239 P. Abrou et al. (DPL Calub.) ABBLENDI OD EP 1258 264 (Seccol.) T. Affolder et al. (CDF Calub.) ABBLENDI OD EB 263 (Seccol.) T. Affolder et al. (DPL Calub.)					
ABBIENDI 04B PL E350 17 G. Abbendi et al. (OPAL Collab.) ABBIENDI 04L PR 170 032005 G. Abbendi et al. (DELPH I Collab.) AEBALLAH 04D PL 556 151 P. Achad et al. (LEVH I Collab.) ACHARD 04D PL 556 151 P. Achad et al. (LEVH I Collab.) ACHARD 04D PL 5565 151 P. Achad et al. (ALEPH I Collab.) SCHARL 04A PL 552 213 A. Abbendi et al. (DEVH I Collab.) ABBIENDI 05C PJ C31 139 J. Abdalhe et al. (DE Collab.) ABAZOV 02E PL 5527 29 F. Achad et al. (DE Collab.) ABAZOV 02E PL 5527 29 F. Achad et al. (DE Collab.) ABREUNDI 01H EP J C19 229 F. Achad et al. (DE Collab.) AFROLDER 01E PR D64 02001 T. Afolder et al. (DE Collab.) AFBEUNDI 01H PL 5520 P. Ab					
ABBIENDI 04D EP J C33 463 G. Abbiendi et al. (OPAL Collab.) AEBDENDI 04D FP L384 5151 P. Achard et al. (ELPH Collab.) ACHARD 04D FL B860 5151 P. Achard et al. (KL FH Collab.) SCHARL 04D FP L383 177 S. Schael et al. (KL FH Collab.) ABDALLAH 05C F1 256 321 G. Abbiendi et al. (OPAL Collab.) ABDALLAH 05C F1 256 321 G. Abbiendi et al. (DELPH Collab.) ABDALLAH 05C F1 257 72 P. Achard et al. (DELPH Collab.) ABAZOV 02D FR D66 012001 V.M. Abazov et al. (DD Collab.) ACHARD 02C FR D66 012001 V.M. Abazov et al. (DP Collab.) AGBENTO 02C FR D66 012001 V.M. Abazov et al. (DP Collab.) AGBENTO 00F FL D527 72 P. Achard et al. (DP Collab.) AGBENTO 00F FL D520 52 P. Abrou et al. (DP Collab.) AGBENTO 00F FL 0520 520 P. Abrou et al. (DP Collab.) ABBENTO 00F FL 0520 520 F. Abrout et al. <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
ABBEIRDI 04L PR 170 03205 G. Abblendi et al. (DELPH Collab.) ACHARD 04D PL 6866 151 P. Achard et al. (L1S Collab.) ACHARD 04D PL 6866 151 P. Achard et al. (L1S Collab.) ACHARD 04D PL 6866 151 P. Achard et al. (L1S Collab.) ACHARD 04D PL 686 151 P. Achard et al. (DELPH Collab.) ABBIENDI 04D PL 656 03206 V.M. Abazov et al. (DC Collab.) ABAZOV 02E PL 656 729 P. Achard et al. (L1S Collab.) ABAZOV 02E PL 656 729 P. Achard et al. (DC Collab.) ABAZOV 02E PL 656 729 P. Achard et al. (DC Collab.) ABBENDI 01E PL 650 720 P. Achard et al. (DC Collab.) AFFOLDER 01E PL 651 072001 B. Abbott et al. (DC Collab.) AFFOLDER 01E PL 651 072001 B. Abbott et al. (DC Collab.) AFFOLDER 00D FPL C18 203 P. Abreu et al. (DC Co	ABBIENDI	04D			
ABDALLAH 04G EP] C34 127 J. Abdalla et al. (DELPHI Collab.) ACHARD 04J PL B865 151 P. Achard et al. (LIS Collab.) SCHAEL 04G PL B822 31 A Heister et al. (ALEPH Collab.) SCHAEL 04G EP] C38 147 S. Schael et al. (ALEPH Collab.) SCHAEL 04G EP] C38 147 S. Schael et al. (DELPHI Collab.) ABDALLAH 05G EP] C38 147 S. Schael et al. (DELPHI Collab.) ABDALLAH 02F PL B63 02008 V.M. Abazov et al. (DC Collab.) ACHARD 02F PL B63 02000 V.M. Abazov et al. (DELPHI Collab.) ABBEUN 01H EPJ C39 220 C. Abbend et al. (DO Collab.) ABBEUN 01H EPJ C39 200 C. Abbend et al. (DO Collab.) ABBEUN 00F EPJ C18 203 P. Abrau et al. (DC Collab.) ABBEUNT 00D FH 263 0347 T. Afolder et al. (DC Collab.) ABBEUNT 00D EPJ C35 433 Abbent et al. <	ABBIENDI	04L	PR D70 032005		(OPAL Collab.)
ACHARD 04D PL B806 151 P. Achard et al. (L3 Collab.) ACHARD 04D PL B600 22 P. Achard et al. (ALEPH Collab.) SCHAEL 04A PL D602 21 G. Abbendi et al. (OPAL Collab.) ACBBENDI 03C EPJ C85 321 G. Abbendi et al. (OPAL Collab.) ACBARDONI 03C EPJ C85 327 P. Achard et al. (DELID. Collab.) ABAZOV 02E PR D66 0132008 V.M. Abazov et al. (DZ Collab.) ABAZOV 02E PR D66 0132008 V.M. Abazov et al. (DZ Collab.) ABBENDI 01F EPJ C128 229 P. Abreu et al. (DZ Collab.) ABBENDI 01F EPJ C26 2010 T. Afolder et al. (DZ Collab.) ABBENTI 00F PL 8400 71. G. Abbendi et al. (DZ Collab.) ABBOTT 00F PL 182 03 P. Abreu et al. (DZ Collab.) ABBOTT 00F PL 141 J. Breitweg et al. (DZ Collab.) ACIARRI 00T PL 843 0357 T. Afoldar et al. (DZ	ABDALLAH	04G			(DELPHI Collab.)
HEISTER 04A PL B02 31 A. Heister et al. (ALEPH Collab.) ABDALLAH GA D5J 31 47 S. Schael et al. (DPAL Collab.) ABDALLAH GI PJ C26 321 G. Abbiendi et al. (DPAL Collab.) ABDALLAH GI PJ C26 321 G. Abbiendi et al. (DD Collab.) ABDALLAH GI PL D50 30308 V.M. Abazov et al. (DD Collab.) ABDALLAH GI PL D50 30308 V.M. Abazov et al. (DD Collab.) ABDENDI 002 (PL B539 197 S. Chelanov et al. (DPL Collab.) ABBENDI 011 (PL B502 29 C. Abbiendi et al. (DPL Collab.) ABBENT 000 PR L94 57201 B. Abbott et al. (DD Collab.) ABBOTT 000 PRL 84 5710 B. Abbott et al. (DD Collab.) ACCARR OT PL B490 187 M. Acciant al. (DD Collab.) ACCARR OT PL B490 187 M. Acciant al. (DD Collab.) ACCARR OT PL B490 187 M. Acciant al. (DD Collab.) ACCARR OT PL B491 187 M. Acciant al. (DD Collab.) ACCARR OT PL	ACHARD	04D	PL B586 151		` (L3 Collab.)
SCHAEL 04A EPJ C38 147 S. Schael et al. (CPAL Collab.) ABBIEND 03C EPJ C31 139 J. Abdallah et al. (DELPHI Collab.) ABAZOV 02E PR D66 032008 V.M. Abazov et al. (DO Collab.) ABAZOV 02E PR D66 032008 V.M. Abazov et al. (DO Collab.) ACHARD 02E PR D66 032001 V.M. Abazov et al. (DO Collab.) ABBENDI 01H PL B502 S. Achael et al. (DELPHI Collab.) ABBENDI 01H PL B502 S. Achael et al. (DELCHI Collab.) ABBENDI 01H PL B502 G. Abbiendi et al. (DELCHI Collab.) ABBENDI 01E PR D61 072001 B. Abbott et al. (DO Collab.) ABBOTT 00B PR D51 07301 B. Abbott et al. (DO Collab.) ABBOT 00F PJ C13 203 P. Abreu et al. (DELPHI Collab.) ACATARE 00T PL B490 187 M. Accarri et al. (DELPHI Collab.) ACOARRE 00T PL B453 153 G. Abbiendi et al.	ACHARD	04J	PL B600 22		(L3 Collab.)
ABBIENDI 03C EPJ C26 321 G. Abbiendi et al. (DPAL Collab.) ABDALLAH DZ PR D66 012001 V.M. Abazov et al. (D0 Collab.) ABAZOV 02D PR D66 012001 V.M. Abazov et al. (D0 Collab.) ACHARO 02F PL B527 29 P. Achard et al. (D1 Collab.) ACHARO 02F PL B531 197 S. Chekanov et al. (D2 Collab.) ABBIENDI 01H EPJ C13 229 G. Abbiendi et al. (D7AL Collab.) ABBIENDI 00H PL P4 26 02001 T. Affolder et al. (D0 Collab.) ABBOTT 00D PR L84 5710 B. Abbott et al. (D0 Collab.) ABBOT 00D PL B40 187 M. Acciarri et al. (C1C Collab.) AFRU.PC 00D PL B43 137 T. Affolder et al. (C1C Collab.) AFRU.DER 00M PL B45 3347 T. Affolder et al. (C1C Collab.) AFRU.PC 00D PL B45 3347 T. Affolder et al. (D0 Collab.) BRETIVEG 00D PL B45 3347 T. Affolder et al. <td>HEISTER</td> <td>04A</td> <td>PL B602 31</td> <td></td> <td></td>	HEISTER	04A	PL B602 31		
ABDALLAH 031 EPJ C31 139 J. Abdallah et al. (DD Callab.) ABAZOV 022 PR D66 032008 V.M. Abazov et al. (DO Callab.) ACHARD 022 PR D66 032008 V.M. Abazov et al. (DO Callab.) ACHARD 022 PL B532 197 S. Chekanov et al. (CEUS Callab.) ABBIENDI 011 PL B502 9 P. Abrau et al. (DELPHI Callab.) ABBIENDI 001 PL B502 9 P. Abrau et al. (DOC Callab.) ABBOTT 005 PR D61 072001 B. Abbott et al. (DOC Callab.) ABBOTT 005 PL J C18 203 P. Abreu et al. (DELPHI Callab.) ARSOT 007 PL B490 187 M. Acciarri et al. (CDE Callab.) ARSOT 007 PL B490 187 M. Acciarri et al. (CDELPHI Callab.) ARSOT 007 PL B490 187 M. Acciarri et al. (CDE Callab.) ARSOT 007 PL B493 182 Abbtet et al. (CDE Callab.) ARSOT 000 PL B453 133 G. Abbiendi et al. <	SCHAEL				(ALEPH Collab.)
ABAZOV 02D PR D66 012001 V.M. Abazov et al. (D0 Collab.) ABAZOV 02F PR D66 012001 V.M. Abazov et al. (D1 Collab.) ACHARD 02F PL BS72 29 P. Achard et al. (D2 Collab.) ABBELD D1H PL B03 200 P. Abrau et al. (D2FC Collab.) ABBELD D1H PL B04 052001 T. Affolder et al. (DCFC Collab.) AFFOLDER D1E PR D64 052001 T. Affolder et al. (D0 Collab.) ABBEDT 00D PR D64 052001 F. Abrau et al. (D2FC Collab.) ABBEDT 00D PR D64 052001 F. Abrau et al. (D2FC Collab.) ABBEDT 00D PR D64 0170 B. Abbott et al. (D2 Collab.) ABREU.P 00D PR L55 3347 T. Affolder et al. (ZEUS Collab.) AFCLARR 00D PL J C12 411 J. Breitweg et al. (ZEUS Collab.) ARTUTYEG 00D PL J C12 411 J. Breitweg et al. (D0 Collab.) ARTUTYEG 00D PL J C12 411 J. Breitwegt et al. </td <td></td> <td></td> <td></td> <td></td> <td></td>					
ABA2OV O2E PF D66 032008 V.M. Abazov et al. (D0 Collab.) ACHARD O2F PL B532 197 S. Chekanov et al. (ZEUS Collab.) ABBIENDI O1H FPJ C182 29 G. Abbiendi et al. (OPAL Collab.) AFFULDER DE PR D64 03201 T. Affolder et al. (OPAL Collab.) ABBIENDI OUV PL B490 71 G. Abbiendi et al. (DD Collab.) ABBIOTT ODB PR D61 022001 B. Abbott et al. (DD Collab.) ABBOTT ODP FPL 1637 02301 B. Abbott et al. (DD Collab.) ACCIARRI OTF PL B490 187 M. Acciarri et al. (CDE Collab.) AFOLDER OD FPL 124 11 J. Breitweg et al. (ZEUS Collab.) BREITWEG OD FPL 124 11 J. Breitweg et al. (DD Collab.) ABBOTT 9H PL 843 153 G. Abbiendi et al. (DO Collab.) ABBOTT 9H PL 060 052003 B. Abbott et al. (DD Collab.) ABBOTT 9H PL 060 052003 B. Abbott et al.					
ACHARD 02F PL B527 PL Abcraf et al. (L3 Collab.) CHEKANOV 01H PL B503 97 S. Chekanov et al. (CDLT) ABREU 01H PL B502 9 P. Abreu et al. (CDLT) ABBIENDI 01H PL B502 9 P. Abreu et al. (CDL Collab.) ABBIENDI 00H PL B40711 G. Abbiendi et al. (CDC Collab.) ABBOTT 00B PR D61 072001 B. Abbott et al. (DD Collab.) ABBOTT 00B PR J413 J. Breinweg et al. (DELPH Collab.) ACCARRI 00H PL J431 J. Breinweg et al. (ZEUS Collab.) REITWEG 00D PL J431 J. Breinweg et al. (DO Collab.) ABBOTT 9H PR D60 072002 B. Abbott et al. (DO Collab.) ABBOTT 9H PR D60 072002 B. Abbott et al. (DO Collab.) ABREU 9H PL B453 167 R. Barate et al. (ALEPH Collab.) ABRATE 9H PL B463 160					
CHEKANOV 02C PL B539 197 S. Chekanov et al. (ZEUS Collab.) ABBIEND 01H EPJ C19 29 P. Abreu et al. (DELPHI Collab.) ABFOLDER 01E PR D64 052001 T. Afolder et al. (DPL Collab.) ABBOTT 00D PL B490 71 G. Abbiendi et al. (DD Collab.) ABROTT 00D PR J64 052001 B. Abbott et al. (DD Collab.) ABROTT 00D PR J64 0187 P. Abreu et al. (DELPHI Collab.) ACCIARR 00P FPJ C12 493 (PAreu et al. (DELPHI Collab.) AFOLDER 00M PR J63 037 T. Afolder et al. (DELPHI Collab.) ARBOTT 90H PR L63 533 G. Ebolt, M. Gorazlez-Garcia, S. Novas (DALCOLAD.) BRITWEG 00D FPJ C12 411 J. Breitweg et al. (DELPHI Collab.) ARBOTT 90H PL 600 052003 B. Abbott et al. (DOL Collab.) ABBOTT 90H PL 600 052003 B. Abbott et al. (DELPHI Collab.) ACCIARR <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
ABBIENDI OITH EPJ C19 229 G. Abbiendi et al. (DPAL Collab.) ABFREU OIT PR D50 29 P. Abreu et al. (DPAL Collab.) ABBIENDI OID PR D50 072001 B. Abbott et al. (DPAL Collab.) ABBOTT OOD PR D51 072001 B. Abbott et al. (DD Collab.) ABBOTT OOD PR D51 072001 B. Abbott et al. (DELPHI Collab.) ABBOTT OOD PR D51 072001 B. Abbott et al. (DELPHI Collab.) ABBOTT OOD PR D53 0727 Afciant et al. (DECHI Collab.) ABBOTT OOP PL B430 137 Afciant et al. (CEC Collab.) ABBOTT OD PL D453 133 G. Abbiendi et al. (DPAL Collab.) ABBOTT 99H PL D60 072002 B. Abbott et al. (DO Collab.) ABREU 99 PL D459 382 P. Abreu et al. (DC Collab.) ACCIARRI 99H PL D459 382 P. Abreu et al. (DC Collab.) ABREU 99L PL B453 3107 R. Baratet et al. (
ABREU 011 PL B302 P. Abreu et al. (DELPHI Collab.) AFFOLDER 000 PL B490 71 G. Abbiendi et al. (DPAL Collab.) ABBOTT 000 PR D1072001 B. Abbott et al. (DC Collab.) ABROUT 000 PR 184 5710 B. Abbott et al. (DC Collab.) ABREU,P 000 PL 212 213 P. Abreu et al. (DELPHI Collab.) ACCIARR 000 PL 3490 17. T. Affolder et al. (DELPHI Collab.) ACCIARR 000 PL 3471 11 J. Breitweg et al. (ZEUS Collab.) BRITWEG 000 PL 3451 31 G. Eboli, M. Gorazlez-Garcia, S. Novas BRISTT 901 PL D600 07200 B. Abbott et al. (DCH Collab.) ABBOTT 901 PL D600 07200 B. Abbott et al. (DCH Collab.) ABBOTT 901 PL D645 360 M. Acciarri et al. (ALEPH Collab.) ACCIARR 990 PL B465 171 M. Acciarri et al.					
AFFOLDER 01E PR D64 052001 T. Affolder et al. (CDF Collab.) ABBIEND 008 PR D61 072001 B. Abbott et al. (D0 Collab.) ABBOTT 009 PR 48 45710 B. Abbott et al. (D0 Collab.) ABBOT 009 PR 48 45710 B. Abbott et al. (DELPHI Collab.) ARIS EPJ C18 203 P. Abreu et al. (DELPHI Collab.) ACCIARR 007 PL B490 187 M. Acciarri et al. (C13 Collab.) AFFOLDER 000 PL 12 2411 J. Breitweg et al. (ZEUS Collab.) BRITIVEG 000 PJ 12 431 J. Breitweg et al. (DO Collab.) ABBOTT 991 PL 260 052003 B. Abbott et al. (DO Collab.) ABBOTT 991 PR D50 052003 B. Abbott et al. (DO Collab.) ARBATE 991 PL 459 382 P. Abreu et al. (DC Collab.) ACCIARR 990 PL 4453 130 R. Barate et al. (ALEPH Collab.) ACCIARR 990 PL 4463 3107 R. Barate et al. (ALEPH Collab.) <td></td> <td></td> <td></td> <td></td> <td></td>					
ABBIENDI 00V PL B490 71 G. Abbiendi et al. (DPAL Collab.) ABBOTT 00B PR D61 072001 B. Abbott et al. (DC Collab.) ABREU.P 00F FPJ C18 203 P. Abreu et al. (DELPHI Collab.) Also CT PL E490 187 P. Abreu et al. (DELPHI Collab.) ACCIARR 00P PL 71 211 J. Breitweg et al. (CDC Collab.) BREITWEG 00 PL 71 211 J. Breitweg et al. (CDC Collab.) BREITWEG 00 PL 1453 153 G. Abbott et al. (DO Collab.) ABBOTT 991 PL B60 052003 B. Abbott et al. (DO Collab.) ABBRT 991 PL B649 382 P. Abreu et al. (DC Collab.) ACCIARRI 991 PL B454 386 M. Acciarri et al. (ALEPH Collab.) ACCIARRI 991 PL B453 107 R. Barate et al. (ALEPH Collab.) ARATE 991 PL B453 307 R. Barate et al. (ALEPH Collab.) ABROTT 991 PL B453 308 R. Barate et al. (DEPHI Collab.) <td></td> <td></td> <td></td> <td></td> <td></td>					
ABBOTT 000 PR D51 072001 B. Abbott et al. (D0 Collab.) ABBOTT 000 PRL 84 9710 B. Abbott et al. (DELPHI Collab.) Also EPJ C13 203 P. Abreu et al. (DELPHI Collab.) ACIARRI 00T PL 853 347 T. Affolder et al. (CEC) Collab.) BREITWEG 00 PL 8471 411 J. Breitweg et al. (ZEUS Collab.) BREITWEG 000 PL 8471 411 J. Breitweg et al. (ZEUS Collab.) BROTT 99H PL 843 153 G. Abbeindi et al. (DO Collab.) ABBOTT 99H PL 8453 163 G. Abbeindi et al. (DO Collab.) ABBOTT 99H PL 8453 163 M. Accianri et al. (L1 Collab.) ACCIARRI 99L PL 8465 389 R. Barate et al. (ALEPH Collab.) ACCIARRI 99H PL 8462 389 R. Barate et al. (ALEPH Collab.) ABRATE 99H PL 8462 389 R. Barate et al. (ALEPH Collab.) ABRATE 99H PL 8462 389 R. Barate et al. (CDE Collab.)					
ABBOTT 000 PRI. 84 5710 B. Abbott et al. (DC Collab.) ABREU, P OF FPJ C18 203 P. Abreu et al. (DELPHI Collab.) ACCIARR 007 PL 8490 187 P. Abreu et al. (DELPHI Collab.) AFCOLDER 007 PL 8490 187 T. Affolder et al. (CDF Collab.) BREITWEG 000 PL 1411 J. Breitweg et al. (ZEUS Collab.) BREITWEG 000 PL 1453 J. Breitweg et al. (DC Collab.) ABBOTT 991 PL B00 052003 B. Abbott et al. (DC Collab.) ABBRT 991 PL B00 052002 B. Abbott et al. (DC Collab.) ACCIARR 99 PL B454 386 M. Acciarri et al. (ALEPH Collab.) ACCIARR 99 PL B456 399 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B455 399 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B455 399 R. Barate et al. (DC Collab.) BARATE 991 PL B455 3010101 F. Abe et al.					
ABREU.P ODF EPJ C18 203 P. Abreu et al. (DELPHI Collab.) ACCLARRI 00M PL B490 187 P. Abreu et al. (L3 Collab.) AFFOLDER 00M PL B493 137 T. Affolder et al. (L2 Collab.) BREITWEG 00 PL B471 411 J. Breitweg et al. (ZEUS Collab.) BREITWEG 00 PL B473 153 G. Abbiendi et al. (D0 CALCOLA) ABBIENDI 00 MPL A455 153 G. Abbiendi et al. (D0 Collab.) ABBOTT 991 PL B00 072002 B. Abbott et al. (D1 Collab.) ABRATE 991 PL B453 3107 M. Acciarri et al. (L2 Collab.) ACCIARRI 991 PL B465 349 R. Brate et al. (ALEPH Collab.) ACCIARRI 991 PL B465 349 R. Brate et al. (D0 Collab.) BARATE 991 PL B465 349 R. Brate et al. (D1 Collab.) ABROTT 980 PL B465 349 R. Brate et al. (D0 Collab.) ABRATE 991 PL B463 333 P. Abreu et al. (D0					
Also EPJ C25 493 (errat.) P. Abreu et al. (DELPH Collab.) ACCLARR 00 PL B45 3347 T. Afolder et al. (CDF Collab.) BREITWEG 00 PL B471 411 J. Breitweg et al. (ZEUS Collab.) BREITWEG 00 PL B471 411 J. Breitweg et al. (ZEUS Collab.) BBBOTT 99H PR D60 052003 B. Abbott et al. (DO Collab.) ABBOTT 99H PR D60 052003 B. Abbott et al. (DO Collab.) ABREU 99L PL B459 382 P. Abreu et al. (BLEPHI Collab.) ACCLARRI 99 PL B454 386 M. Acciarri et al. (ALEPH Collab.) ACCLARRI 99 PL B456 2389 R. Barate et al. (ALEPH Collab.) BARATE 99L PL B450 3107 R. Barate et al. (ALEPH Collab.) BARATE 99L PL B450 3390 R. Barate et al. (DO Collab.) BABOTT 98D PT D58 012002 B. Abbott et al. (DO Collab.) ABBOTT 98P PD D58 02003 B. Abbott et al. (DO Collab.) ABBEU 98D PL D58 031010 F. Abe et al. (DE Collab.) ABREU					
ACCLARRI 000 PL B490 187 M. Acciarri et al. (L3 Collab.) AFFOLDER 000 PL B471 411 J. Breitweg et al. (ZEUS Collab.) BREITWEG 00 PL B471 111 J. Breitweg et al. (ZEUS Collab.) BROIT 000 PL B471 111 J. Breitweg et al. (ZEUS Collab.) ABBOT 000 PL B453 153 G. Abbiendi et al. (DPL Collab.) ABBOT 900 PL B453 152 G. Abbiendi et al. (DC Collab.) ABBOT 901 PL B453 157 M. Acciarri et al. (L1 Collab.) ACCLARRI 90 PL B453 107 R. Barate et al. (ALEPH Collab.) ACCLARRI 900 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 901 PL B453 107 R. Barate et al. (DC Collab.) BARATE 901 PL B450 389 R. Barate et al. (DE Collab.) BARATE 901 PL B56 02003 B. Abbott et al. (DC Collab.) ABBOTT 900 PL B453 107 R.Barate et al.		001			
AFFOLDER 000 PRL 85 3347 T. Affolder et al. (CDF Collab.) BREITWEG 00 PL 8471 11 J. Breitweg et al. (ZEUS Collab.) BBBINDI 900 PPL 8453 153 G. Abbiendi et al. (DOC Collab.) ABBOTT 99H PR D60 052003 B. Abbott et al. (DOC Collab.) ABREU 99L PL 8459 382 P. Abreu et al. (DC Collab.) ABREU 99Q PL 8459 382 P. Abreu et al. (LEPH IC Collab.) ACCLARRI 99Q PL 8452 386 M. Acciarri et al. (ALEPH Collab.) BARATE 99L PL 8452 389 R. Barate et al. (ALEPH Collab.) BARATE 99M PL 8462 389 R. Barate et al. (DO Collab.) ABBOTT 98N PR D58 021002 B. Abbott et al. (DO Collab.) ABREU 98N PL 8453 387 P. Abreu et al. (DELPHI Collab.) ABREU 980 PL 16333 R. Bara		00T			
BREITWEG 00 PL B471 411 J. Breitweg et al. (ŽEUS Collab.) BREITWEG 00 PL 712 411 J. Breitweg et al. (ZEUS Collab.) BBOTT 99N PL B453 153 G. Abbiendi et al. (DPAL Collab.) ABBOTT 99N PL B453 152 G. Abbiendi et al. (DC Collab.) ABBOTT 991 PL D60 072002 B. Abbott et al. (DE Collab.) ABBOTT 991 PL B454 336 M. Acciarri et al. (LI Collab.) ACCLARRI 990 PL B453 107 R. Barate et al. (ALEPH Collab.) ARATE 991 PL B453 107 R. Barate et al. (DC Collab.) BARATE 991 PL B453 0101 R. Barate et al. (DC Collab.) ABBOTT 99N PL B50 02002 B. Abbott et al. (DC Collab.) ABBOTT 99N PL B50 031101 F. Abe et al. (DE Collab.) ABE 99P PL B50 031101 F. Abe et al. (DE LPHI Collab.) ABREU 980 PL B415 435 R. Brate et al. (ALEPH Co					
BREITWEG OD EPJ C12 411 J. Breitwag et al. (ZES Collab.) BBOIT 90 PL B453 153 G. Abbiendi et al. (DO Collab.) ABBOTT 901 PL B453 153 G. Abbiendi et al. (DO Collab.) ABBOTT 901 PL B453 382 P. Abreu et al. (DE Collab.) ABREU 901 PL B453 386 M. Acciarri et al. (L3 Collab.) ACCIARRI 990 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B453 380 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B465 349 R. Barate et al. (DO Collab.) BABOTT 989 PL B465 339 R. Barate et al. (DD Collab.) ABBOTT 980 PL B465 33101 F. Abe et al. (DD Collab.) ABBE 981 PL B403 209 P. Abreu et al. (DD Collab.) ABBCU 980 PL B433 209 P. Abreu et al. (DD Collab.) ABREU 980 PL B433 R. Barate et al. (DD Collab.)	BREITWEG				
EBOLI 00 MPL A15 1 O. Eboli, M. Gonzalez-Garcia, S. Novaes ABBIEND 99N PL B453 153 G. Abbiendi et al. (DPAL Collab.) ABBOTT 991 PR D60 072002 B. Abbott et al. (DD Collab.) ABBOTT 991 PL B453 382 P. Abreu et al. (DELPHI Collab.) ACCIARRI 990 PL B453 1507 R. Barate et al. (L13 Collab.) ACCIARRI 990 PL B453 1507 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B453 383 P. Abreu et al. (DD Collab.) BARATE 991 PL B453 389 R. Barate et al. (ALEPH Collab.) BABOTT 98N PL B453 339 R. Barate et al. (DD Collab.) ABBOTT 98N PL B453 3120202 B. Abbott et al. (DD Collab.) ABREU 980 PL B430 347 R. Barate et al. (DELPHI Collab.) ABREU 980 PL B430 347 R. Barate et al. (DECF Collab.) ABREU 980 PL B430 347 R. Barate et al. (DC Collab.)<					
ABBIENDI 99H PL B453 153 G. Abbiendi et al. (OPA Callab.) ABBOTT 99H PR D60 052002 B. Abbott et al. (DO Callab.) ABREU 99L PL B459 382 P. Abreu et al. (DELPHI Callab.) ACCLARRI 99 PL B453 386 M. Acciarri et al. (L3 Callab.) ACCLARRI 990 PL B453 107 R. Barate et al. (ALEPH Callab.) BARATE 991 PL B453 107 R. Barate et al. (ALEPH Callab.) BARATE 991 PL B452 339 R. Barate et al. (DO Callab.) ABBOTT 980 PL D58 031001 F. Abe et al. (DD Callab.) ABBE 98H PR D58 031001 F. Abe et al. (DEF Callab.) ABREU 980 PL B415 233 R. Barate et al. (ALEPH Callab.) BARATE 97 PL B403 209 P. Abreu et al. (DEF Callab.) BARATE 97 PL B415 233 R. Barate et al. (ALEPH Callab.) BARATE 97 PL B415 235 R. Barate et al. (DEF Callab.		00	MPL A15 1	O. Eboli, M. Gonzalez-Garcia, S	
ABBOTT 991 PR D60 052003 B. Abbott et al. (D0 Collab.) ABBOTT 991 PL B459 382 P. Abreu et al. (D1 Collab.) ACCLARRI 990 PL B453 386 M. Acciarri et al. (L3 Collab.) ACCLARRI 990 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B453 107 R. Barate et al. (D0 Collab.) BABOTT 981 PL B453 107 R. Barate et al. (D0 Collab.) BABOTT 981 PL B456 349 R. Barate et al. (D0 Collab.) ABBOTT 981 PL D58 0310101 F. Abe et al. (DDF Collab.) ABREU 980 PL B445 233 P. Abreu et al. (DELPHI Collab.) ABREU 980 PL B443 238 P. Abreu et al. (DECF Collab.) ABREU 980 PL B443 35 R. Barate et al. (DECF Collab.) ABREU 950 PRL 75 114 F. Abe et al. (DCF Collab.)	ABBIENDI	99N			
ABBCUTT 991 PL B459 382 P. Abreu et al. (DC Collab.) ACCLARRI 991 PL B454 386 M. Acciarri et al. (L3 Collab.) ACCLARRI 990 PL B467 171 M. Acciarri et al. (L3 Collab.) BARATE 991 PL B463 107 R. Barate et al. (ALEPH Collab.) BARATE 991 PL B465 349 R. Barate et al. (ALEPH Collab.) BARATE 994 PL B465 349 R. Barate et al. (D0 Collab.) ABBOTT 980 PL D58 051002 B. Abbott et al. (D0 Collab.) ABBC 981 PL D58 051101 F. Abe et al. (DC F Collab.) ABRE 981 PL B403 209 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B403 237 P. Abreu et al. (DC F Collab.) BARATE 97 PL B415 AS Re Barate et al. (DC F Collab.) ABREU 980 PRL 75 1456 S.	ABBOTT	99H	PR D60 052003	B. Abbott <i>et al.</i>	(D0 Collab.)
ACCIARRI 99 PL B467 ITI M. Acciarri et al. (L3 Collab.) BARATE 991 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 994 PL B462 389 R. Barate et al. (ALEPH Collab.) BARATE 994 PL B462 389 R. Barate et al. (D0 Collab.) ABBOTT 980 PL B463 3101 F. Abe et al. (DD Collab.) ABBU 980 PL B463 231101 F. Abe et al. (DELPHI Collab.) ABREU 980 PL B413 239 P. Abreu et al. (DELPHI Collab.) ABREU 980 PL B432 299 P. Abreu et al. (CDF Collab.) ABRATE 975 PL B413 AT R. Barate et al. (ALEPH Collab.) ABACHI 950 PRL 75 14341 F. Abe et al. (CDF Collab.) ABE 956 PRL 73 111 F. Abe et al. (ABBOTT	991	PR D60 072002	B. Abbott <i>et al.</i>	
ACCLARRI 990 PL B453 107 R. Barate et al. (L3 Collab.) BARATE 991 PL B453 107 R. Barate et al. (ALEPH Collab.) BARATE 994 PL B465 349 R. Barate et al. (ALEPH Collab.) BABOTT 980 PL B465 349 R. Barate et al. (DC Collab.) ABBOTT 980 PL B465 349 R. Barate et al. (DC Collab.) ABBE 984 PL D58 012002 B. Abbott et al. (DC Collab.) ABE 984 PL D58 013101 F. Abe et al. (DC Collab.) ABREU 980 PL B416 233 P. Abreu et al. (DE Chill. Collab.) ABRATE 97 PL B401 347 R. Barate et al. (DE Chill. Collab.) ABRATE 975 PL B415 355 R. Barate et al. (CDF Collab.) ABACHI 950 PRL 75 1545 S. Aba	ABREU	99L	PL B459 382	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BARATE 99 PL B462 39 R. Barate et al. (ALEPH Collab.) BARATE 99M PL B462 399 R. Barate et al. (DC Collab.) ABBOTT 98N PR D58 092003 B. Abbott et al. (DC Collab.) ABBOTT 98P PR D58 012002 B. Abbott et al. (DC Collab.) ABE 98P PR D58 031101 F. Abe et al. (CDF Collab.) ABE 98P PR D58 031101 F. Abe et al. (DELPHI Collab.) ABREU 98N PL <b439 209<="" td=""> P. Abreu et al. (DELPHI Collab.) BARATE 97 PL<b401 347<="" td=""> R. Barate et al. (ALEPH Collab.) BARATE 97 PL<b415 435<="" td=""> R. Barate et al. (CDF Collab.) ABE 95D PRL 75 115 F. Abe et al. (CDF Collab.) ABE 95D PRL 75 113 F. Abe et al. (CDF Collab.) ABE 95D PRL 75 145 J. Abtert al. (CDF Collab.) ABE 92E PRL 63 3398</b415></b401></b439>	ACCIARRI	99	PL B454 386		(L3 Collab.)
BARATE 90H PL B465 389 R. Barate et al. (ALEPH Collab.) BARATE 99M PR D58 092003 B. Abbott et al. (D0 Collab.) ABBOTT 98N PR D58 012002 B. Abbott et al. (D0 Collab.) ABBOTT 98P PR D58 012002 B. Abbott et al. (CDF Collab.) ABE 98H PR D58 091101 F. Abe et al. (CDF Collab.) ABREU 98C PL B416 233 P. Abreu et al. (DELPHI Collab.) ABREU 98C PL B401 347 R. Barate et al. (ALEPH Collab.) BARATE 97 PL B401 347 R. Barate et al. (CDF Collab.) ABRE 95C PRL 75 1456 S. Abachi et al. (CDF Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95D PRL 75 220 F. Abe et al. (CDF Collab.) ABE 95D PRL 73 220 F. Abe et al. (CDF Collab.)	ACCIARRI	99Q	PL B467 171	M. Acciarri <i>et al.</i>	(L3 Collab.)
BARATE 99M PL B465 349 R. Barate et al. (ALEPH Collab.) ABBOTT 98N PR D58 02003 B. Abbott et al. (D0 Collab.) ABE 98H PR D58 031101 F. Abe et al. (CDF Collab.) ABE 98P PR D58 031101 F. Abe et al. (CDF Collab.) ABREU 98C PL B415 233 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab.) BARATE 97 PL B415 435 R. Barate et al. (CDF Collab.) ABE 95D PRL 75 1456 S. Abachi et al. (CDF Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95D PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95D PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 92I PRL 69 28 F. Abe et al. (UA2 Collab.) ALITTI					
ABBOTT 98N PR DS6 002003 B. Abbott et al. (D0 Collab.) ABBOTT 98P PR DS8 012002 B. Abbott et al. (CDF Collab.) ABE 98P PR DS8 091101 F. Abe et al. (CDF Collab.) ABREU 980 PL B416 233 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab.) BARATE 97 PL B401 347 R. Barate et al. (CDF Collab.) ABREU 980 PR T 75 1456 S. Abachi et al. (CDF Collab.) ABE 950 PRI 75 11 F. Abe et al. (CDF Collab.) ABE 950 PRI 75 11 F. Abe et al. (CDF Collab.) ABE 950 PRI 73 220 F. Abe et al. (CDF Collab.) ABE 921 PRI 68 3398 F. Abe et al. (CDF Collab.) ABE 921 PRI 63 354 J. Alitti et al. (UA2 Collab.) ALITTI 922 PL 8276 355 J. Alitti et al. (UA2 Collab.) <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
ABBOTT 99P PR D58 012002 B. Abbott et al. (D0 Collab.) ABE 98H PR D58 031101 F. Abe et al. (CDF Collab.) ABREU 98C PL B416 233 P. Abreu et al. (DELPHI Collab.) BARTE 97 PL B403 209 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab.) ABACHI 95D PRL 75 1456 S. Abachi et al. (CDF Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 73 220 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (UA2 Collab.) ALITTI 92E PL 8276 354 J. Alitti et al. (UA2 Collab.) ALITTI <td></td> <td></td> <td></td> <td></td> <td></td>					
ABE 98P PR D58 031101 F. Abe et al. (CDF Collab.) ABREU 98C PL B416 233 P. Abreu et al. (DELPHI Collab.) ABREU 98N PL B430 209 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B430 347 R. Barate et al. (ALEPH Collab.) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab.) ABE 95C PRI. 75 1456 S. Abachi et al. (CDF Collab.) ABE 95C PRI. 75 11 F. Abe et al. (CDF Collab.) ABE 95G PRI. 75 11 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92E PRI. 68 3398 F. Abe et al. (CDF Collab.) ABE 92I PRI. 69 28 F. Abe et al. (UA2 Collab.) ALITTI 92E PRI. 63 398 J. Alitti et al. (UA2 Collab.) ALITTI 92E PL B277 303 J. Alitti et al. (UA2 Collab.) ALI					
ABE 98P PR D58 091101 F. Abe et al. (CDF Collab.) ABREU 980 PL B416 233 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B439 209 P. Abreu et al. (ALEPH Collab.) BARATE 97 PL B415 435 R. Barate et al. (ALEPH Collab.) ABRE 95D PRL 75 1456 S. Abachi et al. (DD Collab.) ABE 95D PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 22624 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3396 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3396 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3396 F. Abe et al. (UA2 Collab.) ALITTI 92 PL B276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92 PL B277 303 J. Alitti et al. (UA2 Collab.) ALITTI					
ABREU 98C PL B416 233 P. Abreu et al. (DELPHI Collab.) ABREU 98N PL B439 209 P. Abreu et al. (ALEPH Collab.) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab.) BARATE 975 PL B415 435 R. Barate et al. (ALEPH Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95G PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95W PL 52 2624 F. Abe et al. (CDF Collab.) ABE 92E PRL 63 3398 F. Abe et al. (CDF Collab.) ABE 92E PRL 63 28 F. Abe et al. (CDF Collab.) ALITTI 92E PL B276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92E PL B271 703 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B273 503 C. Albajar et al. (OKSU, CARL) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
ABREU 98N PL B439 209 P. Abreu et al. (DELPHI Collab.) BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab.) BARATE 975 PL B415 435 R. Barate et al. (DO Collab.) ABACHI 95D PRL 75 1456 S. Abachi et al. (DD Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95G PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92E PRL 63 230 F. Abe et al. (CDF Collab.) ABE 92E PRL 63 28 F. Abe et al. (CDF Collab.) ABE 92E PRL 63 65 J. Alitti et al. (UA2 Collab.) ALITTI 92B PL B276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 303 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B275 3503 C. Albajar et al. (OKSU, CARL) ABE					
BARATE 97 PL B401 347 R. Barate et al. (ALEPH Collab.) BARATE 97S PL B415 435 R. Barate et al. (ALEPH Collab.) ABACH 95D PRL 75 1456 S. Abachi et al. (DD Collab.) ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.) ABE 95C PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95P PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92I PRL 69 28 F. Abe et al. (CDF Collab.) ABE 92I PRL 69 28 F. Abe et al. (UA2 Collab.) ALITTI 92 PL B276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 03 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 127 M.A. Samuel et al. (DA2 Collab.) ALITTI					
BARATE 97S PL B415 435 R. Barate et al. (ALEPH Collab.) ABACHI 95D PRL 75 1456 S. Abachi et al. (DD Collab.) ABE 95C PRL 74 1936 F. Abe et al. (CDF Collab.) ABE 95G PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 92E PRL 69 28 F. Abe et al. (CDF Collab.) ABE 92I PRI 73 200 F. Abe et al. (UA2 Collab.) ALITTI 92B PRI 276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 035 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ABE					
ABACHI 95D PRL 75 1456 S. Abachi et al. (D0 Collab.) ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.) ABE 95P PRL 75 11 F. Abe et al. (CDF Collab.) Also PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92U PRL 69 28 F. Abe et al. (CDF Collab.) ABE 92I PRL 69 28 F. Abe et al. (UA2 Collab.) ALITTI 92 PL B276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92E PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B270 33 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 124 M.A. Samuel et al. (CDF Collab.) ABE 91C PR D43 2070					
ABE 95C PRL 74 341 F. Abe et al. (CDF Collab.) ABE 95G PRL 75 11 F. Abe et al. (CDF Collab.) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab.) ABE 92W PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ALITTI 92 PL 8276 365 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL 8277 03 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL 8277 03 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL 8280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL 8280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL 8280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL 8280 137 J. Alitti et al. (UA2 Collab.) ALBAJAR					· · · · · · · · · · · · · · · · · · ·
ABE 95G PRL 75 11 F. Abe et al. (CDF Collab.) Also PR D52 4784 F. Abe et al. (CDF Collab.) Also PR D52 4784 F. Abe et al. (CDF Collab.) Also PRL 73 220 F. Abe et al. (CDF Collab.) Alse 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92P PRL 63 3398 F. Abe et al. (CDF Collab.) ABE 92I PRL 69 28 F. Abe et al. (UA2 Collab.) ALITTI 92 PL B276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92C PR D43 2070 F. Abe et al. (CDF Collab.) ABE 91C PR D43 2070 F. Abe e					
ABE 95P PR L 75 11 F. Abe et al. (CDF Collab.) ABE 95W PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab.) ALITTI 92 PL 8276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92E PL 8276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL 8277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL 8201 17 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL 8280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D42 29 F. Abe et al. (UA2 Collab.) ALBAJAR 91 PL 8253 503 C. Albajar et al. (UA2 Collab.) ALBAJAR 91 PRL 67 2920 (errat.) M.A. Samuel et al. (DKSU, CARL)					
Also PR D52 4784 F. Abe et al. (CDF Collab.) ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 92I PRL 69 28 F. Abe et al. (UA2 Collab.) ALITTI 92 PL B276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92B PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92C PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) AMUEL 92 PL B283 503 C. Albajar et al. (CDF Collab.) ABE 91C PR C5 2209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (CDF Collab.) Also PR L 67 2920 (errat.) <td></td> <td></td> <td></td> <td></td> <td></td>					
ABE 95W PR D52 2624 F. Abe et al. (CDF Collab.) Also PRL 73 220 F. Abe et al. (CDF Collab.) ABE 921 PRL 66 3398 F. Abe et al. (CDF Collab.) ABE 921 PRL 69 28 F. Abe et al. (UA2 Collab.) ALITTI 92 PL B276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92C PL B277 03 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B285 503 C. Albajar et al. (OKSU, CARL) ABE 91C PR C 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 290 (errat.) M.A. Samuel et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et		551			
Also PRL 73 220 F. Abe et al. (CDF Collab.) ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab.) ALITTI 92 PL B276 365 J. Alitti et al. (UA2 Collab.) ALITTI 92B PL B277 33 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (OKSU, CARL) ABE 91C PR U4 29 F. Abe et al. (CDF Collab.) ABS 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALBAJAR 91 PRL 67 2920 (errat.) M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (CDF Collab.) Also PR L		95W			
ABE 92E PRL 68 3398 F. Abe et al. (CDF Collab.) ABE 921 PRL 69 28 F. Abe et al. (CDF Collab.) ALITTI 92 PL B276 355 J. Alitti et al. (UA2 Collab.) ALITTI 92B PL B277 354 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B287 72 033 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (UA2 Collab.) ALBAJAR 91 PL E53 503 C. Albajar et al. (UA2 Collab.) Also PRL 67 2920 (errat.) M.A. Samuel et al. (OCF Collab.) Also PRL 67 2920 (errat.) M.A. Samuel et al. (CDF Collab.) Also PR 43 2070 F. Abe et al. (CDF Collab.) ALITTI 90B		50			
ABE 921 PRL 69 28 F. Abe et al. (CDF Collab.) ALITTI 92 PL B276 365 J. Alitti et al. (UA2 Collab.) ALITTI 92B PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (UA2 Collab.) ALITTI 91C ZPH V 52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPH V 52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPH V 52 209 J. Alitti et al. (OKSU, CARL) Also PR L 67 2920 (errat.) M.A. Samuel et al. (DCF Collab.) Also PR L 63 2070 F. Abe et al. (UA1 Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA2 Collab.) ALBAJAR		92E			
ALITTI 92B PL B276 354 J. Alitti et al. (UA2 Collab.) ALITTI 92C PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (DA2 Collab.) Also PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (DF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALITTI 90B PL B241 283 C. Albajar et al. (UA1 Collab.) ALIT					
ALITTI 92C PL B277 194 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92P PL B280 137 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 2020 (errat.) M.A. Samuel et al. (OKSU, CARL) Also PR L 67 2020 (errat.) M.A. Samuel et al. (DF Collab.) Also PR L 67 2020 (errat.) M.A. Samuel et al. (DF Collab.) Also PR L 65 2243 F. Abe et al. (CDF Collab.) Also PR L 62 2000 F. Abe et al. (DA Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALBAJ	ALITTI	92	PL B276 365	J. Alitti <i>et al.</i>	(UA2 Collab.)
ALITTI 92D PL B277 203 J. Alitti et al. (UA2 Collab.) ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 124 MA. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (UA1 Collab.) ALBAJAR 91 PL B253 503 C. Albajar et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA2 Collab.) ALBAJAR 90 PL B241 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PH 241 15 C. Albajar et al. (UA1 Collab.) ALITTI 908 PL B274 203 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Als	ALITTI	92B	PL B276 354	J. Alitti <i>et al.</i>	
ALITTI 92F PL B280 137 J. Alitti et al. (UA2 Collab.) SAMUEL 92 PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ALBAJAR 91 PL B253 503 C. Albajar et al. (UA1 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) Also PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (ODF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (UA1 Collab.) ALITTI 90B PL B241 126 J. Alitti et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA1 Collab.) ABE 89I PRL 62 1005	ALITTI	92C	PL B277 194		(UA2 Collab.)
SAMUEL 92 PL B280 124 M.A. Samuel et al. (OKSU, CARL) ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ALBAJAR 91 PL B253 503 C. Albajar et al. (UA1 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PR L 67 2920 (errat.) M.A. Samuel et al. (OCF Collab.) Also PR L 65 2243 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 PRL 62 1005 F. Abe et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJ	ALITTI	92D		J. Alitti <i>et al.</i>	(UA2 Collab.)
ABE 91C PR D44 29 F. Abe et al. (CDF Collab.) ALBAJAR 91 PL B253 503 C. Albajar et al. (UA1 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) ALITTI 91C ZPHY C52 209 J. Alitti et al. (OKSU, CARL) Also PRL 67 9 M.A. Samuel et al. (OCF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (UA1 Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA2 Collab.) ALBAJAR 90 PL B241 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PHY C44 15 C. Albajar et al. (UA1 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87					
ALBAJAR 91 PL B253 503 C. Albajar et al. (UA1 Collab.) ALITTI 91C ZPHY CS2 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (UA1 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B186 240 R. Ansari et al. (UA1 Collab.) GROTCH 87					
ALITTI 91C ZPHY C52 209 J. Alitti et al. (UA2 Collab.) SAMUEL 91 PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ALITTI 90B PL B241 150 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 C. Albajar et al. (UA1 Collab.) ABE 89I PRL 62 1005 F. Abe et al. (UA1 Collab.) ABE 89I PRL 63 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL					
SAMUEL 91 PRL 67 9 M.A. Samuel et al. (OKSU, CARL) Also PRL 67 2920 (errat.) M.A. Samuel et al. (DKSU, CARL) ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALBTTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B186 2430 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B85 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) ARNARIWARA 8					
Also PRL 67 2920 (errat.) M.A. Samuel et al. (CDF Collab.) ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ALBAJAR 89 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) VA					
ABE 90G PRL 65 2243 F. Abe et al. (CDF Collab.) Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA1 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (UA1 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B186 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al.		91			(UNSU, CARL)
Also PR D43 2070 F. Abe et al. (CDF Collab.) ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (UA1 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B186 2430 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU)		906			(CDE Collab.)
ALBAJAR 90 PL B241 283 C. Albajar et al. (UA1 Collab.) ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 621 1005 F. Abe et al. (UA2 Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B185 233 C. Albajar et al. (UA2 Collab.) ARNARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) AGRUVARA 87 PR B26 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU)		500			
ALITTI 90B PL B241 150 J. Alitti et al. (UA2 Collab.) ABE 891 PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA2 Collab.) GROTCH 87 PL B186 440 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 154B 285 F. Herzog (UA1 Collab.)		90			
ABE 89I PRL 62 1005 F. Abe et al. (CDF Collab.) ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 2400 R. Ansari et al. (UA2 Collab.) ANSARI 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 154B 283 A. Grau, J.A. Grifols (UA1 Collab.) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
ALBAJAR 89 ZPHY C44 15 C. Albajar et al. (UA1 Collab.) BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ANSARI 87 PL B185 233 C. Albajar et al. (UA1 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HEZZOG 84 PL 1488 355 F. Herzog (WISC) A					<u>}</u>
BAUR 88 NP B308 127 U. Baur, D. Zeppenfeld (FSU, WISC) GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Alsa PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 154B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 669 G.T.J. Arnison et al.					
GRIFOLS 88 IJMP A3 225 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari <et al.<="" td=""> (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 154B 283 M. Suzuki (LBL)</et>					(FSU, WISC)
Also PL B197 437 J.A. Grifols, S. Peris, J. Sola (BARC, DESY) ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D36 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 69 G.T.J. Arnison et al. (UA1 Collab.) HEZZOG 84 PL 143B 855 F. Herzog (WISC) Also PL 125B 6(errat.) F. Herzog (WISC) ARNI	GRIFOLS	88	IJMP A3 225		
ALBAJAR 87 PL B185 233 C. Albajar et al. (UA1 Collab.) ANSARI 87 PL B186 440 R. Ansari et al. (UA2 Collab.) GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 669 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 855 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog	Also		PL B197 437		
GROTCH 87 PR D36 2153 H. Grotch, R.W. Robinett (PSU) HAGWARA 87 NP B282 253 K. Hagiwara <i>et al.</i> (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison <i>et al.</i> (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison <i>et al.</i> (UA1 Collab.)					
HAGIWARA 87 NP B282 253 K. Hagiwara et al. (KEK, UCLA, FSU) VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 143B 355 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)					
VANDERBIJ 87 PR D35 1088 J.J. van der Bij (FNAL) GRAU 85 PL 154B 283 A. Grau, J.A. Grifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)					
GRAU 85 PL 154B 283 A. Grau, J.A. Črifols (BARC) SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)					
SUZUKI 85 PL 153B 289 M. Suzuki (LBL) ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)					
ARNISON 84D PL 134B 469 G.T.J. Arnison et al. (UA1 Collab.) HERZOG 84 PL 148B 355 F. Herzog (WISC) Also PL 158B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)					
HERZOG 84 PL 148B 355 F. Herzog (WISC) Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison et al. (UA1 Collab.)					
Also PL 155B 468 (errat.) F. Herzog (WISC) ARNISON 83 PL 122B 103 G.T.J. Arnison <i>et al.</i> (UA1 Collab.)					
ARNISON 83 PL 122B 103 G.T.J. Arnison <i>et al.</i> (UA1 Collab.)		0.1			
		83			
					. ,

REF	ID=50640
	ID=50925 ID=50521
REF REF	ID=50247 ID=49616
REF	ID=49667 ID=50050
RFF	ID=49919
REF	ID=49884 ID=50129
	ID=50282 ID=50445
REE	ID-40280
REF REF	ID = 49209 ID = 49624 ID = 48803 ID = 48006
REF	ID = 48900 ID = 48718
REF REF	ID=48803 ID=48906 ID=48718 ID=48954 ID=48136 ID=48005
REF	ID = 48095 ID = 48234
RFF	ID=47778 ID=47499
REF	ID=47636
REF	ID=40029 ID=49003 ID=47780
REF	ID=47797
REF	ID=47566 ID=47733
RFF	ID=47672 ID=47163
REF	ID=47205 ID=47209
REF	ID=46972 ID=46597
RFF	ID=47295
REF REF	ID=47009 ID=47223 ID=47252
RFF	11) = 46476
REE	ID = 46049 ID = 46052
	ID=46473 ID=45830
RFF	ID=45050 ID=46510 ID=45215
RFF	ID=45804
RFF	ID=44403 ID=44150
RFF	ID=44184 ID=44224
REF	ID=44225 ID=44424
REF	ID=43746
REF	ID=42033 ID=42090
REF	ID=41820 ID=41821
DEE	ID=41888 ID=41889
REF REF	ID=41889 ID=42020 ID=41897 ID=41519 ID=41448 ID=41448
REF REF	ID=41519
REF	ID = 41738
RFF	ID-41757
REF	ID = 41394 ID = 41466
REF REF	ID=41217 ID=41119
REF	ID=40988 ID=40860
RFF	ID=41886 ID=40526
REF	ID=40527
REF	ID=40198 ID=40199
REF	ID=40314 ID=41887
REE	ID=40202 ID=40205
REF REF	ID=40206 ID=10026 ID=10028
REF	ID=10028
REF	ID=10028 ID=40528 ID=10021 ID=10024
KEF	ID=10024