J = 1

See the related review(s):

Z Boson

VALUE (CaV)

Z MASS

NODE=S044M NODE=S044M

OUR AVERAGE is given by the weighted average of the combined CDF result and the combined LEP result, assuming no correlations between CDF and LEP. The combined LEP result, 91.1876 ± 0.0021 GeV, is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). The LEP fit is performed using the Z mass and width, the Z hadronic pole cross section, the ratios of hadronic to leptonic partial widths, and the Z pole forward-backward lepton asymmetries. This set is believed to be most free of correlations.

The Z-boson mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass dependent width. The value is 34 MeV greater than the real part of the position of the pole (in the energysquared plane) in the Z-boson propagator. Also the LEP experiments have generally assumed a fixed value of the γ -Z interferences term based on the standard model. Keeping this term as free parameter leads to a somewhat larger error on the fitted Z mass. See ACCIARRI 00Q and ABBIENDI 04G for a detailed investigation of both these issues.

DOCUMENT ID

TECN

COMMENT

EVITC

NODE=S044M

VALUE (GeV)		EVTS		DOCUMENT ID		TECN	COMMENT		
91.1880	0 ± 0.0020	OUR AV	ERAGE							
91.1923	3 ± 0.0071	L		1	AALTONEN	22	CDF	$E_{cm}^{p\overline{p}} = 1.8 \; TeV$		
91.1876	5 ± 0.0021	L		2	LEP-SLC	06	LEP	Eee = 88-94 GeV		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$										
91.084	± 0.107			3	ANDREEV	18A	H1	$e^{\pm}p$		
91.1872	2 ± 0.0033	3		4	ABBIENDI	04G	OPAL	Eee LEP1 +		
91.272	±0.032	± 0.033		5	ACHARD	04C	L3	130-209 GeV $E_{\text{cm}}^{ee} = 183-209 \text{ GeV}$		
91.1852	2 ± 0.0030)	4.57M	6	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV		
91.1863	3 ± 0.0028	3	4.08M	7	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV		
91.1898	3 ± 0.0031	L	3.96M	8	ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV		
91.1875	5 ± 0.0039	9	3.97M	9	ACCIARRI	00Q	L3	$E_{cm}^{ee} = LEP1 +$		
91.1885	5±0.0031	L	4.57M		BARATE		ALEP	130–189 GeV <i>E</i> ^{ee} _{cm} = 88–94 GeV		
91.151	± 0.008			11	MIYABAYASHI	95	TOPZ	$E_{\rm cm}^{\rm ee} = 57.8 \; {\rm GeV}$		
91.74	±0.28	±0.93	156	12	ALITTI	92 B	UA2	$E_{ m cm}^{p\overline{p}}=$ 630 GeV		
90.9	±0.3	±0.2	188	13	ABE	89C	CDF	$E_{cm}^{p\overline{p}} = 1.8 \; TeV$		
91.14	±0.12		480	14	ABRAMS	89 B	MRK2	E ^{ee} _{cm} = 89–93 GeV		
93.1	± 1.0	± 3.0	24	15	ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}} = 546,630 \text{ GeV}$		

 $^{^{}m 1}$ AALTONEN 22 analyse Z decays in the di-muon and di-electron channels using their full Run-II data set. They obtain Z mass values of $91192.0 \pm 6.4 (\text{stat.}) \pm 4.0 (\text{syst.})$ MeV and 91194.3 \pm 13.8(stat.) \pm 7.6(syst.) MeV, respectively. Combining these results using the systematic uncertainty contributions and their correlations as given in AALTONEN 22, we obtain an average of 91192.3 \pm 5.8(stat.) \pm 4.1(syst.) MeV.

NODE=S044M:LINKAGE=O

NODE=S044M;LINKAGE=Q

NODE=S044M;LINKAGE=N

NODE=S044M;LINKAGE=AI

NODE=S044M;LINKAGE=AH

NODE=S044M;LINKAGE=DB

 $^{^2}$ This result combines ABBIENDI 01A, ABREU 00F, ACCIARRI 00C, BARATE 00C, taking correlated uncertainties into account.

³ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic e^+p and e^-p neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

⁴ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV. The authors have corrected the measurement for the 34 MeV shift with respect to the

 $^{^{5}}$ ACHARD 04C select $e^{+}e^{-}
ightarrow~$ $Z\gamma$ events with hard initial–state radiation. Z decays to $q\,\overline{q}$ and muon pairs are considered. The fit results obtained in the two samples are found consistent to each other and combined considering the uncertainty due to ISR modelling as fully correlated.

 $^{^6\,\}mathrm{ABBIENDI}$ 01A error includes approximately 2.3 MeV due to statistics and 1.8 MeV due to LEP energy uncertainty. This result is included in the LEP average LEP-SLC 06.

NODE=S044M;LINKAGE=AC

NODE=S044M:LINKAGE=AB

NODE=S044M;LINKAGE=NN

NODE=S044M;LINKAGE=KA

NODE=S044M;LINKAGE=M

NODE=S044M;LINKAGE=AG

NODE=S044M;LINKAGE=E

NODE=S044M;LINKAGE=I

NODE=S044M:LINKAGE=F

NODE=S044W

NODE=S044W

⁷The error includes 1.6 MeV due to LEP energy uncertainty. This result is included in the LEP average LEP-SLC 06.

 $^{8}\,\mathrm{The}$ error includes 1.8 MeV due to LEP energy uncertainty. This result is included in the LEP average LEP-SLC 06.

 $^9\mathrm{ACCIARRI}$ 00Q interpret the s-dependence of the cross sections and lepton forwardbackward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of $\pm 2.3~\text{MeV}$ due to the uncertainty on the $\gamma\,Z$ interference.

 $^{10}\,\mathrm{BARATE}$ 00C error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty. This result is included in the LEP average LEP-SLC 06.

11 MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 93D data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametrization

 $^{12}\mathrm{Enters}$ fit through W/Z mass ratio given in the W Particle Listings. The ALITTI 92B systematic error (± 0.93) has two contributions: one (± 0.92) cancels in m_{W}/m_{Z} and one (± 0.12) is noncancelling. These were added in quadrature.

 $^{13}\mathrm{First}$ error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.

 $^{14} \mbox{ABRAMS 89B}$ uncertainty includes 35 MeV due to the absolute energy measurement.

 15 ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

Z WIDTH

OUR EVALUATION is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). Corrections as discussed in VOUTSINAS 20 and JANOT 20 are also included.

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S044W
2.4955±0.0023 OU	JR EVALUATIO	N				$ o$ UNCHECKED \leftarrow
2.4955 ± 0.0023		¹ JANOT	20			

• • •	We do i	not use th	ne followin	g data for averages	s, fits,	limits, e	etc. • • •
2.495	5 ± 0.002	3		² VOUTSINAS	20		
2.4952	2 ± 0.002	3		³ LEP-SLC	06		$E_{cm}^{ee} = 88-94 \; GeV$
2.4943	3 ± 0.004	1		⁴ ABBIENDI	04G	OPAL	$E_{cm}^{ee} = LEP1 +$
				5			130-209 GeV
2.4948	8 ± 0.004	1	4.57M	⁵ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
2.4876	6 ± 0.004	1	4.08M	⁶ ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
2.5024	4 ± 0.004	2	3.96M	⁷ ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV
2.5025	5 ± 0.004	1	3.97M	⁸ ACCIARRI	00Q	L3	$E_{\rm cm}^{\rm ee} = {\sf LEP1} +$
							130-189 GeV
2.4951	1 ± 0.004	3	4.57M	⁹ BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV
2.50	± 0.21	± 0.06		¹⁰ ABREU	96R	DLPH	$E_{ m cm}^{ m ee}=$ 91.2 GeV
3.8	± 0.8	± 1.0	188	ABE	89c	CDF	$E_{cm}^{ar{p}} = 1.8 \; TeV$
2.42	$^{+0.45}_{-0.35}$		480	¹¹ ABRAMS	89в	MRK2	E ^{ee} _{cm} = 89–93 GeV
2.7	$^{+1.2}_{-1.0}$	± 1.3	24	¹² ALBAJAR	89	UA1	$E_{cm}^{p\overline{p}} = 546,630 \; GeV$
2.7	± 2.0	± 1.0	25	¹³ ANSARI	87	UA2	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV

¹ JANOT 20 applies a correction to LEP-SLC 06 using an updated Bhabha cross section calculation. This result also includes a correction to account for correlated luminosity bias as presented in VOUTSINAS 20.

 2 VOUTSINAS 20 applies a correction to LEP-SLC 06 to account for correlated luminosity bias.

This result combines ABBIENDI 01A, ABREU 00F, ACCIARRI 00C, BARATE 00C, taking correlated uncertainties into account.

⁴ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130-209 GeV. The authors have corrected the measurement for the 1 MeV shift with respect to the

 $^{5}\,\mathrm{ABBIENDI}$ 01A error includes approximately 3.6 MeV due to statistics, 1 MeV due to event selection systematics, and 1.3 MeV due to LEP energy uncertainty.

⁶ The error includes 1.2 MeV due to LEP energy uncertainty.

 $^{7}\,\mathrm{The}$ error includes 1.3 MeV due to LEP energy uncertainty.

 8 ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forwardbackward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to

OCCUR=2

NODE=S044W;LINKAGE=G

NODE=S044W;LINKAGE=A

NODE=S044W;LINKAGE=K

NODE=S044W;LINKAGE=AI

NODE=S044W;LINKAGE=DB

NODE=S044W;LINKAGE=AB NODE=S044W;LINKAGE=NN

NODE=S044W;LINKAGE=AC

Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.

 $^9\,\mathrm{BARATE}$ 00C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.

 $^{10}\,\mathrm{ABREU}$ 96R obtain this value from a study of the interference between initial and final state radiation in the process $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$.

 $^{11}\mathrm{ABRAMS}$ 89B uncertainty includes 50 MeV due to the miniSAM background subtraction error. 12 ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

13 Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either $\Gamma(Z)<(1.09\pm0.07)\times\Gamma(W)$, CL=90% or $\Gamma(Z)=(0.82^{+0.19}_{-0.14}\pm0.06)\times\Gamma(W)$. Assuming Standard-Model value $\Gamma(W)=2.65$ GeV then gives $\Gamma(Z)<2.89\pm0.19$ or $=2.17^{+0.50}_{-0.37}\pm0.16$.

NODE=S044W;LINKAGE=KA

NODE=S044W;LINKAGE=M

NODE=S044W;LINKAGE=I

NODE=S044W;LINKAGE=F NODE=S044W;LINKAGE=E

Z DECAY MODES

NODE=S044215;NODE=S044

		z bearti mobes		11000=3044213,11000=3
			Scale factor/	
	Mode	Fraction (Γ_i/Γ) Cor	nfidence level	
Γ_1	e^+e^-	$(3.3632\pm0.0042)\%$		DESIG=1
Γ_2	$\mu^+\mu^-$	(3.3662±0.0066) %		DESIG=2
Γ3	$\tau^+\tau^-$	(3.3696±0.0083) %		DESIG=8
Γ_4	$\ell^+\ell^-$	[a] (3.3658±0.0023) %		DESIG=16
Γ ₅	$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$,		DESIG=92
Γ_6	$\ell^+\ell^-\ell^+\ell^-$	[b] (4.55 ± 0.17) \times 10 ⁻⁶	i	DESIG=82
Γ_7	invisible	(20.000 ±0.055)%		DESIG=9
Γ ₈	hadrons	(69.911 ±0.056) %		DESIG=7
Γ_9	$(u\overline{u}+c\overline{c})/2$	$(11.6 \pm 0.6)\%$		DESIG=21
Γ ₁₀	$(d\overline{d} + s\overline{s} + b\overline{b})/3$	$(15.6 \pm 0.4)\%$		DESIG=22
Γ ₁₁	$c\overline{c}$	$(12.03 \pm 0.21)\%$		DESIG=17
Γ ₁₂	$b\overline{b}$	$(15.12 \pm 0.05)\%$		DESIG=6
Γ ₁₃	$b\overline{b}b\overline{b}$	$(3.6 \pm 1.3) \times 10^{-4}$		DESIG=73
Γ_{14}^{13}	ggg	< 1.1 %	CL=95%	DESIG=64
Γ ₁₅	$\pi^0 \gamma$	$< 2.01 \times 10^{-5}$		DESIG=10
Γ ₁₆	$\eta\gamma^{'}$	$< 5.1 \times 10^{-5}$		DESIG=11
Γ ₁₇	$\rho^{0}\gamma$	$< 4.0 \times 10^{-6}$		DESIG=86
Γ ₁₈	$\omega\gamma$	$< 3.9 \times 10^{-6}$	CL=95%	DESIG=48
Γ ₁₉	$\eta'(958)\gamma$	$< 4.2 \times 10^{-5}$	CL=95%	DESIG=12
Γ ₂₀	$\phi\gamma$	$< 7 \times 10^{-7}$	CL=95%	DESIG=85
Γ_{21}	$\gamma\gamma$	$< 1.46 \times 10^{-5}$	CL=95%	DESIG=13
Γ_{22}	$\pi^0\pi^0$	$< 1.52 \times 10^{-5}$	CL=95%	DESIG=83
Γ_{23}	$\gamma\gamma\gamma$	$< 2.2 \times 10^{-6}$	CL=95%	DESIG=14
Γ_{24}	$\pi^{\pm} W^{\mp}$	$[c] < 7 \times 10^{-5}$	CL=95%	DESIG=18
Γ_{25}	$ ho^\pm W^\mp$	$[c] < 8.3 \times 10^{-5}$	CL=95%	DESIG=19
Γ_{26}	$J/\psi(1S)$ X	$(3.51 ^{+0.23}_{-0.25}) \times 10^{-3}$	S=1.1	DESIG=23
Γ_{27}	$J/\psi(1S)\gamma$	$< 6 \times 10^{-7}$	CL=95%	DESIG=84
Γ ₂₈	$\psi(2S)X$	$(1.60 \pm 0.29) \times 10^{-3}$		DESIG=60
Γ_{29}	$\psi(2S)\gamma$	$< 1.3 \times 10^{-6}$	CL=95%	DESIG=87
Γ_{30}	$J/\psi(1S)\ell^+\ell^-$			DESIG=91
Γ_{31}	$J/\psi(1S)J/\psi(1S)$	$< 2.2 \times 10^{-6}$	CL=95%	DESIG=93
Γ_{32}	$\chi_{c1}(1P)X$	$(2.9 \pm 0.7) \times 10^{-3}$		DESIG=42
Γ_{33}	$\chi_{c2}(1P)X$	$< 3.2 \times 10^{-3}$	CL=90%	DESIG=65
Γ ₃₄	$\Upsilon(1S) \times + \Upsilon(2S) \times$	$(1.0 \pm 0.5) \times 10^{-4}$		DESIG=69
_	$+ \Upsilon(3S) X$	-		
Γ ₃₅	$\Upsilon(1S)X$	$< 4.4 \times 10^{-5}$		DESIG=66
Γ ₃₆	$\Upsilon(1S)\gamma$	$< 1.1 \times 10^{-6}$		DESIG=88
Γ ₃₇	$\Upsilon(2S)X$	< 1.39 × 10 ⁻⁴		DESIG=67
Γ ₃₈	$\Upsilon(2S)\gamma$	$< 1.3 \times 10^{-6}$		DESIG=89
Γ ₃₉	$\Upsilon(3S)X$	$< 9.4 \times 10^{-5}$		DESIG=68
Γ ₄₀	$\Upsilon(3S)\gamma$	$< 2.4 \times 10^{-6}$	CL=95%	DESIG=90

Γ ₄₁ Γ ₄₂ Γ ₄₃ Γ ₄₄ Γ ₄₅ Γ ₄₆ Γ ₄₇ Γ ₄₈ Γ ₄₉	$\Upsilon(1,2,3S) \Upsilon(1,2,3S)$ $K_S^0 \gamma$ $D^0 \gamma$ $(D^0/\overline{D}^0) X$ $D^{\pm} X$ $D^*(2010)^{\pm} X$ $D_{s1}(2536)^{\pm} X$ $D_{sJ}(2573)^{\pm} X$ $D^*(2629)^{\pm} X$		< 1.5 < 3.1 < 4.0 (20.7 (12.2 [c] (11.4 (3.6 (5.8 searched)	± 2.0 ± 1.7 ± 1.3 ± 0.8 ± 2.2	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-6}$) %) %) %) $\times 10^{-3}$) $\times 10^{-3}$	CL=95% CL=95% CL=95%	DESIG=94 DESIG=96 DESIG=95 DESIG=43 DESIG=44 DESIG=24 DESIG=75 DESIG=76 DESIG=74;OUR EVAL;→ UNCHECKED ←
	BX		Searcheu	IOI			DESIG=61
Γ ₅₀ Γ ₅₁	B*X						DESIG=61 DESIG=62
Γ ₅₂	$B^{+}X$		[d] (6.08	± 0.13) %		DESIG=77
Γ ₅₃	$B_s^0 X$		'	± 0.13	,		DESIG=49
Γ ₅₄	$B_c^+ X$		searched f		,		$DESIG {=} 70; OUR\; EVAL; {\rightarrow}\; UNCHECKED \leftarrow$
Γ ₅₅	$\Lambda_c^{+} X$		(1.54	± 0.33) %		DESIG=78
Γ ₅₆	$=\frac{1}{c}X$		seen				$DESIG {=} 80; OUR \; EST; {\rightarrow} \; UNCHECKED \; {\leftarrow}$
Γ ₅₇	$\equiv_b^c X$		seen				$DESIG {=} 81; OUR \; EST; {\rightarrow} \; UNCHECKED \; {\leftarrow}$
Γ ₅₈	<i>b</i> -baryon X		[d] (1.38	± 0.22) %		DESIG=79
Γ ₅₉	anomalous $\gamma+$ hadrons		[e] < 3.2		$\times 10^{-3}$	CL=95%	DESIG=31
Γ ₆₀	$e^+e^-\gamma$		[e] < 5.2		$\times 10^{-4}$	CL=95%	DESIG=3
Γ_{61}	$\mu^+\mu^-\gamma$		[e] < 5.6		$\times 10^{-4}$	CL=95%	DESIG=4
Γ ₆₂	$ au^+ au^- \gamma$		[e] < 7.3		$\times 10^{-4}$	CL=95%	DESIG=29
Γ ₆₃	$\ell^+\ell^-\gamma\gamma$		[f] < 6.8		$\times 10^{-6}$	CL=95%	DESIG=45
Γ ₆₄	$q \overline{q} \gamma \gamma$		[f] < 5.5		$\times 10^{-6}$	CL=95%	DESIG=46
Γ ₆₅	$ u \overline{ u} \gamma \gamma$		[f] < 3.1		$\times 10^{-6}$	CL=95%	DESIG=47
Γ ₆₆	$e^{\pm}\mu^{\mp}$	LF	[c] < 2.62		$\times 10^{-7}$	CL=95%	DESIG=5
Γ ₆₇	$e^{\pm} au^{\mp}$	LF	[c] < 5.0		\times 10 ⁻⁶	CL=95%	DESIG=25
Γ ₆₈	$\mu^{\pm} \tau^{\mp}$	LF	[c] < 6.5		\times 10 ⁻⁶	CL=95%	DESIG=26
Γ ₆₉	рe	L,B	< 1.8		\times 10 ⁻⁶	CL=95%	DESIG=71
Γ ₇₀	$p\mu$	L,B	< 1.8		\times 10 ⁻⁶	CL=95%	DESIG=72

- [a] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.
- [b] Here ℓ indicates e or μ .
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] This value is updated using the product of (i) the $Z \to b \overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [e] See the Particle Listings below for the γ energy range used in this measurement.
- [f] For $m_{\gamma\gamma}=$ (60 \pm 5) GeV.

Z PARTIAL WIDTHS

 $\Gamma(e^+e^-)$ Γ_1

For the LEP experiments, this parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
83.91±0.12 OUR FIT					
83.66 ± 0.20	137.0k	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
83.54 ± 0.27	117.8k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
$84.16 \!\pm\! 0.22$	124.4k	ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV
83.88 ± 0.19		BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV
$82.89\!\pm\!1.20\!\pm\!0.89$		$^{ m 1}$ ABE	95J	SLD	$E_{cm}^{ee} = 91.31 \; GeV$

 $^{^1}$ ABE 95J obtain this measurement from Bhabha events in a restricted fiducial region to improve systematics. They use the values 91.187 and 2.489 GeV for the Z mass and total decay width to extract this partial width.

LINKAGE=GDZ

LINKAGE=DXX

LINKAGE=LEM

LINKAGE=SG

LINKAGE=HFF

LINKAGE=DYY

NODE=S044218

NODE=S044W1

NODE=S044W1

NODE=S044W1

NODE=S044W1;LINKAGE=KG

Γ	$(\mu^+$	μ^{-}

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The $\it Z$ boson" and ref. LEP-SLC 06.

NODE=S044W2 NODE=S044W2

VALUE (MeV) DOCUMENT ID TECN COMMENT **EVTS** 83.99 ± 0.18 OUR FIT 84.03 ± 0.30 182.8k 01A OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$ **ABBIENDI** 157.6k **ABREU** Eee = 88-94 GeV 84.48 ± 0.40 DLPH

ACCIARRI

BARATE

113.4k

NODE=S044W2

 $\Gamma(\tau^+\tau^-)$

 83.95 ± 0.44

 84.02 ± 0.28

 $\Gamma(\ell^+\ell^-)$

Γ3

 $E_{\rm cm}^{ee} =$ 88–94 GeV

00C ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$

 Γ_2

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044W3 NODE=S044W3

NODE=S044W3

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
84.08±0.22 OUR FIT					
$83.94 \!\pm\! 0.41$	151.5k	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
$83.71 \!\pm\! 0.58$	104.0k	ABREU	00F	DLPH	$E_{\rm cm}^{\rm ee}=$ 88–94 GeV
$84.23\!\pm\!0.58$	103.0k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
84.38 ± 0.31		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 Γ_4 NODE=S044W4

NODE=S044W4

 ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

In our fit $\Gamma(\ell^+\ell^-)$ is defined as the partial Z width for the decay into a pair of massless charged leptons. This parameter is not directly used in the 5-parameter fit assuming lepton universality but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV) DOCUMENT ID TECN COMMENT **EVTS**

83.984 ± 0.086 OUR FIT 01A OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$ 83.82 ± 0.15 **ABBIENDI** 471.3k DLPH E_{cm}^{ee} = 88–94 GeV 83.85 ± 0.17 379.4k **ABREU** 84.14 ± 0.17 340.8k **ACCIARRI** 00c L3 $E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$ 84.02 ± 0.15 500k BARATE ALEP $E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$ NODE=S044W4

Γ(invisible)

 Γ_7

NODE=S044W6 NODE=S044W6

The Z boson also decays to final states invisible in any detector, for example, the decay to a neutrino pair as predicted in the Standard Model. Measurements of Γ (invisible) fall into two categories: direct or indirect. Direct measurements look for final states with missing energy, missing momentum, or missing mass, corresponding to the invisible decay of a produced Z boson, including single-photon final states which arise from initial-state radiation. The indirect determination is based on Z lineshape analyses performed at the LEP collider, where the invisible decay width is calculated by subtracting all visible partial decay widths from the total decay width of the Z boson. Within the framework of the Standard Model these two determinations should be identical, but not in non-SM scenarios.

NODE=S044W6 VALUE (MeV) DOCUMENT ID TECN COMMENT 499.3 ± 1.5 OUR AVERAGE

79919 ± 119 0011	, W = W 10=				
$506 \pm 2 \pm 12$		¹ AAD	24L	ATLS	$E_{CM}^{pp} = 13 \; TeV$
$523 \pm 3 \pm 16$		² TUMASYAN	23E	CMS	$E_{cm}^{pp} = 13 \; TeV$
499.0 ± 1.5		³ LEP-SLC	06	LEP	$E_{cm}^{ee} = 88-94 \; GeV$
$498\pm12\pm12$	1791	⁴ ACCIARRI	98G	L3	E ^{ee} _{cm} = 88–94 GeV
$539\pm26\pm17$	410	⁴ AKERS	95 C	OPAL	$E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$
$450 \pm 34 \pm 34$	258	⁴ BUSKULIC	93L	ALEP	$E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$
$540 \pm 80 \pm 40$	52	⁴ ADEVA	92	L3	$E_{\rm cm}^{ee} =$ 88–94 GeV
• • • We do not	use the following	g data for average	s, fits,	limits, e	etc. • • •

498.1± 2.6	⁵ ABBIENDI	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
$498.1 \pm \ 3.2$	⁵ ABREU	00F DLPH	<i>E</i> ^{ee} _{cm} = 88−94 GeV
499.1 ± 2.9	⁵ ACCIARRI	00c L3	<i>E</i> ^{ee} _{cm} = 88–94 GeV
400 1 ± 2 5	5 βαρατέ	OOC ALED	Fee _ 88_04 GeV/

 1 AAD 24L use the measured ratio of invisible Z decays and leptonic Z decays to derive the width of the Z decaying to invisible particles. Events with transverse momentum of the Z larger than 130 GeV and at least one central jet with transverse momentum larger

than 110 GeV are selected. 2 TUMASYAN 23E analyses leptonic Z decay modes, with the invisible Z decay identified by missing momentum.

 $^3\mathrm{The}$ LEP Collaborations perform a combined fit to their line-shape results and determine this quantity as a difference between the total width and the sum of all the visible widths, assuming lepton universality. This result combines ABBIENDI 01A, ABREU 00F, ACCIARRI 00C, BARATE 00C, taking correlated uncertainties into account.

 $^4\,\mathrm{This}$ analysis selects single-photon events arising from inital state radiation.

⁵ This is an indirect determination of Γ (invisible) from a fit to the visible Z decay modes. It is included in the determination of the LEP average LEP-SLC 06 reported above.

NODE=S044W6;LINKAGE=D

NODE=S044W6;LINKAGE=F

NODE=S044W6;LINKAGE=C

NODE=S044W6;LINKAGE=E NODE=S044W6;LINKAGE=B1

Γ(hadrons)

This parameter is not directly used in the 5-parameter fit assuming lepton universality, but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

Γg NODE=S044W5 NODE=S044W5

NODE=S044W5

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1744.4±2.0 OUR FIT					
1745.4 ± 3.5	4.10M	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
$1738.1\!\pm\!4.0$	3.70M	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
1751.1 ± 3.8	3.54M	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
1744.0 ± 3.4	4.07M	BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

Z BRANCHING RATIOS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The $\it Z$ boson" and ref. LEP-SLC 06).

NODE=S044220

NODE=S044220

 $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$

DOCUMENT ID

 Γ_2/Γ_1

NODE=S044R3 NODE=S044R3

1.0001 ± 0.0024 OUR	AVERAGE
---------------------	---------

$0.9974\!\pm\!0.0050$	$^{ m 1}$ AABOUD	17Q ATLS	$E_{cm}^{pp} = 7 \; TeV$
$1.0009\!\pm\!0.0028$	² LEP-SLC	06	$E_{cm}^{\mathit{ee}} = 88-94 \; GeV$

 1 AABOUD 17Q make a precise determination of $Z
ightarrow e\,e$ and $Z
ightarrow \,\mu\,\mu$ production in the lepton pseudo-rapidity range $|\eta| <$ 2.5 and determine the ratio of the Z branching fractions B(Z \rightarrow ee)/B(Z \rightarrow $\mu\mu$) = 1.0026 \pm 0.0013 \pm 0.0048 = 1.0026 \pm 0.0050.

 2 This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044R3;LINKAGE=A

NODE=S044R3;LINKAGE=B

_	(_ + _=\	/-	(_+	_=\	
1 ($(au^+ au^-)$)/[((e'	e)

VALUE	DOCUMENT ID	TECN	COMMENT	
1.0020±0.0032 OUR AVERAGE				
1.02 ± 0.06	¹ AAIJ	18AR LHCB	$E_{cm}^{pp} = 8 \; TeV$	
1.0019 ± 0.0032	² LEP-SLC	06	$E_{\rm cm}^{\it ee}=88-94~{\rm GeV}$	

¹AAIJ 18AR obtain the result from the ratio of the measured $pp \rightarrow Z + X$ cross sections in the corresponding Z decay channels.

²This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044R19;LINKAGE=B NODE=S044R19;LINKAGE=D

$\Gamma \left(au^+ au^- ight) / \Gamma \left(\mu^+ \mu^- ight)$				Γ_3/Γ_2
VALUE	DOCUMENT ID	TECN	COMMENT	

WIEGE	DOCOMENTIO	T L CIV	COMMENT
1.0010 ± 0.0026 OUR AVERAGE			
1.01 ± 0.05	¹ AAIJ	18AR LHCB	$E_{cm}^{pp} = 8 \; TeV$
1.0010 ± 0.0026	² LEP-SLC	06	$E_{\mathrm{cm}}^{\mathrm{ee}} = 88-94 \; \mathrm{GeV}$

 1 AAIJ 18AR obtain the result from the ratio of the measured $p\,p o \,Z + \,X$ cross sections in the corresponding Z decay channels.

 2 This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044R37 NODE=S044R37

NODE=S044R19 NODE=S044R19

NODE=S044R37;LINKAGE=A

NODE=S044R37;LINKAGE=B

$\Gamma(\ell^+\ell^-\ell^+\ell^-)/\Gamma_{total}$

 Γ_6/Γ

NODE=S044R01 NODE=S044R01

NODE=S044R01

NODE=S044R01;LINKAGE=F

NODE=S044R01;LINKAGE=E

NODE=S044R01;LINKAGE=D

NODE=S044R01;LINKAGE=B

NODE=S044R01;LINKAGE=CH

NODE=S044R11;LINKAGE=DB

NODE=S044R11;LINKAGE=AC

NODE=S044R11;LINKAGE=AB

Here ℓ indicates either e or μ . The branching fractions in this node are given within the phase-space defined by the requirements that (i) the 4-lepton invariant mass is between 80 GeV and 100 GeV, and (ii) any opposite-sign same-flavor lepton pair has a di-lepton invariant mass larger than 4 GeV.

VALUE (units 10^{-6})	EVTS	DOCUMENT ID	TECN	COMMENT
4.55±0.17 OUR AVE	RAGE			
$4.41\!\pm\!0.13\!\pm\!0.27$		¹ AAD	21AQ ATLS	$E_{cm}^{pp} = 13 \; TeV$
$4.70\!\pm\!0.32\!\pm\!0.25$		² AABOUD	19N ATLS	$E_{cm}^{pp} = 13 \; TeV$
$4.83 {+0.23 +0.35 \atop -0.22 -0.32}$	509	³ SIRUNYAN	18BT CMS	$E_{cm}^{pp} = 13 \; TeV$
$4.9 \begin{array}{c} +0.8 & +0.4 \\ -0.7 & -0.2 \end{array}$	39	⁴ KHACHATRY.	16cc CMS	$E_{cm}^{pp} = 13 \; TeV$
$4.31\!\pm\!0.34\!\pm\!0.17$	172	AAD	14N ATLS	$E_{cm}^{pp} = 7, 8 TeV$
$4.6 \begin{array}{c} +1.0 \\ -0.9 \end{array} \pm 0.2$	28	⁵ CHATRCHYAI	N 12BN CMS	$E_{cm}^{pp} = 7 \; TeV$

 $^{^{}m 1}$ AAD 21AQ analyze differential cross-sections in four-lepton events. Based on the measured cross section in the $Z \to 4\ell$ channel, a branching fraction of B($Z \to 4\ell$) = (4.41 \pm 0.13 \pm 0.23 \pm 0.09 \pm 0.12) \times 10^{-6} is obtained, where the uncertainties are

 $^{^5}$ CHATRCHYAN 12BN reports (4.2 $^{+0.9}_{-0.8} \pm 0.2) \times 10^{-6}$ value. Their result (both central value and uncertainties) is scaled up by 10% to account for the different phase-space definition used here (see RAINBOLT 19).

18/1	Γ	8/	Γ	1
------	---	----	---	---

NODE=S044R11 NODE=S044R11

$\Gamma(\text{hadrons})/\Gamma(e^+e^-)$					Γ_8/Γ_1
VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
20.804 ± 0.050 OUR FIT					
$20.902 \pm \ 0.084$	137.0k	$^{ m 1}$ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
20.88 ± 0.12	117.8k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
$20.816 \pm \ 0.089$	124.4k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
20.677 ± 0.075		² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the fo	ollowing da	ata for averages, fit	ts, lim	its, etc.	• • •
$27.0 {+11.7} \\ {-8.8}$	12	³ ABRAMS	89 D	MRK2	E ^{ee} _{cm} = 89–93 GeV

¹ABBIENDI 01A error includes approximately 0.067 due to statistics, 0.040 due to event selection systematics, 0.027 due to the theoretical uncertainty in t-channel prediction, and 0.014 due to LEP energy uncertainty.

OUR FIT is obtained using the fit procedure and correlations as determined by the

LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

$\Gamma(\text{hadrons})/\Gamma(\mu^+\mu^-)$

NODE=S044R9 NODE=S044R9

NODE=S044R9

VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT	
20.785 ± 0.033 OUR FIT						
$20.811\!\pm\!0.058$	182.8k	¹ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV	
20.65 ± 0.08	157.6k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV	
$20.861\!\pm\!0.097$	113.4k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV	
20.799 ± 0.056		² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV	
• • • We do not use the following data for averages, fits, limits, etc. • • •						

^{18.9} $\begin{array}{cc} +7.1 \\ -5.3 \end{array}$ ³ ABRAMS 89D MRK2 $E_{cm}^{ee} = 89-93 \text{ GeV}$ $^{
m 1}$ ABBIENDI 01A error includes approximately 0.050 due to statistics and 0.027 due to

NODE=S044R9;LINKAGE=AC

NODE=S044R9;LINKAGE=AB

statistical, systematic, theory and luminosity, respectively. 2 AABOUD 19N reports (4.70 \pm 0.32 \pm 0.21 \pm 0.14) \times 10 $^{-6}$, where the uncertainties are

statistical, systematic, and luminosity. We have combined the latter two in quadrature. 3 SIRUNYAN 18BT report the $Z \rightarrow 4\ell$ branching fraction = $(4.83 + 0.23 + 0.32 \pm 0.08 \pm 0.08)$ $0.12) imes 10^{-6}$, where the uncertainties are statistical, systematic, due to theory, and luminosity. The last three have been added in quadrature to obtain the total systematic

 $^{^{\}rm error.}$ 4 KHACHATRYAN 16CC reports $(4.9^{+0.8}_{-0.7}, -0.2^{+0.1}_{-0.2}) \times 10^{-6}$ value, where the uncertainties are statistical, systematic, theory, and due to luminosity. We have combined uncertainties in quadrature.

²BARATE 00C error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in t-channel prediction.

 $^{^3}$ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

event selection systematics. 2 BARATE 00C error includes approximately 0.053 due to statistics and 0.021 due to

experimental systematics.

³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

NODE=S044R9;LINKAGE=DB

$\Gamma(\text{hadrons})/\Gamma(\tau^+\tau^-)$

 $15.2 \begin{array}{c} +4.8 \\ -3.9 \end{array}$

 Γ_8/Γ_3

NODE=S044R12 NODE=S044R12

NODE=S044R12

OUR FIT is obtained using the fit procedure and correlations as determined by the
LEP Electroweak Working Group (see the note "The $\it Z$ boson" and ref. LEP-SLC 06).

VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT	
20.764±0.045 OUR FIT						
$20.832 \!\pm\! 0.091$	151.5k	¹ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV	
20.84 ± 0.13	104.0k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV	
20.792 ± 0.133	103.0k	ACCIARRI	00C	L3	$E_{\mathrm{cm}}^{\mathrm{ee}} = 88 – 94 \; \mathrm{GeV}$	
$20.707\!\pm\!0.062$		² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						

 $^{^{}m 1}$ ABBIENDI 01A error includes approximately 0.055 due to statistics and 0.071 due to event selection systematics.

³ ABRAMS

$\Gamma(\text{hadrons})/\Gamma(\ell^+\ell^-)$

 Γ_8/Γ_4

89D MRK2 $E_{cm}^{ee} = 89-93 \text{ GeV}$

NODE=S044R20

NODE=S044R12;LINKAGE=DB

NODE=S044R12;LINKAGE=AC

NODE=S044R12;LINKAGE=AB

NODE=S044R20

NODE=S044R20

 ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

Our fit result is obtained requiring lepton universality.

	VALUE	<u>EV15</u>	DOCUMENT ID		<u> TECN</u>	COMMENT	
	20.767±0.025 OUR	OUR FIT					
	20.823 ± 0.044	471.3k	¹ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV	
	20.730 ± 0.060	379.4k	ABREU	00F	DLPH	E _{cm} ^{ee} = 88–94 GeV	
	20.810 ± 0.060	340.8k	ACCIARRI	00 C	L3	E _{cm} ^{ee} = 88–94 GeV	
	20.725 ± 0.039	500k	² BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV	
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet							
	$18.9 \begin{array}{r} +3.6 \\ -3.2 \end{array}$	46	ABRAMS	89 B	MRK2	E ^{ee} _{cm} = 89–93 GeV	

 $^{^{}m 1}$ ABBIENDI 01A error includes approximately 0.034 due to statistics and 0.027 due to event selection systematics.

NODE=S044R20:LINKAGE=DB

NODE=S044R20;LINKAGE=AC

$\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(\text{hadrons})$

NODE=S044R21 NODE=S044R21

This quantity is the branching ratio of $Z \to$ "up-type" quarks to $Z \to$ hadrons. Except ACKERSTAFF 97T the values of Z o "up-type" and Z o "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z o \ \gamma + \text{jets})$ where γ is a highenergy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_{Z} , $\Gamma(\text{hadrons})$ and α_{S} in their extraction procedures, our average has to be taken with caution.

VALUE	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT
0.166±0.009 OUR AVERAGE				
$0.172^{+0.011}_{-0.010}$	¹ ABBIENDI	04E	OPAL	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
$0.160 \pm 0.019 \pm 0.019$	² ACKERSTAFF	97T	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.137^{+0.038}_{-0.054}$	³ ABREU	95X	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.137\!\pm\!0.033$	⁴ ADRIANI	93	L3	$E_{cm}^{ee} = 91.2 \; GeV$
1				

 $^{^1}$ ABBIENDI 04E select photons with energy > 7 GeV and use $\Gamma({\sf hadrons}) = 1744.4 \pm 2.0$ MeV and $\alpha_{\rm s}=0.1172\pm0.002$ to obtain $\Gamma_{u}=300^{+19}_{-18}$ MeV.

NODE=S044R21

NODE=S044R21:LINKAGE=AB

NODE=S044R21;LINKAGE=D

NODE=S044R21;LINKAGE=C

NODE=S044R21;LINKAGE=B

 $^{^2}$ BARATE 00C error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.

 $^{^3}$ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

²BARATE 00C error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in t-channel prediction.

 $^{^2}$ ACKERSTAFF 97T measure $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.258\pm0.031\pm0.032.$ To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010.$ This measurement is fully negatively correlated with the measurement of $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$ given in the

³ ABREU 95X use $M_Z=91.187\pm0.009$ GeV, $\Gamma({\rm hadrons})=1725\pm12$ MeV and $\alpha_s=0.123\pm0.005$. To obtain this branching ratio we divide their value of $C_{2/3}=0.91^{+}0.25_{-}0.36_{$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.

⁴ ADRIANI 93 use $M_Z=91.181\pm0.022$ GeV, Γ(hadrons) = 1742 ± 19 MeV and $\alpha_s=0.125\pm0.009$. To obtain this branching ratio we divide their value of $C_{2/3}=0.92\pm0.22$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$.

$\Gamma((d\overline{d}+s\overline{s}+b\overline{b})/3)/\Gamma(hadrons)$

 0.243 ± 0.022

Γ_{10}/Γ_{8}

NODE=S044R22 NODE=S044R22

NODE=S044R22

This quantity is the branching ratio of Z o "down-type" quarks to Z o hadrons. Except ACKERSTAFF 97T the values of $Z \rightarrow$ "up-type" and $Z \rightarrow$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma(\text{hadrons})$ and α_s in their extraction procedures, our average has to be taken with caution.

VALUE	DOCUMENT ID		TECN	COMMENT
0.223±0.006 OUR AVERAGE				
0.218 ± 0.007	¹ ABBIENDI	04E	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$0.230 \pm 0.010 \pm 0.010$	² ACKERSTAFF	97T	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.243^{igoplus 0.036}_{-0.026}$	³ ABREU	95X	DLPH	E ^{ee} _{cm} = 88–94 GeV

NODE=S044R22;LINKAGE=AB

 1 ABBIENDI 04E select photons with energy > 7 GeV and use $\Gamma({\rm hadrons})=1744.4\pm2.0$ MeV and $\alpha_s=0.1172\pm0.002$ to obtain $\Gamma_d=381\pm12$ MeV.

93 L3 $E_{cm}^{ee} = 91.2 \text{ GeV}$

NODE=S044R22;LINKAGE=D

² ACKERSTAFF 97T measure $\Gamma_{d\,\overline{d},s\,\overline{s}}/(\Gamma_{d\,\overline{d}}+\Gamma_{u\,\overline{u}}+\Gamma_{s\,\overline{s}})=0.371\pm0.016\pm0.016$. To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{u\,\overline{u}}/(\Gamma_{d\,\overline{d}}+\Gamma_{u\,\overline{u}}+\Gamma_{s\,\overline{s}})$ presented in the previous data block.

NODE=S044R22;LINKAGE=C

 3 ABREU 95X use $M_Z=91.187\pm0.009$ GeV, $\Gamma({\rm hadrons})=1725\pm12$ MeV and $\alpha_s=0.123\pm0.005$. To obtain this branching ratio we divide their value of $C_{1/3}=1.62^{+}0.24_{-}0.17_{-}$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.

NODE=S044R22;LINKAGE=B

 4 ADRIANI 93 use $M_Z=$ 91.181 \pm 0.022 GeV, $\Gamma({
m hadrons})=$ 1742 \pm 19 MeV and $lpha_{m s}=$ 0.125 ± 0.009 . To obtain this branching ratio we divide their value of $C_{1/3}=1.63\pm0.15$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$.

$R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$ Γ_{11}/Γ_{8}

NODE=S044R29 NODE=S044R29

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts $R_c=0.1723$ for $m_t=174.3$ GeV and $M_H=150$ GeV.

<u>VALUE</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
0.1721±0.0030 OUR FIT				
$0.1744 \!\pm\! 0.0031 \!\pm\! 0.0021$	¹ ABE	05F	SLD	<i>E</i> ^{ee} _{cm} =91.28 GeV
$0.1665\!\pm\!0.0051\!\pm\!0.0081$	² ABREU	00	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.1698\!\pm\!0.0069$	³ BARATE	00 B	ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.180\ \pm0.011\ \pm0.013$	⁴ ACKERSTAFF	98E	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.167\ \pm0.011\ \pm0.012$	⁵ ALEXANDER	96R	OPAL	E ^{ee} _{cm} = 88–94 GeV
ullet $ullet$ We do not use the fo	llowing data for a	verage	es, fits, I	imits, etc. • • •
$0.1623\!\pm\!0.0085\!\pm\!0.0209$	⁶ ABREU	95 D	DLPH	E ^{ee} _{cm} = 88–94 GeV

NODE=S044R29

 $^{
m 1}$ ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $c\overline{c}$ events using a double tag method. The single c-tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere). A multitag approach is used, defining 4 regions of the output value of the neural network and R_c is extracted from a simultaneous fit to the count rates of the 4 different tags. The quoted systematic error includes an uncertainty of ± 0.0006 due to the uncertainty on R_h .

NODE=S044R29;LINKAGE=AB

 2 ABREU 00 obtain this result properly combining the measurement from the $\it D^{*+}$ production rate (R_{c} = 0.1610 \pm 0.0104 \pm 0.0077 \pm 0.0043 (BR)) with that from the overall charm counting $(R_c = 0.1692 \pm 0.0047 \pm 0.0063 \pm 0.0074 \text{ (BR)})$ in $c\bar{c}$ events. The systematic error includes an uncertainty of ± 0.0054 due to the uncertainty on the charmed hadron branching fractions.

NODE=S044R29:LINKAGE=Z

 $^3\,\mathrm{BARATE}$ 00B use exclusive decay modes to independently determine the quantities $R_c\times {\rm f}(c\to {\rm X}),\,{\rm X=}D^0,\,D^+,\,D_s^+,\,{\rm and}\,\Lambda_c.$ Estimating $R_c\times {\rm f}(c\to \Xi_c/\Omega_c)=$ 0.0034, they simply sum over all the charm decays to obtain $R_c=0.1738\pm0.0047\pm0.0088\pm0.0075({\rm BR}).$ This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G, $R_c=0.1681\pm0.0054\pm0.0062)$ to obtain the quoted value.

NODE=S044R29;LINKAGE=T

 4 ACKERSTAFF 98E use an inclusive/exclusive double tag. In one jet $D^{*\pm}$ mesons are exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive $D^{*\pm}$) tag is used. The b content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed $D^{*\pm}$ meson in the opposite jet. The systematic error includes an uncertainty of ± 0.006 due to the external branching ratios.

NODE=S044R29;LINKAGE=H

 5 ALEXANDER 96R obtain this value via direct charm counting, summing the partial contributions from D^0 , D^+ , D_s^+ , and Λ_c^+ , and assuming that strange-charmed baryons

NODE=S044R29;LINKAGE=G

account for the 15% of the Λ_c^+ production. An uncertainty of ± 0.005 due to the uncertainties in the charm hadron branching ratios is included in the overall systematics.

⁶ ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0124 due to models and branching ratios.

NODE=S044R29;LINKAGE=AR

$R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

 Γ_{12}/Γ_{8}

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044R18 NODE=S044R18

The Standard Model predicts R_b =0.21581 for m_t =174.3 GeV and M_H =150 GeV.

VALUE	DOCUMENT ID		TECN	COMMENT
0.21629 ± 0.00066 OUR FIT				
$0.21594 \pm 0.00094 \pm 0.00075$	$^{ m 1}$ ABE	05F	SLD	E ^{ee} _{cm} =91.28 GeV
$0.2174\ \pm0.0015\ \pm0.0028$	² ACCIARRI	00	L3	E ^{ee} _{cm} = 89–93 GeV
$0.2178 \pm 0.0011 \pm 0.0013$	³ ABBIENDI	99 B	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.21634 \pm 0.00067 \pm 0.00060$	⁴ ABREU	99 B	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.2159 \ \pm 0.0009 \ \pm 0.0011$	⁵ BARATE	97F	ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the following	ng data for averag	es, fit	s, limits,	etc. • • •
$0.2145\ \pm0.0089\ \pm0.0067$	⁶ ABREU	95 D	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.219 \pm 0.006 \pm 0.005$	⁷ BUSKULIC	94G	ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.251 \pm 0.049 \pm 0.030$	⁸ JACOBSEN	91	MRK2	Eee 91 GeV

 1 ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $b\overline{b}$ events using a double tag method. The single b–tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere; the key tag is obtained requiring the secondary vertex corrected mass to be above the D–meson mass). ABE 05F obtain $R_b=0.21604\pm0.00098\pm0.00074$ where the systematic error includes an uncertainty of ±0.00012 due to the uncertainty on R_c . The value reported here is obtained properly combining with ABE 98D. The quoted systematic error includes an uncertainty of ±0.00012 due to the uncertainty on R_c .

 2 ACCIARRI 00 obtain this result using a double-tagging technique, with a high p_T lepton tag and an impact parameter tag in opposite hemispheres.

 3 ABBIENDI 99B tag $Z \to b\overline{b}$ decays using leptons and/or separated decay vertices. The b-tagging efficiency is measured directly from the data using a double-tagging technique.

⁴ ABREU 99B obtain this result combining in a multivariate analysis several tagging methods (impact parameter and secondary vertex reconstruction, complemented by event shape variables). For R_c different from its Standard Model value of 0.172, R_b varies as $-0.024 \times (R_c - 0.172)$.

 5 BARATE 97F combine the lifetime-mass hemisphere tag (BARATE 97E) with event shape information and lepton tag to identify $Z \to b \, \overline{b}$ candidates. They further use c- and $u\,d\,s\text{-}$ selection tags to identify the background. For R_{C} different from its Standard Model value of 0.172, R_{b} varies as $-0.019\times(R_{C}-0.172)$.

 6 ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0023 due to models and branching ratios.

 7 BUSKULIC 94G perform a simultaneous fit to the p and p_T spectra of both single and dilepton events.

⁸ JACOBSEN 91 tagged $b\overline{b}$ events by requiring coincidence of \geq 3 tracks with significant impact parameters using vertex detector. Systematic error includes lifetime and decay uncertainties (± 0.014).

NODE=S044R18

OCCUR=2

NODE=S044R18;LINKAGE=AB

NODE=S044R18·LINKAGE=7

NODE=S044R18;LINKAGE=IB

NODE=S044R18;LINKAGE=I

NODE=S044R18;LINKAGE=W

NODE=S044R18;LINKAGE=AR

NODE=S044R18;LINKAGE=BB

NODE=S044R18;LINKAGE=B

$\Gamma(b\overline{b}b\overline{b})/\Gamma(hadrons)$ Γ_{13}/Γ_{8}

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT
5.2±1.9 OUR AVERAGE				
$3.6 \pm 1.7 \pm 2.7$	¹ ABBIENDI	01 G	OPAL	E ^{ee} _{cm} = 88–94 GeV
$6.0\pm1.9\pm1.4$	² ABREU	99 U	DLPH	E ^{ee} _{cm} = 88–94 GeV

 1 ABBIENDI 01G use a sample of four-jet events from hadronic Z decays. To enhance the $b\bar{b}\,b\bar{b}$ signal, at least three of the four jets are required to have a significantly detached secondary vertex.

² ABREU ⁹⁹U force hadronic *Z* decays into 3 jets to use all the available phase space and require a *b* tag for every jet. This decay mode includes primary and secondary 4b production, *e.g.*, from gluon splitting to $b\overline{b}$.

NODE=S044B4;LINKAGE=B

NODE=S044B4 NODE=S044B4

NODE=S044R63 NODE=S044R63

 ${\sf NODE}{=}{\sf S044B4;} {\sf LINKAGE}{=}{\sf A}$

$\Gamma(ggg)/\Gamma(hadrons)$ Γ_{14}/Γ_{8} $\Gamma_{14}/\Gamma_{8}/\Gamma_{8}$ $\Gamma_{14}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8}/\Gamma_{8$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.6 × 10 ⁻²	95 1	ABREU	96 S	DLPH	E ^{ee} _{cm} = 88–94 GeV

 $^{^1}$ This branching ratio is slightly dependent on the jet-finder algorithm. The value we quote is obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96S obtain an upper limit of 1.5×10^{-2} .

NODE=S044R63;LINKAGE=A

$\Gamma(\pi^0\gamma)/\Gamma_{ m total}$					Γ ₁₅ /Γ	NODE=S044R13
VALUE	<u>CL%_</u>	DOCUMENT ID			<u>COMMENT</u>	NODE=S044R13
$<2.01 \times 10^{-5}$ $<5.2 \times 10^{-5}$	95	AALTONEN			$E_{\text{cm}}^{p\bar{p}} = 1.96 \text{ TeV}$	
$< 5.2 \times 10^{-5}$	95 95	¹ ACCIARRI ABREU			$E_{\text{cm}}^{ee} = 88-94 \text{ GeV}$ $E_{\text{cm}}^{ee} = 88-94 \text{ GeV}$	
$< 2.1 \times 10^{-4}$	95 95	DECAMP			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
$<1.4 \times 10^{-4}$	95	AKRAWY			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
					distinguishable in ACCIA-	NODE=S044R13;LINKAGE=C
$\Gamma(\eta\gamma)/\Gamma_{ m total}$					Γ ₁₆ /Γ	NODE=\$044R14
VALUE	<u>CL%_</u>	DOCUMENT ID		TECN		NODE=\$044R14
$< 7.6 \times 10^{-5}$	95	ACCIARRI	95 G		E ^{ee} _{cm} = 88–94 GeV	
$< 8.0 \times 10^{-5}$	95	ABREU			E ^{ee} _{cm} = 88–94 GeV	
$< 5.1 \times 10^{-5}$ $< 2.0 \times 10^{-4}$	95	DECAMP			$E_{\rm cm}^{\rm ee} = 88-94 {\rm GeV}$	
<2.0 × 10 ·	95	AKRAWY	911	OPAL	E ^{ee} _{cm} = 88–94 GeV	
$\Gamma(ho^0\gamma)/\Gamma_{\text{total}}$	CL%EVTS	DOCUMENT ID		TECN	Γ ₁₇ /Γ	NODE=S044R00 NODE=S044R00
	95 12.5k	¹ AABOUD			$E_{\rm cm}^{pp}=13~{\rm TeV}$	
1 AABOUD 18AU 1 decay $ ho ightarrow \ \pi^+$	search for the π^- . In the da	$Z ightarrow ho \gamma$ decay m	node w to 32.3	here the $^{-1}$, $^{-1}$	ho is identified through its 12,583 events are selected	NODE=S044R00;LINKAGE=A
$\Gamma(\omega\gamma)/\Gamma_{total}$					Γ ₁₈ /Γ	NODE=S044R48
VALUE	<u>CL%_</u>	DOCUMENT ID			COMMENT	NODE=S044R48
$< 3.9 \times 10^{-6}$	95	AAD			$E_{cm}^{pp} = 13 \; TeV$	
• • • We do not us	se the followin	g data for average				
$<6.5 \times 10^{-4}$	95	ABREU	94 B	DLPH	Eee = 88-94 GeV	
$\Gamma(\eta'(958)\gamma)/\Gamma_{to}$					Γ ₁₉ /Γ	NODE=S044R15
VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT	NODE=S044R15 NODE=S044R15
$\frac{\Gamma(\eta'(958)\gamma)/\Gamma_{\text{to}}}{\frac{VALUE}{<4.2\times10^{-5}}}$		DOCUMENT ID	92			NODE=S044R15 NODE=S044R15
$\frac{\text{VALUE}}{\text{<4.2} \times 10^{-5}}$ $\Gamma(\phi \gamma)/\Gamma_{\text{total}}$	<u>CL%</u>				$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$	NODE=S044R15 NODE=S044R15 NODE=S044R04 NODE=S044R04
$\frac{VALUE}{<4.2 \times 10^{-5}}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{\sqrt{2}}$	<u>CL%</u> 95	DECAMP DOCUMENT ID	92	ALEP TECN	$E_{\rm cm}^{\rm comment} = 88-94 \; {\rm GeV}$ $F_{\rm 20}/\Gamma$ $COMMENT$	NODE=S044R15 NODE=S044R04
$VALUE$ $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{total}$ $VALUE$	<u>CL%</u> 95 <u>CL% EVTS</u> 95 3.3k	DECAMP DOCUMENT ID AABOUD	92 18AU	ALEP TECN ATLS	$E_{ m cm}^{\it ee}$ = 88–94 GeV $\Gamma_{ m 20}/\Gamma$ $E_{ m cm}^{\it pp}$ = 13 TeV	NODE=S044R15 NODE=S044R04
\sqrt{ALUE} $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ \sqrt{ALUE} $<7 \times 10^{-7}$ <0 • • • We do not us	<u>CL%</u> 95 <u>CL% EVTS</u> 95 3.3k	DECAMP DOCUMENT ID AABOUD	92 18AU	TECN ATLS limits, 6	$E_{ m cm}^{\it ee}$ = 88–94 GeV $\Gamma_{ m 20}/\Gamma$ $E_{ m cm}^{\it pp}$ = 13 TeV	NODE=S044R15 NODE=S044R04
$ALUE$ $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{total}$ $VALUE$ $<7 \times 10^{-7}$ \bullet	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{3.3k}$ See the followin $\frac{95}{95}$ $\frac{1.0k}{5.00}$ Search for the or $\frac{1.00}{5.00}$	DECAMP $\begin{array}{c} DOCUMENT\ ID \\ \hline 1 \\ AABOUD \\ g\ data\ for\ average \\ \hline ^2\ AABOUD \\ \hline Z \rightarrow \phi\gamma\ decay\ m \\ ata\ corresponding \\ 28\ MeV.\ See\ errat \\ \end{array}$	92 18AU 16K 16K to 32. um AA	TECN ATLS Imits, 6 ATLS here the 3 fb ⁻¹ , ABOUD	COMMENT $E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$ $F_{\rm 20}/\Gamma$ $COMMENT$ $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ etc. • • • $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ ϕ is identified through its 3,364 events are selected 23A.	NODE=S044R15 NODE=S044R04
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ $^{1}_{\text{AABOUD 18AU}}$ $decay \phi \rightarrow K^{+}$ for 1012 < m(K) $^{2}_{\text{AABOUD 16K s}}$ $decay into K^{+}_{\text{I}}$	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{3.3k}$ $\frac{CL\%}{95}$ $\frac{1.0k}{95}$ $\frac{1.0k}{5.0k}$ $\frac{1.0k}{5.0k$	$\begin{array}{c} \hline \text{DECAMP} \\ \hline DDCUMENT ID \\ \hline 1 \text{ AABOUD} \\ \text{g data for average} \\ \hline 2 \text{ AABOUD} \\ \hline Z \rightarrow \phi \gamma \text{ decay mata corresponding} \\ 28 \text{ MeV. See errat} \\ \hline Z \rightarrow \phi \gamma \text{ decay model} \\ \hline Z \rightarrow \phi \gamma $	92 18AU 16K 16K to 32 um AA ode will to a to	TECN J ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum	COMMENT $E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$ $F_{\rm 20}/\Gamma$ $COMMENT$ $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ etc. • • • $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065	NODE=S044R15 NODE=S044R04 NODE=S044R04
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ $^{1}_{\text{AABOUD 18AU}}$ $decay \phi \rightarrow K^{+}$ for 1012 < m(K) $^{2}_{\text{AABOUD 16K s}}$ $decay into K^{+}_{\text{events are select}}$ $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$	$\frac{CL\%}{95}$ $\frac{EVTS}{95}$ $\frac{25}{3.3}$ $\frac{3.3}{3.3}$ $$	DECAMP $\frac{DOCUMENT\ ID}{1}$ AABOUD g data for average $\frac{2}{2}$ AABOUD $Z \to \phi \gamma \text{ decay m}$ ata corresponding $\frac{28}{2}$ MeV. See errat $Z \to \phi \gamma \text{ decay m}$ ata corresponding $\frac{27}{2}$ $\frac{27}{2$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to	ALEP TECN ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum spectru	COMMENT $E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$ $F_{\rm 20}/\Gamma$ $COMMENT$ $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ etc. • • • $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065	NODE=S044R15 NODE=S044R04 NODE=S044R04 NODE=S044R04;LINKAGE=B
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $VALUE$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ 1 AABOUD 18AU $decay \phi \rightarrow K^{+}$ for 1012 < m(K) 2 AABOUD 16K s $decay into K^{+}$ events are select $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ This decay we	$\frac{CL\%}{95}$ $\frac{EVTS}{95}$ $\frac{25}{3.3}$ $\frac{3.3}{3.3}$ $$	DECAMP $\frac{DOCUMENT\ ID}{1}$ AABOUD g data for average $\frac{2}{2}$ AABOUD $Z \to \phi \gamma \text{ decay m}$ ata corresponding $\frac{28}{2}$ MeV. See errat $Z \to \phi \gamma \text{ decay m}$ ata corresponding $\frac{27}{2}$ $\frac{27}{2$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to	ALEP TECN ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum spectru	COMMENT $E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$ F_{20}/Γ $E_{\rm cm}^{pp} = 13 \; {\rm TeV}$ etc. • • • $E_{\rm cm}^{pp} = 13 \; {\rm TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed.	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ $^{1}\text{ AABOUD 18AU}$ $\text{decay } \phi \rightarrow K^{+}$ $\text{for 1012} < \text{m(}K$ $^{2}\text{ AABOUD 16K s}$ $\text{decay into } K^{+}K$ events are select $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ This decay wo	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{3.3k}$ $\frac{CL}{5}$ $\frac{EVTS}{3.3k}$ $\frac{CL}{5}$ $\frac{CL}{5}$ $\frac{CL}{5}$ $\frac{EVTS}{3.3k}$ $\frac{CL}{5}$ $\frac{CL}{5}$ $\frac{CL}{5}$ $\frac{CL}{5}$ $\frac{CL}{5}$ $\frac{CL}{5}$	DECAMP $\begin{array}{c} DOCUMENT\ ID \\ \hline 1\ AABOUD \\ g\ data\ for\ average \\ \hline 2\ AABOUD \\ Z \to \phi\gamma\ decay\ mata \ corresponding \\ 28\ MeV.\ See\ errat \\ Z \to \phi\gamma\ decay\ mata \ corresponding \\ K+K-\gamma\ invariant \\ K+K-\gamma\ invariant \\ \hline E\ Landau-Yang\ the \ DOCUMENT\ ID \\ \hline \end{array}$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to t mass	ALEP TECN ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum spectru	COMMENT $E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$ $E_{\rm cm}^{\rm pe} = 88-94 \; {\rm GeV}$ $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ etc. • • • $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed. $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{total}$ $VALUE$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ 1 AABOUD 18AU decay $\phi \rightarrow K^{+}$ for 1012 < m(K^{-1} 2 AABOUD 16K s decay into K^{-1} events are select $\Gamma(\gamma\gamma)/\Gamma_{total}$ This decay wo $VALUE$ $<1.46 \times 10^{-5}$	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{3.3k}$ $\frac{CL}{3.3k}$	DECAMP $\begin{array}{c} DOCUMENT\ ID \\ \hline 1\ AABOUD \\ g\ data\ for\ average \\ \hline 2\ AABOUD \\ Z \to \phi\gamma\ decay\ mata corresponding \\ 28\ MeV.\ See\ errat \\ Z \to \phi\gamma\ decay\ mata corresponding \\ K+K-\gamma\ invariant \\ K+K-\gamma\ invariant \\ \hline E \ Landau-Yang\ the \ DOCUMENT\ ID \ AALTONEN \\ \hline \end{array}$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to t mass	ALEP TECN ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum spectru TECN CDF	COMMENT $E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$ $F_{\rm 20}/\Gamma$ $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ etc. • • • $E_{\rm cm}^{\rm pp} = 13 \; {\rm TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb $^{-1}$, 1065 m is analyzed. $F_{\rm 21}/\Gamma$ $COMMENT$ $E_{\rm cm}^{\rm pp} = 1.96 \; {\rm TeV}$	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $VALUE$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ 1 AABOUD 18AU $decay \phi \rightarrow K^{+}$ for 1012 < m(K 2 AABOUD 16K s $decay into K^{+}$ $events are select \Gamma(\gamma\gamma)/\Gamma_{\text{total}} This decay wo VALUE <1.46 \times 10^{-5} <5.2 \times 10^{-5}$	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{95}$ $\frac{2}{3.3k}$ \frac	DECAMP $\begin{array}{c} DOCUMENT\ ID \\ \hline 1\ AABOUD \\ g\ data\ for\ average \\ \hline 2\ AABOUD \\ Z \to \phi\gamma\ decay\ m \\ ata\ corresponding \\ 28\ MeV.\ See\ errat \\ Z \to \phi\gamma\ decay\ m \\ ata\ corresponding \\ K+K-\gamma\ invariant \\ K+K-\gamma\ invariant \\ E\ Landau-Yang\ the \\ \underline{DOCUMENT\ ID} \\ AALTONEN \\ 1\ ACCIARRI \\ \end{array}$	18AL s, fits, 16K node w to 32. um AA ode wl to a to t mass	ALEP TECN ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum spectru TECN CDF L3	COMMENT $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ Γ_{20}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$ etc. • • • $E_{\rm cm}^{pp} = 13 \text{ TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed. Γ_{21}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 1.96 \text{ TeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{total}$ $VALUE$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ 1 AABOUD 18AU decay $\phi \rightarrow K^{+}$ for 1012 < m(K^{-1} 2 AABOUD 16K s decay into K^{-1} events are select $\Gamma(\gamma\gamma)/\Gamma_{total}$ This decay wo $VALUE$ $<1.46 \times 10^{-5}$	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{3.3k}$ $\frac{CL}{3.3k}$	DECAMP $\begin{array}{c} DOCUMENT\ ID \\ \hline 1\ AABOUD \\ g\ data\ for\ average \\ \hline 2\ AABOUD \\ Z \to \phi\gamma\ decay\ mata corresponding \\ 28\ MeV.\ See\ errat \\ Z \to \phi\gamma\ decay\ mata corresponding \\ K+K-\gamma\ invariant \\ K+K-\gamma\ invariant \\ \hline E \ Landau-Yang\ the \ DOCUMENT\ ID \ AALTONEN \\ \hline \end{array}$	92 18AU s, fits, 16K node w to 32 um AA ode wl to a to t mass eorem. 14E 95G 94B	TECN ATLS limits, 6 ATLS here the 3 fb ⁻¹ , ABOUD here the otal lum spectru TECN CDF L3 DLPH	COMMENT $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ Γ_{20}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$ etc. • • • $E_{\rm cm}^{pp} = 13 \text{ TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed. Γ_{21}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 1.96 \text{ TeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16
	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{25}$ $\frac{25}{3.3}$ k see the followin $\frac{25}{3.3}$ k see the	DECAMP $\begin{array}{c} \underline{DOCUMENT\ ID} \\ 1 \text{ AABOUD} \\ \text{g data for average} \\ 2 \text{ AABOUD} \\ Z \rightarrow \phi \gamma \text{ decay mata corresponding 28 MeV. See errat} \\ Z \rightarrow \phi \gamma \text{ decay mata corresponding K} + K - \gamma \text{ invariant} \\ \text{e Landau-Yang the } \underline{DOCUMENT\ ID} \\ \text{AALTONEN} \\ 1 \text{ ACCIARRI ABREU} \\ \text{AKRAWY} \\ \end{array}$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to t mass eorem. 14E 95G 94B 91F	ALEP TECN ATLS limits, of ATLS here the 3 fb-1, ABOUD here the otal lum spectru TECN CDF L3 DLPH OPAL	COMMENT $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ Γ_{20}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$ etc. • • • $E_{\rm cm}^{pp} = 13 \text{ TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed. Γ_{21}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 1.96 \text{ TeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16
	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{25}$ $\frac{25}{3.3}$ k see the followin $\frac{25}{3.3}$ k see the	DECAMP $\begin{array}{c} \underline{DOCUMENT\ ID} \\ 1 \text{ AABOUD} \\ \text{g data for average} \\ 2 \text{ AABOUD} \\ Z \rightarrow \phi \gamma \text{ decay mata corresponding 28 MeV. See errat} \\ Z \rightarrow \phi \gamma \text{ decay mata corresponding K} + K - \gamma \text{ invariant} \\ \text{e Landau-Yang the } \underline{DOCUMENT\ ID} \\ \text{AALTONEN} \\ 1 \text{ ACCIARRI ABREU} \\ \text{AKRAWY} \\ \end{array}$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to t mass eorem. 14E 95G 94B 91F	ALEP TECN ATLS limits, of ATLS here the 3 fb-1, ABOUD here the otal lum spectru TECN CDF L3 DLPH OPAL	COMMENT $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ Γ_{20}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$ etc. • • • $E_{\rm cm}^{pp} = 13 \text{ TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed. Γ_{21}/Γ $COMMENT$ $E_{\rm cm}^{pp} = 1.96 \text{ TeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ distinguishable in ACCIA-	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16 NODE=S044R16 NODE=S044R16 NODE=S044R16
VALUE $<4.2 \times 10^{-5}$ $\Gamma(\phi\gamma)/\Gamma_{\text{total}}$ $<7 \times 10^{-7}$ • • • We do not us $<8.3 \times 10^{-6}$ 1 AABOUD 18AU $_{\text{decay}} \phi \rightarrow K^{+}$ for 1012 < m(K 2 AABOUD 16K s $_{\text{decay into }} K^{+}$ $_{\text{events are select}}$ $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ This decay wo $_{\text{VALUE}}$ $<1.46 \times 10^{-5}$ $<5.2 \times 10^{-5}$ $<5.5 \times 10^{-5}$ $<1.4 \times 10^{-4}$ This limit is for	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{25}$ $\frac{25}{3.3}$ k see the followin $\frac{25}{3.3}$ k see the	$\begin{array}{c} \hline \text{DECAMP} \\ \hline DECAMP \\ \hline \end{array}$ $\begin{array}{c} DOCUMENT\ ID \\ 1\ \text{AABOUD} \\ \text{g data for average} \\ \hline 2\ \text{AABOUD} \\ Z \rightarrow \phi\gamma \ \text{decay mata corresponding 28 MeV}. \ \text{See errat} \\ Z \rightarrow \phi\gamma \ \text{decay mata corresponding K} + K - \gamma \ \text{invariant} \\ \hline \text{ACCIARRI ABREU} \\ \hline \text{AKRAWY} \\ \hline \text{odes } Z \rightarrow \pi^0 \gamma/\gamma \\ \hline \end{array}$	92 18AU s, fits, 16K node w to 32. um AA ode wl to a to t mass eorem. 14E 95G 94B 91F	ALEP TECN ATLS limits, of ATLS here the 3 fb-1, ABOUD here the otal lum spectru TECN CDF L3 DLPH OPAL	COMMENT $E_{\rm cm}^{\rm ee} = 88-94 \text{ GeV}$ $\Gamma_{\rm 20}/\Gamma$ $COMMENT$ $E_{\rm cm}^{\rm pp} = 13 \text{ TeV}$ etc. • • • $E_{\rm cm}^{\rm pp} = 13 \text{ TeV}$ ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb $^{-1}$, 1065 m is analyzed. $\Gamma_{\rm 21}/\Gamma$ $COMMENT$ $E_{\rm cm}^{\rm pp} = 1.96 \text{ TeV}$ $E_{\rm cm}^{\rm ee} = 88-94 \text{ GeV}$	NODE=S044R04 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16 NODE=S044R16 NODE=S044R16
	$\frac{CL\%}{95}$ $\frac{CL\%}{95}$ $\frac{EVTS}{25}$ $\frac{25}{3.3}$ k see the followin $\frac{25}{3.3}$ k see the	DECAMP $\begin{array}{c} \underline{DOCUMENT\ ID} \\ 1 \text{ AABOUD} \\ \text{g data for average} \\ 2 \text{ AABOUD} \\ Z \rightarrow \phi \gamma \text{ decay mata corresponding 28 MeV. See errat} \\ Z \rightarrow \phi \gamma \text{ decay mata corresponding K} + K - \gamma \text{ invariant accorresponding K} + K - \gamma \text{ invariant accorresponding Mata corresponding K} \\ \text{ALTONEN} \\ 1 \text{ AALTONEN} \\ 1 \text{ ACCIARRI ABREU AKRAWY} \\ \end{array}$	18AL s, fits, 16K node w to 32. um AA ode wl to a to t mass eorem. 14E 95G 94B 91F	ALEP TECN ATLS limits, of ATLS here the 3 fb-1, ABOUD here the otal lum spectru TECN CDF L3 DLPH OPAL ch are in	$COMMENT$ E_{cm}^{ee} = 88–94 GeV F_{20}/Γ $COMMENT$ E_{cm}^{pp} = 13 TeV etc. • • • E_{cm}^{pp} = 13 TeV ϕ is identified through its 3,364 events are selected 23A. ϕ is identified through its inosity of 2.7 fb ⁻¹ , 1065 m is analyzed. F_{21}/Γ $COMMENT$ E_{cm}^{pp} = 1.96 TeV E_{cm}^{ee} = 88–94 GeV E_{cm}^{ee} = 88–94 GeV E_{cm}^{ee} = 88–94 GeV distinguishable in ACCIA-	NODE=S044R15 NODE=S044R04 NODE=S044R04;LINKAGE=B NODE=S044R04;LINKAGE=A NODE=S044R16 NODE=S044R16 NODE=S044R16 NODE=S044R16 NODE=S044R16

$\Gamma(\gamma\gamma\gamma)/\Gamma_{ m total}$					Γ ₂₃ /Γ	NODE=S044R17
VALUE	<u>CL%_</u>	DOCUMENT ID			COMMENT	NODE=S044R17
<2.2 × 10 ⁻⁶	95	AAD			$E_{cm}^{pp} = 8 \; TeV$	
• • • We do not use th						
$<1.0 \times 10^{-5}$ $<1.7 \times 10^{-5}$	95 95	¹ ACCIARRI ¹ ABREU			E_{cm}^{ee} = 88–94 GeV E_{cm}^{ee} = 88–94 GeV	
$< 1.7 \times 10^{-5}$	95 95	AKRAWY			$E_{cm}^{ee} = 88-94 \text{ GeV}$ $E_{cm}^{ee} = 88-94 \text{ GeV}$	
1 Limit derived in the				OIAL	Lcm - 00-94 GeV	NODE COMPLETINGACE AD
	CONTEXT	or composite 2 mo	uci.			NODE=S044R17;LINKAGE=AB
$\Gamma(\pi^{\pm}W^{\mp})/\Gamma_{ m total}$					Γ ₂₄ /Γ	NODE=S044R32
The value is for t VALUE		f the charge states	indica	ted. <u>TECN</u>	COMMENT	NODE=S044R32 NODE=S044R32
<7 × 10 ^{−5}	<i>CL%</i> _ 95	<u>DOCUMENT ID</u> DECAMP	92		$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	NODE-30441(32
			-			
$\Gamma(ho^{\pm}W^{\mp})/\Gamma_{ m total}$					Γ ₂₅ /Γ	NODE=S044R33
The value is for t VALUE	he sum of <i>CL%</i> _	f the charge states DOCUMENT ID	indica	ted. TECN	COMMENT	NODE=S044R33 NODE=S044R33
<8.3 × 10 ⁻⁵	95	DECAMP	92		$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	NODE-30441(33
		2 2 67	-	, ,		
$\Gamma(J/\psi(1S)X)/\Gamma_{\text{tota}}$					Γ ₂₆ /Γ	NODE=\$044R23
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	NODE=S044R23
$3.51^{+0.23}_{-0.25}$ OUR AVER	AGE Eri	ror includes scale fa	actor o	of 1.1.		
$3.21 \pm 0.21 ^{+0.19}_{-0.28}$	553	¹ ACCIARRI	99F	L3	Eee = 88–94 GeV	
$3.9 \pm 0.2 \pm 0.3$	511				$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
$3.73 \pm 0.39 \pm 0.36$	153				$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
¹ ACCIARRI 99F com	pine μ^+ μ				nnels. The branching ratio	NODE=S044R23;LINKAGE=F
					$0.4^{+0.4}_{-0.2}$ (theor.)) $\times 10^{-4}$.	
² ALEXANDER 96B i	dentify J_{j}	$/\psi(1{\cal S})$ from the de	ecays	into lept	on pairs. $(4.8 \pm 2.4)\%$ of	
this branching ratio						
errors. $(7.7 + 6.3)\%$	of this b	cnanneis and taki ranching ratio is du	ng int ie to r	o accour prompt	nt the common systematic $I/\psi(1S)$ production	NODE=S044R23;LINKAGE=C
		and my factor to the		pc 5	γ φ (10) β. σ α α σ α σ α σ α σ α σ α σ α σ α σ α	
$\Gammaig(J/\psi(1S)\gammaig)/\Gamma_{total}$					Γ ₂₇ /Γ	NODE=S044R03
$\frac{VALUE}{6} \times 10^{-7} \text{ (CL} = 99)$	<u>CL%</u>	DOCUMENT ID				NODE=S044R03
_ `	, .	•	,		•	1
<0.6 × 10 ⁻⁶ • • • We do not use the	95 o followin				$E_{cm}^{pp} = 13 \; TeV$	•
$<1.2 \times 10^{-6}$	95	AAD			$E_{\rm cm}^{pp}=13~{ m TeV}$	
$< 1.4 \times 10^{-6}$	95 95	1 SIRUNYAN			$E_{\rm cm}^{pp} = 13 \text{ TeV}$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$	
$< 1.4 \times 10^{-6}$	95 95	² AABOUD			$E_{\rm cm} = 13 \text{ TeV}$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$	
$< 2.6 \times 10^{-6}$	95 95	³ AAD			$E_{\rm cm} = 13 \text{ TeV}$ $E_{\rm cm}^{pp} = 8 \text{ TeV}$	
					ndidate events are selected	
by requiring a pair of (subleading) muon GeV), while the pho invariant mass of the 183 data events whon the Z branching	of opposite is require ton must e $\mu\mu$ ($\mu\mu$ ich is confirmation i	ely charged muons to have a transve have a transverse e (γ) system in the ra- sistent with the exp s obtained assumin	and a erse mergy ange 3 pected g the	well isologous well isomentum larger the $3.0 ext{ to } 3.2 ext{ l background}$	lated photon. The leading m larger than 20 GeV (4 nan 33 GeV. Requiring the 2 (81 to 101) GeV, selects ound. The 95% C.L. limit be unpolarized.	
isolated photon of p is detected via its of the photon and the number of observed 2.9–3.3 GeV leading	$p_T > 35$ dimuon d J/ψ in the J/ψ to the q	(25) GeV and a mecay and it is requested to the plane transversed background events uoted 95% C.L. lim	uon waired to the to th	with p_T that the ne beam $\pm/89\pm6$. Two triggers were used: $> 18(24)$ GeV. The J/ψ azimuthal angle between direction is $> \pi/2$. The in the dimuon mass range	
GeV, the dimuon n	nass requ	ired to be within (0.2 G	eV of th	equired to have $p_T>20$ e $J/\psi(1S)$ mass and it's s also required to have it's	

VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT	NODE=S04 NODE=S04	
1.60±0.29 OUR AVER						
$1.6 \pm 0.5 \pm 0.3$	39	¹ ACCIARRI	97J L3	E ^{ee} _{cm} = 88–94 GeV		
$1.6 \pm 0.3 \pm 0.2$	46.9			E ^{ee} _{cm} = 88–94 GeV		
$1.60 \pm 0.73 \pm 0.33$	5.4	³ ABREU	94P DLPH	$E_{\mathrm{cm}}^{ee} =$ 88–94 GeV		
1 ACCIARRI 97J mea $= \mu$, e).	asure this	branching ratio via	the decay ch	annel $\psi(2S) ightarrow \ \ell^+\ell^-$ (ℓ	NODE=S04	4R60;LINKAGE=C
$J/\psi \pi^+\pi^-$, with J	$J/\psi \rightarrow \ell^+$	$-\ell^-$.		decay channel $\psi(2S)$ $ ightarrow$	NODE=S04	4R60;LINKAGE=B
3 ABREU 94P measu $J/\psi ightarrow \ \mu^+ \mu^-$.	ıre this bra	nching ratio via dec	cay channel ψ	$(2S) ightarrow \;J/\psi\pi^+\pi^-$, with	NODE=S04	4R60;LINKAGE=A
$\Gamma(\psi(2S)\gamma)/\Gamma_{total}$	<u>CL%_</u>	DOCUMENT ID	<u>TECN</u>	Γ ₂₉ /Γ	NODE=S04 NODE=S04	
$<1.3 \times 10^{-6} \text{ (CL} = 9$	95%) [<2	$2.4 \times 10^{-6} \text{ (CL} =$	95%) OUR 2	025 BEST LIMIT]		
$<1.3 \times 10^{-6}$	95	HAYRAPETY.	25H CMS	$E_{ m cm}^{pp}=13~{ m TeV}$		
• • • We do not use t	he followir			••••		
$< 2.4 \times 10^{-6}$	95	-		$E_{ m cm}^{pp}=13~{ m TeV}$		
$< 4.5 \times 10^{-6}$	95 95			$E_{\rm cm}^{pp} = 13 \text{ TeV}$ $E_{\rm cm}^{pp} = 13 \text{ TeV}$		
isolated photon of μ is detected via its or photon and the $\psi(\mu)$	$p_T > 350$ dimuon dec $(2S)$ in th d/expected	25) GeV and a mu cay and it is require e plane transverse background events	on with p_T : ed that the az to the beam is $43/42 \pm 5$	s. Two triggers were used: $> 18(24)$ GeV. The $\psi(25)$ imuthal angle between the direction is $> \pi/2$. The in the dimuon mass range	NODE=S04	4R05;LINKAGE=B
$\Gamma(J/\psi(1S)\ell^+\ell^-)/$	'Γ(μ+μ [_]	$\mu^{+}\mu^{-}$		Γ ₃₀ /Γ ₅	NODE COA	4D00
$\Gamma(J/\psi(1S)\ell^+\ell^-)/V$ VALUE	. (, ,	DOCUMENT ID	TECN	COMMENT	NODE=S04 NODE=S04	
				pp at 13 TeV pollisions at $\sqrt{s}=$ 13 TeV,		4R09;LINKAGE=A
1 SIRUNYAN 18DZ of where ψ includes μ muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\psi\mu^+\mu^ \mu^+\mu^-\ell^+\ell^-$ invarior the $\psi\mu^+\mu^-$ (is determined as 0 extrapolation to full	J/ψ as well e J/ψ is define the rathin phase-lepton inva $-$ ($\Psi e^+ e^-$) riant mass ($\Psi e^+ e^-$) 0.16 $=$ 0.18 II phase sp	e decay $Z \to \psi \ell^-$ I as $\psi(2S) \to J/\psi$ etected via its $\mu^+\mu$ io of the branching space cuts imposed riant mass, and J/ψ^- candidate event distributions, a yield mode is obtained 3 ± 0.05 within the ace cancels in the	$^+\ell^-$ in pp co pX , and $\ell^+\ell^ e^-$ decay chang fraction of the door lepton to $\ell^+\ell^-$ transverse that is 29 (18). The ratio of the selected phoratio, and using the properties of the selected phoratio, and using the properties of the selected phoratio, and using the properties of the prope	pp at 13 TeV		4R09;LINKAGE=A
¹ SIRUNYAN 18DZ of where Ψ includes Δ muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^-\mu^+\mu^-\ell^+\ell^-$ invaring for the $\Psi\mu^+\mu^-$ (is determined as 0 extrapolation to full B($Z \to \mu^+\mu^-\mu^-\ell^-\ell^-$) = 8×10^{-7} .	J/ψ as well $e\ J/\psi$ is do ine the rathin phase-lepton inva $-$ (ψe^+e^-) e^- riant mass (ψe^+e^-) e^- 0.18 $e^ e^ e^-$	e decay $Z \to \psi \ell^-$ I as $\psi(2S) \to J/\psi$ etected via its $\mu^+\mu$ io of the branching space cuts imposed riant mass, and J/ψ^- candidate event distributions, a yield mode is obtained 3 ± 0.05 within the ace cancels in the	$^+\ell^-$ in pp co pX , and $\ell^+\ell^ e^-$ decay chang fraction of the door lepton to $\ell^+\ell^-$ transverse that is 29 (18). The ratio of the selected phoratio, and using the properties of the selected phoratio, and using the properties of the selected phoratio, and using the properties of the prope	pp at 13 TeV plisions at $\sqrt{s}=13$ TeV, represents an electron or onel. To reduce systematic his decay to that of $Z \rightarrow$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=3.9$ (11.2 \pm 3.4) events of the branching fractions asses-space cuts. Assuming any their measured value of	NODE=S04	
¹ SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^-\mu^+\mu^-\ell^+\ell^-$ invaling for the $\Psi\mu^+\mu^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-$ = 8 × 10 ⁻⁷ .	J/ψ as well $e\ J/\psi$ is do ine the rathin phase-lepton inva $-$ (ψe^+e^-) e^- riant mass (ψe^+e^-) e^- 0.18 $e^ e^ e^-$	e decay $Z \to \psi \ell^-$ I as $\psi(2S) \to J/\psi$ etected via its $\mu^+\mu$ io of the branching space cuts imposed riant mass, and J/ψ^- candidate event distributions, a yield mode is obtained 3 ± 0.05 within the ace cancels in the	$^+\ell^-$ in pp co eX , and $\ell^+\ell^ e^-$ decay chang fraction of the don lepton the t $e^ e^ e^$	pp at 13 TeV plisions at $\sqrt{s}=13$ TeV, represents an electron or nel. To reduce systematic his decay to that of $Z\to$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $z=3.9$ (11.2 \pm 3.4) events of the branching fractions as e-space cuts. Assuming their measured value of mate B($Z\to J/\psi \ell^+\ell^-$)		4R38
¹ SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^-\mu^+\mu^-\ell^+\ell^-$ invaling for the $\Psi\mu^+\mu^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-\ell^-$ = 8 × 10 ⁻⁷ .	J/ψ as well e J/ψ is define the rathin phase-lepton inva $-$ (Ψe^+e^-) riant mass (Ψe^+e^-) 0.67 ± 0.18 II phase sp $+\mu^-$) = ((Ψ))/ Γ total	e decay $Z \rightarrow \Psi \ell^-$ I as $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^+\mu$ io of the branching space cuts imposed in a mass, and J/ψ — candidate even distributions, a yimode is obtained 3 ± 0.05 within thace cancels in the $1.20\pm0.08)\times10^{-1}$	$^+\ell^-$ in pp co eX , and $\ell^+\ell^ e^-$ decay chang fraction of the don lepton the t $e^ e^ e^$	pp at 13 TeV plisions at $\sqrt{s}=13$ TeV, represents an electron or sinel. To reduce systematic his decay to that of $Z\to$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=3.9$ (11.2 \pm 3.4) events of the branching fractions ase-space cuts. Assuming their measured value of mate B($Z\to J/\psi \ell^+\ell^-$)	NODE=S04	4R38
1 SIRUNYAN 18DZ of where $\boldsymbol{\Psi}$ includes \boldsymbol{M} muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dil of selected $\boldsymbol{\Psi}\mu^+\mu^-\mu^+\mu^-$ (is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-$ = 8 × 10 ⁻⁷ . $\Gamma(J/\psi(1S)J/\psi(1S)$ 2.2 × 10 ⁻⁶ 95 1 SIRUNYAN 19BR s $\mu^+\mu^-$. The invariously 0.1/0.15 GeV of the GeV 4-muon invariation $\boldsymbol{\Psi}$	J/ψ as well $e \ J/\psi$ is do ine the rathin phase-lepton inva ($\psi e^+ e^-$) riant mass ($(\psi e^+ e^-)$).67 \pm 0.18 H phase sph. H ph	e decay $Z \rightarrow \psi \ell^{-}$ las $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^{+}\mu$ io of the branching space cuts imposed in the space cancels in the space cancel in th	$^+\ell^-$ in pp co $^+e^-$ X, and $\ell^+\ell^ ^-e^-$ decay charge fraction of the don lepton the $^+e^-$ Y transverse to is 29 (18). The ratio of the eselected pharatio, and using $^{-6}$, they estimate $^{-6}$, they estimate $^{-6}$ of J/ψ mesoner $^{-p}J/\psi$ can of 189 events deterned minimum and $^{-1}$	pp at 13 TeV plisions at $\sqrt{s}=13$ TeV, represents an electron or nel. To reduce systematic his decay to that of $Z\to$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $z=3.9$ (11.2 \pm 3.4) events of the branching fractions as e-space cuts. Assuming their measured value of mate B($Z\to J/\psi \ell^+\ell^-$)	NODE=S04 NODE=S04 NODE=S04	
1 SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determin $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^-$ (is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-$) = 8×10^{-7} . 1 SIRUNYAN 19BR S $\mu^+\mu^-$ The invariance of the $\mu^+\mu^-$ The invariance of the 95% C.L. up to the 95% C.L. up	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton inva $-(\psi e^+ e^-)$ riant mass $(\psi e^+ e^-)$ 0.67 ± 0.18 II phase sp $^+\mu^-) = (E)$ (E)	e decay $Z \rightarrow \psi \ell^{-}$ las $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^{+}\mu$ io of the branching space cuts imposed in the space cancels in the space cancel in th	$^+\ell^-$ in pp co $^+e^-$ X, and $\ell^+\ell^ ^-e^-$ decay charge fraction of the don lepton the $^+e^-$ Y transverse to is 29 (18). The ratio of the eselected pharatio, and using $^{-6}$, they estimate $^{-6}$, they estimate $^{-6}$ of J/ψ mesoner $^{-p}J/\psi$ can of 189 events deterned minimum and $^{-1}$	pp at 13 TeV plus and p points at $\sqrt{s}=13$ TeV, represents an electron or smel. To reduce systematic his decay to that of $Z \to 1$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=1$ and $\mu^-=$	NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A
¹ SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dil of selected $\Psi\mu^+\mu^-\mu^+\mu^-\ell^+\ell^-$ invaring for the $\Psi\mu^+\mu^-\ell^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-\ell^-$ = 8×10^{-7} . (2.2 × 10^{-6} 95 ¹ SIRUNYAN 19BR sample $\mu^+\mu^-$. The invaring $\mu^+\mu^-$. The invaring $\mu^+\mu^-$. The invaring $\mu^+\mu^-$. The invaring to the 95% C.L. up $\Pi(\chi_{c1}(1P)X)/\Gamma_{total}(1P)X$	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton invalor. $e^- \ (\psi e^+ e^-)$ $e^- \ (\psi e^-)$ $e^- \$	e decay $Z \rightarrow \Psi \ell^{-}$ las $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^{+}\mu$ io of the branching space cuts imposed riant mass, and J/ψ mass, and J/ψ mass. A total ange. An un-binned obtained assuming	$^+\ell^-$ in pp co pX , and $\ell^+\ell^ q$ decay charge fraction of the q does not expected by transverse the size p (18). The ratio of each extended property of p and	pp at 13 TeV pllisions at $\sqrt{s}=13$ TeV, represents an electron or sinel. To reduce systematic his decay to that of $Z \to 1$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=1$ and μ	NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A 4R42
¹ SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^+\mu^-\mu^+\mu^-\ell^+\ell^-$ invaring for the $\Psi\mu^+\mu^-\ell^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-\ell^-\ell^-$ = 8×10^{-7} . $\Gamma(J/\psi(1S)J/\psi(1S)J/\psi(1S))$ VALUE 2.2 × 10 ⁻⁶ 95 ¹ SIRUNYAN 19BR s $\mu^+\mu^-$. The invarion 1,0.15 GeV of the GeV 4-muon invariate the 95% C.L. up $\Gamma(\chi_{c1}(1P)X)/\Gamma_{total}$ VALUE (units 10^{-3})	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton invariant mass $(\Psi e^+ e^-)$ 0.18 $(\Psi e^+ e^-)$ 0.67 ± 0.18 $(\Psi e^+ e^-) = (EVTS)$ $(\Psi e^+ e^-)$ (Ψe^-) $(\Psi e^+ e^-)$ $(\Psi e^+ e^-)$ (Ψe^+) (Ψe^+) (Ψe^+) (Ψe^-) (Ψe^+) (Ψe^+) (Ψe^-) (Ψe^+) (Ψe^-)	e decay $Z \rightarrow \psi \ell^{-}$ las $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^{+}\mu$ io of the branching space cuts imposed in the space cancels in the space cancel in th	$^+\ell^-$ in pp co $^+e^-$ X, and $\ell^+\ell^ ^-e^-$ decay charge fraction of the don lepton the $^+e^-$ Y transverse to is 29 (18). The ratio of the eselected pharatio, and using $^{-6}$, they estimate $^{-6}$, they estimate $^{-6}$ of J/ψ mesoner $^{-p}J/\psi$ can of 189 events deterned minimum and $^{-1}$	pp at 13 TeV plus and p points at $\sqrt{s}=13$ TeV, represents an electron or smel. To reduce systematic his decay to that of $Z \to 1$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=1$ and $\mu^-=$	NODE=S04 NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A 4R42
¹ SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^-\mu^+\mu^-\ell^+\ell^-$ involation for the $\Psi\mu^+\mu^-\ell^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-\ell^-$ = 8 × 10 ⁻⁷ . (2.2 × 10 ⁻⁶ 95 ¹ SIRUNYAN 19BR sample $\mu^+\mu^-$. The invariation of 10.1/0.15 GeV of the GeV 4-muon invariation the 95% C.L. up $\Pi(\chi_{c1}(1P)\chi)/\Gamma_{total}(1P)\chi^-$ (2.9±0.7 OUR AVERAN 2011) 2.9±0.7 OUR AVERAN	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton invariant mass $(\Psi e^+ e^-)$ 0.18 $(\Psi e^+ e^-)$ 0.67 ± 0.18 $(\Psi e^+ e^-) = (EVTS)$ $(\Psi e^+ e^-)$ (Ψe^-) $(\Psi e^+ e^-)$ $(\Psi e^+ e^-)$ (Ψe^+) (Ψe^+) (Ψe^+) (Ψe^-) (Ψe^+) (Ψe^+) (Ψe^-) (Ψe^+) (Ψe^-)	e decay $Z \rightarrow \Psi \ell^{-}$ las $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^{+}\mu$ io of the branching space cuts imposed riant mass, and J/ψ mass, and J/ψ mass. A total ange. An un-binned obtained assuming	$^+\ell^-$ in pp co pX , and $\ell^+\ell^ q$ decay charge fraction of the q does not expected by transverse the size p (18). The ratio of each extended property of p and	pp at 13 TeV pllisions at $\sqrt{s}=13$ TeV, represents an electron or sinel. To reduce systematic his decay to that of $Z \to 1$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=1$ and μ	NODE=S04 NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A 4R42
¹ SIRUNYAN 18DZ of where Ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dill of selected $\Psi\mu^+\mu^ \mu^+\mu^-\ell^+\ell^-$ involution in the $\Psi\mu^+\mu^-\ell^+\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-$ = 8 × 10 ⁻⁷ . (1/ Ψ (1S) J/Ψ (1S) V (1S	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton invariant mass $(\Psi e^+ e^-)$ 0.67 ± 0.18 II phase sp $(\Psi e^+ e^-) = (E)$ (E)	e decay $Z \rightarrow \Psi \ell^-$ I as $\psi(2S) \rightarrow J/\psi$ etected via its $\mu^+\mu$ io of the branching space cuts imposed riant mass, and J/ψ mode is obtained 3 ± 0.05 within thace cancels in the $1.20\pm0.08)\times10^{-1}$ SIRUNYAN Z decays to a pair Z decays to a pair Z of the higher/lower Z mass. A total ange. An un-binned obtained assuming Z decays to a pair Z decays to a	$^+\ell^-$ in pp co ^+eX , and $\ell^+\ell^ ^-e$ decay chang fraction of the don lepton the done is 29 (18). The ratio of the selected pharatio, and using the ^-e , they estimate ^-e , they estimate dextended matched the ^-e described extended matched ^-e described extended matched ^-e	pp at 13 TeV pp at 13 TeV pp at 13 TeV contains at $\sqrt{s}=13$ TeV, represents an electron or anel. To reduce systematic his decay to that of $Z \to \infty$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and an μ^- 3.9 (11.2 \pm 3.4) events of the branching fractions asse-space cuts. Assuming their measured value of mate B($Z \to J/\psi \ell^+\ell^-$) $\frac{\Gamma_{31}/\Gamma}{COMMENT}$ Function of the channel $J/\psi \to \infty$ and the channel $J/\psi \to \infty$ and the channel $J/\psi \to \infty$ are selected in the 40–140 aximum likelihood fit leads ons to be unpolarised. Γ_{32}/Γ $\frac{COMMENT}{COMMENT}$ $\frac{\Gamma_{32}/\Gamma}{COMMENT}$	NODE=S04 NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A 4R42
1 SIRUNYAN 18DZ of where ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dil of selected $\psi\mu^+\mu^-\mu^-\ell^+\ell^-$ invariant for the $\psi\mu^+\mu^-\ell^-\ell^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-\ell^-\ell^-$ = 8×10^{-7} . 1 SIRUNYAN 19BR such $\mu^+\mu^-\ell^-\ell^-$ The invariant $0.1/0.15$ GeV of the GeV 4-muon invariate the 95% C.L. up $(\chi_{C1}(1P)\chi)/\Gamma_{total}(1P)\chi^-\ell^-\ell^-\ell^-\ell^ (\chi_{C1}(1P)\chi)/\Gamma_{total}(1P)\chi^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^-\ell^$	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton invariant mass $(\psi e^+ e^-)$ 0.167 ± 0.18 III phase sp $(\psi e^+ \mu^-) = (E)$ (E) $(E$	the decay $Z \to \psi \ell^-$ as $\psi(2S) \to J/\psi$ attented via its $\mu^+\mu$ io of the branching space cuts imposed riant mass, and J/ψ . Candidate event distributions, a yimode is obtained 3 ± 0.05 within the acceptance of the higher J/ψ mass. A total ange. An un-binned obtained assuming $\frac{DOCUMENT\ ID}{1}$ ACCIARRI J/ψ ACCIARRI J/ψ ABREU	$^+\ell^-$ in pp co $^+e^+$, and $\ell^+\ell^-$ in pp co $^+e^+$, and $\ell^+\ell^-$ in decay charge gracino of the ℓ^+ does not be selected phoson of ℓ^- in the point $\ell^$	pp at 13 TeV pllisions at $\sqrt{s}=13$ TeV, represents an electron or sinel. To reduce systematic his decay to that of $Z \to 1$ ransverse momentum. The number Analyzing the $\mu^+\mu^-$ and $\mu^-=1$ and $\mu^$	NODE=S04 NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A 4R42
1 SIRUNYAN 18DZ of where ψ includes J muon pair while the errors they determing $\mu^+\mu^-\mu^+\mu^-$ with pseudo rapidity, dil of selected $\psi\mu^+\mu^ \mu^+\mu^-\ell^+\ell^-$ invariant for the $\psi\mu^+\mu^-\ell^-\ell^-$ is determined as 0 extrapolation to full B($Z \rightarrow \mu^+\mu^-\mu^-$ = 8×10^{-7} . F($J/\psi(1S)J/\psi(1S)$ VALUE CLES 1 SIRUNYAN 19BR S $\mu^+\mu^-$ The invariant 0.1/0.15 GeV of the GeV 4-muon invariation the 95% C.L. up F($\chi_{c1}(1P)X$)/ Γ_{total} VALUE (units 10^{-3}) 2.9±0.7 OUR AVERAUE 2.7±0.6±0.5 5.0±2.1 $^{+1.5}_{-0.9}$ 1 ACCIARRI 97J means I means I means I and I means I and I means I and I are I and I are I and I	J/ψ as well $e \ J/\psi$ is define the rathin phase-lepton invariant mass $(\Psi e^+ e^-)$	the decay $Z \to \psi \ell^-$ as $\psi(2S) \to J/\psi$ betected via its $\mu^+\mu$ io of the branching space cuts imposed riant mass, and J/ψ . Candidate event distributions, a yimode is obtained 3 ± 0.05 within the acceptance cancels in the $1.20\pm0.08)\times10^{-1}$ SIRUNYAN Z decays to a pair of the higher/lower J/ψ mass. A total ange. An un-binner obtained assuming $\frac{DOCUMENT\ ID}{1}$ ACCIARRI $\frac{1}{2}$ ABREU branching ratio via e). The $M(\ell^+\ell^-$	$+\ell^-$ in pp co pX , and $\ell^+\ell^ q^-$ decay charged in decay charged in decay charged in the ℓ^+ ℓ^- decay charged in the $\ell^ \ell^-$ decay charged in the $\ell^ \ell^-$ decay charged in the ℓ^- decay charged in the $\ell^ \ell^-$ in $\ell^ \ell^ \ell^-$ decay charged in $\ell^ \ell^ \ell^ \ell^ \ell^-$ in $\ell^ \ell^ \ell^ \ell^ \ell^-$ in $\ell^ \ell^ \ell^-$ in $\ell^ \ell^-$ in ℓ^- in $\ell^ \ell^-$ in $\ell^ \ell^-$ in ℓ^- in $\ell^ \ell^-$ in ℓ^- in	pp at 13 TeV pp at 13 TeV pp at 13 TeV contains at $\sqrt{s}=13$ TeV, represents an electron or anel. To reduce systematic his decay to that of $Z \to \infty$ ransverse momentum and momentum. The number Analyzing the $\mu^+\mu^-$ and an μ^- 3.9 (11.2 \pm 3.4) events of the branching fractions asse-space cuts. Assuming their measured value of mate B($Z \to J/\psi \ell^+\ell^-$) $\frac{\Gamma_{31}/\Gamma}{COMMENT}$ Function of the channel $J/\psi \to \infty$ and the channel $J/\psi \to \infty$ and the channel $J/\psi \to \infty$ are selected in the 40–140 aximum likelihood fit leads ons to be unpolarised. Γ_{32}/Γ $\frac{COMMENT}{COMMENT}$ $\frac{\Gamma_{32}/\Gamma}{COMMENT}$	NODE=S04 NODE=S04 NODE=S04 NODE=S04 NODE=S04	4R38 4R38 4R38;LINKAGE=A 4R42

Γ(χ _{c2} (1 <i>P</i>)Χ)/Γ _{tα}	otal CL%	DOCUMENT ID	TECNI	Γ ₃₃ /Γ	NODE=S044R65 NODE=S044R65
<3.2 × 10 ⁻³	90		97」 L3	$\frac{E_{\text{cm}}^{ee}}{E_{\text{cm}}^{ee}} = 88-94 \text{ GeV}$	NODE_3044N03
					
- ACCIARRI 973 d	erive this iim	hit via the decay cha $+ \ell^- \sim -M(\ell^+ \ell^-)$ n	nnel $\chi_{c2} ightarrow$	$J/\psi + \gamma$, with $J/\psi \rightarrow$ ce spectrum is fitted with	NODE=S044R65;LINKAGE=
two gaussian sha			nass unicicin	ce spectrum is nitted with	
			Γ ₃₄ /Γ	$\Gamma = (\Gamma_{35} + \Gamma_{37} + \Gamma_{39})/\Gamma$	NODE=S044R62
VALUE (units 10^{-4})	EVTS 6.4	DOCUMENT ID	TECN	COMMENT $E_{\rm cm}^{ee} = 88-94 {\rm GeV}$	NODE=S044R62
$1.0 \pm 0.4 \pm 0.22$	6.4	$^{ m 1}$ ALEXANDER	96F OPAL	E ^{ee} _{cm} = 88–94 GeV	
	y into $\it e^+\it e^-$	and $\mu^+\mu^-$. The sy		hree lowest bound states) or includes an uncertainty	NODE=S044R62;LINKAGE=
$\Gamma(\Upsilon(1S)X)/\Gamma_{ m tota}$	al			Γ ₃₅ /Γ	NODE=S044R66
VALUE	<u>CL%</u>	DOCUMENT ID 1 ACCIARRI	TECN	COMMENT	NODE=S044R66
$< 4.4 \times 10^{-5}$	95	¹ ACCIARRI	99F L3	<i>E</i> ^{ee} _{cm} = 88–94 GeV	
¹ ACCIARRI 99F s	earch for γ (15) through its deca	y into $\ell^+\ell^-$	$(\ell={\sf e}\ {\sf or}\ \mu).$	NODE=S044R66;LINKAGE=
$\Gammaig(\varUpsilon(1S) \gamma ig) / \Gamma_{tota}$	اد			Г ₃₆ /Г	NODE=S044R06
VALUE	<u>CL%</u> _	DOCUMENT ID			NODE=\$044R06
$< 1.1 \times 10^{-6}$	95			$E_{cm}^{pp} = 13 \; TeV$	
• • We do not use	e the followir	ng data for averages,			
$< 2.8 \times 10^{-6}$	95	¹ AABOUD			
$< 3.4 \times 10^{-6}$	95	² AAD	15ı ATLS	$E_{cm}^{pp} = 8 \; TeV$	
is detected via it photon and the number of obser range 9.0–10.0 G	is dimuon deal $\Upsilon(1S)$ in the rved/expected GeV leading t	cay and it is required e plane transverse to d background events to the quoted 95% C	that the azi the beam is is 115/126 L.L. limit.	$\sim 18(24)$ GeV. The $\Upsilon(1S)$ muthal angle between the direction is $> \pi/2$. The ± 8 in the dimuon mass	NODE=S044R06;LINKAGE=
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be >	is dimuon dec $\Upsilon(1S)$ in the ved/expected GeV leading the street to 36 GeV.	cay and it is required e plane transverse to d background events to the quoted 95% C nighest p_T muon in t	that the azi the beam is is 115/126 L. limit. he pair requi 12 GeV and i	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum	NODE=S044R06;LINKAGE=
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be >	is dimuon dec $\Upsilon(1S)$ in the ved/expected GeV leading the street to 36 GeV.	cay and it is required e plane transverse to deackground events to the quoted 95% Conighest p_T muon in the in the range 8–1	that the azi the beam is is 115/126 L. limit. he pair requi 12 GeV and i	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum	
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be >	is dimuon dec $\Upsilon(1S)$ in the red/expected GeV leading the intervention of the required to the	cay and it is required e plane transverse to d background events to the quoted 95% C nighest p _T muon in the in the range 8–1 the photon is also required.	that the azi o the beam is is 115/126 i.L. limit. he pair requi i.2 GeV and i uired to have	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE=
is detected via it photon and the number of obser range 9.0–10.0 G AAD 151 use ever the dimuon mass required to be > \(\tau(25)\textbf{X}\)/\(\tau(25)\textbf{X}	is dimuon dec $\Upsilon(1S)$ in the proof of the p	cay and it is required e plane transverse to de background events to the quoted 95% C nighest p _T muon in the in the range 8–1 the photon is also required to the process of the plane of t	that the azi of the beam of th	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be > (\mathcal{T}(2S)\mathbb{X})/\Gamma_{\text{total}} (13.9 \times 10^{-5}) ACCIARRI 97R s	is dimuon dec $\Upsilon(1S)$ in the proof of the p	cay and it is required e plane transverse to d background events to the quoted 95% C nighest p _T muon in the in the range 8–1 the photon is also required.	that the azi of the beam of th	muthal angle between the direction is $>\pi/2$. The \pm 8 in the dimuon mass red to have $p_T>20$ GeV, t's transverse momentum it's $p_T>36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67
is detected via it photon and the number of obser range 9.0–10.0 G ² AAD 15I use ever the dimuon mass required to be > Γ(Υ(25)Χ)/Γ _{total} ×ALUE 1 ACCIARRI 97R s Γ(Υ(25)γ)/Γ _{total}	is dimuon dec $\Upsilon(1S)$ in the rved/expected GeV leading the first the first required to $\sim 36~{\rm GeV}$. The ~ 20 GeV. The ~ 20 GeV. The ~ 20 GeV is search for $\Upsilon(1S)$	cay and it is required e plane transverse to deckground events to the quoted 95% Congression of the plane transverse to the quoted 95% Congression of the plane plane photon is also required a DOCUMENT ID 1 ACCIARRI (25) through its decay	that the azi of the beam 6 is 115/126 i.L. limit. The pair required to have $\frac{TECN}{97R}$ L3 ay into $\ell^+\ell^-$	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G ² AAD 15I use ever the dimuon mass required to be > Γ(Υ(25)Χ)/Γ _{total} ×ALUE 1 ACCIARRI 97R s Γ(Υ(25)γ)/Γ _{total} ×ALUE	is dimuon dec $\Upsilon(1S)$ in the pred/expected GeV leading the intervention of the prediction of the pred	cay and it is required e plane transverse to de background events to the quoted 95% Contingents p _T muon in the bein the range 8–1 the photon is also required a DOCUMENT ID 1 ACCIARRI (25) through its decay	that the azi of the beam of the beam of the beam of the second in the pair required to have $\frac{TECN}{97R} = \frac{TECN}{4}$	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE=
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be > Γ(Γ(25)X)/Γ _{total} ACCIARRI 97R s Γ(Γ(25)γ)/Γ _{total} ACCIARRI 97R s Γ(Γ(25)γ)/Γ _{total} ALUE <1.3 × 10 ⁻⁶	is dimuon dec $\Upsilon(1S)$ in the proof of the p	cay and it is required e plane transverse to de background events to the quoted 95% Conighest pt muon in the in the range 8–1 to photon is also required a COLUMENT ID 1 ACCIARRI (25) through its decay and poccument ID AAD	that the azi of the beam of the beam of the beam of the second in the pair required to have $\frac{TECN}{23CD \text{ ATLS}}$	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G AAD 151 use ever the dimuon mass required to be > \(\(\(T(2S)X)/\Gamma_{\text{total}}\) \(\(\(T(2S)X)/G(1X)/G	is dimuon dec $\Upsilon(1S)$ in the type of the proof of the pr	cay and it is required e plane transverse to de background events to the quoted 95% Conighest pt muon in the bein the range 8–1 the photon is also required a COLIARRI (25) through its decay and the procument of the pocument of the plane of	that the azi of the beam of the beam of the beam of the second in the pair required to have $\frac{TECN}{23\text{CD ATLS}}$	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be > \(\(\(T(2S)X)\)/\Gamma_{\text{total}}\) \(\(\(T(2S)X)\)/\Gamma_{\text{total}}\) \(\(\(T(2S)X)\)/\Gamma_{\text{total}}\) \(\(\(\(T(2S)X)\)/\Gamma_{\text{total}}\) \(\(\(T(2S)X)\)/\Gamma_{\text{total}}\) \(\(\(T(2S)X)\)/\Gamma_{\text{total}}\)	is dimuon dec $\Upsilon(1S)$ in the type of the following states of the following st	cay and it is required e plane transverse to de background events to the quoted 95% Continues to the quoted 95% Continues to the property of the plane of th	that the azi of the beam of the beam of the beam of the second in the pair required to have $\frac{TECN}{23CD \text{ ATLS}}$ fits, limits, of the beam of the pair required to have $\frac{TECN}{23CD \text{ ATLS}}$	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G AAD 151 use ever the dimuon mass required to be > $(T(2S)X)/\Gamma_{total}$ ACCIARRI 97R s $T(T(2S)\gamma)/\Gamma_{total}$ $T(T(2S)\gamma)/\Gamma_{total}$ $T(T(2S)\gamma)/\Gamma_{total}$	is dimuon dec $\Upsilon(1S)$ in the proof of the p	cay and it is required e plane transverse to de background events to the quoted 95% Conighest pt muon in the in the range 8–1 to the photon is also required to the photon is also required to the photon	that the azi of the beam of t	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be > (Υ(25)Χ)/Γτοτε (ΧΑΔΕΕ (ΣΑΣΕΕ (ΣΕΣΕΕ	s dimuon dec $\Upsilon(1S)$ in the red/expected GeV leading the street of the	cay and it is required to plane transverse to deplane transverse to deplane transverse to the quoted 95% Control transverse tran	that the azi of the beam of the beam of the beam of the pair required. The pair required to have $\frac{TECN}{23CD}$ ATLS fits, limits, of the beam of the beam of the pair required to the pair required to the pair required the beam of the pair required to the pair required the pair re	muthal angle between the direction is $>\pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07 NODE=S044R07 NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G AAD 151 use ever the dimuon mass required to be > \(\begin{align*} \begin{align*} \begi	as dimuon dec $\Upsilon(1S)$ in the proof per	cay and it is required to plane transverse to deplane transverse to deplane transverse to the quoted 95% Control transverse tran	that the azi of the beam of t	muthal angle between the direction is $>\pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be > ((τ(2s)x)/Γtotal (ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔ	as dimuon dec $\Upsilon(1S)$ in the recode expected by leading the street of t	cay and it is required e plane transverse to de background events to the quoted 95% Continues to the plane transverse to the plane transverse to the photon is also required. DOCUMENT ID ACCIARRI (25) through its decay and a for averages, AABOUD AAD (25) γ in 13 TeV pp (25) GeV and a muor cay and it is required to background events to the quoted 95% Contighest p¬¬ muon in the in the range 8–1 the photon is also required to the plane transverse to the quoted 95% Contighest p¬¬ muon in the photon is also required.	that the azi of the beam of t	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07 NODE=S044R07 NODE=S044R07;LINKAGE= NODE=S044R07;LINKAGE=
is detected via it photon and the number of obser range 9.0–10.0 G AAD 15I use ever the dimuon mass required to be > Γ(Υ(2S)X)/Γtotal (YALUE) <1.3 9 × 10 ⁻⁵ 1 ACCIARRI 97R s Γ(Υ(2S)γ)/Γtotal (YALUE) <1.3 × 10 ⁻⁶ • • We do not use considered with the number of obser range 9.5–10.5 G 2 AAD 15I use ever the dimuon mass required to be >	as dimuon dec $\Upsilon(1S)$ in the proof per	cay and it is required e plane transverse to de background events to the quoted 95% Conighest pt muon in the photon is also required. DOCUMENT ID AAD AABOUD AAD AABOUD AAD AABOUD AAD AABOUD AAD AABOUD AAD AABOUD AAD C(25) \(\gamma\) in 13 TeV pt ABOUD AAD Cay and it is required to background events to the quoted 95% Conighest pt muon in the bein the range 8–1 the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the bein the range 8–1 the photon is also required to the quoted 95% Conighest pt muon in the photon is also required to the quoted 95% Conighest pt muon in the photon is also required to the quoted 95% Conighest pt muon in the photon is also required to the quoted 95% Conighest pt muon in the photon is also required to the quoted 95% Conighest pt muon in the photon is also required to the photon is also required to the quoted 95% Conighest pt muon in the photon is also required to the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the photon is also required to the plane transverse to the quoted 95% Conighest pt muon in the photon is also required to the plane transverse to the quoted pt muon in the photon is also required to the plane transverse to the quoted pt muon in the photon is also required to the plane transverse to the plane transverse to the plane transverse to the plane transverse to the quoted pt muon in the plane transverse to the quoted pt muon in the plane transverse to the quoted pt muon in the plane transverse to the quoted pt muon in the plane transverse to the quoted pt muon in the plane transverse to the quoted pt muon in the plan	that the azi of the beam of t	muthal angle between the direction is $> \pi/2$. The \pm 8 in the dimuon mass red to have $p_T > 20$ GeV, t's transverse momentum it's $p_T > 36$ GeV.	NODE=S044R06;LINKAGE= NODE=S044R67 NODE=S044R67;LINKAGE= NODE=S044R07 NODE=S044R07 NODE=S044R07;LINKAGE= NODE=S044R07;LINKAGE=

$\Gamma(\Upsilon(3S)\gamma)/\Gamma_{\text{total}}$	GL N/	DOCUMENT ID	TECN	COLMENT	Γ ₄₀ /Γ	NODE=\$044R08
<2.4 × 10 ⁻⁶	_ <u>CL%_</u> 95	<u>DOCUMENT ID</u> AAD		$\frac{COMMENT}{E_{cm}^{pp}} = 13 \text{ Te}$./	NODE=S044R08
• • • We do not use the					V	
$<4.8 \times 10^{-6}$	95	¹ AABOUD		$E_{\rm cm}^{pp} = 13 \text{ Te}$	/	
$< 5.4 \times 10^{-6}$	95	² AAD		$E_{\rm cm}^{pp} = 8 \text{TeV}$	•	
1 AABOUD 18BL studisolated photon of p is detected via its diphoton and the $\Upsilon(3)$ number of observed range 10.0–11.0 GeV	$_T > 35(2)$ muon dec (3S) in the /expected / leading	25) GeV and a mu ay and it is require e plane transverse l background ever to the quoted 95%	pp interaction with p_T ed that the action to the beamnts is $112/11$ % C.L. limit.	ns. Two triggers \times > 18(24) GeV. Tzimuthal angle be diffection is > 3 \pm 8 in the dim	he $\Upsilon(3S)$ tween the $\pi/2$. The uon mass	NODE=S044R08;LINKAGE=A
² AAD 15I use events we the dimuon mass received to be > 36	quired to	be in the range 8	-12 GeV and	l it's transverse m	omentum	NODE=S044R08;LINKAGE=B
$\Gamma(\Upsilon(1,2,3S)\Upsilon(1,2,$		otal			Γ_{41}/Γ	NODE=S044R39
VALUE CL%	<u>EVTS</u>	DOCUMENT ID				NODE=S044R39
<1.5 × 10 ⁻⁶ 95				$E_{cm}^{pp} = 13 \; Te$		
1 SIRUNYAN 19BR sea The invariant mass of 106 events are sele extended maximum the Υ mesons to be	of the $ \varUpsilon $ cected in th likelihood	andidates has to be 20–140 GeV 4-m fit leads to the 9	oe in the rang nuon invarian	ge of 8.5 to 11 Ge t mass range. An	V. A total un-binned	NODE=\$044R39;LINKAGE=A
$\Gamma(K_S^0\gamma)/\Gamma_{ m total}$					Γ_{42}/Γ	NODE COMMETS
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	———	NODE=S044R73 NODE=S044R73
$< 3.1 \times 10^{-6}$	95	¹ AAD	24R ATLS	$E_{cm}^{pp} = 13 \; Te$	/	
¹ AAD 24R identify the photon is required taking.	ne K_S^0 via so be larg	a its decay to π^+ er than 25 GeV α	π^- . The transfer 35 GeV fo	ansverse moment or different perioc	um of the Is of data	NODE=S044R73;LINKAGE=A
$\Gamma(D^0\gamma)/\Gamma_{ m total}$					Γ_{43}/Γ	NODE=\$044R72
VALUE		DOCUMENT ID				NODE=\$044R72
$<4.0\times10^{-6}$	95			$E_{cm}^{pp} = 13 \text{ Te}$		
AAD 24R identify the photon is required to taking.						NODE=S044R72;LINKAGE=A
$\Gamma(D^0\gamma)/\Gamma(\mu^+\mu^-)$					Γ_{43}/Γ_{2}	NODE=S044R64
VALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT		NODE=\$044R64
$< 6.4 \times 10^{-2}$	95	¹ AAIJ	23AMLHCE	$E_{cm}^{pp} = 13 \; Te$	/	
1 AAIJ 23AM also quot the known $Z ightarrow \ \mu ho$			mit B($Z o I$	$D^0 \gamma) < 2.1 \times 10$	$^{-3}$, using	NODE=S044R64;LINKAGE=A
$\Gamma((D^0/\overline{D}^0)X)/\Gamma(ha)$	adrons)				Γ_{44}/Γ_{8}	NODE=S044R43
VALUE	<u>EVTS</u>	DOCUMENT ID		COMMENT		NODE=S044R43
$0.296 \pm 0.019 \pm 0.021$	369	¹ ABREU		$E_{\rm cm}^{\rm ee} = 88-94$		
1 The $(D^{0}/\overline{D}{}^{0})$ state corrected result (see	es in ABF the errat	REU 931 are detec um of ABREU 931	ted by the h $).$	$K\pi$ decay mode.	This is a	NODE=S044R43;LINKAGE=A
$\Gamma(D^{\pm}X)/\Gamma(\text{hadrons})$)				Γ_{45}/Γ_{8}	NODE=S044R44
VALUE	<u>EVTS</u>	DOCUMENT ID		COMMENT		NODE=S044R44
$0.174\pm0.016\pm0.018$ ¹ The D^{\pm} states in Alresult (see the erratu	539 BREU 931 um of AB	¹ ABREU are detected by th REU 931).		H E_{cm}^{ee} = 88–94 y mode. This is a		NODE=S044R44;LINKAGE=A
` .		,			Γ., /Γ.	
$\Gamma(D^*(2010)^{\pm}X)/\Gamma(10)$	•		indicated		Γ ₄₆ /Γ ₈	NODE=S044R24
The value is for th	<u>EVTS</u>	DOCUMENT ID	indicated. <i>TECN</i>	COMMENT		NODE=\$044R24 NODE=\$044R24
0.163±0.019 OUR AVE	RAGE E	rror includes scale	factor of 1.3	3.	_	
$0.155 \pm 0.010 \pm 0.013$	358	¹ ABREU ² DECAMP		$E_{\rm cm}^{ee} = 88-94$		
0.21 ± 0.04	362	DECAMP	91J ALEF	$E_{\rm cm}^{ee} = 88-94$	GeV	

$^1D^*(2010)^{\pm}$ in ABF new CLEO II measu corrected result (see	rement of the erratu	$B(D^{*\pm} \rightarrow D^0\pi)$ m of ABREU 931	$^{\pm}$) = (6	68.1 ±	1.6) % is used	I. This is a	NODE=S044R24;LINKAGE=B
² DECAMP 91J repoid $\int \Gamma(\text{hadrons}) = (5.5)$ B($D^0 \to K^-\pi^+$) = We have rescaled the	11 ± 0.34	$) imes 10^{-3}$. They	obtaine	ed the	above numbe	r assuming	NODE=S044R24;LINKAGE=A
II branching ratio B						new CLLO	
$\Gamma(D_{s1}(2536)^{\pm}X)/\Gamma$	(hadrons)					Γ_{47}/Γ_{8}	NODE=S044R70
$D_{s1}(2536)^\pm$ is an	n expected						NODE=S044R70
VALUE (%)	EVTS	DOCUMENT ID					NODE=S044R70
$0.52\pm0.09\pm0.06$	92	¹ HEISTER			· · · ·		
1 HEISTER 02B recon $D_{s1}(2536)^\pm o D^s$ the $D_{s1}(2536)$ is sa	struct this k0 K^{\pm} . The turated by	meson in the deca e quoted branchin the two measured	g ratio I decay	es $D_{s1}($ assume modes.	$(2536)^{\pm} \rightarrow D^{0}$ s that the decay	$^{*\pm}$ K^0 and ay width of	NODE=S044R70;LINKAGE=A
$\Gamma(D_{sJ}(2573)^{\pm}X)/\Gamma$	(hadrons)				Γ_{48}/Γ_{8}	NODE=S044R71
D_{sJ} (2573) $^{\pm}$ is a <u>VALUE (%)</u>		orbitally-excited and approximately or orbitally-excited and approximately orbitally-excited and approximately-excited an					NODE=S044R71 NODE=S044R71
$0.83 \pm 0.29 ^{+0.07}_{-0.13}$	64	¹ HEISTER	02B A	ALEP	E ^{ee} _{cm} = 88–94	GeV	
¹ HEISTER 02B recor quoted branching ra decay width.	struct this tio assumes	meson in the dec s that the detecte	ay mode d decay	e D_{s2}^* (2 mode i	$(2573)^{\pm} \rightarrow D^0$ represents 45%	$^0K^\pm$. The 0 of the full	NODE=S044R71;LINKAGE=A
$\Gamma(D^{*'}(2629)^{\pm}X)/\Gamma$	(hadrons)	1				Γ_{49}/Γ_{8}	NODE=S044R69
$D^{*\prime}(2629)^{\pm}$ is a	• ,		the D^*	*(2010)	± meson.		NODE=S044R69
VALUE		DOCUMENT ID					NODE=S044R69
searched for		¹ ABBIENDI			····		
1 ABBIENDI 01N set $D^{*+} ightarrow D^{0} \pi^{+}$, $D^{*\prime}(2629)^{\pm} imes B(D^{*}$	and D^0	\rightarrow $K^-\pi^+$. T	hey quo	ote a !	95% CL limit	$^+\pi^-$ with for Z $ o$	NODE=S044R69;LINKAGE=A
$\Gamma(B^*X)/[\Gamma(BX) +$	Γ(<i>B</i> *X)]				Γ ₅₁ /(Ι	- ₅₀ +Γ ₅₁)	NODE=S044R61
As the experimen should be taken v			the <i>b</i> -b	baryon	contribution, c	our average	NODE=S044R61
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		NODE=S044R61
0.75 ±0.04 OUR AVE	RAGE	1 ACKEDSTAFF	0714 (ODAI	ree 00 04	C-1/	
$0.760 \pm 0.036 \pm 0.083$ $0.771 \pm 0.026 \pm 0.070$		¹ ACKERSTAFF ² BUSKULIC	97M (OPAL ALED	$E_{cm}^{ee} = 88-94$	GeV	
$0.771 \pm 0.020 \pm 0.070$ $0.72 \pm 0.03 \pm 0.06$		³ ABREU			$E_{\rm cm}^{ee} = 88-94$		
$0.76 \pm 0.08 \pm 0.06$	1378	⁴ ACCIARRI	95B L		$E_{\rm cm}^{\rm ee} = 88-94$		
1 ACKERSTAFF 97M 4.1)% b -baryon con and B s.	use an inc	clusive B reconst	ruction	metho	d and assume	a (13.2 \pm	NODE=S044R61;LINKAGE=D
² BUSKULIC 96D use 4.3)% <i>b</i> -baryon con B_s .	tribution.	The value refers t	o a <i>b</i> -fl	lavored	mixture of B_l	$_{_{I}}$, $\overset{.}{B}_{d}$, and	NODE=S044R61;LINKAGE=C
³ ABREU 95R use an contribution. The v	alue refers	to a <i>b</i> -flavored m	eson mi	xture o	f $B_{oldsymbol{u}}$, $B_{oldsymbol{d}}$, and	B_s .	NODE=S044R61;LINKAGE=B
4 ACCIARRI 95B assumixture of B_u , B_d ,		<i>b</i> -baryon contrib	oution.	The va	lue refers to a	<i>b</i> -flavored	NODE=S044R61;LINKAGE=A
$\Gamma(B^+X)/\Gamma(hadrons)$)					Γ_{52}/Γ_{8}	NODE=S044B+X
"OUR EVALUAT $\Gamma(b\overline{b})/\Gamma({\sf hadrons})$		tained using our culate $\Gamma(B^+ X)/\Gamma(B^+)$					NODE=S044B+X
VALUE		DOCUMENT ID		TECN	COMMENT		NODE=S044B+X
0.0869±0.0019 OUR E	VALUATIO						$ ightarrow$ UNCHECKED \leftarrow
0.0887±0.0030		1					
¹ ABDALLAH 03K m		¹ ABDALLAH					

$\Gamma(B_s^0X)/\Gamma(hadrons)$

seen

 Γ_{53}/Γ_{8}

"OUR EVALUATION" is obtained using our current values for f $(\overline{b} o\ {\cal B}^0_{m s})$ and R $_b=$ $\Gamma(b\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(B_s^0)/\Gamma(\text{hadrons}) = R_b \times f(\overline{b} \to B_s^0)$.

DOCUMENT ID TECN COMMENT 0.0227±0.0019 OUR EVALUATION (Produced by HFLAV)

92M DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$

seen seen

92N OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$ 3 BUSKULIC 92E ALEP $E_{cm}^{ee} = 88-94$ GeV

 1 ABREU 92M reported value is $\Gamma(B_{s}^{0}\mathrm{X})*\mathrm{B}(B_{s}^{0}\rightarrow\ D_{s}\mu\nu_{\mu}\mathrm{X})*\mathrm{B}(D_{s}\rightarrow\ \phi\pi)/\Gamma(\mathrm{hadrons})$ $= (18 \pm 8) \times 10^{-5}$.

 2 ACTON 92N find evidence for B_s^0 production using D_s - ℓ correlations, with $D_s^+ o\phi\pi^+$ and $K^*(892)K^+$. Assuming R_b from the Standard Model and averaging over the e and μ channels, authors measure the product branching fraction to be $f(\overline{b} o B_s^0) imes B(B_s^0 o B_s^0)$ $D_s^- \ell^+ \nu_\ell X) \times B(D_s^- \to \phi \pi^-) = (3.9 \pm 1.1 \pm 0.8) \times 10^{-4}.$

 3 BUSKULIC 92E find evidence for B_s^0 production using D_s - ℓ correlations, with D_s^+ o $\phi\pi^+$ and $K^*(892)K^+$. Using B($D_s^+ \to \phi\pi^+$) = (2.7 \pm 0.7)% and summing up the e and μ channels, the weighted average product branching fraction is measured to be B($\overline{b} \to B_s^0$)×B($B_s^0 \to D_s^- \ell^+ \nu_\ell X$) = 0.040 \pm 0.011 $^{+\,0.010}_{-\,0.012}$.

 $\Gamma(B_c^+X)/\Gamma(hadrons)$ Γ_{54}/Γ_{8}

___ TECN COMMENT DOCUMENT ID 1 ACKERSTAFF 980 OPAL $E_{cm}^{ee} = 88-94$ GeV searched for 97E DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$ searched for ³ BARATE 97H ALEP *E*^{ee}_{cm}= 88-94 GeV searched for

 1 ACKERSTAFF 980 searched for the decay modes $B_c
ightarrow J/\psi \pi^+$, $J/\psi \, a_1^+$, and $J/\psi\,\ell^+\,\nu_\ell$, with $J/\psi\to\ell^+\ell^-$, $\ell=e,\mu$. The number of candidates (background) for the three decay modes is 2 (0.63 ± 0.2) , 0 (1.10 ± 0.22) , and 1 (0.82 ± 0.19) respectively. Interpreting the 2 $B_c \to J/\psi \pi^+$ candidates as signal, they report $\Gamma(B_c^+ {\rm X}) \times {\rm B}(B_c \to T)$ $J/\psi \pi^+)/\Gamma({\rm hadrons})=(3.8^{+5.0}_{-2.4}\pm0.5)\times10^{-5}$. Interpreted as background, the 90% CL bounds are $\Gamma(B_c^+\,{\rm X})*{\rm B}(B_c\to~J/\psi\,\pi^+)/\Gamma({\rm hadrons})<1.06\times10^{-4},~\Gamma(B_c^+\,{\rm X})*{\rm B}(B_c\to B_c^+)$ $J/\psi \, a_1^+)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- o J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \ell^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X}) * {\rm B}(B_c^- \to J/\psi \, \mu^+ \,
u_\ell)/\Gamma({\rm hadrons}) < 0.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})$ 6.96×10^{-5} .

² ABREU 97E searched for the decay modes $B_c \to J/\psi \pi^+$, $J/\psi \ell^+ \nu_\ell$, and $J/\psi (3\pi)^+$, with $J/\psi \to \ell^+\ell^-$, $\ell=e,\mu$. The number of candidates (background) for the three decay modes is 1 (1.7), 0 (0.3), and 1 (2.3) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c^+ X) < (1.05-0.84) \times 10^{-4$ $J/\psi \ell \nu_\ell)/\Gamma({
m hadrons}) <$ $(5.8–5.0) imes 10^{-5}, \ \Gamma(B_c^+ imes) * {
m B}(B_c^- o J/\psi (3\pi)^+)/\Gamma({
m hadrons})$ < 1.75 \times 10 $^{-4}$, where the ranges are due to the predicted $B_{\it C}$ lifetime (0.4–1.4) ps.

 $^3\,{\rm BARATE}$ 97H searched for the decay modes $B_{\it c}~\to~J/\psi\pi^+$ and $J/\psi\ell^+\nu_\ell$ with $J/\psi \to \ell^+\ell^-$, $\ell=e,\mu$. The number of candidates (background) for the two decay modes is 0(0.44) and 2(0.81) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 3.6 \times 10^{-5}$ and $\Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) = 3.6 \times 10^{-5}$ $J/\psi \ell^{+} \nu_{\ell})/\Gamma(\text{hadrons}) < 5.2 \times 10^{-5}$.

 $\Gamma(\Lambda_c^+ X)/\Gamma(hadrons)$

 Γ_{55}/Γ_{8}

TECN COMMENT

0.022 ± 0.005 OUR AVERAGE 1 ALEXANDER 96R OPAL $E_{\mathsf{cm}}^{\mathsf{ee}} = 88$ –94 GeV $0.024\pm0.005\pm0.006$ ² BUSKULIC 96Y ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ $0.021 \pm 0.003 \pm 0.005$

¹ ALEXANDER 96R measure R_b \times f(b \rightarrow $\Lambda_c^+ X$) \times B($\Lambda_c^+ \rightarrow$ $pK^-\pi^+$) = (0.122 \pm 0.023 \pm 0.010)% in hadronic Z decays; the value quoted here is obtained using our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (5.0 \pm 1.3)%. The first error is the total experiment's error and the second error is the systematic error due to the branching fraction uncertainty.

 2 BUSKULIC 96Y obtain the production fraction of $arLambda_c^+$ baryons in hadronic Z decays $f(b \to \Lambda_c^+ X) = 0.110 \pm 0.014 \pm 0.006$ using $B(\Lambda_c^+ \to pK^-\pi^+) = (4.4 \pm 0.6)\%$; we have rescaled using our best value B($\Lambda_c^+
ightarrow p \, K^- \, \pi^+$) = (5.0 \pm 1.3)% obtaining f(b
ightarrow $\Lambda_c^+ X) = 0.097 \pm 0.013 \pm 0.025$ where the first error is their total experiment's error and the second error is the systematic error due to the branching fraction uncertainty. The value quoted here is obtained multiplying this production fraction by our value of $R_b = \Gamma(b\overline{b})/\Gamma(hadrons).$

NODE=S044R49

NODE=S044R49

NODE=S044R49 \rightarrow UNCHECKED \leftarrow

NODE=S044R49:LINKAGE=A

NODE=S044R49;LINKAGE=C

NODE=S044R49;LINKAGE=B

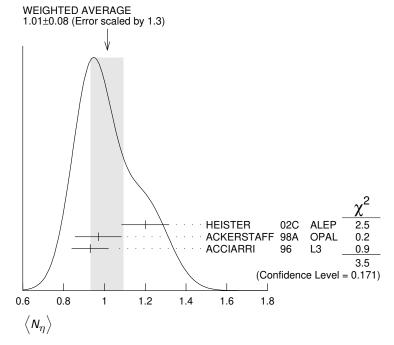
NODE=S044BCC NODE=S044BCC

NODE=S044BCC;LINKAGE=A

NODE=S044BCC;LINKAGE=B

NODE=S044BCC;LINKAGE=C

NODE=S044LCX NODE=S044LCX


NODE=S044LCX;LINKAGE=AL

NODE=S044LCX;LINKAGE=BU

seen 1 ABDALLAH 05C DLPH $E_{\rm CM}^{\rm em}=88-94~{\rm GeV}$ 1 ABDALLAH 05C searched for the charmed strange baryon Ξ_c^0 in the decay channel $\Xi_c^0 \to \Xi^-\pi^+ (\Xi^- \to \Lambda\pi^-)$. The production rate is measured to be $f_{\Xi_c^0} \times B(\Xi_c^0 \to \Xi^-\pi^+) = (4.7 \pm 1.4 \pm 1.1) \times 10^{-4}~{\rm per}~{\rm hadronic}~{\rm Z}~{\rm decay}.$ $\Gamma(\Xi_b X)/\Gamma({\rm hadrons})$ Here Ξ_b is used as a notation for the strange b -baryon states Ξ_b^- and Ξ_b^0 . $VALUE$ DOCUMENT ID $DOCUMENT$ ID $TECN$ COMMENT TECN COMMENT NODE=S044XIB NODE=S044XIB; LINKAGE=AB Tabballah 05c barron the inclusive semileptonic decay channel $\Xi_b \to \Xi^-\ell^-\overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^+ production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^+\ell^+$ compared to "wrong-sign" pairs $\Xi^+\ell^-$ the production rate is measured to be $B(b \to \Xi_b) \times B(\Xi_b \to \Xi^-\ell^-X) = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}~{\rm per}$ lepton species, averaged over electrons and muons. 2 BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "rightsign" pairs $\Xi^+\ell^+$ compared to "wrong-sign" pairs $\Xi^+\ell^-$. This excess is interpreted as excess in the production decay is a production of the part of the production of the part of the production of the part of the par
$ \begin{array}{l} \text{ABDALLAH 05C searched for the charmed strange baryon } \overline{z}_c^0 \text{ in the decay channel} \\ \overline{z}_c^0 \to \overline{z}^-\pi^+ (\overline{z}^- \to \Lambda\pi^-). \text{ The production rate is measured to be } f_{\overline{z}_c^0} \times B(\overline{z}_c^0 \to \overline{z}^-\pi^+) = (4.7 \pm 1.4 \pm 1.1) \times 10^{-4} \text{ per hadronic Z decay.} \\ \hline \textbf{\Gamma}(\overline{z}_b\textbf{X})/\textbf{\Gamma}(\textbf{hadrons}) & \textbf{\Gamma}_{57}/\textbf{\Gamma}_{8} \\ \text{Here } \overline{z}_b \text{ is used as a notation for the strange } b\text{-baryon states } \overline{z}_b^- \text{ and } \overline{z}_b^0. \\ \hline x_{ALUE} & \underline{DOCUMENTID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc. } \bullet \bullet \bullet \\ \text{seen} & 1 & \text{ABDALLAH} & 05\text{C} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 2 & \text{BUSKULIC} & 96\text{T} & \text{ALEP} & E_{\text{cm}}^{\text{em}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & E_{\text{cm}}^{\text{ee}} = 88-94 & \text{GeV} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & \text{See} \\ \text{seen} & 3 & \text{ABREU} & 95\text{V} & \text{DLPH} & \text{See} \\ \text{seen} & 3 & \text{ABREU} & \text{See} & \text{See} \\ \text{seen} & $
Here \overline{z}_b is used as a notation for the strange b -baryon states \overline{z}_b and \overline{z}_b^0 . NODE=S044XIB
MODE=S044XIB NODE=S044XIB
seen 1 ABDALLAH 05 C DLPH $E_{\rm Cm}^{ee}=88-94$ GeV seen 2 BUSKULIC 96 T ALEP $E_{\rm Cm}^{ee}=88-94$ GeV seen 3 ABREU 95 V DLPH $E_{\rm Cm}^{ee}=88-94$ GeV 1 ABDALLAH 05 C searched for the beauty strange baryon Ξ_b in the inclusive semileptonic decay channel $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$ the production rate is measured to be $B(b \to \Xi_b) \times B(\Xi_b \to \Xi^- \ell^- X) = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ per lepton species, averaged over electrons and muons. $ ^2 \text{BUSKULIC } 96 \text{T investigate } \Xi\text{-lepton correlations and find a significant excess of "right-sign" pairs } \Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$. This excess is interpreted
seen $\frac{1}{2}$ ABDALLAH 05C DLPH $E_{\text{Cm}}^{\text{ee}} = 88-94$ GeV seen $\frac{2}{3}$ BUSKULIC 96T ALEP $E_{\text{Cm}}^{\text{ee}} = 88-94$ GeV seen $\frac{3}{4}$ ABREU 95V DLPH $E_{\text{Cm}}^{\text{ee}} = 88-94$ GeV $\frac{1}{4}$ ABDALLAH 05C searched for the beauty strange baryon Ξ_b in the inclusive semileptonic decay channel $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$ the production rate is measured to be $B(b \to \Xi_b) \times B(\Xi_b \to \Xi^- \ell^- X) = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ per lepton species, averaged over electrons and muons. $ {}^2 BUSKULIC \ 96T \ investigate \ \Xi$ -lepton correlations and find a significant excess of "right-sign" pairs $\Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$. This excess is interpreted
seen 2 BUSKULIC 96T ALEP $E_{\rm cm}^{\rm ee}=88$ –94 GeV seen 3 ABREU 95V DLPH $E_{\rm cm}^{\rm ee}=88$ –94 GeV 1 ABDALLAH 05C searched for the beauty strange baryon Ξ_b in the inclusive semileptonic decay channel $\Xi_b \to \Xi^-\ell^-\overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$ the production rate is measured to be B($b \to \Xi_b$) \times B($\Xi_b \to \Xi^-\ell^- X$) = (3.0 \pm 1.0 \pm 0.3) \times 10 ⁻⁴ per lepton species, averaged over electrons and muons. 2 BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$. This excess is interpreted
seen 3 ABREU 95V DLPH $E_{\rm cm}^{ee}=88$ –94 GeV 1 ABDALLAH 05C searched for the beauty strange baryon Ξ_b in the inclusive semileptonic decay channel $\Xi_b \to \Xi^-\ell^-\overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$ the production rate is measured to be B($b \to \Xi_b$) \times B($\Xi_b \to \Xi^-\ell^- X$) = $(3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ per lepton species, averaged over electrons and muons. 2 BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$. This excess is interpreted
¹ ABDALLAH 05C searched for the beauty strange baryon Ξ_b in the inclusive semileptonic decay channel $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$ the production rate is measured to be B($b \to \Xi_b$) × B($\Xi_b \to \Xi^- \ell^- X$) = (3.0 ± 1.0 ± 0.3) × 10 ⁻⁴ per lepton species, averaged over electrons and muons. ² BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "right-sign" pairs $\Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$. This excess is interpreted
decay channel $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^\mp production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^\mp \ell^\mp$ compared to "wrong-sign" pairs $\Xi^\mp \ell^\pm$ the production rate is measured to be $B(b \to \Xi_b) \times B(\Xi_b \to \Xi^- \ell^- X) = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ per lepton species, averaged over electrons and muons. 2 BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "right-sign" pairs $\Xi^\mp \ell^\mp$ compared to "wrong-sign" pairs $\Xi^\mp \ell^\pm$. This excess is interpreted
BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "right-NODE=S044XIB;LINKAGE=BU sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$. This excess is interpreted
as evidence for Ξ_b semileptonic decay. The measured product branching ratio is B($b o$
$\Xi_b) imes {\sf B}(\Xi_b o X_c X \ell^- \overline{ u}_\ell) imes {\sf B}(X_c o \Xi^- X') = (5.4 \pm 1.1 \pm 0.8) imes 10^{-4} { m per}$ lepton species, averaged over electrons and muons, with X_c a charmed baryon.
³ ABREU 95V observe an excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$ in jets: this excess is interpreted as evidence for the beauty strange baryon Ξ_b production, with $\Xi_b \to \Xi^-\ell^-\overline{\nu}_\ell X$. They find that the probability for this signal to come from non b -baryon decays is less than 5×10^{-4} and that Λ_b decays can account for less than 10% of these events. The Ξ_b production rate is then measured to be B($b \to \Xi_b$) \times B($\Xi_b \to \Xi^-\ell^- X$) = $(5.9 \pm 2.1 \pm 1.0) \times 10^{-4}$ per lepton species, averaged
over electrons and muons.
$\Gamma(b ext{-baryon X})/\Gamma(hadrons)$ Γ_{58}/Γ_{8} NODE=S044BBR
"OUR EVALUATION" is obtained using our current values for $f(b \rightarrow b\text{-baryon})$ and R _b = $\Gamma(b\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(b\text{-baryon X})/\Gamma(\text{hadrons}) = R_b \times f(b \rightarrow b\text{-baryon})$.
<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> NODE=\$044BBR
0.0197 \pm 0.0032 OUR EVALUATION (Produced by HFLAV) \rightarrow UNCHECKED \leftarrow 0.0221 \pm 0.0015 \pm 0.0058 1 BARATE 98V ALEP $E_{\rm cm}^{ee}=88-94$ GeV
¹ BARATE 98V use the overall number of identified protons in <i>b</i> -hadron decays to measure $f(b \rightarrow b\text{-baryon}) = 0.102 \pm 0.007 \pm 0.027$. They assume BR(<i>b</i> -baryon $\rightarrow pX$) = $(58 \pm 6)\%$ and BR($B_s^0 \rightarrow pX$) = $(8.0 \pm 4.0)\%$. The value quoted here is obtained multiplying this production fraction by our value of R _b = $\Gamma(b\overline{b})/\Gamma(\text{hadrons})$.
Γ (anomalous γ + hadrons)/ Γ _{total} Γ ₅₉ / Γ NODE=S044R31
Limits on additional sources of prompt photons beyond expectations for final-state NODE=S044R31 bremsstrahlung.
VALUE CL% DOCUMENT ID TECN COMMENT NODE=S044R31
$<3.2 \times 10^{-3}$ 95 ¹ AKRAWY 90J OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$
1 AKRAWY 90J report $\Gamma(\gamma X)<8.2$ MeV at 95%CL. They assume a three-body $\gamma q \overline{q}$ NODE=S044R31;LINKAGE=A distribution and use E $(\gamma)>10$ GeV.
$\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}$ Γ_{60}/Γ NODE=S044R34
VALUE CL% DOCUMENT ID TECN COMMENT NODE=S044R34
1 ACTON 91B looked for isolated photons with $E>2\%$ of beam energy (> 0.9 GeV). NODE=S044R34;LINKAGE=A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 ACTON 91B looked for isolated photons with $E>2\%$ of beam energy (> 0.9 GeV). NODE=S044R35;LINKAGE=A

$\Gamma(au^+ au^-\gamma)/\Gamma_{ m total}$					Γ_{62}/Γ	NODE=S044R36
VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		NODE=S044R36
$< 7.3 \times 10^{-4}$		$^{ m 1}$ ACTON		$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$		
¹ ACTON 91B looked	for isolated	photons with E	>2% of bear	n energy (> 0.9 GeV	√).	NODE=S044R36;LINKAGE=A
$\Gamma(\ell^+\ell^-\gamma\gamma)/\Gamma_{ m total}$					Γ ₆₃ /Γ	NODE=S044R45
The value is the s						NODE=S044R45
<u>VALUE</u> <6.8 × 10 ^{−6}	_ <u>CL%_</u> 95	DOCUMENT ID ACTON		<i>COMMENT</i> <i>Eee</i> 88–94 Ge		NODE=S044R45
		- ACTON	93E OPAL	- Ecm = 88−94 Ge	V	
1 For $m_{\gamma\gamma}=$ 60 \pm 5	Gev.					NODE=S044R45;LINKAGE=A
$\Gamma(q\overline{q}\gamma\gamma)/\Gamma_{total}$					Γ ₆₄ /Γ	NODE=S044R46
VALUE	_ <u>CL%</u>	DOCUMENT ID	TECN			NODE=S044R46
<5.5 × 10 ⁻⁶		¹ ACTON	93E OPAL	<i>E</i> _{cm} = 88–94 Ge	V	
1 For $m_{\gamma\gamma}=$ 60 \pm 5	GeV.					NODE=S044R46;LINKAGE=A
$\Gammaig(u\overline{ u}\gamma\gammaig)/\Gamma_{total}$					Γ ₆₅ /Γ	NODE=S044R47
VALUE	<u>CL%</u>	DOCUMENT ID	TECN			NODE=\$044R47
$< 3.1 \times 10^{-6}$		$^{ m 1}$ ACTON	93E OPAL	<i>E</i> ee = 88–94 Ge	V	
1 For $m_{\gamma\gamma}=$ 60 \pm 5	GeV.					NODE=S044R47;LINKAGE=A
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{ m total}$					Γ ₆₆ /Γ	NODE=S044R27
, , , , , , , , , , , , , , , , , , , ,	nily number	conservation.	The value is	for the sum of the	charge	NODE=S044R27
states indicated. VALUE	CL%_	DOCUMENT ID	TECN	COMMENT		NODE=S044R27
<2.62 × 10 ⁻⁷	95	AAD		$E_{\rm cm}^{pp} = 13 \text{ TeV}$		
$< 7.5 \times 10^{-7}$	95	AAD		$E_{\rm cm}^{pp} = 8 \text{ TeV}$		
$< 2.5 \times 10^{-6}$	95	ABREU		H <i>E</i> _{cm} ^{ee} = 88–94 Ge	V	
$< 1.7 \times 10^{-6}$	95	AKERS		- <i>E</i> ^{ee} _{cm} = 88–94 Ge		
$< 0.6 \times 10^{-5}$	95	ADRIANI	93ı L3	$E_{\rm cm}^{ee} = 88-94 {\rm Ge}$		
$< 2.6 \times 10^{-5}$	95	DECAMP	92 ALEF	$E_{\rm cm}^{ee} = 88-94 \text{ Ge}$	V	
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-})$				Г	₆₆ /Γ ₁	NODE—S044R6
Test of lepton fan	mily number	conservation.	The value is	for the sum of the	, -	NODE=S044R6 NODE=S044R6
Test of lepton fan states indicated.		conservation. OCUMENT ID			, -	
Test of lepton fan states indicated.	<u>L%</u> <u>D</u>		<u>TECN</u>	for the sum of the	charge	NODE=S044R6
Test of lepton fan states indicated. VALUE C. <0.07 99	<u>L%</u> <u>D</u>	OCUMENT ID	<u>TECN</u>	for the sum of the COMMENT $E_{\rm cm}^{p\overline{p}} = 546,630 \; {\rm GeV}$	charge	NODE=S044R6 NODE=S044R6
Test of lepton fan states indicated. VALUE < 0.07 C < 0.07 C < 0.07 C < 0.07	<u>L%</u> <u>D</u>	OCUMENT ID LBAJAR 89	<u>TECN</u> 9	for the sum of the COMMENT $E_{\rm cm}^{p\overline{p}} = 546,630 \; {\rm GeV}$	charge Γ ₆₇ /Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 $\Gamma(e^{\pm} \tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated.	<u>L%</u> <u>D</u> 0 A nily number	OCUMENT ID LBAJAR 89 conservation.	TECN 1	for the sum of the $\frac{COMMENT}{E_{\rm cm}^{p\overline{p}}} = 546,630 \; {\rm GeV}$ for the sum of the	charge Γ ₆₇ /Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE <0.07 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE	L% <u>D</u> O A mily number	OCUMENT ID LBAJAR 89 conservation.	TECN 1	for the sum of the $\frac{COMMENT}{E_{ m cm}^{P\overline{p}}} = 546,630 \; { m GeV}$ for the sum of the $\frac{COMMENT}{E_{ m cm}^{P}} = \frac{E_{ m cm}^{P}}{E_{ $	charge Γ ₆₇ /Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$	<u>L%</u> <u>D</u> 0 A nily number <u>CL%</u> 95	OCUMENT ID LBAJAR 89 conservation. DOCUMENT ID AAD	TECN 1 O UA1 The value is TECN 21AV ATLS	for the sum of the $\frac{COMMENT}{E_{cm}^{pp}} = 546,630 \text{ GeV}$ for the sum of the $\frac{COMMENT}{E_{cm}^{pp}} = 13 \text{ TeV}$	charge Γ ₆₇ /Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 $F(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the	<u>L%</u> <u>D</u> 0 A nily number <u>CL%</u> 95	OCUMENT ID LBAJAR 89 conservation. DOCUMENT ID AAD	TECN 1 The value is TECN THE VALUE IS TECN 21AV ATLS	for the sum of the COMMENT $E_{\rm cm}^{p\overline{p}} = 546,630 \; {\rm GeV}$ for the sum of the COMMENT $E_{\rm cm}^{pp} = 13 \; {\rm TeV}$ $E_{\rm cm}^{pp} = 13 \; {\rm TeV}$ $E_{\rm cm}^{p} = 6000 \; {\rm CeV}$	charge Γ ₆₇ /Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 $F(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$	L% D O A mily number - CL% 95 e following of	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages	TECN O UA1 The value is TECN 21AV ATLS 5, fits, limits, 21AO ATLS	for the sum of the $\frac{COMMENT}{E_{\rm cm}^{P\overline{p}}} = 546,630 \; {\rm GeV}$ for the sum of the $\frac{COMMENT}{E_{\rm cm}^{Pp}} = 13 \; {\rm TeV}$, etc. \bullet \bullet \bullet	charge Γ ₆₇ /Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 $F(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the	nily number CL% 95 e following of	OCUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD	TECN 1 The value is TECN TECN 21AV ATLS 5, fits, limits, 21AO ATLS	for the sum of the COMMENT $E_{\rm cm}^{p\overline{p}} = 546,630 \; {\rm GeV}$ for the sum of the COMMENT $E_{\rm cm}^{pp} = 13 \; {\rm TeV}$	Charge Γ ₆₇ /Γ charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fam states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$	nily number CL% 95 e following 6 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD	TECN 1 The value is TECN TECN 21AV ATLS 5, fits, limits, 21AO ATLS 18CN ATLS	for the sum of the $\frac{COMMENT}{E_{\rm cm}^{P\overline{p}}} = 546,630 \; {\rm GeV}$ for the sum of the $\frac{COMMENT}{E_{\rm cm}^{Pp}} = 13 \; {\rm TeV}$, etc. \bullet \bullet \bullet	Charge Γ67/Γ charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fam states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$ $< 1.3 \times 10^{-5}$	1.6 D O A mily number - CL% 95 e following 6 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU	TECN 1 THE VALUE IS TECN TECN 21AV ATLS 5, fits, limits, 21AO ATLS 18CN ATLS 97C DLPH 95W OPAL 931 L3	for the sum of the COMMENT $E_{\rm cm}^{P\overline{p}} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E_{\rm cm}^{Pp} = 13 \text{ TeV}$ $E_{\rm cm}^{pp} = 88-94 \text{ Ge}$ $E_{\rm cm}^{ee} = 88-94 \text{ Ge}$ $E_{\rm cm}^{ee} = 88-94 \text{ Ge}$ $E_{\rm cm}^{ee} = 88-94 \text{ Ge}$	Charge Γ67/Γ charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fam states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$	1.6 D O A mily number - CL% 95 e following of 95 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS	TECN 1 THE VALUE IS TECN TECN 21AV ATLS 5, fits, limits, 21AO ATLS 18CN ATLS 97C DLPH 95W OPAL 931 L3	for the sum of the COMMENT $E^{p\overline{p}}_{cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{cm} = 13 \text{ TeV}$ $E^{pp}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$	Charge Γ67/Γ charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fam states indicated. VALUE < 0.07 $P(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$	1.5% D O A mily number 2.6% 95 e following of 95 95 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI	TECN 1 THE VALUE IS TECN TECN 21AV ATLS 5, fits, limits, 21AO ATLS 18CN ATLS 97C DLPH 95W OPAL 931 L3	for the sum of the COMMENT $E^{p\overline{p}}_{cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{cm} = 13 \text{ TeV}$ $E^{pp}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$	Charge Γ67/Γ charge	NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 $F(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $F(\mu^{\pm}\tau^{\mp})/\Gamma_{total}$	1.% D O A mily number 2.2.% 95 e following of 1.0 95 95 95 95 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP	TECN D UA1 The value is TECN 21AV ATLS s, fits, limits, 21AO ATLS 18CN ATLS 97C DLPH 95W OPAL 931 L3 92 ALEF	for the sum of the COMMENT $E^{p\overline{p}}_{cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{cm} = 13 \text{ TeV}$ $E^{pp}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$	Charge F67/Γ Charge V V V V F68/Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 90 $\Gamma\left(e^{\pm}\tau^{\mp}\right)/\Gamma_{\text{total}}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $\Gamma\left(\mu^{\pm}\tau^{\mp}\right)/\Gamma_{\text{total}}$ Test of lepton fan states indicated.	1.5% D O A mily number 2.6% 95 95 95 95 95 95 95 95 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP	TECN THE VALUE IS THE VALUE IS TECN TECN TECN 21AV ATLS 5, fits, limits, 21AO ATLS 18CN ATLS 97C DLPH 95W OPAL 931 L3 92 ALEF The value is	for the sum of the COMMENT $E^{\overline{PP}}_{cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{PP}_{cm} = 13 \text{ TeV}$ $E^{PP}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$ for the sum of the	Charge F67/Γ Charge V V V V F68/Γ	NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R25
Test of lepton fan states indicated. VALUE < 0.07 $\Gamma(e^{\pm} \tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $\Gamma(\mu^{\pm} \tau^{\mp})/\Gamma_{total}$ Test of lepton fan fan states indicated.	1.% D O A mily number 2.2.% 95 e following of 1.0 95 95 95 95 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP	TECN THE VALUE IS THE VALUE IS TECN TECN TECN TECN TECN TECN TECN TECN	for the sum of the COMMENT $E^{\overline{PP}}_{cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{PP}_{cm} = 13 \text{ TeV}$ $E^{PP}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$ for the sum of the	Charge F67/Γ Charge V V V V F68/Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26
Test of lepton fan states indicated. VALUE $<$ 0.07 $\int (e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton fan states indicated. VALUE $<$ 5.0 \times 10 ⁻⁶ • • • We do not use the $<$ 8.1 \times 10 ⁻⁶ $<$ 5.8 \times 10 ⁻⁵ $<$ 2.2 \times 10 ⁻⁵ $<$ 9.8 \times 10 ⁻⁶ $<$ 1.3 \times 10 ⁻⁵ $<$ 1.2 \times 10 ⁻⁴ $\int (\mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton fan states indicated. VALUE	1.% D O A mily number - CL% 95 e following of the policy of the pol	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP Conservation. DOCUMENT ID AAD	TECN THE VALUE IS THE VALUE IS THE VALUE THE V	for the sum of the COMMENT $E^{pp}_{Cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{Cm} = 13 \text{ TeV}$ $E^{pp}_{Cm} = 88-94 \text{ Ge}$	Charge F67/Γ Charge V V V V F68/Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26
Test of lepton fam states indicated. VALUE $<$ 0.07 \mathbf{r}	1.% D O A mily number - CL% 95 e following of the policy of the pol	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP Conservation. DOCUMENT ID AAD	TECN THE Value is TECN THE VALUE IS TECN TECN TECN TECN TECN TECN TECN TECN	for the sum of the COMMENT $E^{pp}_{Cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{Cm} = 13 \text{ TeV}$ $E^{pp}_{Cm} = 88-94 \text{ Ge}$	Charge F67/Γ Charge V V V V F68/Γ	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26
Test of lepton fam states indicated. VALUE < 0.07 $F(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $F(\mu^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 6.5 \times 10^{-6}$ • • • We do not use the $< 9.5 \times 10^{-6}$ $< 1.3 \times 10^{-5}$	1.5% D O A mily number - CL% 95 95 95 95 95 95 95 95 95 9	CONSERVATIO LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP Conservation. DOCUMENT ID AAD AAD Addata for averages	TECN TECN TECN TECN THE Value is TECN 21AV ATLS S, fits, limits, 21AO ATLS 97C DLPH 95W OPAL 93I L3 92 ALEF The value is TECN 21AV ATLS 5, fits, limits, 21AO ATLS	for the sum of the COMMENT $E^{p\overline{p}}_{cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{cm} = 13 \text{ TeV}$ $E^{pp}_{cm} = 88-94 \text{ Ge}$ $E^{ee}_{cm} = 88-94 \text{ Ge}$	Charge F67/Γ charge V V V V Charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26
Test of lepton fam states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-5}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 6.5 \times 10^{-6}$ • • • We do not use the $< 9.5 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-5}$	1.5% D O A mily number 2.6% 95 95 95 95 95 95 95 95 95 95 95 95 95	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP Conservation. DOCUMENT ID AAD AAD AAD	TECN TECN THE VALUE IS THE VALUE IS THE VALUE	for the sum of the $\frac{COMMENT}{E^{pp}_{cm}} = 546,630 \text{ GeV}$ for the sum of the $\frac{COMMENT}{E^{pp}_{cm}} = 13 \text{ TeV}$ $E^{pp}_{cm} = 88-94 \text{ Ge}$ for the sum of the $\frac{COMMENT}{E^{pp}_{cm}} = 13 \text{ TeV}$ $E^{pp}_{cm} = 8, 13 \text{ TeV}$	Charge F67/F Charge V V V V Charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26
Test of lepton fan states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm} \tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-5}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $\Gamma(\mu^{\pm} \tau^{\mp})/\Gamma_{total}$ Test of lepton fan states indicated. VALUE $< 6.5 \times 10^{-6}$ • • • We do not use the $< 9.5 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-5}$ $< 1.7 \times 10^{-5}$	1.5% D O A mily number 95 95 95 95 95 95 95 95 95 9	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD AKERS ADRIANI DECAMP Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS AD AAD data for averages AAD AABOUD ABREU AKERS	TECN TECN TECN THE Value is TECN TECN TECN TECN TECN TECN TECN TECN	for the sum of the COMMENT $E^{pp}_{Cm} = 546,630 \text{ GeV}$ for the sum of the COMMENT $E^{pp}_{Cm} = 13 \text{ TeV}$ $E^{pp}_{Cm} = 88-94 \text{ Ge}$ $E^{pp}_{Cm} = 88-94 \text{ Ge}$ $E^{pp}_{Cm} = 88-94 \text{ Ge}$ for the sum of the $E^{pp}_{Cm} = 13 \text{ TeV}$ $E^{pp}_{Cm} = 88-94 \text{ Ge}$	Charge F67/F Charge V V V V Charge	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26
Test of lepton fam states indicated. VALUE < 0.07 90 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 5.0 \times 10^{-6}$ • • • We do not use the $< 8.1 \times 10^{-6}$ $< 5.8 \times 10^{-5}$ $< 2.2 \times 10^{-5}$ $< 9.8 \times 10^{-5}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-4}$ $\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{total}$ Test of lepton fam states indicated. VALUE $< 6.5 \times 10^{-6}$ • • • We do not use the $< 9.5 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-6}$ $< 1.3 \times 10^{-5}$ $< 1.2 \times 10^{-5}$	1.5% D O A mily number - CL% 95 e following of the policy of the p	COUMENT ID LBAJAR 89 Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP Conservation. DOCUMENT ID AAD data for averages AAD AABOUD ABREU AKERS ADRIANI DECAMP	TECN TECN THE Value is TECN TECN TECN TECN TECN TECN TECN TECN	for the sum of the $\frac{COMMENT}{E^{pp}_{cm}} = 546,630 \text{ GeV}$ for the sum of the $\frac{COMMENT}{E^{pp}_{cm}} = 13 \text{ TeV}$ $E^{pp}_{cm} = 88-94 \text{ Ge}$ for the sum of the $\frac{COMMENT}{E^{pp}_{cm}} = 13 \text{ TeV}$ $E^{pp}_{cm} = 8, 13 \text{ TeV}$	Charge F67/F Charge V V V V V V V V V V V V V	NODE=S044R6 NODE=S044R6 NODE=S044R25 NODE=S044R25 NODE=S044R25 NODE=S044R26 NODE=S044R26

$\Gamma(pe)/\Gamma_{\text{total}}$				Γ ₆₉ /Γ	NODE=S044PE
Test of baryon number and implied.	lepton number con	serva	tions. Cl	narge conjugate states are	NODE=S044PE
VALUE CL%_	DOCUMENT ID		TECN	COMMENT	NODE=S044PE
<1.8 × 10 ⁼⁶ 95	¹ ABBIENDI	991	OPAL	Eee = 88–94 GeV	
¹ ABBIENDI 991 give the 95% we have transformed it into a		ial w	idth Γ(<i>Z</i>	$^{60} ightarrow \ pe) < 4.6 \ { m KeV}$ and	NODE=S044PE;LINKAGE=A
$\Gamma(\rho\mu)/\Gamma_{total}$				Γ ₇₀ /Γ	NODE=S044PMU
Test of baryon number and implied.	lepton number con	serva	tions. Cl	narge conjugate states are	NODE=S044PMU
VALUE CL%	DOCUMENT ID		TECN	COMMENT	NODE=S044PMU
<1.8 × 10⁻⁶ 95	¹ ABBIENDI	991	OPAL	E ^{ee} _{cm} = 88–94 GeV	
¹ ABBIENDI 991 give the 95% we have transformed it into a	CL limit on the part branching ratio.	ial w	idth Γ(<i>Z</i>	$^0 ightarrow ho \mu) <$ 4.4 KeV and	NODE=S044PMU;LINKAGE=A
AVERAGE PARTICLE		S IN	HADR	ONIC Z DECAY	NODE=\$044260
Summed over particle a	nd antiparticle, whe	п арр	propriate		NODE=S044260
$\langle N_{\gamma} angle$					NODE=S044GAM
VALUE	DOCUMENT ID		TECN		NODE=\$044GAM
$20.97 \pm 0.02 \pm 1.15$	ACKERSTAFF	98A	OPAL	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$\langle N_{\pi^{\pm}} angle$					NODE=S044PIC
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044PIC
17.03 ±0.16 OUR AVERAGE				22	
17.007 ± 0.209	ABE			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$17.26 \pm 0.10 \pm 0.88$	ABREU			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
17.04 ± 0.31	BARATE			$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
17.05 ± 0.43	AKERS	94P	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\pi^0} \rangle$					NODE=S044PIZ
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044PIZ
9.76±0.26 OUR AVERAGE					
$9.55 \pm 0.06 \pm 0.75$				$E_{cm}^{ee} = 91.2 \; GeV$	
$9.63 \pm 0.13 \pm 0.63$	BARATE	97J	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$	
$9.90\pm0.02\pm0.33$	ACCIARRI	96	L3	$E_{cm}^{ee} = 91.2 \; GeV$	
$9.2 \pm 0.2 \pm 1.0$	ADAM	96	DLPH	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$	
$\langle N_{\eta} \rangle$					NODE COMMETA
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044ETA NODE=S044ETA
1.01±0.08 OUR AVERAGE Err					
$1.20\pm0.04\pm0.11$	HEISTER	02 C	ALEP	$E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$	
$0.97 \pm 0.03 \pm 0.11$	ACKERSTAFF	98A	OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$	

($N_{\rho^{\pm}}$	\rangle
•	P	•

NODE=S044RHC NODE=S044RHC DOCUMENT ID TECN COMMENT 2.57±0.15 OUR AVERAGE

TECN

COMMENT

¹ BEDDALL ALEPH archive, $E_{cm}^{ee} = 91.2 \text{ GeV}$ $2.59\!\pm\!0.03\!\pm\!0.16$ 09 $2.40\pm0.06\pm0.43$ ACKERSTAFF 98A OPAL $E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

NODE=S044RHC;LINKAGE=BE

 $\langle {\it N}_{\rho^0} \rangle$

VALUE	DOCUMENT_ID		TECN	COMMENT
1.24±0.10 OUR AVERAGE	Error includes scale fa			
1.19 ± 0.10	ABREU	99J	DLPH	$E_{\rm cm}^{\rm ee} = 91.2~{\rm GeV}$
$1.45\!\pm\!0.06\!\pm\!0.20$	BUSKULIC	96H	ALEP	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

 $\langle N_{\omega} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
1.02±0.06 OUR AVERAGE				
$1.00\pm0.03\pm0.06$	HEISTER	02 C	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
$1.04\!\pm\!0.04\!\pm\!0.14$	ACKERSTAFF	98A	OPAL	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$1.17 \pm 0.09 \pm 0.15$	ACCIARRI	97D	L3	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

 $\langle N_{\eta'} \rangle$

VALUE	DOCUMENT ID	ILCIV	COMMENT
0.17 ± 0.05 OUR AVERAGE	Error includes scale factor	or of 2.4.	
$0.14\ \pm0.01\ \pm0.02$	ACKERSTAFF 98A	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$0.25\ \pm0.04$	¹ ACCIARRI 97D	L3	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
\bullet \bullet We do not use the follow	ving data for averages, fits	, limits, e	etc. • • •
$0.068\!\pm\!0.018\!\pm\!0.016$	² BUSKULIC 92D	ALEP	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$

DOCUMENT ID

 $\langle N_{f_0(980)} \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT
0.147±0.011 OUR AVERAGE			
0.164 ± 0.021	ABREU	99」 DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$0.141 \pm 0.007 \pm 0.011$	ACKERSTAFF	98Q OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

NODE=S044RHZ NODE=S044RHZ

NODE=S044OME NODE=S044OME

NODE=S044ETP NODE=S044ETP

NODE=S044ETP;LINKAGE=B

NODE=S044ETP;LINKAGE=A

NODE=S044FZ NODE=S044FZ

 $^{^{}m 1}$ BEDDALL 09 analyse 3.2 million hadronic Z decays as archived by ALEPH collaboration and report a value of $2.59 \pm 0.03 \pm 0.15 \pm 0.04$. The first error is statistical, the second systematic, and the third arises from extrapolation to full phase space. We combine the systematic errors in quadrature.

 $^{^1}$ ACCIARRI 97D obtain this value averaging over the two decay channels $\eta'
ightarrow \ \pi^+\pi^-\eta$ and $\eta' \rightarrow \rho^0 \gamma$.

 $^{^2}$ BUSKULIC 92D obtain this value for x>0.1.

 $\left\langle \mathit{N}_{\mathit{a}_{0}(980)^{\pm}}\right\rangle$ NODE=S044AZC NODE=S044AZC DOCUMENT ID TECN COMMENT $0.27 \pm 0.04 \pm 0.10$ ACKERSTAFF 98A OPAL $E_{
m cm}^{\it ee}=$ 91.2 GeV $\langle N_{\phi} \rangle$ NODE=S044PHI NODE=S044PHI VALUE DOCUMENT ID TECN COMMENT **0.098±0.006 OUR AVERAGE** Error includes scale factor of 2.0. See the ideogram below. 0.105 ± 0.008 ABE 99E SLD $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $0.091\!\pm\!0.002\!\pm\!0.003$ ACKERSTAFF 98Q OPAL $E_{
m cm}^{
m ee}=91.2~{
m GeV}$ 960 DLPH $E_{\mathsf{cm}}^{ee} = 91.2 \; \mathsf{GeV}$ $0.104 \pm 0.003 \pm 0.007$ ABREU $0.122 \!\pm\! 0.004 \!\pm\! 0.008$ BUSKULIC 96н ALEP $E_{
m cm}^{\it ee}=$ 91.2 GeV

WEIGHTED AVERAGE 0.098±0.006 (Error scaled by 2.0) 99E 8.0 ACKERSTAFF 98Q OPAL 3.5 96U DLPH ABREU 0.7 **BUSKULIC** 96H ALEP 7.3 12.4 (Confidence Level = 0.0063) 0.08 0.1 0.12 0.14 0.16 0.18 $\langle N_{\phi} \rangle$

$\langle N_{f_2(1270)} angle$				NODE=S044F2
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=5044F2
0.169 ± 0.025 OUR AVERAGE	Error includes scale fa	ctor of 1.4.		
0.214 ± 0.038	ABREU 9	9J DLPH	$E_{cm}^{ee} = 91.2 \; GeV$	
$0.155 \pm 0.011 \pm 0.018$	ACKERSTAFF 9	8Q OPAL	$E_{cm}^{ee} = 91.2 \; GeV$	
$\langle N_{f_1(1285)} \rangle$				NODE=S044F85
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=\$044F85
0.165 ± 0.051	¹ ABDALLAH 0	3H DLPH	$E_{\rm cm}^{\it ee}=$ 91.2 GeV	
$^{ m 1}$ ABDALLAH 03H assume a	$K\overline{K}\pi$ branching ratio of	of (9.0 \pm 0.	4)%.	NODE=S044F85;LINKAGE=A
$\langle N_{f_1(1420)} \rangle$				NODE=S044F20
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044F20
0.056 ± 0.012	¹ ABDALLAH 0	3H DLPH	$E_{\rm cm}^{\it ee}=$ 91.2 GeV	
$^{ m 1}$ ABDALLAH 03H assume a	$K\overline{K}\pi$ branching ratio of	of 100%.		NODE=S044F20;LINKAGE=A
$\langle N_{f_2'(1525)} \rangle$				NODE COMEON
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044F2P NODE=S044F2P
0.012 ± 0.006	ABREU 9	9」 DLPH	$E_{\rm cm}^{\rm ee} = 91.2~{\rm GeV}$	
$\langle \mathit{N_{K^{\pm}}} angle$				NODE=S044KC
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044KC
2.24 ±0.04 OUR AVERAGE			••	
2.203 ± 0.071	ABE 0	4c SLD	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	

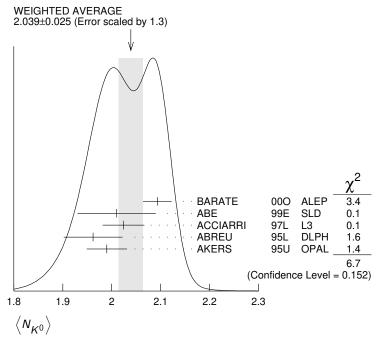
98L DLPH $E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$

98V ALEP $E_{\mathrm{cm}}^{ee}=91.2~\mathrm{GeV}$ 94P OPAL $E_{\mathrm{cm}}^{ee}=91.2~\mathrm{GeV}$

ABREU

BARATE

AKERS


 $2.21\ \pm0.05\ \pm0.05$

 $2.26\ \pm0.12$

 $2.42\ \pm0.13$

 $\langle N_{K^0} \rangle$ NODE=S044KZ NODE=S044KZ NODE=S044KZ

VALUE	DOCUMENT ID	TECN	COMMENT
2.039 ± 0.025 OUR AVERAGE	Error includes scale fact	tor of 1.3.	See the ideogram below.
$2.093 \pm 0.004 \pm 0.029$	BARATE 00	o ALEP	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
2.01 ± 0.08	ABE 99	e SLD	$E_{cm}^{ee} = 91.2 \; GeV$
$2.024 \pm 0.006 \pm 0.042$	ACCIARRI 97	L L 3	$E_{cm}^{ee} = 91.2 \; GeV$
$1.962\!\pm\!0.022\!\pm\!0.056$	ABREU 95	L DLPH	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$1.99 \pm 0.01 \pm 0.04$	AKERS 95	U OPAL	$E_{cm}^{ee} = 91.2 \text{ GeV}$

(N _{K*(892)±}	>
١	'*K*(892)±	/

VALUE	DOCUMENT ID		TECN	COMMENT
0.72 ±0.05 OUR AVERAGE				
$0.712 \pm 0.031 \pm 0.059$	ABREU	95L	DLPH	$E_{\rm cm}^{\rm ee} = 91.2~{\rm GeV}$
$0.72\ \pm0.02\ \pm0.08$	ACTON	93	OPAL	$E_{\rm cm}^{\rm ee} = 91.2~{\rm GeV}$

$\langle N_{K^*(892)^0} \rangle$

(652)				
VALUE	DOCUMENT ID		TECN	COMMENT
0.739±0.022 OUR AVERAGE				
0.707 ± 0.041	ABE	99E	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$
$0.74\ \pm0.02\ \pm0.02$	ACKERSTAFF	97 S	OPAL	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$0.77 \pm 0.02 \pm 0.07$	ABREU	96 U	DLPH	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.83 \pm 0.01 \pm 0.09$	BUSKULIC	96H	ALEP	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.97\ \pm0.18\ \pm0.31$	ABREU	93	DLPH	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$

$\langle N_{K_2^*(1430)} \rangle$

. 112(=190).								
VALUE	DOCUMENT ID		TECN	COMMENT				
0.073 ± 0.023	ABREU	99J	DLPH	$E_{ m cm}^{ee} = 91.2 \; { m GeV}$				
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
$0.19\ \pm0.04\ \pm0.06$	¹ AKERS	95X	OPAL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$				

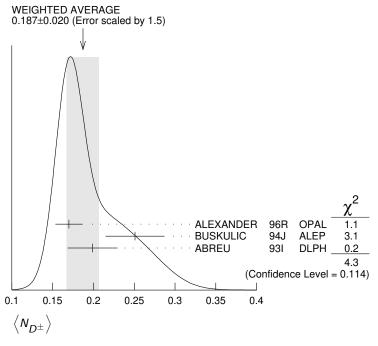
 $^{^{1}\,\}mathrm{AKERS}$ 95X obtain this value for $x\!<$ 0.3.

$\langle N_{D^{\pm}} \rangle$

VALUE		DOCUMENT ID		TECN	COMMENT	
	0.187±0.020 OUR AVERAGE	Error includes scale	factor	of 1.5.	See the ideogram below.	
	$0.170 \pm 0.009 \pm 0.014$	ALEXANDER	96R	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$	
	$0.251 \pm 0.026 \pm 0.025$	BUSKULIC	94J	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$	
	$0.199 \pm 0.019 \pm 0.024$	¹ ABREU	931	DLPH	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	

NODE=S044KSC NODE=S044KSC

NODE=S044KSZ NODE=S044KSZ


NODE=S044KS2 NODE=S044KS2

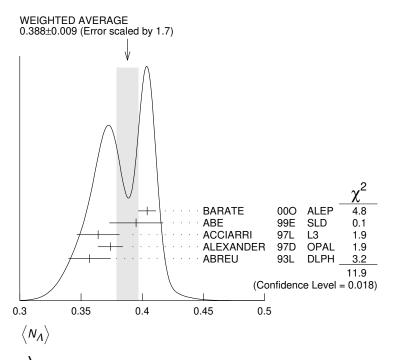
NODE=S044KS2;LINKAGE=A

NODE=S044DC NODE=S044DC ¹See ABREU 95 (erratum).

NODE=S044DC;LINKAGE=A

NODE=S044BS;LINKAGE=A

$\langle N_{D^0} \rangle$ VALUE 0.462 \pm 0.026 OUR AVERAGE	DOCUMENT ID	<u>TECN</u>	COMMENT	NODE=S044DZ NODE=S044DZ
$0.465 \pm 0.017 \pm 0.027$			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$0.518 \pm 0.052 \pm 0.035$			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$0.403 \pm 0.038 \pm 0.044$	¹ ABREU 931	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$	
1 See ABREU 95 (erratum).				NODE=S044DZ;LINKAGE=A
$\langle N_{D^{\pm}} \rangle$				NODE COURCE
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044DSP NODE=S044DSP
$0.131 \pm 0.010 \pm 0.018$	ALEXANDER 96R			
⟨ <i>N_{D*(2010)±}</i> ⟩ VALUE 0.183 ±0.008 OUR AVERAGE	DOCUMENT ID	<u>TECN</u>	COMMENT	NODE=S044DSC NODE=S044DSC
$0.1854 \pm 0.0041 \pm 0.0091$	¹ ACKERSTAFF 98E	ΟΡΔΙ	Fee — 91.2 GeV	
$0.187 \pm 0.015 \pm 0.013$			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$	
$0.171 \pm 0.013 \pm 0.013$ $0.171 \pm 0.012 \pm 0.016$			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$	
1 ACKERSTAFF 98E systemati branching ratios B($D^{*+} \rightarrow D$ 0.0012. 2 See ABREU 95 (erratum).	c error includes an und	certainty	of ± 0.0069 due to the	NODE=S044DSC;LINKAGE=B NODE=S044DSC;LINKAGE=A
/A/ \				•
$\langle N_{D_{s1}(2536)^{+}} \rangle$				NODE=S044DS1
VALUE (units 10 ⁻³)	DOCUMENT ID	TECN	COMMENT	NODE=S044DS1
• • • We do not use the following	g data for averages, fits,	limits, e	etc. • • •	
$2.9^{igoplus 0.7}_{-0.6} \pm 0.2$	¹ ACKERSTAFF 97W	OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$	
1 ACKERSTAFF 97W obtain this width is saturated by the D^{*} I		vith the	assumption that its decay	NODE=S044DS1;LINKAGE=A
$\langle \mathit{N}_{\mathit{B}^*} angle$				NODE=S044BS
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044BS


95R DLPH $E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$

 $^{\mathrm{1}}$ ABREU

 1 ABREU 95R quote this value for a flavor-averaged excited state.

 $0.28 \pm 0.01 \pm 0.03$

$\langle N_{J/\psi(1S)} angle$					NODE=S044JPS
VALUE	DOCUMENT ID		<u>TECN</u>		NODE=S044JPS
$0.0056 \pm 0.0003 \pm 0.0004$	¹ ALEXANDER	96 B	OPAL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
¹ ALEXANDER 96B identify	$J/\psi(1S)$ from the dec	cays i	nto lept	on pairs.	NODE=S044JPS;LINKAGE=B
$\langle \textit{N}_{\psi(2S)} angle$					NODE=S044P2S
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	NODE=\$044P2\$
$0.0023 \pm 0.0004 \pm 0.0003$	ALEXANDER	96 B	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_p \rangle$					NODE=S044PRO
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044PRO
1.046 ± 0.026 OUR AVERAGE					
1.054 ± 0.035	ABE	04C	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
$1.08 \pm 0.04 \pm 0.03$	ABREU	98L	DLPH	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$	
1.00 ± 0.07	BARATE	98V	ALEP	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$	
$0.92\ \pm0.11$	AKERS	94 P	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\Delta(1232)^{++}} \rangle$					NODE COMPTO
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044D12 NODE=S044D12
0.087±0.033 OUR AVERAGE	Error includes scale	facto	r of 2.4.		
$0.079\!\pm\!0.009\!\pm\!0.011$	ABREU	95W	DLPH	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$0.22 \pm 0.04 \pm 0.04$	ALEXANDER	95 D	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_A \rangle$					NODE=S044LAM
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044LAM
0.388±0.009 OUR AVERAGE	Error includes scale	facto	r of 1.7.	See the ideogram below.	
$0.404 \pm 0.002 \pm 0.007$	BARATE	000	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$	
$0.395\!\pm\!0.022$	ABE	99E	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
$0.364 \pm 0.004 \pm 0.017$	ACCIARRI	97L	L3	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$	
$0.374 \pm 0.002 \pm 0.010$	ALEXANDER	97 D	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$	
$0.357\!\pm\!0.003\!\pm\!0.017$	ABREU	93L	DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$	

 $0.0213 \pm 0.0021 \pm 0.0019$

(Ν_{Λ(1520)}) VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044L15 NODE=S044L15
0.0224±0.0027 OUR AVERAGE	DOCUMENT ID		TLCIV	COMMENT	NODE=3044E13
$0.029 \pm 0.005 \pm 0.005$	ABREU	00 P	DLPH	$E_{ m cm}^{\it ee}=$ 91.2 GeV	

ALEXANDER 97D OPAL $E_{
m cm}^{\it ee}=$ 91.2 GeV

$\langle N_{\Sigma^+} \rangle$ VALUE 0.107 \pm 0.010 OUR AVERAGE	DOCUMENT ID	TECN_	COMMENT	NODE=S044SI+ NODE=S044SI+
$0.114 \pm 0.011 \pm 0.009$		J L3	CIII	
$0.099 \pm 0.008 \pm 0.013$	ALEXANDER 97	∃ OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	
$\langle N_{\Sigma^{-}} \rangle$ VALUE 0.082±0.007 OUR AVERAGE	DOCUMENT ID	TECN_	COMMENT	NODE=S044SI- NODE=S044SI-
$0.081 \pm 0.002 \pm 0.010$	ABREU 00i	DLPH	Eee = 91.2 GeV	
$0.083\!\pm\!0.006\!\pm\!0.009$	ALEXANDER 97	E OPAL	$E_{\rm cm}^{\it ee}$ = 91.2 GeV	
$\langle N_{\Sigma^+ + \Sigma^-} \rangle$ VALUE 0.181 ± 0.018 OUR AVERAGE	DOCUMENT ID	<u>TECN</u>	COMMENT	NODE=S044SIC NODE=S044SIC
0.182±0.010±0.016	¹ ALEXANDER 97	F OPAI	$F_{\rm em}^{\rm ee} = 91.2 {\rm GeV}$	
$0.170 \pm 0.010 \pm 0.010$ $0.170 \pm 0.014 \pm 0.061$			$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
¹ We have combined the values the statistical and systematic isospin symmetry is assumed t	s of $\langle N_{\sum^+} \rangle$ and $\langle N_{\sum^+} \rangle$ errors of the two final	$_{-} angle$ from $_{a}$	ALEXANDER 97E adding eparately in quadrature. If	NODE=S044SIC;LINKAGE=A
$\langle N_{\Sigma^0} \rangle$				NODE=S044SIZ
<u>VALUE</u> 0.076±0.010 OUR AVERAGE	DOCUMENT ID	<u>TECN</u> _	COMMENT	NODE=S044SIZ
$0.095 \pm 0.015 \pm 0.013$	ACCIARRI 00.	J L3	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	
$0.071 \pm 0.012 \pm 0.013$	ALEXANDER 97	E OPAL		
$0.070 \pm 0.010 \pm 0.010$			E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{(\Sigma^+ + \Sigma^- + \Sigma^0)/3} \rangle$ VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044SIG NODE=S044SIG
0.084±0.005±0.008	ALEXANDER 97			NODE_307431G
0.007110.003110.000	ALEXANDER 971	OIAL	2cm = 91.2 GeV	
$\langle N_{\Sigma(1385)^{\pm}} \rangle$	DOCUMENT ID	TECN	COMMENT	NODE=S04413+ NODE=S04413+
$0.0239 \pm 0.0009 \pm 0.0012$	ALEXANDER 97	OPAL	$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$	
$\langle \textit{N}_{\Sigma(1385)^-} angle$				NODE COMMO
\/A	DOCUMENT ID	TECN	COMMENT	NODE=\$04413-
VALUE			COMMENT Eee 01 2 CoV	NODE=S04413- NODE=S04413-
VALUE 0.0240±0.0010±0.0014	DOCUMENT ID ALEXANDER 971			
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^{+}+\Sigma(1385)^{-}} \rangle$	ALEXANDER 971	D OPAL	Eee = 91.2 GeV	
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$ $\frac{VALUE}{0.046\pm0.004}$ OUR AVERAGE	ALEXANDER 971 DOCUMENT ID Error includes scale for	OPAL TECN actor of 1	Eee = 91.2 GeV <u>COMMENT</u> .6.	NODE=\$04413- NODE=\$044\$13
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$ VALUE 0.046 ± 0.004 OUR AVERAGE $0.0479\pm0.0013\pm0.0026$	ALEXANDER 971 DOCUMENT ID Error includes scale for ALEXANDER 971	OPAL TECN actor of 1 DOPAL	$E_{\text{cm}}^{ee} = 91.2 \text{ GeV}$ $\frac{COMMENT}{6}.6.$ $E_{\text{cm}}^{ee} = 91.2 \text{ GeV}$	NODE=\$04413- NODE=\$044\$13
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$ $\frac{VALUE}{0.046\pm0.004}$ OUR AVERAGE	ALEXANDER 971 DOCUMENT ID Error includes scale for ALEXANDER 971	OPAL TECN actor of 1 DOPAL	Eee = 91.2 GeV <u>COMMENT</u> .6.	NODE=\$04413- NODE=\$044\$13
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$ VALUE 0.046 ± 0.004 OUR AVERAGE $0.0479\pm0.0013\pm0.0026$	ALEXANDER 971 DOCUMENT ID Error includes scale for ALEXANDER 971	TECN actor of 1 D OPAL O DLPH	E_{cm}^{ee} = 91.2 GeV $\frac{COMMENT}{.6.}$.6. E_{cm}^{ee} = 91.2 GeV E_{cm}^{ee} = 91.2 GeV	NODE=\$04413- NODE=\$044\$13
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$ $VALUE$ 0.046 ± 0.004 OUR AVERAGE $0.0479\pm0.0013\pm0.0026$ $0.0382\pm0.0028\pm0.0045$ $\langle N_{\Xi^-} \rangle$ $VALUE$	DOCUMENT ID Error includes scale fa ALEXANDER 97 ABREU 956 DOCUMENT ID	TECN OPAL TECN OPAL ODAL TECN	$E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $\frac{{\it COMMENT}}{6.6.}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $\frac{{\it COMMENT}}{{\it COMMENT}}$	NODE=\$04413- NODE=\$044513 NODE=\$044\$13
$0.0240\pm0.0010\pm0.0014$ $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$ $VALUE$ 0.046 ± 0.004 OUR AVERAGE $0.0479\pm0.0013\pm0.0026$ $0.0382\pm0.0028\pm0.0045$ $\langle N_{\Xi^-} \rangle$ $VALUE$ 0.0258 ± 0.0009 OUR AVERAGE	DOCUMENT ID Error includes scale for ALEXANDER 970 ABREU 950 DOCUMENT ID ABDALLAH 060	TECN actor of 1 D OPAL D DLPH TECN E DLPH	E_{cm}^{ee} = 91.2 GeV $\frac{COMMENT}{.6.}$.6. E_{cm}^{ee} = 91.2 GeV E_{cm}^{ee} = 91.2 GeV	NODE=\$04413- NODE=\$044513 NODE=\$044\$13
0.0240 \pm 0.0010 \pm 0.0014 $\langle N_{\Sigma(1385)^{+}+\Sigma(1385)^{-}} \rangle$ VALUE 0.046 \pm 0.004 OUR AVERAGE 0.0479 \pm 0.0013 \pm 0.0026 0.0382 \pm 0.0028 \pm 0.0045 $\langle N_{\Xi^{-}} \rangle$ VALUE 0.0258 \pm 0.0009 OUR AVERAGE 0.0259 \pm 0.0009 \pm 0.0025 0.0259 \pm 0.0004 \pm 0.0009 $\langle N_{\Xi(1530)^{0}} \rangle$ VALUE	DOCUMENT ID Error includes scale for ALEXANDER 976 ABREU 956 DOCUMENT ID ABDALLAH 066 ALEXANDER 976 DOCUMENT ID	TECN actor of 1 D OPAL D DLPH TECN E DLPH D OPAL	$E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $\frac{COMMENT}{1.6.}$.6. $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $\frac{COMMENT}{1.6.}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$	NODE=\$04413- NODE=\$044513 NODE=\$044\$13
0.0240±0.0010±0.0014 ⟨N _∑ (1385)++∑(1385)-⟩ NALUE 0.046 ±0.004 OUR AVERAGE 0.0479±0.0013±0.0026 0.0382±0.0028±0.0045 ⟨N _≦ -⟩ NALUE 0.0258±0.0009 OUR AVERAGE 0.0247±0.0009±0.0025 0.0259±0.0004±0.0009 ⟨N _≦ (1530)0⟩ NALUE 0.0059±0.0011 OUR AVERAGE	DOCUMENT ID Error includes scale for ALEXANDER 976 ABREU 956 DOCUMENT ID ABDALLAH 066 ALEXANDER 976 DOCUMENT ID Error includes scale for BOCUMENT ID	TECN actor of 1 D OPAL D DLPH TECN E DLPH D OPAL TECN actor of 2	$E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $\frac{COMMENT}{1.6.}$.6. $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $\frac{COMMENT}{1.6.}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$ $E_{\rm cm}^{ee}=91.2~{\rm GeV}$	NODE=\$04413- NODE=\$044\$13 NODE=\$044\$13 NODE=\$044\$13
0.0240±0.0010±0.0014 ⟨N _Σ (1385)++Σ(1385)-⟩ VALUE 0.046 ±0.004 OUR AVERAGE 0.0479±0.0013±0.0026 0.0382±0.0028±0.0045 ⟨N _Ξ -⟩ VALUE 0.0258±0.0009 OUR AVERAGE 0.0247±0.0009±0.0025 0.0259±0.0004±0.0009 ⟨N _Ξ (1530)0⟩ VALUE 0.0059±0.0011 OUR AVERAGE 0.0045±0.0005±0.0006	DOCUMENT ID Error includes scale for ALEXANDER 970 ABREU 950 DOCUMENT ID ABDALLAH 060 ALEXANDER 970 DOCUMENT ID Error includes scale for ABDALLAH 050 ABDALLAH 050	TECN	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.6.}$.6. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.3.}$.3. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	NODE=\$04413- NODE=\$044\$13 NODE=\$044\$13 NODE=\$044\$13
0.0240±0.0010±0.0014 ⟨N _∑ (1385)++∑(1385)-⟩ NALUE 0.046 ±0.004 OUR AVERAGE 0.0479±0.0013±0.0026 0.0382±0.0028±0.0045 ⟨N _≦ -⟩ NALUE 0.0258±0.0009 OUR AVERAGE 0.0247±0.0009±0.0025 0.0259±0.0004±0.0009 ⟨N _≦ (1530)0⟩ NALUE 0.0059±0.0011 OUR AVERAGE	DOCUMENT ID Error includes scale for ALEXANDER 976 ABREU 956 DOCUMENT ID ABDALLAH 066 ALEXANDER 976 DOCUMENT ID Error includes scale for BOCUMENT ID	TECN	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.6.}$.6. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.3.}$.3. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	NODE=\$04413- NODE=\$044\$13 NODE=\$044\$13 NODE=\$044\$13
0.0240 \pm 0.0010 \pm 0.0014 $\langle N_{\Sigma}(1385)^{+} + \Sigma(1385)^{-} \rangle$ VALUE 0.046 \pm 0.004 OUR AVERAGE 0.0479 \pm 0.0013 \pm 0.0026 0.0382 \pm 0.0028 \pm 0.0045 $\langle N_{\Xi^{-}} \rangle$ VALUE 0.0258 \pm 0.0009 OUR AVERAGE 0.0247 \pm 0.0009 \pm 0.0025 0.0259 \pm 0.0004 \pm 0.0009 $\langle N_{\Xi}(1530)^{0} \rangle$ VALUE 0.0059 \pm 0.0011 OUR AVERAGE 0.0045 \pm 0.0005 \pm 0.0006 0.0068 \pm 0.0005 \pm 0.0004 $\langle N_{\Omega^{-}} \rangle$ VALUE	DOCUMENT ID Error includes scale falexander 976 ABREU 956 DOCUMENT ID ABDALLAH 066 ALEXANDER 976 DOCUMENT ID Error includes scale falexander 976 ABDALLAH 056 ALEXANDER 976 DOCUMENT ID ERROR 1056 ABDALLAH 0566 ALEXANDER 976	TECN DOPAL TECN TECN TECN TECN TECN TECN TECN TEC	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.6.}$.6. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.6.}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.3.}$.3. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	NODE=\$04413- NODE=\$044\$13 NODE=\$044\$13 NODE=\$044\$14 NODE=\$044\$14 NODE=\$044\$15
0.0240±0.0010±0.0014 $\langle N_{\Sigma}(1385)^{+}+\Sigma(1385)^{-}\rangle$ VALUE 0.046 ±0.004 OUR AVERAGE 0.0479±0.0013±0.0026 0.0382±0.0028±0.0045 $\langle N_{\Xi^{-}}\rangle$ VALUE 0.0258±0.0009 OUR AVERAGE 0.0247±0.0009±0.0025 0.0259±0.0004±0.0009 $\langle N_{\Xi}(1530)^{0}\rangle$ VALUE 0.0059±0.0011 OUR AVERAGE 0.0045±0.0005±0.0006 0.0068±0.0005±0.0004 $\langle N_{\Omega^{-}}\rangle$	DOCUMENT ID Error includes scale falexander 976 ABREU 956 DOCUMENT ID ABDALLAH 066 ALEXANDER 976 DOCUMENT ID Error includes scale falexander 976 ABDALLAH 056 ALEXANDER 976 DOCUMENT ID ERROR 1056 ABDALLAH 0566 ALEXANDER 976	TECN TECN	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.6.}$.6. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.6.}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{1.3.}$.3. $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \; {\rm GeV}$	NODE=\$04413- NODE=\$044513 NODE=\$044\$13 NODE=\$044\$11 NODE=\$044\$11 NODE=\$044\$15 NODE=\$044\$15

NODE=S044L+C NODE=S044L+C

/ V ⁺ /	(/ 1:	\rangle	
---------------------------	---	-------------	-----------	--

VALUE DOCUMENT ID TECN COMMENT $0.078 \pm 0.012 \pm 0.012$

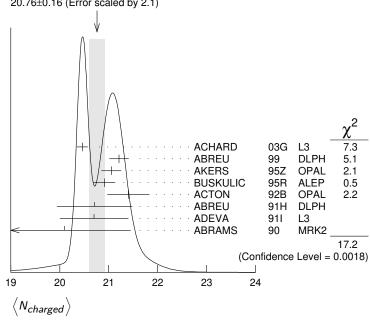
ALEXANDER 96R OPAL $E_{cm}^{ee} = 91.2 \text{ GeV}$

 $\langle N_{\overline{D}} \rangle$

NODE=S044DBR NODE=S044DBR VALUE (units 10⁻⁶) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ SCHAEL $5.9\!\pm\!1.8\!\pm\!0.5$ 06A ALEP $E_{\mathrm{cm}}^{\mathit{ee}} = 91.2 \; \mathrm{GeV}$


NODE=S044DBR;LINKAGE=SC

 $\langle N_{charged} \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT
20.76±0.16 OUR AVERAGE	Error includes scale factor	or of 2.1.	See the ideogram below.
$20.46 \pm 0.01 \pm 0.11$	ACHARD 03	G L3	$E_{cm}^{ee} = 91.2 \; GeV$
$21.21\!\pm\!0.01\!\pm\!0.20$	ABREU 99	DLPH	I $E_{ m cm}^{ee} =$ 91.2 GeV
21.05 ± 0.20	AKERS 95	z OPAL	$E_{ m cm}^{ee}=91.2~{ m GeV}$
$20.91\!\pm\!0.03\!\pm\!0.22$	BUSKULIC 95	R ALEP	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
21.40 ± 0.43	ACTON 92	B OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$20.71\!\pm\!0.04\!\pm\!0.77$	ABREU 91	H DLPH	I $E_{cm}^{ee} = 91.2 \; GeV$
20.7 ± 0.7	ADEVA 91	L3	$E_{ m cm}^{ee} = 91.2 \; { m GeV}$
$20.1 \pm 1.0 \pm 0.9$	ABRAMS 90	MRK2	$E_{cm}^{ee} = 91.1 \text{ GeV}$

NODE=S044CHG NODE=S044CHG

WEIGHTED AVERAGE 20.76±0.16 (Error scaled by 2.1)

Z HADRONIC POLE CROSS SECTION

OUR EVALUATION is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Zboson" and ref. LEP-SLC 06). Corrections as discussed in VOUTSINAS 20 and JANOT 20 are also included. This quantity is defined as

$$\sigma_{\it h}^0 = rac{12\pi}{M_{\it Z}^2} \; rac{\Gamma(e^+\,e^-)\,\Gamma({
m hadrons})}{\Gamma_{\it Z}^2}$$

It is one of the parameters used in the Z lineshape fit.

NODE=S044SH

NODE=S044SH

DOCUMENT ID VALUE (nb) **EVTS** 41.4802±0.0325 OUR EVALUATION

 41.4802 ± 0.0325 ¹ JANOT

20

TECN COMMENT

NODE=S044SH $\rightarrow \mathsf{UNCHECKED} \leftarrow$

 $^{^{}m 1}$ SCHAEL 06A obtain this anti-deuteron production rate per hadronic Z decay in the anti-deuteron momentum range from 0.62 to 1.03 GeV/c.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

41.500	± 0.037		² VOUTSINAS	20		
41.541	± 0.037		³ LEP-SLC	06		$E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$
41.501	± 0.055	4.10M	⁴ ABBIENDI	01 A	OPAL	E ^{ee} _{cm} = 88–94 GeV
41.578	± 0.069	3.70M	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
41.535	± 0.055	3.54M	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
41.559	± 0.058	4.07M	⁵ BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
42	± 4	450	ABRAMS	89B	MRK2	$E_{\rm cm}^{ee} = 89.2 - 93.0 \; {\rm GeV}$

 $^{^1}$ JANOT 20 applies a correction to LEP-SLC 06 using an updated Bhabha cross section calculation. This result also includes a correction to account for correlated luminosity bias as presented in VOUTSINAS 20.

NODE=S044SH;LINKAGE=C

NODE=S044SH;LINKAGE=B

NODE=S044SH;LINKAGE=D

NODE=S044SH;LINKAGE=DB

NODE=S044SH:LINKAGE=AC

NODE=S044223

NODE=S044223

Z VECTOR COUPLINGS

These quantities are the effective vector couplings of the Z to charged leptons and quarks. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative (and opposite to that of g^{ν_e} obtained using ν_e scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The LEP/SLD-based fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p\overline{p}$ and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

gę	

- v										
VALUE	<u>EVTS</u>	DOCUMENT ID	<u>TECN</u>	COMMENT						
-0.03817±0.00047 OUR FIT										
-0.058 ± 0.016 ± 0.007	5026	¹ ACOSTA	05м CDF	$E_{cm}^{ar{p}} = 1.96 \; TeV$						
-0.0346 ± 0.0023	137.0k	² ABBIENDI	010 OPAL	Eee 88–94 GeV						
$-0.0412\ \pm0.0027$	124.4k	³ ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV						
-0.0400 ± 0.0037		BARATE	00C ALEP	E ^{ee} _{cm} = 88–94 GeV						
-0.0414 ± 0.0020		⁴ ABE	95」 SLD	$E_{cm}^{ee} = 91.31 \text{ GeV}$						

 $^{^1}$ ACOSTA 05M determine the forward–backward asymmetry of $e^+\,e^-$ pairs produced via $q\overline{q}\to Z/\gamma^*\to e^+\,e^-$ in 15 M($e^+\,e^-$) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial–vector couplings of the Z to $e^+\,e^-$, assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

NODE=S044GEV	
NODE=S044GEV	

NODE=S044GEV;LINKAGE=AC

NODE=S044GEV;LINKAGE=OA

NODE=S044GEV;LINKAGE=Z

NODE=S044GEV;LINKAGE=KG

 g_V^μ

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.0367 ± 0.0023 OUF	R FIT				
$-0.0388 {}^{+ 0.0060}_{- 0.0064}$	182.8k	¹ ABBIENDI	010	OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV
-0.0386 ± 0.0073	113.4k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0362\!\pm\!0.0061$		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
 ● ● We do not use t 	he following	g data for averages	s, fits,	limits, e	etc. • • •
$-0.0413\!\pm\!0.0060$	66143	³ ABBIENDI	01K	OPAL	E ^{ee} _{cm} = 89–93 GeV

NODE=S044GMV NODE=S044GMV

 $^{^2}$ VOUTSINAS 20 applies a correction to LEP-SLC 06 to account for correlated luminosity bias.

bias. ³ This result combines ABBIENDI 01A, ABREU 00F, ACCIARRI 00C, BARATE 00C, taking correlated uncertainties into account.

⁴ ABBIENDI 01A error includes approximately 0.031 due to statistics, 0.033 due to event selection systematics, 0.029 due to uncertainty in luminosity measurement, and 0.011 due to LEP energy uncertainty.

⁵ BARATE 00C error includes approximately 0.030 due to statistics, 0.026 due to experimental systematics, and 0.025 due to uncertainty in luminosity measurement.

 $^{^2}$ ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^{^3}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^4}$ ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.0507\pm0.0096\pm0.0020$.

NODE=S044GTV NODE=S044GTV

NODE=S044GLV NODE=S044GLV

 1 ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

ACCIARRI 00C use their measurement of the au polarization in addition to forwardbackward lepton asymmetries.

³ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

NODE=S044GMV;LINKAGE=OA

NODE=S044GMV;LINKAGE=Z

NODE=S044GMV;LINKAGE=GM

g	T V
•	v

- v					
VALUE	_EVTS	DOCUMENT ID		TECN	COMMENT
-0.0366±0.0010 OUR	FIT				
$-0.0365\!\pm\!0.0023$	151.5k	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.0384 \!\pm\! 0.0026$	103.0k	² ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0361\!\pm\!0.0068$		BARATE	00 C	ALEP	$E_{\rm cm}^{\rm ee} = 88 - 94 \; {\rm GeV}$

 1 ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape

and forward-backward lepton asymmetries. 2 ACCIARRI 00C use their measurement of the τ polarization in addition to forwardbackward lepton asymmetries.

NODE=S044GTV;LINKAGE=OA

NODE=S044GTV;LINKAGE=Z

 g_V^ℓ

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.03783 ± 0.00041	OUR FIT				
-0.0358 ± 0.0014	471.3k	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.0397\ \pm0.0020$	379.4k	² ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
-0.0397 ± 0.0017	340.8k	³ ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0383\ \pm0.0018$	500k	BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 1 ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

2 Using forward-backward lepton asymmetries.

 3 ACCIARRI 00C use their measurement of the au polarization in addition to forwardbackward lepton asymmetries.

NODE=S044GLV;LINKAGE=OA

NODE=S044GLV;LINKAGE=B NODE=S044GLV:LINKAGE=Z

gu

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.266±0.034 OUR AVI	RAGE				
0.270 ± 0.037		¹ ANDREEV	18A		$e^\pm p$
$0.201\!\pm\!0.112$	156k	² ABAZOV	11 D	D0	$E_{cm}^{oldsymbol{p}\overline{oldsymbol{p}}}=1.97\;TeV$
$0.24 \begin{array}{l} +0.28 \\ -0.11 \end{array}$		³ LEP-SLC	06		$E_{cm}^{\mathit{ee}} = 88-94 \; GeV$
$0.399^{+0.152}_{-0.188}{\pm}0.066$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$
• • • We do not use the	ne following	g data for average	s, fits,	limits,	etc. • • •
$0.14 \begin{array}{l} +0.09 \\ -0.09 \end{array}$		⁵ ABRAMOWIC	Z16A	ZEUS	
$0.144 {+0.066\atop -0.058}$		⁶ ABT	16		
0.27 ± 0.13	1500	⁷ AKTAS	06	H1	$e^{\pm} p ightarrow \overline{ u}_{m{e}}(u_{m{e}}) X, \ \sqrt{s} pprox 300 \; {\sf GeV}$

 $^{
m 1}$ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic e^+p and e^-p neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized

² ABAZOV 11D study $p \overline{p} \rightarrow Z/\gamma^* e^+ e^-$ events using 5 fb⁻¹ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T > 25$ GeV, at least one electron in the central region and the di-electron mass in the range 50-1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta_{eff}^\ell = 0.2309 \pm 0.0008(\mathrm{stat}) \pm 0.0006(\mathrm{syst})$.

³LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.

 4 ACOSTA 05M determine the forward-backward asymmetry of e^+e^- pairs produced via $q \, \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+ e^-$ in 15 M($e^+ e^-$) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.

 5 ABRAMOWICZ 16A determine the Z^{0} couplings to $\emph{u-}$ and $\emph{d-}$ quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1

Collaborations for Run I and unpolarised H1 data from Run II. $^6\,\mathrm{ABT}$ 16 determine the Z^0 couplings to u- and $\textit{d}\text{-}\mathrm{quarks}$ using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data. AKTAS 06 fit the neutral current $(1.5 \le Q^2 \le 30,000 \text{ GeV}^2)$ and charged current

 $(1.5 \le Q^2 \le 15,000 \text{ GeV}^2)$ differential cross sections. In the determination of the *u*quark couplings the electron and d-quark couplings are fixed to their standard model values.

NODE=S044GUV NODE=S044GUV

NODE=S044GUV;LINKAGE=C

NODE=S044GUV;LINKAGE=AB

NODE=S044GUV;LINKAGE=LS

NODE=S044GUV;LINKAGE=AC

NODE=S044GUV;LINKAGE=B

NODE=S044GUV;LINKAGE=A

NODE=S044GUV;LINKAGE=AK

NODE=S044GDV NODE=S044GDV

g d V VALUE	EVTS	DOCUMENT ID		TECN	COMMENT				
VALUE	EVIS	DOCUMENT ID		TECIV	COMMENT				
$-0.38 \begin{array}{l} +0.04 \\ -0.05 \end{array}$ OUR AVERAGE									
$-0.488 \!\pm\! 0.092$		$^{ m 1}$ ANDREEV	18A		$e^{\pm}p$				
$-0.351\!\pm\!0.251$	156k	² ABAZOV	11 D	D0	$E_{cm}^{oldsymbol{p}\overline{oldsymbol{p}}}=1.97\;TeV$				
$-0.33 \begin{array}{l} +0.05 \\ -0.07 \end{array}$		³ LEP-SLC	06		$E_{cm}^{ee} = 88 94 \; GeV$				
$-0.226^{+0.635}_{-0.290}{\pm}0.090$	5026	⁴ ACOSTA	05м	CDF	$E_{ m cm}^{{ar p}} = 1.96~{ m TeV}$				
• • • We do not use the	e following	g data for average	s, fits,	limits, e	etc. • • •				
$-0.41 {+ 0.25 \atop - 0.20}$		⁵ ABRAMOWIC	Z16A	ZEUS					
$-0.503^{\displaystyle +0.171}_{\displaystyle -0.103}$		⁶ ABT	16						
-0.33 ± 0.33	1500	⁷ AKTAS	06	H1	${ m e}^{\pm} p ightarrow \; \overline{ u}_{ m e}(u_{ m e}) X, \ \sqrt{s} pprox 300 \; { m GeV}$				
1 AND DEEV 104 1.		10.0			1.000				

¹ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic e^+p and e^-p neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

 2 ABAZOV 11D study $p\overline{p}\to Z/\gamma^*e^+e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta_{eff}^\ell=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst}).$

³ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. *s*- and *d*-quark couplings are assumed to be identical.

 4 ACOSTA 05M determine the forward-backward asymmetry of e^+e^- pairs produced via $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.

 5 ABRAMOWICZ 16A determine the Z^0 couplings to $\it u\text{-}$ and $\it d\text{-}$ quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.

 6 ABT 16 determine the Z^0 couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.

⁷AKTAS 06 fit the neutral current $(1.5 \le Q^2 \le 30,000 \text{ GeV}^2)$ and charged current $(1.5 \le Q^2 \le 15,000 \text{ GeV}^2)$ differential cross sections. In the determination of the d-quark couplings the electron and u-quark couplings are fixed to their standard model values.

Z AXIAL-VECTOR COUPLINGS

These quantities are the effective axial-vector couplings of the Z to charged leptons and quarks. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative (and opposite to that of $g^{\nu}e$ obtained using ν_e scattering measurements). For the light quarks, the sign of the couplings is assigned

consistently with this assumption. The LEP/SLD-based fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p\overline{p}$ and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

NODE=S044GDV:LINKAGE=C

NODE=S044GDV;LINKAGE=AB

NODE=S044GDV;LINKAGE=LS

NODE=S044GDV;LINKAGE=AC

NODE=S044GDV;LINKAGE=B

NODE=S044GDV;LINKAGE=A

NODE=S044GDV;LINKAGE=AK

NODE=S044219

NODE=S044219

۶A		
/41	IIF	

- /1									
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
-0.50111±0.00035 OUR FIT									
-0.528 ± 0.123 ± 0.059	5026	¹ ACOSTA	05м	CDF	$E_{cm}^{oldsymbol{p}oldsymbol{ar{p}}}$ = 1.96 TeV				
$-0.50062\!\pm\!0.00062$	137.0k	² ABBIENDI	010	OPAL	Eee = 88-94 GeV				
-0.5015 ± 0.0007	124.4k	³ ACCIARRI	00C	L3	Eee = 88-94 GeV				
-0.50166 ± 0.00057		BARATE	00C	ALEP	Eee = 88-94 Ge\				
-0.4977 ± 0.0045		⁴ ABE	95J	SLD	$E_{\rm cm}^{\rm ee} = 91.31 \; {\rm GeV}$				

NODE=S044GEA NODE=S044GEA 1 ACOSTA 05M determine the forward–backward asymmetry of $e^+\,e^-$ pairs produced via $q\overline{q}\to Z/\gamma^*\to e^+\,e^-$ in 15 M($e^+\,e^-$) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial–vector couplings of the Z to $e^+\,e^-$, assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

 2 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

 3 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

 4 ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.4968\pm0.0039\pm0.0027$.

NODE=S044GEA;LINKAGE=AC

NODE=S044GEA;LINKAGE=OA

NODE=S044GEA;LINKAGE=Z

NODE=S044GMA

NODE=S044GEA;LINKAGE=KG

	ш
ø	•
0	A

	VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	NODE=S044GMA	
	-0.50120 ± 0.00054 O	UR FIT						
	$-0.50117\!\pm\!0.00099$	182.8k	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV		
	-0.5009 ± 0.0014	113.4k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV		
	-0.50046 ± 0.00093		BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV		
• • • We do not use the following data for averages, fits, limits, etc. • • •								
	-0.520 ± 0.015	66143	³ ABBIENDI	01K	OPAL	E ^{ee} _{cm} = 89–93 GeV		
	¹ ABBIENDI 010 use	e their mea	surement of the $ au$	polariz	zation in	addition to the lineshape	NODE=S044GMA·LIN	

¹ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

 2 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

³ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

NODE=S044GMA;LINKAGE=OA

NODE=S044GMA;LINKAGE=Z

NODE=S044GMA;LINKAGE=GM

g_A^{τ}

- 71						
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
-0.50204 ± 0.00064 OI	JR FIT					
-0.50165 ± 0.00124	151.5k	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV	
$-0.5023\ \pm0.0017$	103.0k	² ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV	
-0.50216 ± 0.00100		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV	

 1 ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

 2 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

NODE=S044GTA NODE=S044GTA

NODE=S044GTA;LINKAGE=OA

NODE=S044GTA;LINKAGE=Z

g_A^ℓ

				TECN		
VALUE	<u>EVTS</u>	DOCUMENT ID	DOCUMENT ID		COMMENT	
-0.50123 ± 0.00026 O	UR FIT					
$-0.50089\!\pm\!0.00045$	471.3k	$^{ m 1}$ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV	
$-0.5007\ \pm0.0005$	379.4k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV	
$-0.50153\!\pm\!0.00053$	340.8k	² ACCIARRI	00C	L3	$E_{\mathrm{cm}}^{\mathrm{ee}} = 88-94 \; \mathrm{GeV}$	
-0.50150 ± 0.00046	500k	BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV	

 1 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

 2 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

NODE=S044GLA NODE=S044GLA

NODE=S044GLA;LINKAGE=OA

NODE=S044GLA;LINKAGE=Z

g_A^u

	VALUE	<u>EVTS</u>	DOCUMENT ID TE		TECN	COMMENT	
0.519 ^{+0.028} _{-0.033} OUR AVERAGE							
	$0.548\!\pm\!0.036$		$^{ m 1}$ ANDREEV	18A		$e^{\pm}p$	
	$0.501\!\pm\!0.110$	156k	² ABAZOV	11 D	D0	$E_{cm}^{ar{p}}=1.97\;TeV$	
	$0.47 \begin{array}{l} +0.05 \\ -0.33 \end{array}$		³ LEP-SLC	06		$E_{cm}^{ee} = 88-94 \; GeV$	
	$0.441^{+0.207}_{-0.173}{\pm}0.067$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{oldsymbol{p}\overline{oldsymbol{p}}}$ = 1.96 TeV	
	\bullet \bullet We do not use the	e following	data for averages	, fits,	limits, e	tc. • • •	
	$0.50 \begin{array}{l} +0.12 \\ -0.05 \end{array}$		⁵ ABRAMOWICZ	Z16A	ZEUS		
	$0.532^{+0.107}_{-0.063}$		⁶ ABT	16			
	$0.57\ \pm0.08$	1500	⁷ AKTAS	06	H1	$e^{\pm} p_{-} \rightarrow \overline{\nu}_{e}(\nu_{e}) X$,	
	0.57 ± 0.08	1500	' AKTAS	06	H1	$e^{\pm} p_{-} \rightarrow \overline{\nu}_{e}(\nu_{e})X$,	

 $\sqrt{s} \approx 300 \text{ GeV}$

NODE=S044GUA NODE=S044GUA ¹ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic e^+p and e^-p neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

 2 ABAZOV 11D study $p\overline{p}\to Z/\gamma^*e^+e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta^{\ell}_{eff}=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst}).$

 3 LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.

 4 ACOSTA 05M determine the forward-backward asymmetry of $e^+\,e^-$ pairs produced via $q\overline{q}\to Z/\gamma^*\to e^+e^-$ in 15 M($e^+\,e^-$) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.

 5 ABRAMOWICZ 16A determine the Z^0 couplings to $\it u\text{-}$ and $\it d\text{-}$ quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.

 6 ABT 16 determine the Z^0 couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.

 7 AKTAS 06 fit the neutral current (1.5 \leq Q 2 \leq 30,000 GeV 2) and charged current (1.5 \leq Q 2 \leq 15,000 GeV 2) differential cross sections. In the determination of the *u*-quark couplings the electron and *d*-quark couplings are fixed to their standard model values.

NODE=S044GUA;LINKAGE=C

NODE=S044GUA;LINKAGE=AB

NODE=S044GUA;LINKAGE=LS

NODE=S044GUA;LINKAGE=AC

NODE=S044GUA;LINKAGE=B

NODE=S044GUA;LINKAGE=A

NODE=S044GUA;LINKAGE=AK

NODE=S044GDA NODE=S044GDA

g_A^d

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT			
-0.527 ^{+0.040} OUR AVERAGE								
$-0.619\!\pm\!0.108$		$^{ m 1}$ ANDREEV		H1	$e^{\pm}p$			
-0.497 ± 0.165	156k	² ABAZOV	11 D	D0	$E_{cm}^{p\overline{\overline{p}}}=1.97\;TeV$			
$-0.52 \begin{array}{l} +0.05 \\ -0.03 \end{array}$		³ LEP-SLC	06		$E_{cm}^{ee} = 8894 \; GeV$			
$-0.016^{+0.346}_{-0.536}{\pm}0.091$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$			
ullet $ullet$ We do not use th	e following	g data for average	s, fits,	limits, e	etc. • • •			
$-0.56 \begin{array}{l} +0.41 \\ -0.15 \end{array}$		⁵ ABRAMOWIC	Z16A	ZEUS				
$-0.409 {+0.373 \atop -0.213}$		⁶ ABT	16					
-0.80 ± 0.24	1500	⁷ AKTAS	06	H1	$e^{\pm} p ightarrow \; \overline{ u}_e(u_e) X, \ \sqrt{s} pprox 300 \; { m GeV}$			

¹ ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic e^+p and e^-p neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

 2 ABAZOV 11D study $p\overline{p}\to Z/\gamma^*e^+e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, the derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta^{\ell}_{eff}=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst}).$

³ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. *s*- and *d*-quark couplings are assumed to be identical.

 4 ACOSTA 05M determine the forward-backward asymmetry of $e^+\,e^-$ pairs produced via $q\overline{q}\to Z/\gamma^*\to e^+\,e^-$ in 15 M($e^+\,e^-$) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.

 5 ABRAMOWICZ 16A determine the Z^0 couplings to $\it u\text{-}$ and $\it d\text{-}$ quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.

 6 ABT 16 determine the Z^0 couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.

⁷ AKTAS 06 fit the neutral current $(1.5 \le Q^2 \le 30,000 \text{ GeV}^2)$ and charged current $(1.5 \le Q^2 \le 15,000 \text{ GeV}^2)$ differential cross sections. In the determination of the *d*-quark couplings the electron and *u*-quark couplings are fixed to their standard model values.

NODE=S044GDA;LINKAGE=C

NODE=S044GDA;LINKAGE=AB

NODE=S044GDA;LINKAGE=LS

NODE=S044GDA;LINKAGE=AC

NODE=S044GDA;LINKAGE=B

NODE=S044GDA;LINKAGE=A

NODE=S044GDA;LINKAGE=AK

Z COUPLINGS TO NEUTRAL LEPTONS

Averaging over neutrino species, the invisible Z decay width determines the effective neutrino coupling $g^{
u}\ell$. For $g^{
u}e$ and $g^{
u}\mu$, u_ee and $u_\mu e$ scattering results are combined with g^{e}_{A} and g^{e}_{V} measurements at the Zmass to obtain g^{ν_e} and $g^{\nu_{\mu}}$ following NOVIKOV 93C.

NODE=S044228

NODE=S044228

 $g^{
u_\ell}$

VALUE 0.50076 ± 0.00076

DOCUMENT ID <u>COMMENT</u>

06 $E_{cm}^{ee} = 88-94 \text{ GeV}$

NODE=S044GNL

NODE=S044GNL

¹ From invisible *Z*-decay width.

 $g^{
u_e}$ <u>VALUE</u>

DOCUMENT ID TECN COMMENT

NODE=S044GNE NODE=S044GNE

 0.528 ± 0.085

this value using the current PDG values for g_A^e and g_V^e

94 CHM2 From $\nu_{\mu}\,e$ and $\nu_{e}\,e$ scattering

NODE=S044GNE;LINKAGE=A

NODE=S044GNL;LINKAGE=LE

 $g^{
u_{\mu}}$

VALUE 0.502 ± 0.017

 1 VILAIN 94 derive this value from their value of $g^{
u\mu}$ and their ratio $g^{
u e}/g^{
u\mu}=$

94 CHM2 From $\nu_{\mu}\,\mathrm{e}$ scattering

NODE=S044GNM NODE=S044GNM

 1 VILAIN 94 derive this value from their measurement of the couplings $g_A^{e
u}{}^{\mu}=-$ 0.503 \pm 0.017 and ${\it g}_{V}^{e \nu_{\mu}} = -0.035 \pm 0.017$ obtained from $\nu_{\mu} \, e$ scattering. We have re-evaluated

NODE=S044GNM;LINKAGE=A

Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the Z these quantities are

$$A_f = \frac{2g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2}$$

where g_V^f and g_A^f are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the note "The Z boson" and ref. LEP-SLC 06.

 A_e

Using polarized beams, this quantity can also be measured as $(\sigma_L - \sigma_R)/(\sigma_L + \sigma_R)$, where σ_I and σ_R are the e^+e^- production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.

NODE=S044224 NODE=S044224

NODE=S044AE NODE=S044AE

NODE=S044AE

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.1515±0.0019 OUR AVER					
$0.1454 \pm 0.0108 \pm 0.0036$	144810	¹ ABBIENDI	010	OPAL	Eee = 88-94 GeV
0.1516 ± 0.0021	559000	² ABE	01 B	SLD	$E_{\mathrm{cm}}^{ee} = 91.24 \; \mathrm{GeV}$
$0.1504 \pm 0.0068 \pm 0.0008$		³ HEISTER	01	ALEP	Eee = 88-94 GeV
$0.1382 \pm 0.0116 \pm 0.0005$	105000	⁴ ABREU	00E	DLPH	Eee = 88-94 GeV
$0.1678 \pm 0.0127 \pm 0.0030$	137092	⁵ ACCIARRI	98H	L3	Eee = 88-94 GeV
$0.162 \ \pm 0.041 \ \pm 0.014$	89838	⁶ ABE	97	SLD	$E_{cm}^{\mathit{ee}} = 91.27 \; GeV$
$0.202\ \pm0.038\ \pm0.008$		⁷ ABE	95J	SLD	$E_{cm}^{\mathit{ee}} = 91.31 \; GeV$

 1 ABBIENDI 010 fit for A_e and A_τ from measurements of the τ polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.

 $^2\,\mathrm{ABE}\,01\mathrm{B}$ use the left-right production and left-right forward-backward decay asymmetries in leptonic Z decays to obtain a value of 0.1544 \pm 0.0060. This is combined with leftright production asymmetry measurement using hadronic Z decays (ABE 00B) to obtain the quoted value.

 3 HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the τ .

 4 ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network

 5 Derived from the measurement of forward-backward au polarization asymmetry.

 $^6\mathrm{ABE}$ 97 obtain this result from a measurement of the observed left-right charge asymmetry, $A_Q^{
m obs} = 0.225 \pm 0.056 \pm 0.019$, in hadronic Z decays. If they combine this value of $A_Q^{\rm obs}$ with their earlier measurement of $A_{LR}^{\rm obs}$ they determine $A_{\rm e}$ to be 0.1574 \pm 0.0197 \pm 0.0067 independent of the beam polarization.

⁷ ABE 95J obtain this result from polarized Bhabha scattering.

NODE=S044AE;LINKAGE=OA

NODE=S044AE;LINKAGE=BB

NODE=S044AE;LINKAGE=HE

NODE=S044AE;LINKAGE=L

NODE=S044AE;LINKAGE=A NODE=S044AE;LINKAGE=E

NODE=S044AF:LINKAGE=KG

-		
A		
4		
_	•	

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $\mu^+\mu^-$ production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter NODE=S044AM NODE=S044AM

 0.142 ± 0.015

¹ ABE

² AAD

TECN COMMENT

NODE=S044AM

16844

01B SLD • • • We do not use the following data for averages, fits, limits, etc. • • •

 $E_{cm}^{ee} = 91.24 \text{ GeV}$

 0.153 ± 0.012

1.7M

15BT ATLS $E_{cm}^{pp} = 7 \text{ TeV}$

NODE=S044AM;LINKAGE=BB

¹ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\mu^+\mu^-$ decays of the Z boson obtained with a polarized electron beam.

NODE=S044AM;LINKAGE=A

 2 AAD 15BT study $pp
ightarrow ~Z
ightarrow ~\ell^+\ell^-$ events where ℓ is an electron or a muon in the dilepton mass region 70-1000 GeV. The background in the Z peak region is estimated to be <1% for the muon channel. The muon asymmetry parameter is derived from the measured forward-backward asymmetry assuming the value of the quark asymmetry parameter from the SM. For this reason it is not used in the average.

The LEP and LHC Collaborations collaboration derive this quantity from the measurement of the τ polarization in $Z \to \tau^+ \tau^-$. The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in $Z
ightarrow au^+ au^$ produced using a polarized e^- beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

NODE=S044AT NODE=S044AT

NODE=S044AT

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
0.143 ±0.004 OUR AVERAGE									
$0.144\ \pm0.015$		¹ HAYRAPETY	24T	CMS	$E_{cm}^{pp} = 13 \; TeV$				
$0.1456 \pm 0.0076 \pm 0.0057$	144810	² ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV				
0.136 ± 0.015	16083	³ ABE	01 B	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.24 \; \mathrm{GeV}$				
$0.1451 \pm 0.0052 \pm 0.0029$		⁴ HEISTER	01	ALEP	E ^{ee} _{cm} = 88–94 GeV				
$0.1359 \pm 0.0079 \pm 0.0055$	105000	⁵ ABREU	00E	DLPH	E ^{ee} _{cm} = 88–94 GeV				
$0.1476 \pm 0.0088 \pm 0.0062$	137092	ACCIARRI	98н	L3	E ^{ee} _{cm} = 88–94 GeV				
4									

 $^{
m 1}$ HAYRAPETYAN 24T analyse the polarisation of tau leptons in Z bosons decaying to

NODE=S044AT;LINKAGE=B NODE=S044AT;LINKAGE=OA

 2 ABBIENDI 010 fit for A_e and $A_ au$ from measurements of the au polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.

NODE=S044AT;LINKAGE=BB

 3 ABE 01 B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\tau^+\tau^-$ decays of the Z boson obtained with a polarized electron beam. 4 HEISTER 01 obtain this result fitting the au polarization as a function of the polar

NODE=S044AT;LINKAGE=HE

production angle of the $\tau.$

NODE=S044AT;LINKAGE=L

 5 ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).

 A_{ς}

The SLD Collaboration directly extracts this quantity by a simultaneous fit to four measured s-quark polar angle distributions corresponding to two states of e^- polarization (positive and negative) and to the K^+K^- and $K^\pm K^0_S$ strange particle tagging modes in the hadronic final states.

NODE=S044AS NODE=S044AS

TECN COMMENT VALUE DOCUMENT ID **EVTS** ¹ ABE $0.895 \pm 0.066 \pm 0.062$ 2870 00D SLD $E_{cm}^{ee} = 91.2 \text{ GeV}$ NODE=S044AS

 1 ABE 00D tag $Z
ightarrow \, s\, \overline{s}$ events by an absence of B or D hadrons and the presence in each hemisphere of a high momentum K^{\pm} or K_{S}^{0} .

NODE=S044AS:LINKAGE=A

 A_c

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $c\overline{c}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044AC NODE=S044AC

0.670 ±0.027 OUR FIT $0.6712 \pm 0.0224 \pm 0.0157$

DOCUMENT ID TECN ¹ ABE 05 SLD $E_{\rm cm}^{\it ee}=91.24~{\rm GeV}$

COMMENT

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

² ABE $E_{\mathrm{cm}}^{\mathrm{ee}} = 91.24 \; \mathrm{GeV}$ $0.583 \pm 0.055 \pm 0.055$ 02G SLD ³ ABE 01c SLD $E_{\rm cm}^{\rm ee}=91.25~{\rm GeV}$ 0.688 ± 0.041

NODE=S044AC

 1 ABE 05 use hadronic Z decays collected during 1996-98 to obtain an enriched sample of $c\,\overline{c}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying c–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (9970 events) $A_c=0.6747\pm0.0290\pm0.0233$. Taking into account all correlations with earlier results reported in ABE 02G and ABE 01C, they obtain the quoted overall SLD result.

ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_b and A_c .

³ ABE 01C tag $Z \to c\overline{c}$ events using two techniques: exclusive reconstruction of D^{*+} , D^+ and D^0 mesons and the soft pion tag for $D^{*+} \to D^0\pi^+$. The large background from D mesons produced in $b\overline{b}$ events is separated efficiently from the signal using precision vertex information. When combining the A_c values from these two samples, care is taken to avoid double counting of events common to the two samples, and common systematic errors are properly taken into account.

NODE=S044AC;LINKAGE=AB

NODE=S044AC;LINKAGE=G2

NODE=S044AC;LINKAGE=A

NODE=S044AB NODE=S044AB

NODE=S044AB

OUR FIT is obtained by a simultaneous fit to several *c*- and *b*-quark measurements as explained in the note "The *Z* boson" and ref. LEP-SLC 06.

This quantity is directly extracted from a measurement of the left-right forward-

backward asymmetry in $b\overline{b}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

VALUE	<u>EV15</u>	DOCUMENT ID		IECN	COMMENT
0.923 ±0.020 OUR FIT					
$0.9170 \pm 0.0147 \pm 0.0145$		¹ ABE	05	SLD	$E_{ m cm}^{\it ee}=$ 91.24 GeV
• • • We do not use the	following d	lata for averages,	fits, li	mits, etc	C. • • •
$0.907\ \pm0.020\ \pm0.024$	48028	² ABE	03F	SLD	$E_{cm}^{\mathit{ee}} = 91.24 \; GeV$
$0.919 \ \pm 0.030 \ \pm 0.024$		³ ABE	02G	SLD	$E_{cm}^{\mathit{ee}} = 91.24 \; GeV$
$0.855\ \pm0.088\ \pm0.102$	7473	⁴ ABE	99L	SLD	$E_{ m cm}^{\it ee}=$ 91.27 GeV

 1 ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $b \, \overline{b}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying b–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (25917 events) $A_b=0.9173\pm0.0184\pm0.0173.$ Taking into account all correlations with earlier results reported in ABE 03F, ABE 02G and ABE 99L, they obtain the quoted overall SLD result.

 2 ABE 03F obtain an enriched sample of $b\overline{b}$ events tagging on the invariant mass of a 3-dimensional topologically reconstructed secondary decay. The charge of the underlying b quark is obtained using a self-calibrating track-charge method. For the 1996–1998 data sample they measure $A_b=0.906\pm0.022\pm0.023$. The value quoted here is obtained combining the above with the result of ABE 98I (1993–1995 data sample).

 3 ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously $A_{\mbox{\scriptsize b}}$ and $A_{\mbox{\scriptsize c}}$.

⁴ ABE 99L obtain an enriched sample of $b\overline{b}$ events tagging with an inclusive vertex mass cut. For distinguishing b and \overline{b} quarks they use the charge of identified K^{\pm} .

NODE=S044AB;LINKAGE=AB

NODE=S044AB;LINKAGE=F

NODE=S044AB;LINKAGE=G2

NODE=S044AB;LINKAGE=D

NODE=S044248

NODE=S044248

TRANSVERSE SPIN CORRELATIONS IN $Z ightarrow au^+ au^-$

The correlations between the transverse spin components of $\tau^+\tau^-$ produced in Z decays may be expressed in terms of the vector and axial-vector couplings:

$$\begin{split} C_{TT} &= \frac{|g_A^{\tau}|^2 - |g_V^{\tau}|^2}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \\ C_{TN} &= -2 \frac{|g_A^{\tau}||g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \sin(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}}) \end{split}$$

 C_{TT} refers to the transverse-transverse (within the collision plane) spin correlation and C_{TN} refers to the transverse-normal (to the collision plane) spin correlation.

The longitudinal τ polarization P_{τ} (= $-A_{\tau}$) is given by:

$$P_{\tau} = -2 \frac{|g_A^{\tau}||g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \cos(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

Here Φ is the phase and the phase difference $\Phi_{{\cal g}_{V}^{T}}-\Phi_{{\cal g}_{A}^{T}}$ can be obtained using both the measurements of C_{TN} and $P_{T}.$

 C_{TT}

 A_b

VALUE 1.01±0.12 OUR AVERA	<u>EVTS</u> IGE	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.87\!\pm\!0.20^{m{+0.10}}_{m{-0.12}}$	9.1k	ABREU	97 G	DLPH	E ^{ee} _{cm} = 91.2 GeV
$1.06\!\pm\!0.13\!\pm\!0.05$	120k	BARATE	97 D	ALEP	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

NODE=S044CTT NODE=S044CTT C_{TN}

<u>TECN</u> <u>COMMENT</u> **EVTS** ¹ BARATE $0.08\pm0.13\pm0.04$ 120k

97D ALEP $E_{cm}^{ee} = 91.2 \text{ GeV}$ 1 BARATE 97D combine their value of C_{TN} with the world average $P_{\tau}=-0.140\pm0.007$ to obtain $\tan(\Phi_{\mathcal{G}_{V}^{T}}-\Phi_{\mathcal{G}_{A}^{T}})=-0.57\pm0.97.$ NODE=S044CTN NODE=S044CTN

NODE=S044CTN;LINKAGE=A

FORWARD-BACKWARD $e^+e^- \rightarrow f\bar{f}$ CHARGE ASYMMETRIES

These asymmetries are experimentally determined by tagging the respective lepton or quark flavor in e^+e^- interactions. Details of heavy flavor (c- or b-quark) tagging at LEP are described in the note on "The Z boson" and ref. LEP-SLC 06. The Standard Model predictions for LEP data have been (re)computed using the ZFITTER package (version 6.36) with input parameters M_Z =91.187 GeV, M_{top} =174.3 GeV, M_{Higgs} =150 GeV, α_s =0.119, $\alpha^{(5)}$ (M_Z)= 1/128.877 and the Fermi constant G_F = 1.16637 \times 10⁻⁵ GeV⁻² (see the note on "The Z boson" for references). For non-LEP data the Standard Model predictions are as given by the authors of the respective publications.

NODE=S044280 NODE=S044280

NODE=S044Z01 NODE=S044Z01

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm p}^2$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

- $A_{FB}^{(0,e)}$ charge asymmetry in $e^+\,e^ightarrow\,e^+\,e^-$ -

NODE=S044Z01

ASYMMETRY (%)	MODEL	√ <i>s</i> (GeV)	DOCUMENT ID		TECN
1.45±0.25 OUR FIT					
0.89 ± 0.44	1.57	91.2	¹ ABBIENDI	01A	OPAL
1.71 ± 0.49	1.57	91.2	ABREU	00F	DLPH
1.06 ± 0.58	1.57	91.2	ACCIARRI	00C	L3
1.88 ± 0.34	1.57	91.2	² BARATE	00 C	ALEP

¹ABBIENDI 01A error includes approximately 0.38 due to statistics, 0.16 due to event selection systematics, and 0.18 due to the theoretical uncertainty in t-channel prediction.

NODE=S044Z01;LINKAGE=DB

NODE=S044Z01;LINKAGE=A

$^ A^{(0,\mu)}_{FR}$ CHARGE ASYMMETRY IN $e^+\,e^ightarrow~\mu^+\mu^-$ ---

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The $\it Z$ boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{
m e}A_{\mu}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

NODE=S044Z0A

NODE=S044Z0A

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN	NODE=S044Z0A
1.69± 0.13 OUR FIT	WODEL	(000)	<u>BOCOMENT IB</u>		7ECN	
1.59 ± 0.23	1.57	91.2	¹ ABBIENDI	01A	OPAL	
1.65 ± 0.25	1.57	91.2	ABREU	00F	DLPH	
1.88 ± 0.33	1.57	91.2	ACCIARRI	00 C	L3	
1.71 ± 0.24	1.57	91.2	² BARATE	00C	ALEP	
• • • We do not use the follo	wing data for	r averages, f	fits, limits, etc. •	• •		
9 ±30	-1.3	20	³ ABREU	95M	DLPH	
7 ± 26	-8.3	40	³ ABREU	95M	DLPH	OCCUR=2
-11 ± 33	-24.1	57	³ ABREU	95M	DLPH	OCCUR=3
-62 ± 17	-44.6	69	³ ABREU	95M	DLPH	OCCUR=4
-56 ± 10	-63.5	79	³ ABREU	95M	DLPH	OCCUR=5
-13 \pm 5	-34.4	87.5	³ ABREU	95M	DLPH	OCCUR=6
$-29.0 \ \ ^{+}_{-}\ \ ^{5.0}_{4.8}\ \ \pm 0.5$	-32.1	56.9	⁴ ABE	901	VNS	
$-$ 9.9 \pm 1.5 \pm 0.5	-9.2	35	HEGNER	90	JADE	
0.05 ± 0.22	0.026	91.14	⁵ ABRAMS	89D	MRK2	
-43.4 ± 17.0	-24.9	52.0	⁶ BACALA	89	AMY	
-11.0 ± 16.5	-29.4	55.0	⁶ BACALA	89	AMY	OCCUR=2
-30.0 ± 12.4	-31.2	56.0	⁶ BACALA	89	AMY	OCCUR=3

 $^{^2}$ BARATE 00C error includes approximately 0.31 due to statistics, 0.06 due to experimental systematics, and 0.13 due to the theoretical uncertainty in t-channel prediction.

			654644		4.4.0.7	0.66110
-46.2 ± 14.9	-33.0	57.0	⁶ BACALA	89	AMY	OCCUR=4
-29 ± 13	-25.9	53.3	ADACHI	88C	TOPZ	
$+$ 5.3 \pm 5.0 \pm 0.5	-1.2	14.0	ADEVA	88	MRKJ	
$-10.4 \pm 1.3 \pm 0.5$	-8.6	34.8	ADEVA	88	MRKJ	OCCUR=2
$-12.3 \pm 5.3 \pm 0.5$	-10.7	38.3	ADEVA	88	MRKJ	OCCUR=3
$-15.6~\pm~3.0~\pm0.5$	-14.9	43.8	ADEVA	88	MRKJ	OCCUR=4
$-\ 1.0\ \pm\ 6.0$	-1.2	13.9	BRAUNSCH	88D	TASS	
$-$ 9.1 \pm 2.3 \pm 0.5	-8.6	34.5	BRAUNSCH	88D	TASS	OCCUR=2
$-10.6 \ \ ^{+}_{-} \ \ ^{2.2}_{2.3} \ \ \pm 0.5$	-8.9	35.0	BRAUNSCH	88D	TASS	OCCUR=3
$-17.6 \ \ \begin{array}{c} + \ 4.4 \\ - \ 4.3 \end{array} \pm 0.5$	-15.2	43.6	BRAUNSCH	88D	TASS	OCCUR=4
$-$ 4.8 \pm 6.5 \pm 1.0	-11.5	39	BEHREND	87C	CELL	
$-18.8 \pm 4.5 \pm 1.0$	-15.5	44	BEHREND	87C	CELL	OCCUR=2
$+\ 2.7\ \pm\ 4.9$	-1.2	13.9	BARTEL	86C	JADE	
$-11.1~\pm~1.8~\pm1.0$	-8.6	34.4	BARTEL	86C	JADE	OCCUR=2
$-17.3 \pm 4.8 \pm 1.0$	-13.7	41.5	BARTEL	8 6 C	JADE	OCCUR=3
$-22.8~\pm~5.1~\pm1.0$	-16.6	44.8	BARTEL	86C	JADE	OCCUR=4
$-$ 6.3 \pm 0.8 \pm 0.2	-6.3	29	ASH	85	MAC	
$-$ 4.9 \pm 1.5 \pm 0.5	-5.9	29	DERRICK	85	HRS	
$-$ 7.1 \pm 1.7	-5.7	29	LEVI	83	MRK2	
-16.1 ± 3.2	-9.2	34.2	BRANDELIK	82C	TASS	
3						

¹ABBIENDI 01A error is almost entirely on account of statistics.

NODE=S044Z0A;LINKAGE=DB NODE=S044Z0A;LINKAGE=LB NODE=S044Z0A;LINKAGE=H

NODE=S044Z0A;LINKAGE=AT NODE=S044Z0A;LINKAGE=AB NODE=S044Z0A;LINKAGE=F

NODE=S044Z0T

NODE=S044Z0T

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}A_{\tau}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

NODE-	S044Z0T

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN	NODE=S044Z0T
1.88± 0.17 OUR FIT						
1.45 ± 0.30	1.57	91.2	$^{ m 1}$ abbiendi	01A	OPAL	
2.41 ± 0.37	1.57	91.2	ABREU	00F	DLPH	
2.60 ± 0.47	1.57	91.2	ACCIARRI	00 C	L3	
1.70 ± 0.28	1.57	91.2	² BARATE	00 C	ALEP	
• • • We do not use the follo	wing data for	averages, f	its, limits, etc. •	• •		
$-32.8 \ ^{+}_{-} \ ^{6.4}_{6.2} \ \pm 1.5$	-32.1	56.9	³ ABE	901	VNS	
$-$ 8.1 \pm 2.0 \pm 0.6	-9.2	35	HEGNER	90	JADE	
-18.4 ± 19.2	-24.9	52.0	⁴ BACALA	89	AMY	
-17.7 ± 26.1	-29.4	55.0	⁴ BACALA	89	AMY	OCCUR=2
-45.9 ± 16.6	-31.2	56.0	⁴ BACALA	89	AMY	OCCUR=3
-49.5 ± 18.0	-33.0	57.0	⁴ BACALA	89	AMY	OCCUR=4
-20 ± 14	-25.9	53.3	ADACHI	88C	TOPZ	
$-10.6~\pm~3.1~\pm1.5$	-8.5	34.7	ADEVA	88	MRKJ	
$-$ 8.5 \pm 6.6 \pm 1.5	-15.4	43.8	ADEVA	88	MRKJ	OCCUR=2
$-$ 6.0 \pm 2.5 \pm 1.0	8.8	34.6	BARTEL	85F	JADE	
$-11.8 \pm 4.6 \pm 1.0$	14.8	43.0	BARTEL	85F	JADE	OCCUR=2
$-$ 5.5 \pm 1.2 \pm 0.5	-0.063	29.0	FERNANDEZ	85A	MAC	
$-$ 4.2 \pm 2.0	0.057	29	LEVI	83	MRK2	
-10.3 ± 5.2	-9.2	34.2	BEHREND	82	CELL	
$-$ 0.4 \pm 6.6	-9.1	34.2	BRANDELIK	82C	TASS	

 $^{^2\,\}mathrm{BARATE}$ 00C error is almost entirely on account of statistics.

 $^{^3}$ ABREU 95M perform this measurement using radiative muon-pair events associated with high-energy isolated photons.

⁴ABE 901 measurements in the range 50 $\leq \sqrt{s} \leq$ 60.8 GeV.

⁵ABRAMS 89D asymmetry includes both 9 $\mu^+\mu^-$ and 15 $\tau^+\tau^-$ events.

⁶ BACALA 89 systematic error is about 5%.

 1 ABBIENDI 01A error includes approximately 0.26 due to statistics and 0.14 due to event selection systematics.

 $^2\,\mathrm{BARATE}$ 00C error includes approximately 0.26 due to statistics and 0.11 due to experimental systematics.

ABE 901 measurements in the range 50 $\leq \sqrt{s} \leq$ 60.8 GeV.

⁴BACALA 89 systematic error is about 5%.

NODE=S044Z0T;LINKAGE=DB

NODE=S044Z0T;LINKAGE=LB

NODE=S044Z0T;LINKAGE=AT NODE=S044Z0T;LINKAGE=F

For the Z peak, we report the pole asymmetry defined by $(3/4)A_\ell^2$ as determined by the five-parameter fit to cross-section and lepton forward-backward asymmetry data assuming lepton universality. For details see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044Z0L

NODE=S044Z0L

NODE=S044Z0L

STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		<u>TECN</u>
1.57	91.2	¹ ABBIENDI	01A	OPAL
1.57	91.2	ABREU	00F	DLPH
1.57	91.2	ACCIARRI	00 C	L3
1.57	91.2	² BARATE	00C	ALEP
	1.57 1.57 1.57	1.57 91.2 1.57 91.2 1.57 91.2	MODEL (GeV) DOCUMENT ID 1.57 91.2 1 ABBIENDI 1.57 91.2 ABREU 1.57 91.2 ACCIARRI	MODEL (GeV) DOCUMENT ID 1.57 91.2 1 ABBIENDI 01A 1.57 91.2 ABREU 00F 1.57 91.2 ACCIARRI 00C

¹ ABBIENDI 01A error includes approximately 0.15 due to statistics, 0.06 due to event selection systematics, and 0.03 due to the theoretical uncertainty in *t*-channel prediction.

 2 BARATE 00C error includes approximately 0.15 due to statistics, 0.04 due to experimental systematics, and 0.02 due to the theoretical uncertainty in t-channel prediction.

NODE=S044Z0L;LINKAGE=DB

NODE=S044Z0L;LINKAGE=AC

——— $A_{FB}^{(0,u)}$ CHARGE ASYMMETRY IN $e^+e^- ightarrow u \overline{u}$ ————

ASYMMETRY (%)

4.0±6.7±2.8

STD.

MODEL

(GeV)

1 DOCUMENT ID

TECN

1 ACKERSTAFF 97T OPAL

NODE=S044Z0U;LINKAGE=A

The s-quark asymmetry is derived from measurements of the forward-backward asymmetry of fast hadrons containing an s quark.

ASYMMETRY (%) 9.8 ±1.1 OUR AVERAGE	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID	TECN
$10.08 \pm 1.13 \pm 0.40$	10.1	91.2	¹ ABREU 00E	DLPH
$6.8 \pm 3.5 \pm 1.1$	10.1	91.2	² ACKERSTAFF 97	OPAL

¹ ABREU 00B tag the presence of an *s* quark requiring a high-momentum-identified charged kaon. The *s*-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected *d*- and *u*-quark asymmetries from the Standard Model and using the measured values for the *c*- and *b*-quark asymmetries.

² ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.

NODE=S044Z0S

NODE=S044Z0U NODE=S044Z0U NODE=S044Z0U

NODE=S044Z0S

NODE=S044Z0S

NODE=S044Z0S;LINKAGE=C

NODE=S044Z0S;LINKAGE=B

- $A^{(0,c)}_{FR}$ CHARGE ASYMMETRY IN $e^+\,e^ightarrow\,$ $c\,\overline{c}\,$ -

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the \boldsymbol{Z} pole asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

 \sqrt{s} (GeV) DOCUMENT ID ASYMMETRY (%) TECN 7.07± 0.35 OUR FIT $6.31 \pm 0.93 \pm 0.65$ ¹ ABDALLAH 04F DLPH 6.35 91.26 $5.68 \pm 0.54 \pm 0.39$ 91.25 ² ABBIENDI 03P OPAL 6.3 $6.45 \pm 0.57 \pm 0.37$ ³ HEISTER 6.10 91.21 02H ALEP ⁴ ABREU $6.59 \pm 0.94 \pm 0.35$ 6.2 91.235 99Y DLPH ⁵ BARATE $6.3 \pm 0.9 \pm 0.3$ 6.1 91.22 980 ALEP ⁶ ALEXANDER 97C OPAL $6.3 \pm 1.2 \pm 0.6$ 6.1 91.22 ⁷ ADRIANI $8.3 \pm 3.8 \pm 2.7$ 6.2 91.24 92D 13

NODE=S044Z0C

NODE=S044Z0C

NODE=S044Z0C

OCCUR=2

OCCUR=2

¹ ACKERSTAFF 97⊤ measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

• • • We do not use the following data for averages, fits, limits, etc. • • •						
$3.1 \pm 3.5 \pm 0.5$	-3.5	89.43	¹ ABDALLAH	04F	DLPH	
$11.0 \pm 2.8 \pm 0.7$	12.3	92.99	¹ ABDALLAH	04F	DLPH	OCCUR=3
$-$ 6.8 \pm 2.5 \pm 0.9	-3.0	89.51	² ABBIENDI	03 P	OPAL	OCCUR=2
$14.6 \pm 2.0 \pm 0.8$	12.2	92.95	² ABBIENDI	03 P	OPAL	OCCUR=3
$-12.4 \pm 15.9 \pm 2.0$	-9.6	88.38	³ HEISTER	02H	ALEP	OCCUR=2
$-$ 2.3 \pm 2.6 \pm 0.2	-3.8	89.38	³ HEISTER	02H	ALEP	OCCUR=3
$-$ 0.3 \pm 8.3 \pm 0.6	0.9	90.21	³ HEISTER	02H	ALEP	OCCUR=4
$10.6 \pm 7.7 \pm 0.7$	9.6	92.05	³ HEISTER	02H	ALEP	OCCUR=5
$11.9 \pm 2.1 \pm 0.6$	12.2	92.94	³ HEISTER	02H	ALEP	OCCUR=6
$12.1 \pm 11.0 \pm 1.0$	14.2	93.90	³ HEISTER	02H	ALEP	OCCUR=7
$-4.96\pm3.68\pm0.53$	-3.5	89.434	⁴ ABREU	99Y	DLPH	OCCUR=2
$11.80 \pm 3.18 \pm 0.62$	12.3	92.990	⁴ ABREU	99Y	DLPH	OCCUR=3
$-$ 1.0 \pm 4.3 \pm 1.0	-3.9	89.37	⁵ BARATE	980	ALEP	OCCUR=2
$11.0 \pm 3.3 \pm 0.8$	12.3	92.96	⁵ BARATE	980	ALEP	OCCUR=3
$3.9 \pm 5.1 \pm 0.9$	-3.4	89.45	⁶ ALEXANDER	97C	OPAL	
$15.8 \pm 4.1 \pm 1.1$	12.4	93.00	⁶ ALEXANDER	97C	OPAL	OCCUR=3
$-12.9 \pm 7.8 \pm 5.5$	-13.6	35	BEHREND	90 D	CELL	
$7.7 \pm 13.4 \pm 5.0$	-22.1	43	BEHREND	90 D	CELL	OCCUR=2
$-12.8 \pm 4.4 \pm 4.1$	-13.6	35	ELSEN	90	JADE	
$-10.9 \pm 12.9 \pm 4.6$	-23.2	44	ELSEN	90	JADE	OCCUR=2
-14.9 ± 6.7	-13.3	35	OULD-SAADA	89	JADE	

¹ ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

- $A_{FB}^{(0,b)}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~b\,\overline{b}$ ----

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the \boldsymbol{Z} pole asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN	NODE=S044Z0B
9.92± 0.16 OUR FIT	MODEL	(GeV)	DOCOMENTID		TECN	
$9.58\pm \ 0.32\pm \ 0.14$	9.68	91.231	¹ ABDALLAH	05	DLPH	OCCUR=2
$10.04\pm \ 0.56\pm \ 0.25$	9.69	91.26	² ABDALLAH	04F	DLPH	OCCUR=2
$9.72 \pm \ 0.42 \pm \ 0.15$	9.67	91.25	³ ABBIENDI	03 P	OPAL	
$9.77 \pm \ 0.36 \pm \ 0.18$	9.69	91.26	⁴ ABBIENDI	021	OPAL	OCCUR=2
$9.52 \pm \ 0.41 \pm \ 0.17$	9.59	91.21	⁵ HEISTER	02H	ALEP	
$10.00 \pm \ 0.27 \pm \ 0.11$	9.63	91.232	⁶ HEISTER	01 D	ALEP	
$7.62 \pm \ 1.94 \pm \ 0.85$	9.64	91.235	⁷ ABREU	99Y	DLPH	
$9.60\pm\ 0.66\pm\ 0.33$	9.69	91.26	⁸ ACCIARRI	99 D	L3	
$9.31\pm\ 1.01\pm\ 0.55$	9.65	91.24	⁹ ACCIARRI	98 U	L3	
$9.4 \pm 2.7 \pm 2.2$	9.61	91.22	¹⁰ ALEXANDER	97C	OPAL	OCCUR=2
	ving data for	averages, f	its, limits, etc. • •	•		
$6.37 \pm \ 1.43 \pm \ 0.17$	5.8	89.449	¹ ABDALLAH	05	DLPH	
$10.41 \pm \ 1.15 \pm \ 0.24$	12.1	92.990	$^{ m 1}$ ABDALLAH	05	DLPH	OCCUR=3
$6.7 \pm 2.2 \pm 0.2$	5.7	89.43	² ABDALLAH	04F	DLPH	
$11.2 \pm 1.8 \pm 0.2$	12.1	92.99	² ABDALLAH	04F	DLPH	OCCUR=3
$4.7 \pm 1.8 \pm 0.1$	5.9	89.51	³ ABBIENDI	03 P	OPAL	OCCUR=2
$10.3 \pm 1.5 \pm 0.2$	12.0	92.95	³ ABBIENDI	03 P	OPAL	OCCUR=3
$5.82 \pm \ 1.53 \pm \ 0.12$	5.9	89.50	⁴ ABBIENDI	021	OPAL	
$12.21 \pm \ 1.23 \pm \ 0.25$	12.0	92.91	⁴ ABBIENDI	021	OPAL	OCCUR=3
$-13.1 \pm 13.5 \pm 1.0$	3.2	88.38	⁵ HEISTER	02H	ALEP	OCCUR=2
$5.5 \pm 1.9 \pm 0.1$	5.6	89.38	⁵ HEISTER	02H	ALEP	OCCUR=3

 ${\sf NODE}{=}{\sf S044Z0C;} {\sf LINKAGE}{=}{\sf AD}$

NODE=S044Z0C;LINKAGE=AB

NODE=S044Z0C;LINKAGE=HH

NODE=S044Z0C;LINKAGE=G

NODE=S044Z0C;LINKAGE=AA

NODE=S044Z0C;LINKAGE=DD NODE=S044Z0C;LINKAGE=A

NODE=S044Z0B

NODE=S044Z0B

²ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.

 $^{^3}$ HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

⁴ ABREU 99Y tag $Z \to b\overline{b}$ and $Z \to c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^0 , and D^+ with their charge-conjugate states).

⁵BARATE 980 tag $Z \to c \bar{c}$ events requiring the presence of high-momentum reconstructed D^{*+} , D^+ , or D^0 mesons.

 $^{^6}$ ALEXANDER 97C identify the b and c events using a D/D^{st} tag.

⁷ ADRIANI 92D use both electron and muon semileptonic decays.

$-$ 0.4 \pm 6.7 \pm 0.8	7.5	90.21	⁵ HEISTER	02H	ALEP	OCCUR=4
$11.1 \pm 6.4 \pm 0.5$	11.0	92.05	⁵ HEISTER	02H	ALEP	OCCUR=5
$10.4 \pm 1.5 \pm 0.3$	12.0	92.94	⁵ HEISTER	02H	ALEP	OCCUR=6
$13.8 \pm 9.3 \pm 1.1$	12.9	93.90	⁵ HEISTER	02H	ALEP	OCCUR=7
$4.36\pm\ 1.19\pm\ 0.11$	5.8	89.472	⁶ HEISTER	01 D	ALEP	OCCUR=2
$11.72 \pm \ 0.97 \pm \ 0.11$	12.0	92.950	⁶ HEISTER	01 D	ALEP	OCCUR=3
$5.67 \pm \ 7.56 \pm \ 1.17$	5.7	89.434	⁷ ABREU	99Y	DLPH	OCCUR=2
$8.82\pm \ 6.33\pm \ 1.22$	12.1	92.990	⁷ ABREU	99Y	DLPH	OCCUR=3
$6.11\pm\ 2.93\pm\ 0.43$	5.9	89.50	⁸ ACCIARRI	99D	L3	OCCUR=2
$13.71\pm\ 2.40\pm\ 0.44$	12.2	93.10	⁸ ACCIARRI	99D	L3	OCCUR=3
$4.95\pm \ 5.23\pm \ 0.40$	5.8	89.45	⁹ ACCIARRI	98 U	L3	OCCUR=2
$11.37 \pm \ 3.99 \pm \ 0.65$	12.1	92.99	⁹ ACCIARRI	98 U	L3	OCCUR=3
$-$ 8.6 ± 10.8 \pm 2.9	5.8	89.45	¹⁰ ALEXANDER	97c	OPAL	
$-$ 2.1 \pm 9.0 \pm 2.6	12.1	93.00	¹⁰ ALEXANDER	97c	OPAL	OCCUR=3
-71 ± 34 $+ 7$ $- 8$	-58	58.3	SHIMONAKA	91	TOPZ	
$-22.2~\pm~7.7~\pm~3.5$	-26.0	35	BEHREND	90 D	CELL	
$-49.1 \pm 16.0 \pm 5.0$	-39.7	43	BEHREND	90 D	CELL	OCCUR=2
-28 ± 11	-23	35	BRAUNSCH	90	TASS	
$-16.6~\pm~7.7~\pm~4.8$	-24.3	35	ELSEN	90	JADE	
$-33.6 \pm 22.2 \pm 5.2$	-39.9	44	ELSEN	90	JADE	OCCUR=2
$3.4 \pm 7.0 \pm 3.5$	-16.0	29.0	BAND	89	MAC	
-72 ± 28 ± 13	-56	55.2	SAGAWA	89	AMY	
1 ADDALLALLOS 1						

¹ ABDALLAH 05 obtain an enriched samples of $b\overline{b}$ events using lifetime information. The quark (or antiquark) charge is determined with a neural network using the secondary vertex charge, the jet charge and particle identification.

² ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

³ ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average $B^0-\overline{B}^0$ mixing. ⁴ ABBIENDI 02I tag $Z^0 \to b\overline{b}$ decays using a combination of secondary vertex and lepton

⁴ ABBIENDI 021 tag $Z^0 \rightarrow b\overline{b}$ decays using a combination of secondary vertex and lepton tags. The sign of the *b*-quark charge is determined using an inclusive tag based on jet, vertex, and kaon charges.

 5 HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

⁶ HEISTER 01D tag $Z \to b \overline{b}$ events using the impact parameters of charged tracks complemented with information from displaced vertices, event shape variables, and lepton identification. The b-quark direction and charge is determined using the hemisphere charge method along with information from fast kaon tagging and charge estimators of primary and secondary vertices. The change in the quoted value due to variation of A_{FB}^c and R_b is given as +0.103 ($A_{FB}^c - 0.0651$) -0.440 ($R_b - 0.21585$).

⁷ ABREU 99Y tag $Z \rightarrow b\overline{b}$ and $Z \rightarrow c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^{0} , and D^{+} with their charge-conjugate states).

 8 ACCIARRI 99D tag $Z\to b\overline{b}$ events using high p and p_T leptons. The analysis determines simultaneously a mixing parameter $\chi_b=0.1192\pm0.0068\pm0.0051$ which is used to correct the observed asymmetry.

 9 ACCIARRI 980 tag $Z \to b \bar b$ events using lifetime and measure the jet charge using the hemisphere charge.

 10 ALEXANDER 97C identify the b and c events using a D/D^* tag.

CHARGE ASYMMETRY IN $e^+e^- \rightarrow q \overline{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on B^0 - \overline{B}^0 mixing and on other electroweak parameters.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		TECN
• • • We do not use the follo	wing data for	averages, fit	s, limits, etc. • •	•	
$-0.76\pm0.12\pm0.15$		91.2	¹ ABREU	921	DLPH
$4.0 \pm 0.4 \pm 0.63$	4.0	91.3	² ACTON	92L	OPAL
$9.1\ \pm 1.4\ \pm 1.6$	9.0	57.9	ADACHI	91	TOPZ
$-0.84\pm0.15\pm0.04$		91	DECAMP	91 B	ALEP
$8.3 \pm 2.9 \pm 1.9$	8.7	56.6	STUART	90	AMY
$11.4 \pm 2.2 \pm 2.1$	8.7	57.6	ABE	89L	VNS
6.0 ± 1.3	5.0	34.8	GREENSHAW	89	JADE
8.2 ± 2.9	8.5	43.6	GREENSHAW	89	JADE

 ${\sf NODE}{=}{\sf S044Z0B;} {\sf LINKAGE}{=}{\sf AL}$

NODE=S044Z0B;LINKAGE=AD

NODE=S044Z0B;LINKAGE=AB

NODE=S044Z0B;LINKAGE=ZQ

NODE=S044Z0B;LINKAGE=HH

NODE=S044Z0B;LINKAGE=WW

NODE=S044Z0B;LINKAGE=XY

NODE=S044Z0B;LINKAGE=XX

NODE=S044Z0B;LINKAGE=Y

NODE=S044Z0B:LINKAGE=FF

NODE=S044Z0Q

NODE=S044Z0Q

NODE=S044Z0Q

OCCUR=2

 $^{
m 1}$ ABREU 921 has 0.14 systematic error due to uncertainty of quark fragmentation.

²ACTON 92L use the weight function method on 259k selected $Z \rightarrow \text{hadrons}$ events. The systematic error includes a contribution of 0.2 due to $B^0-\overline{B}^0$ mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of $\sin^2\!\theta_W^{\rm eff}$ to be 0.2321 \pm 0.0017 \pm 0.0028.

NODE=S044Z0Q;LINKAGE=B NODE=S044Z0Q;LINKAGE=C

ASYMMETRY (%)	STD. MODEL	(GeV)	DOCUMENT ID		TECN		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$5.2 \!\pm\! 5.9 \!\pm\! 0.4$		91	ABE	91E	CDF		

NODE=S044Z0E NODE=S044Z0E

 $\sin^2(\theta_{\rm eff})$

NODE=S044SEF

The leptonic effective electroweak mixing angle, $\sin^2\!\theta_{\rm eff}^{\rm lept}$, is given in terms of the ratio of leptonic vector and axial-vector coupling constants, $r=g_\ell^V/g_\ell^A$ for $\ell=e,\ \mu,\ \tau$, with $\sin^2\!\theta_{\rm eff}^{\rm lept}=(1-r)/4$. It can be extracted directly from the leptonic asymmetry parameter, $A_{\ell}=2r/(1+r^2)$. See note "The Z boson" and ref. LEP-SLC 06.

NODE=S044SEF

VALUE DOCUMENT ID TECN COMMENT NODE=S044SEF 0.23148 ± 0.00012 OUR AVERAGE NEW

$[0.23148 \pm 0.00013 \; \text{OUR} \; 2025 \; \text{AV}]$	ERAGE]		
0.23152 ± 0.00031	¹ HAYRAPETY	.25AF CMS	$E_{cm}^{pp} = 13 \; TeV$
0.23147 ± 0.00050	² AAIJ	24AL LHCB	$E_{cm}^{pp} = 13 \; TeV$
0.2319 ± 0.0019	³ HAYRAPETY		•
0.23148 ± 0.00033	⁴ AALTONEN	18B TEVA	$E_{cm}^{ar{p}ar{p}}=1.96\;TeV$
0.23101 ± 0.00053	⁵ SIRUNYAN	18CY CMS	$E_{cm}^{pp} = 8 \; TeV$
0.2308 ± 0.0012	⁶ AAD	15BT ATLS	$E_{cm}^{pp} = 7 \; TeV$
0.2314 ± 0.0011		15BF LHCB	$E_{cm}^{pp} = 7 + 8 \; TeV$
0.23153 ± 0.00016	⁸ LEP-SLC	06	$E_{cm}^{ee} = 88-94 \text{ GeV}$

OCCUR=7

• • We do not use the following data for averages, fits, limits, etc. • •

 0.23153 ± 0.00016

TO THE GO HOL USE LITE TOHOWII	is data for averages	,,		
$0.23016\!\pm\!0.00064$	⁹ ABAZOV	18	D0	$E_{cm}^{ar{p}}=1.96\;TeV$
0.23248 ± 0.00053	¹⁰ AALTONEN	16 D	CDF2	$E_{cm}^{ar{p}}=1.96\;TeV$
0.23147 ± 0.00047	¹¹ ABAZOV	15 C	-	$E_{cm}^{ar{p}}=1.96\;TeV$
0.2315 ± 0.0010	¹² AALTONEN	14 C	CDF2	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$
0.23099 ± 0.00053	¹³ LEP-SLC	06	LEP	$E_{cm}^{ee} = 88-94 \; GeV$
0.23159 ± 0.00041	¹⁴ LEP-SLC	06	LEP	$E_{\mathrm{cm}}^{ee}=88-94~\mathrm{GeV}$
0.23098 ± 0.00026	¹⁵ LEP-SLC	06	SLD	$E_{cm}^{ee} = 88-94 \; GeV$
0.23221 ± 0.00029	¹⁶ LEP-SLC	06		$E_{cm}^{ee} = 88 – 94 \; GeV$
0.23220 ± 0.00081	¹⁷ LEP-SLC	06		$E_{cm}^{ee} = 88-94 \; GeV$
0.2324 ± 0.0012	¹⁸ LEP-SLC	06	LEP	$E_{cm}^{ee} = 88 – 94 \; GeV$

06

 $E_{\rm cm}^{ee}=88-94~{\rm GeV}$

OCCUR=3 OCCUR=4

OCCUR=2

OCCUR=5 OCCUR=6

¹ HAYRAPETYAN 25AF analyse the forward-backward asymmetry in Drell-Yan production of Z bosons decaying to electron and muon pairs.

NODE=S044SEF;LINKAGE=R

 2 AAIJ 24AL analyse the forward-backward asymmetry in Drell-Yan production of Z bosons decaying to muon pairs.

NODE=S044SEF;LINKAGE=Q

 3 HAYRAPETYAN 24T analyse the polarisation of tau leptons in Z bosons decaying to

NODE=S044SEF;LINKAGE=O

⁴AALTONEN 18B is a combination of the the results from the Tevatron experiments CDF and D0 in the electron and muon channels, AALTONEN 14C, AALTONEN 16D, ABAZOV 15C, ABAZOV 18, averaging the combined value from CDF and from D0 as also provided by the experiments in AALTONEN 16D and ABAZOV 18, respectively. The average of the two results takes correlations into account and has a χ^2 probability of 2.6%.

NODE=S044SEF;LINKAGE=L

 5 SIRUNYAN 18CY analyse the forward-backward asymmetry in Drell-Yan production of Zbosons decaying to muon or electron pairs.

NODE=S044SEF;LINKAGE=P

 6 AAD 15BT analyse the forward-backward asymmetry in Drell-Yan production of Z bosons decaying to muon or electron pairs.

NODE=S044SEF;LINKAGE=M

 7 AAIJ 15 BF analyse the forward-backward asymmetry in Drell-Yan production of Z bosons decaying to muon pairs.

NODE=S044SEF;LINKAGE=N

 8 This result combines the six individual results from LEP and SLC. The average, described

NODE=S044SEF;LINKAGE=G

in LEP-SLC 06, has a χ^2 probability of 3.7%.

- 9 ABAZOV 18 analyse the forward-backward asymmetry in Drell-Yan production of Z bosons decaying to muon pairs. Combining this result with the one from ABAZOV 15C, a value of 0.23095 \pm 0.00040 is obtained.
- 10 AALTONEN 16D analyse the forward-backward asymmetry in Drell-Yan production of $\it Z$ bosons decaying to electron pairs. Combining this result with the one from AALTONEN 14C, a value of 0.23221 \pm 0.00046 is obtained.
- 11 ABAZOV 15C analyse the forward-backward asymmetry in Drell-Yan production of $\it Z$ bosons decaying to electron pairs.
- 12 AALTONEN 14C analyse the forward-backward asymmetry in Drell-Yan production of Z bosons decaying to muon pairs.
- 13 The result is based on the forward-backward asymmetry measured in leptonic Z decays (electrons, muons, taus). It combines the results of the LEP experiments, ALEPH, DELPHI, L3 and OPAL, taking correlations into account, see LEP-SLC 06.
- 14 The result is based on the polarisation of tau leptons measured in Z decays to tau-lepton pairs. It combines the results of the LEP experiments, ALEPH, DELPHI, L3 and OPAL, taking correlations into account, see LEP-SLC 06.
- 15 The result is based on the left-right and forward-backward left-right asymmetry measured in leptonic Z decays (electrons, muons, taus). It combines the results of the SLC experiment, SLD, taking correlations into account, see LEP-SLC 06.
- 16 The result is based on the forward-backward asymmetry measured at LEP and the forward-backward left-right asymmetry measured at SLC, in both cases using Z decays to b-quarks. It combines the results of the LEP and SLC experiments, ALEPH, DELPHI, L3, OPAL and SLD, taking correlations into account, see LEP-SLC 06.
- 17 The result is based on the forward-backward asymmetry measured at LEP and the forward-backward left-right asymmetry measured at SLC, in both cases using *Z* decays to *c*-quarks. It combines the results of the LEP and SLC experiments ALEPH, DELPHI, L3, OPAL and SLD, taking correlations into account, see LEP-SLC 06.
- $^{18}\,\text{The}$ result is based on the inclusive hadronic charge asymmetry measured in hadronic Z decays. It combines the results of the LEP experiments, ALEPH, DELPHI, L3 and OPAL, taking correlations into account, see LEP-SLC 06.

ANOMALOUS $ZZ\gamma$, $Z\gamma\gamma$, AND ZZV COUPLINGS

Revised September 2013 by M.W. Grünewald (U. College Dublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

In on-shell $Z\gamma$ production, deviations from the Standard Model for the $Z\gamma\gamma^*$ and $Z\gamma Z^*$ couplings may be described in terms of eight parameters, h_i^V ($i=1,4;\ V=\gamma,Z$) [1]. The parameters h_i^γ describe the $Z\gamma\gamma^*$ couplings and the parameters h_i^Z the $Z\gamma Z^*$ couplings. In this formalism h_1^V and h_2^V lead to CP-violating and h_3^V and h_4^V to CP-conserving effects. All these anomalous contributions to the cross section increase rapidly with center-of-mass energy. In order to ensure unitarity, these parameters are usually described by a form-factor representation, $h_i^V(s) = h_{i\circ}^V/(1+s/\Lambda^2)^n$, where Λ is the energy scale for the manifestation of a new phenomenon and n is a sufficiently large power. By convention one uses n=3 for $h_{1,3}^V$ and n=4 for $h_{2,4}^V$. Usually limits on h_i^V 's are put assuming some value of Λ , sometimes ∞ .

In on-shell ZZ production, deviations from the Standard Model for the $ZZ\gamma^*$ and ZZZ^* couplings may be described by means of four anomalous couplings f_i^V $(i=4,5;V=\gamma,Z)$ [2]. As above, the parameters f_i^{γ} describe the $ZZ\gamma^*$ couplings and the parameters f_i^Z the ZZZ^* couplings. The anomalous couplings f_5^V lead to violation of C and P symmetries while f_4^V introduces CP violation. Also here, formfactors depending on a scale Λ are used.

NODE=S044SEF;LINKAGE=K

NODE=S044SEF;LINKAGE=I

NODE=S044SEF;LINKAGE=J

NODE=S044SEF;LINKAGE=H

NODE=S044SEF;LINKAGE=A

NODE=S044SEF;LINKAGE=B

 ${\small \mathsf{NODE}}{=}{\small \mathsf{S044SEF}}; \\ {\small \mathsf{LINKAGE}}{=}{\small \mathsf{C}}$

NODE=S044SEF;LINKAGE=D

NODE=S044SEF;LINKAGE=E

NODE=S044SEF;LINKAGE=F

NODE=S044270 NODE=S044270 All these couplings h_i^V and f_i^V are zero at tree level in the Standard Model; they are measured in e^+e^- , $p\bar{p}$ and pp collisions at LEP, Tevatron and LHC.

References

- 1. U. Baur and E.L. Berger, Phys. Rev. **D47**, 4889 (1993).
- 2. K. Hagiwara et al., Nucl. Phys. **B282**, 253 (1987).

Combining the LEP-2 results taking into account the correlations, the following 95% CL limits are derived [SCHAEL 13A]:

$$\begin{array}{lll} -0.12 < h_1^Z < +0.11, & -0.07 < h_2^Z < +0.07, \\ -0.19 < h_3^Z < +0.06, & -0.04 < h_4^Z < +0.13, \\ -0.05 < h_1^{\gamma} < +0.05, & -0.04 < h_2^{\gamma} < +0.02, \\ -0.05 < h_3^{\gamma} < +0.00, & +0.01 < h_4^{\gamma} < +0.05. \end{array}$$

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).

NODE=S044ZVG

NODE=S044ZVG

NODE=S044ZVG

```
    VALUE
    DOCUMENT ID
    TECN
    COMMENT

    • • • We do not use the following data for averages, fits, limits, etc.
    • • •
```

```
16Q ATLS E_{\rm cm}^{pp} = 8 \text{ TeV}
 <sup>2</sup> KHACHATRY...16AE CMS E_{cm}^{pp} = 8 \text{ TeV}
 <sup>3</sup> KHACHATRY...15AC CMS E_{cm}^{pp} = 8 \text{ TeV}
 <sup>4</sup> CHATRCHYAN 14AB CMS E_{cm}^{pp} = 7 \text{ TeV}
                            13AN ATLS E_{cm}^{pp} = 7 \text{ TeV}
 <sup>5</sup> AAD
 ^{6} CHATRCHYAN 13BI CMS E_{\text{Cm}}^{pp}=7 TeV
                                                 E_{\mathsf{cm}}^{\overline{p}\overline{p}}=1.96\;\mathsf{TeV}
 <sup>7</sup> ABAZOV
                            12S D0
                                                 E_{\rm cm}^{p\overline{p}}=1.96~{\rm TeV}
 <sup>8</sup> AALTONEN 11s CDF
                                                 E_{\mathsf{cm}}^{pp} = 7 \; \mathsf{TeV}
 <sup>9</sup> CHATRCHYAN 11M CMS
<sup>10</sup> ABAZOV
                                                 E_{\mathsf{cm}}^{p\overline{p}} = 1.96 \; \mathsf{TeV}
                            09L D0
                                                 E_{\mathsf{cm}}^{p\overline{p}} = 1.96 \; \mathsf{TeV}
<sup>11</sup> ABAZOV
                            07M D0
<sup>12</sup> ABDALLAH
                            07C DLPH E_{cm}^{ee} = 183-208 \text{ GeV}
<sup>13</sup> ACHARD
                                                 E_{\mathsf{cm}}^{\mathsf{ee}} = 183\text{--}208 \; \mathsf{GeV}
                            04H L3
^{14} ABBIENDI,G 00C OPAL E_{
m cm}^{\it ee}=189 GeV
<sup>15</sup> ABBOTT
                                                 E_{\mathsf{cm}}^{p\overline{p}} = 1.8 \; \mathsf{TeV}
                            98M D0
<sup>16</sup> ABREU
                             98к DLPH E_{cm}^{ee} = 161, 172 GeV
```

 1 AAD 16Q study $Z\gamma$ production in pp collisions. In events with no additional jets, 10268 (12738) Z decays to electron (muon) pairs are selected, with an expected background of 1291 \pm 340 (1537 \pm 408) events, as well as 1039 Z decays to neutrino pairs with an expected background of 450 \pm 96 events. Analyzing the photon transverse momentum distribution above 250 GeV (400 GeV) for lepton (neutrino) events, yields the 95% C.L. limits: $-7.8\times10^{-4} < h_3^Z < 8.6\times10^{-4}, -3.0\times10^{-6} < h_4^Z < 2.9\times10^{-6}, -9.5\times10^{-4} < h_3^\gamma < 9.9\times10^{-4}, -3.2\times10^{-6} < h_4^\gamma < 3.2\times10^{-6}.$

 2 KHACHATRYAN 16AE determine the $Z\gamma \to \nu \overline{\nu} \gamma$ cross section by selecting events with a photon of $E_T>145$ GeV and $E_T>140$ GeV. 630 candidate events are observed with an expected SM background of 269 \pm 26. The E_T spectrum of the photon is used to set 95% C.L. limits as follows: $-1.5\times 10^{-3} < h_3^Z < 1.6\times 10^{-3}, -3.9\times 10^{-6} < h_4^Z < 4.5\times 10^{-6}, -1.1\times 10^{-3} < h_3^\gamma < 0.9\times 10^{-3}, -3.8\times 10^{-6} < h_4^\gamma < 4.3\times 10^{-6}.$

 3 KHACHATRYAN 15AC study $Z\gamma$ events in 8 TeV pp interactions, where the Z decays into 2 same-flavor, opposite sign leptons (e or μ) and a photon with $p_T>15$ GeV. The p_T of a lepton is required to be >20 GeV/c, their effective mass >50 GeV, and the photon should have a separation $\Delta R>0.7$ with each lepton. The observed p_T distribution of the photons is used to extract the 95% C.L. limits: $-3.8\times 10^{-3} < h_3^Z < 3.7\times 10^{-3}, -3.1\times 10^{-5} < h_4^Z < 3.0\times 10^{-5}, -4.6\times 10^{-3} < h_3^\gamma < 4.6\times 10^{-3}, -3.6\times 10^{-5} < h_4^\gamma < 3.5\times 10^{-5}.$

 4 CHATRCHYAN 14AB measure $Z\gamma$ production cross section for p $_T^{\gamma}>$ 15 GeV and R($\ell\gamma$) > 0.7, which is the separation between the γ and the final state charged lepton (e or

NODE=S044ZVG;LINKAGE=I

 ${\sf NODE}{=}{\sf S044ZVG;} {\sf LINKAGE}{=}{\sf J}$

NODE=S044ZVG;LINKAGE=H

NODE=S044ZVG;LINKAGE=CA

 $\mu)$ in the azimuthal angle-pseudorapidity $(\phi-\eta)$ plane. The di-lepton mass is required to be > 50 GeV. After background subtraction the number of $e\,e\,\gamma$ and $\mu\,\mu\,\gamma$ events is determined to be 3160 ± 120 and 5030 ± 233 respectively, compatible with expectations from the SM. This leads to a 95% CL limits of -1×10^{-2} < h_3^{γ} < 1×10^{-2} , -9×10^{-5} < h_4^{γ} < 9×10^{-5} , -9×10^{-3} < h_3^{Z} < 9×10^{-3} , -8×10^{-5} < h_4^{Z} < 8×10^{-5} , assuming h_1^{V} and h_2^{V} have SM values, $V=\gamma$ or Z.

 5 AAD 13AN study $Z\gamma$ production in pp collisions. In events with no additional jet, 1417 (2031) Z decays to electron (muon) pairs are selected, with an expected background of 156 \pm 54 (244 \pm 64) events, as well as 662 Z decays to neutrino pairs with an expected background of 302 \pm 42 events. Analysing the photon p_T spectrum above 100 GeV yields the 95% C.L. limts: -0.013 < h_3^Z $< 0.014, -8.7 \times 10^{-5}$ < h_4^Z $< 8.7 \times 10^{-5}, -0.015$ < h_3^γ $< 0.016, -9.4 \times 10^{-5}$ < h_4^γ $< 9.2 \times 10^{-5}$. Supersedes AAD 12BX.

 6 CHATRCHYAN 13BI determine the $Z\gamma \to \frac{4}{\nu}\overline{\nu}\gamma$ cross section by selecting events with a photon of $E_T>145$ GeV and a $E_T>130$ GeV. 73 candidate events are observed with an expected SM background of 30.2 ± 6.5 . The E_T spectrum of the photon is used to set 95% C.L. limits as follows: $\left|h_3^Z\right|<2.7\times10^{-3}$, $\left|h_4^Z\right|<1.3\times10^{-5}$, $\left|h_3^\gamma\right|<2.9\times10^{-3}$, $\left|h_4^\gamma\right|<1.5\times10^{-5}$.

 7 ABAZOV 12S study $Z\gamma$ production in $p\,\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV using 6.2 fb $^{-1}$ of data where the Z decays to electron (muon) pairs and the photon has at least 10 GeV of transverse momentum. In data, 304 (308) di-electron (di-muon) events are observed with an expected background of 255 \pm 16 (285 \pm 24) events. Based on the photon p_T spectrum, and including also earlier data and the $Z\to\nu\overline{\nu}$ decay mode (from ABAZOV 09L), the following 95% C.L. limits are reported: $|h_{03}^Z|<0.026,\,|h_{04}^Z|<0.0013,\,|h_{03}^\gamma|<0.027,\,|h_{04}^\gamma|<0.0014$ for a form factor scale of $\Lambda=1.5$ TeV.

 8 AALTONEN 11S study $Z\gamma$ events in $p\overline{p}$ interactions at $\sqrt{s}=1.96$ TeV with integrated luminosity $5.1~{\rm fb}^{-1}$ for $Z\to e^+e^-/\mu^+\mu^-$ and $4.9~{\rm fb}^{-1}$ for $Z\to \nu\overline{\nu}$. For the charged lepton case, the two leptons must be of the same flavor with the transverse momentum/energy of one $>20~{\rm GeV}$ and the other $>10~{\rm GeV}$. The isolated photon must have $E_T>50~{\rm GeV}$. They observe 91 events with 87.2 ± 7.8 events expected from standard model processes. For the $\nu\overline{\nu}$ case they require solitary photons with $E_T>25~{\rm GeV}$ and missing $E_T>25~{\rm GeV}$ and observe $85~{\rm events}$ with standard model expectation of 85.9 ± 5.6 events. Taking the form factor $\Lambda=1.5~{\rm TeV}$ they derive 95% C.L. limits as $\left|h_3^{\gamma},^Z\right|<0.022$ and $\left|h_4^{\gamma},^Z\right|<0.0009$.

 9 CHATRCHYAN 11M study $Z\gamma$ production in pp collisions at $\sqrt{s}=7$ TeV using $36~{\rm pb}^{-1}$ pp data, where the Z decays to $e^+\,e^-$ or $\mu^+\,\mu^-$. The total cross sections are measured for photon transverse energy $E_T^{\,\gamma}>10$ GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell,\gamma)>0.7$ with the dilepton invariant mass requirement of $M_{\ell\,\ell}>50$ GeV. The number of $e^+\,e^-\gamma$ and $\mu^+\mu^-\gamma$ candidates is 81 and 90 with estimated backgrounds of 20.5 ± 2.5 and 27.3 ± 3.2 events respectively. The 95% CL limits for $ZZ\gamma$ couplings are -0.05< $h_3^Z<0.06$ and -0.0005< $h_4^Z<0.0005$, and for $Z\gamma\gamma$ couplings are -0.07< $h_3^\gamma<0.07$ and -0.0005< $h_4^\gamma<0.0006$.

 10 ABAZOV 09L study $Z\gamma,\,Z\to\nu\overline{\nu}$ production in $p\overline{p}$ collisions at 1.96 TeV C.M. energy. They select 51 events with a photon of transverse energy E_T larger than 90 GeV, with an expected background of 17 events. Based on the photon E_T spectrum and including also Z decays to charged leptons (from ABAZOV 07M), the following 95% CL limits are reported: $|h_{30}^{\gamma}|<0.033,\,|h_{40}^{\gamma}|<0.0017,\,|h_{30}^{Z}|<0.0033,\,|h_{40}^{Z}|<0.0017.$

reported: $|h_{30}^{\gamma}|<0.033,\ |h_{40}^{\gamma}|<0.0017,\ |h_{30}^{Z}|<0.033,\ |h_{40}^{Z}|<0.0017.$ 11 ABAZOV 07M use 968 $p\overline{p}\to e^+e^-/\mu^+\mu^-\gamma X$ candidates, at 1.96 TeV center of mass energy, to tag $p\overline{p}\to Z\gamma$ events by requiring $E_T(\gamma)>7$ GeV, lepton-gamma separation $\Delta R_{\ell\gamma}>0.7$, and di-lepton invariant mass >30 GeV. The cross section is in agreement with the SM prediction. Using these $Z\gamma$ events they obtain 95% C.L. limits on each h_i^V , keeping all others fixed at their SM values. They report: $-0.083 < h_{30}^Z < 0.082, -0.0053 < h_{40}^Z < 0.0054, -0.085 < h_{30}^{\gamma} < 0.084, -0.0053 < h_{40}^{\gamma} < 0.0054,$ for the form factor scale $\Lambda=1.2$ TeV.

12 Using data collected at $\sqrt{s}=183$ –208, ABDALLAH 07C select 1,877 $e^+e^- \to Z\gamma$ events with $Z \to q\overline{q}$ or $\nu\overline{\nu}$, 171 $e^+e^- \to ZZ$ events with $Z \to q\overline{q}$ or lepton pair (except an explicit τ pair), and 74 $e^+e^- \to Z\gamma^*$ events with a $q\overline{q}\mu^+\mu^-$ or $q\overline{q}e^+e^-$ signature, to derive 95% CL limits on h_1^V . Each limit is derived with other parameters set to zero. They report: $-0.23 < h_1^Z < 0.23, -0.30 < h_3^Z < 0.16, -0.14 < h_1^\gamma < 0.14, -0.049 < h_3^\gamma < 0.044.$

 13 ACHARD 04H select 3515 $e^+e^-\to Z\gamma$ events with $Z\to q\overline{q}$ or $\nu\overline{\nu}$ at $\sqrt{s}=189-209$ GeV to derive 95% CL limits on h_i^V . For deriving each limit the other parameters are fixed at zero. They report: $-0.153 < h_1^Z < 0.141, -0.087 < h_2^Z < 0.079, -0.220 <$

NODE=S044ZVG;LINKAGE=G

NODE=S044ZVG;LINKAGE=F

NODE=S044ZVG;LINKAGE=BA

NODE=S044ZVG;LINKAGE=AL

NODE=S044ZVG;LINKAGE=CH

NODE=S044ZVG;LINKAGE=AZ

NODE=S044ZVG;LINKAGE=AA

NODE=S044ZVG;LINKAGE=AD

NODE=S044ZVG;LINKAGE=AC

 $h_3^Z < 0.112, \, -0.068 < h_4^Z < 0.148, \, -0.057 < h_1^{\gamma} < 0.057, \, -0.050 < h_2^{\gamma} < 0.023,$ $-0.059 < h_3^{\gamma} < 0.004, -0.004 < h_4^{\gamma} < 0.042.$

¹⁴ ABBIENDI,G 00C study $e^+e^- \rightarrow Z\gamma$ events (with $Z \rightarrow q\overline{q}$ and $Z \rightarrow \nu\overline{\nu}$) at 189 GeV to obtain the central values (and 95% CL limits) of these couplings: $h_1^Z = 0.000 \pm 0.100 \; (-0.190, 0.190), \; h_2^Z = 0.000 \pm 0.068 \; (-0.128, 0.128), \; h_3^Z = 0.000 \pm 0.100$ $-0.074^{+0.102}_{-0.103}$ (-0.269, 0.119), $h_4^Z = 0.046 \pm 0.068$ (-0.084, 0.175), $h_1^{\gamma} = 0.000 \pm 0.008$ 0.061 (-0.115, 0.115), $h_2^{\gamma} = 0.000 \pm 0.041$ (-0.077, 0.077), $h_3^{\gamma} = -0.080^{+0.039}_{-0.041}$ $(-0.164, -0.006), \ h_4^{\gamma} = 0.064^{+0.033}_{-0.030} \ (+0.007, +0.134).$ The results are derived assuming that only one coupling at a time is different from zero.

15 ABBOTT 98M study $p\overline{p} \rightarrow Z\gamma + X$, with $Z \rightarrow e^+e^-$, $\mu^+\mu^-$, $\overline{\nu}\nu$ at 1.8 TeV, to obtain 95% CL limits at $\Lambda=$ 750 GeV: $|h_{30}^Z|<$ 0.36, $|h_{40}^Z|<$ 0.05 (keeping $h_i^{\gamma}=$ 0), and $|h_{30}^{\gamma}|<0.37,\ |h_{40}^{\gamma}|<0.05$ (keeping $h_{\tilde{i}}^{Z}=0$). Limits on the *CP*-violating couplings are $|h_{\underline{1}0}^{Z}|<0.36,\ |h_{20}^{Z}|<0.05$ (keeping $h_{\tilde{i}}^{\gamma}=0$), and $|h_{10}^{\gamma}|<0.37,\ |h_{20}^{\gamma}|<0.05$ (keeping

 16 ABREU 98K determine a 95% CL upper limit on $\sigma(e^+e^-
ightarrow \gamma + \text{invisible particles}) <$ 2.5 pb using 161 and 172 GeV data. This is used to set 95% CL limits on $\left|h_{30}^{\gamma}\right|<$ 0.8 and $|h_{30}^{Z}| < 1.3$, derived at a scale $\Lambda=1$ TeV and with n=3 in the form factor representation. NODE=S044ZVG;LINKAGE=D

NODE=S044ZVG;LINKAGE=C

NODE=S044ZVG;LINKAGE=A

NODE=S044ZZZ NODE=S044ZZZ

 $f_{:}^{V}$

Combining the LEP-2 results taking into account the correlations, the following 95% CL limits are derived [SCHAEL 13A]:

$$-0.28 < f_4^Z < +0.32, \qquad -0.34 < f_5^Z < +0.35, \\ -0.17 < f_4^{\gamma} < +0.19, \qquad -0.35 < f_5^{\gamma} < +0.32.$$

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).

DOCUMENT ID TECN COMMENT VALUE

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $E_{\rm cm}^{pp}=13~{\rm TeV}$ 21Q CMS $E_{\text{cm}}^{pp} = 13 \text{ TeV}$ 19AY ATLS $E_{\text{cm}}^{pp} = 13 \text{ TeV}$ ² SIRUNYAN ³ AABOUD 18Q ATLS $E_{\text{cm}}^{pp} = 13 \text{ TeV}$ ⁴ AABOUD 18BT CMS $E_{\rm cm}^{pp}=13~{\rm TeV}$ ⁵ SIRUNYAN 6 KHACHATRY...15B CMS $E_{\rm cm}^{pp}=8$ TeV 7 KHACHATRY...15BC CMS $E_{\rm cm}^{pp}=7$, 8 TeV 8 AAD 13Z ATLS $E_{\rm cm}^{pp}=7$ TeV 9 CHATRCHYAN 13B CMS $E_{\mathrm{Cm}}^{pp}=7$ TeV 09 ALEP $E_{cm}^{ee} = 192-209 \text{ GeV}$ ¹⁰ SCHAEL 08к D0 $E_{\mathrm{Cm}}^{\overline{p}\overline{p}}=1.96~\mathrm{TeV}$ 07С DLPH $E_{\mathrm{Cm}}^{\mathrm{ee}}=183$ —208 GeV ¹¹ ABAZOV ¹² ABDALLAH ¹³ ABBIENDI 04c OPAL ¹⁴ ACHARD 03D L3

NODE=S044ZZZ

 1 AAD 23CH measure ZZ production with the Z bosons decaying to electrons or muons. Analysing the angular information of the final-state four-lepton system, the following limits are derived at 95% C.L.: -0.012 $<~f_{~4}^{Z}~<$ 0.012, -0.015 $< f_{~4}^{\gamma}~<$ 0.015.

 2 SIRUNYAN 21Q measure ZZ production where both Z bosons decay in the electron or muon channel. Analyzing the four-lepton invariant mass distribution, the following limits are derived at 95% C.L. in units of $10^{-4}\colon -6.6\ <\ f_4^Z\ <6.0,\ -5.5\ <\ f_5^Z\ <7.5,$ $-7.8~<~f_4^{~\gamma}~<7.1$, $-6.8<~f_5^{~\gamma}~<7.5$. This set of parameters is linearly related to a set of EFT parameters, resulting in the following limits at 95% C.L. in units of TeV $^{-4}$: $-2.3 < c_{\widetilde{B}\,W}/\Lambda^4 < 2.5, -1.4 < c_{W\,W}/\Lambda^4 < 1.2, -1.4 < c_{B\,W}/\Lambda^4 < 1.3,$ $-1.2 < c_{BB}/\Lambda^4 < 1.2.$

 3 AABOUD 19AY study ZZ production in the $\ell\ell
u
u$ decay channel. Events with a pair of isolated high-transverse momentum charged leptons (electron pairs or muon pairs), and with large missing energy, are selected. In the data, 371 (416) di-electron (dimuon) events are found, with a total expected background of 128 ± 8 (143 ± 8) events. Analysing the transverse momentum distribution of the charged dilepton system above NODE=S044ZZZ;LINKAGE=J

NODE=S044ZZZ;LINKAGE=I

NODE=S044ZZZ;LINKAGE=H

150 GeV, the following 95% C.L. limits are derived in units of 10^{-3} : $-1.2 < f_4^{\gamma} < 1.2, -1.0 < f_4^{Z} < 1.0, -1.2 < f_5^{\gamma} < 1.2, -1.0 < f_5^{Z} < 1.0.$

⁴ AABOUD 18Q study $pp \to ZZ$ events at $\sqrt{s}=13$ TeV with $Z \to e^+e^-$ or $Z \to \mu^+\mu^-$. The number of events observed in the 4e, 2e 2μ , and 4μ channels is 249, 465, and 303 respectively. Analysing the p_T spectrum of the leading Z boson, the following the following 95% C.L. limits are derived in units of 10^{-4} : $-1.8 < f_4^{\gamma} < 1.8$,

 6 KHACHATRYAN 15B study ZZ production in 8 TeV pp collisions. In the decay modes $ZZ\to 4e,\,4\mu,\,2e\,2\mu,\,54,\,75,\,148$ events are observed, with an expected background of $2.2\pm0.9,\,1.2\pm0.6,\,$ and 2.4 ± 1.0 events, respectively. Analysing the 4-lepton invariant mass spectrum in the range from 110 GeV to 1200 GeV, the following 95% C.L. limits are obtained: $|f_A^Z|<0.004,\,|f_5^Z|<0.004,\,|f_4^Y|<0.005,\,|f_5^Y|<0.005.$

 7 KHACHATRYAN 15BC use the cross section measurement of the final state $pp \to ZZ \to 2\ell 2\nu$, $(\ell$ being an electron or a muon) at 7 and 8 TeV to put limits on these triple gauge couplings. Effective mass of the charged lepton pair is required to be in the range 83.5–98.5 GeV and the dilepton $p_T > 45$ GeV. The reduced missing E_T is required to be >65 GeV, which takes into account the fake missing E_T due to detector effects. The numbers of e^+e^- and $\mu^+\mu^-$ events selected are 35 and 40 at 7 TeV and 176 and 271 at 8 TeV respectively. The production cross sections so obtained are in agreement with SM predictions. The following 95% C.L. limits are set: $-0.0028 < f_4^Z < 0.0032$, $-0.0037 < f_4^Y < 0.0033$, $-0.0029 < f_5^Z < 0.0031$, $-0.0033 < f_5^\gamma < 0.0037$. Combining with previous results (KHACHATRYAN 15B and CHATRCHYAN 13B) which include 7 TeV and 8 TeV data on the final states $pp \to ZZ \to 2\ell 2\ell'$ where ℓ and ℓ' are an electron or a muon, the best limits are $-0.0022 < f_4^Z < 0.0026$, $-0.0029 < f_4^\gamma < 0.0026$, $-0.0023 < f_5^\gamma < 0.0023$, $-0.0026 < f_5^\gamma < 0.0027$.

8 AAD 13Z study ZZ production in pp collisions at $\sqrt{s}=7$ TeV. In the $ZZ\to\ell^+\ell^-\ell^-\ell^+\ell^{\prime-}$ final state they observe a total of 66 events with an expected background of 0.9 ± 1.3 . In the $ZZ\to\ell^+\ell^-\nu\nu$ final state they observe a total of 87 events with an expected background of 46.9 ± 5.2 . The limits on anomalous TGCs are determined using the observed and expected numbers of these ZZ events binned in p^T_Z . The 95% C.L. are as follows: for form factor scale $\Lambda=\infty$, -0.015< for $f^\gamma_4<0.015$, -0.013< for form factor scale $\Lambda=0.013$, $f^\gamma_4<0.015$, $f^\gamma_4<0.015$, $f^\gamma_5<0.015$, $f^\gamma_5<0.$

 9 CHATRCHYAN 13B study ZZ production in pp collisions and select 54 ZZ candidates in the Z decay channel with electrons or muons with an expected background of 1.4 ± 0.5 events. The resulting 95% C.L. ranges are: $-0.013 < f_4^{\gamma} < 0.015, -0.011 < f_4^{Z} < 0.012, -0.014 < f_5^{\gamma} < 0.014, -0.012 < f_5^{Z} < 0.012.$

 10 Using data collected in the center of mass energy range 192–209 GeV, SCHAEL 09 select 318 $e^+\,e^-\,\to\,ZZ$ events with 319.4 expected from the standard model. Using this data they derive the following 95% CL limits: $-0.321 < f_4^\gamma < 0.318, \, -0.534 < f_4^Z < 0.534, \, -0.724 < f_5^\gamma < 0.733, \, -1.194 < f_5^Z < 1.190.$

 11 ABAZOV 08K search for ZZ and $Z\gamma^*$ events with $1\,\mathrm{fb}^{-1}$ $p\,\overline{p}$ data at $\sqrt{s}=1.96$ TeV in (ee)(ee), $(\mu\mu)(\mu\mu)$, (ee)($\mu\mu$) final states requiring the lepton pair masses to be >30 GeV. They observe 1 event, which is consistent with an expected signal of 1.71 ± 0.15 events and a background of 0.13 ± 0.03 events. From this they derive the following limits, for a form factor (Λ) value of 1.2 TeV: $-0.28 < f_{40}^Z < 0.28$, $-0.31 < f_{50}^Z < 0.29$, $-0.26 < f_{40}^\gamma < 0.26$, $-0.30 < f_{50}^\gamma < 0.28$.

12 Using data collected at $\sqrt{s}=183$ –208 GeV, ABDALLAH 07C select 171 $e^+e^- \to ZZ$ events with $Z \to q \overline{q}$ or lepton pair (except an explicit τ pair), and 74 $e^+e^- \to Z\gamma^*$ events with a $q \overline{q} \mu^+ \mu^-$ or $q \overline{q} e^+ e^-$ signature, to derive 95% CL limits on f_4^V . Each limit is derived with other parameters set to zero. They report: $-0.40 < f_4^Z < 0.42$, $-0.38 < f_5^Z < 0.62$, $-0.23 < f_4^\gamma < 0.25$, $-0.52 < f_5^\gamma < 0.48$.

 13 ABBIENDI 04C study ZZ production in $\rm e^+\,e^-$ collisions in the C.M. energy range 190–209 GeV. They select 340 events with an expected background of 180 events. Including the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expected

NODE=S044ZZZ;LINKAGE=F

NODE=S044ZZZ;LINKAGE=G

NODE=S044ZZZ:LINKAGE=D

NODE=S044ZZZ;LINKAGE=E

NODE=S044ZZZ;LINKAGE=AA

NODE=S044ZZZ;LINKAGE=CH

NODE=S044ZZZ;LINKAGE=SC

NODE=S044ZZZ;LINKAGE=AB

NODE=S044ZZZ;LINKAGE=AD

NODE=S044ZZZ;LINKAGE=BI

background of 65 events) they report the following 95% CL limits: $-0.45 < f_4^Z < 0.58$, $-0.94 < f_5^Z < 0.25$, $-0.32 < f_4^\gamma < 0.33$, and $-0.71 < f_5^\gamma < 0.59$.

 14 ACHARD 03D study Z-boson pair production in $e^+\,e^-$ collisions in the C.M. energy range 200–209 GeV. They select 549 events with an expected background of 432 events. Including the ACCIARRI 99G and ACCIARRI 99O data (183 and 189 GeV respectively, 286 events with an expected background of 241 events) and the 192–202 GeV ACCIARRI 011 results (656 events, expected background of 512 events), they report the following 95% CL limits: $-0.48 \le f_4^Z \le 0.46, -0.36 \le f_5^Z \le 1.03, -0.28 \le f_4^\gamma \le 0.28,$ and $-0.40 \le f_5^\gamma \le 0.47.$

NODE=S044ZZZ;LINKAGE=D3

NODE=S044275 NODE=S044275

ANOMALOUS W/Z QUARTIC COUPLINGS

Revised March 2024 by M.W. Grünewald (U. College Dublin) and A. Gurtu (CERN; TIFR Mumbay).

Quartic couplings, WWZZ, $WWZ\gamma$, $WW\gamma\gamma$, and $ZZ\gamma\gamma$, were studied at LEP and Tevatron at energies at which the Standard Model predicts negligible contributions to multiboson production. Thus, to parametrize limits on these couplings, an effective theory approach is adopted which supplements the Standard Model Lagrangian with higher dimensional operators which include quartic couplings. The LEP collaborations chose the lowest dimensional representation of operators (dimension 6) which presumes the $SU(2)\times U(1)$ gauge symmetry is broken by means other than the conventional Higgs scalar doublet [1–3]. In this representation possible quartic couplings, a_0, a_c, a_n , are expressed in terms of the following dimension-6 operators [1,2];

$$\begin{split} L_6^0 &= -\frac{e^2}{16\Lambda^2} \; a_0 \; F^{\mu\nu} \; F_{\mu\nu} \vec{W^{\alpha}} \cdot \vec{W}_{\alpha} \\ L_6^c &= -\frac{e^2}{16\Lambda^2} \; a_c \; F^{\mu\alpha} \; F_{\mu\beta} \vec{W^{\beta}} \cdot \vec{W}_{\alpha} \\ L_6^n &= -i \frac{e^2}{16\Lambda^2} \; a_n \epsilon_{ijk} \; W_{\mu\alpha}^{(i)} \; W_{\nu}^{(j)} \; W^{(k)\alpha} F^{\mu\nu} \\ \widetilde{L}_6^0 &= -\frac{e^2}{16\Lambda^2} \; \widetilde{a}_0 \; F^{\mu\nu} \; \widetilde{F}_{\mu\nu} \vec{W^{\alpha}} \cdot \vec{W}_{\alpha} \\ \widetilde{L}_6^n &= -i \frac{e^2}{16\Lambda^2} \; \widetilde{a}_n \epsilon_{ijk} \; W_{\mu\alpha}^{(i)} \; W_{\nu}^{(j)} \; W^{(k)\alpha} \widetilde{F}^{\mu\nu} \end{split}$$

where F, W are photon and W fields, L_6^0 and L_6^c conserve C, P separately (\widetilde{L}_6^0 conserves only C) and generate anomalous $W^+W^-\gamma\gamma$ and $ZZ\gamma\gamma$ couplings, L_6^n violates CP (\widetilde{L}_6^n violates both C and P) and generates an anomalous $W^+W^-Z\gamma$ coupling, and Λ is an energy scale for new physics. For the $ZZ\gamma\gamma$ coupling the CP-violating term represented by L_6^n does not contribute. These couplings are assumed to be real and to vanish at tree level in the Standard Model.

Within the same framework as above, a more recent description of the quartic couplings [3] treats the anomalous parts of the $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings separately, leading to two sets parametrized as a_0^V/Λ^2 and a_c^V/Λ^2 , where V=W or Z.

With the discovery of a Higgs at the LHC in 2012, it is then useful to go to the next higher dimensional representation (dimension 8 operators) in which the gauge symmetry is broken by the conventional Higgs scalar doublet [3,4]. There are 14 operators which can contribute to the anomalous quartic coupling signal. Some of the operators have analogues in the dimension 6 scheme. The CMS collaboration, [5], have used this parametrization, in which the connections between the two schemes are also summarized:

$$\mathcal{L}_{AQGC} = -\frac{e^2}{8} \frac{a_0^W}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^{+a} W_a^{-}$$

$$-\frac{e^2}{16} \frac{a_c^W}{\Lambda^2} F_{\mu\nu} F^{\mu a} (W^{+\nu} W_a^{-} + W^{-\nu} W_a^{+})$$

$$-e^2 g^2 \frac{\kappa_0^W}{\Lambda^2} F_{\mu\nu} Z^{\mu\nu} W^{+a} W_a^{-}$$

$$-\frac{e^2 g^2}{2} \frac{\kappa_c^W}{\Lambda^2} F_{\mu\nu} Z^{\mu a} (W^{+\nu} W_a^{-} + W^{-\nu} W_a^{+})$$

$$+\frac{f_{T,0}}{\Lambda^4} Tr[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu}] \times Tr[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta}]$$

The energy scale of possible new physics is Λ , and $g = e/\sin(\theta_W)$, e being the unit electric charge and θ_W the Weinberg angle. The field tensors are described in [3,4].

The two dimension 6 operators a_0^W/Λ^2 and a_c^W/Λ^2 are associated with the $WW\gamma\gamma$ vertex. Among dimension 8 operators, κ_0^W/Λ^2 and κ_c^W/Λ^2 are associated with the $WWZ\gamma$ vertex, whereas the parameter $f_{T,0}/\Lambda^4$ contributes to both vertices. There is a relationship between these two dimension 6 parameters and the dimension 8 parameters $f_{M,i}/\Lambda^4$ as follows [3]:

$$\frac{a_0^W}{\Lambda^2} = -\frac{4M_W^2}{g^2} \frac{f_{M,0}}{\Lambda^4} - \frac{8M_W^2}{g'^2} \frac{f_{M,2}}{\Lambda^4}$$
$$\frac{a_c^W}{\Lambda^2} = -\frac{4M_W^2}{g^2} \frac{f_{M,1}}{\Lambda^4} - \frac{8M_W^2}{g'^2} \frac{f_{M,3}}{\Lambda^4}$$

where $g'=e/\cos(\theta_W)$ and M_W is the invariant mass of the W boson. This relation provides a translation between limits on dimension 6 operators $a_{0,c}^W$ and $f_{M,j}/\Lambda^4$. It is further required [4] that $f_{M,0}=2f_{M,2}$ and $f_{M,1}=2f_{M,3}$ which suppresses contributions to the $WWZ\gamma$ vertex. The complete set of Lagrangian contributions as presented in [4] corresponds to 19 anomalous couplings in total $-f_{S,i}$, $i=1,2,f_{M,i}$, $i=0,\ldots,8$ and $f_{T,i}$, $i=0,\ldots,9$ – each scaled by $1/\Lambda^4$.

Another approach to couplings is the so called K-matrix framework [7], in which the anomalous couplings can be expressed in terms of two parameters α_4 and α_5 , which account for all BSM effects.

The LHC collaborations have published couplings results based on various theoretical frameworks. It is hoped that the collaborations will agree to use at least one common set of parameters to express these limits to enable the reader to make a comparison, and to allow for a possible LHC combination.

References

- G. Belanger and F. Boudjema, Phys. Lett. **B288**, 201
- 2. J.W. Stirling and A. Werthenbach, Eur. Phys. J. C14, 103
 - J.W. Stirling and A. Werthenbach, Phys. Lett. **B466**, 369 (1999);
 - A. Denner *et al.*, Eur. Phys. J. **C20**, 201 (2001);
 - G. Montagna *et al.*, Phys. Lett. **B515**, 197 (2001).
- 3. G. Belanger *et al.*, Eur. Phys. J. **C13**, 283 (2000).
- 4. O.J.P. Éboli, M.C. Gonzalez-Garcia, and S.M. Lietti, Phys. Rev. **D69**, 095005 (2004);
 - O.J.P. Éboli, M.C. Gonzalez-Garcia, and J.K. Mizukoshi, Phys. Rev. **D77**, 073005 (2006).
- S. Chatrchyan *et al.*, Phys. Rev. **D90**, 032008 (2014); S. Chatrchyan et al., Phys. Rev. Lett. 114, 051801 (2015).
- G. Aad et al., Phys. Rev. Lett. 113, 141803 (2014).
- A. Albateanu, W. Killian, and J. Reuter, JHEP 0811, 010 (2008).

 a_0/Λ^2 , a_c/Λ^2

Combining published and unpublished preliminary LEP results the following 95% CL intervals for the QGCs associated with the $ZZ\gamma\gamma$ vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$-0.008 < a_0^Z/\Lambda^2 < +0.021$$

 $-0.029 < a_0^Z/\Lambda^2 < +0.039$

Anomalous Z quartic couplings have also been measured by the Tevatron and LHC experiments. As discussed in the review on "Anomalous W/Z quartic couplings," the coupling parameters in the Anomalous QGC Lagrangian may relate to processes involving only the W or only to the Z or to both. Thus, results on all other AQGCs are reported together in the W listings.

DOCUMENT ID <u>TECN</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ABBIENDI 04L OPAL

² HEISTER 04A ALEP ³ ACHARD 02G L3

NODE=S044AQC NODE=S044AQC

NODE=S044AQC

 1 ABBIENDI 04L select 20 $e^+\,e^-\to\nu\overline{\nu}\gamma\gamma$ acoplanar events in the energy range 180–209 GeV and 176 $e^+\,e^-\to q\overline{q}\gamma\gamma$ events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous $W^+\,W^-\gamma\gamma$ and $Z\,Z\,\gamma\gamma$ quartic couplings. Further combining with the $W^+\,W^-\gamma$ sample of ABBIENDI 04B the following one-parameter 95% CL limits are obtained: $-0.007 < a_0^Z/\Lambda^2 < 0.023~{\rm GeV}^{-2}, -0.029 < a_0^Z/\Lambda^2 < 0.029~{\rm GeV}^{-2}, -0.020 < a_0^Z/\Lambda^2 < 0.020~{\rm GeV}^{-2}, -0.052 < a_0^Z/\Lambda^2 < 0.037~{\rm GeV}^{-2}.$

 2 In the CM energy range 183 to 209 GeV HEISTER 04A select 30 ${\rm e}^+\,{\rm e}^-\to\nu\bar\nu\gamma\gamma$ events with two acoplanar, high energy and high transverse momentum photons. The photon-photon acoplanarity is required to be $>5^\circ$, $E_\gamma/\sqrt{s}>0.025$ (the more energetic photon having energy $>0.2~\sqrt{s}$), ${\rm p}_{T\gamma}/{\rm E}_{\rm beam}>0.05$ and $|\cos\theta_\gamma|<0.94$. A likelihood fit to the photon energy and recoil missing mass yields the following one–parameter 95% CL limits: $-0.012< a_0^Z/\Lambda^2<0.019~{\rm GeV}^{-2}, -0.041< a_c^Z/\Lambda^2<0.044~{\rm GeV}^{-2}, -0.060< a_0^W/\Lambda^2<0.055~{\rm GeV}^{-2}, -0.099< a_c^W/\Lambda^2<0.093~{\rm GeV}^{-2}.$ 3 ACHARD 02G study $e^+e^-\to Z\gamma\gamma\to q\bar q\gamma\gamma$ events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy =0.07

³ ACHARD 02G study $e^+e^- \rightarrow Z\gamma\gamma \rightarrow q\overline{q}\gamma\gamma$ events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy >5 GeV and $|\cos\theta| < 0.97$, and the di-jet invariant mass to be compatible with that of the Z boson (74–111 GeV). Cuts on Z velocity ($\beta < 0.73$) and on the energy of the most energetic photon reduce the backgrounds due to non-resonant production of the $q\overline{q}\gamma\gamma$ state and due to ISR respectively, yielding a total of 40 candidate events of which 8.6 are expected to be due to background. The energy spectra of the least energetic photon are fitted for all ten center-of-mass energy values from 130 GeV to 209 GeV (as obtained adding to the present analysis 130–202 GeV data of ACCIARRI 01E, for a total of 137 events with an expected background of 34.1 events) to obtain the fitted values $a_0/\Lambda^2 = 0.00^+_{-0.01}$ GeV $^{-2}$ and $a_c/\Lambda^2 = 0.03^+_{-0.02}$ GeV $^{-2}$, where the other parameter is kept fixed to its Standard Model value (0). A simultaneous fit to both parameters yields the 95% CL limits -0.02 GeV $^{-2}$ $< a_0/\Lambda^2 < 0.03$ GeV $^{-2}$ and -0.07 GeV $^{-2}$ $< a_c/\Lambda^2 < 0.05$ GeV $^{-2}$.

NODE=S044AQC;LINKAGE=AB

NODE=S044AQC;LINKAGE=HE

NODE=S044AQC;LINKAGE=C

Z REFERENCES

HAYRAPETY	25AF	PL B866 139526	A. Hayrapetyan et al.	(CMS Collab.)
HAYRAPETY	25H	PL B865 139462	A. Hayrapetyan et al.	(CMS Collab.)
AAD	24L	PL B854 138705	G. Aad et al.	(ATLAS Collab.)
AAD	24R	PL B855 138762	G. Aad et al.	(ATLAS Collab.)
AAIJ	24AL	JHEP 2412 026	R. Aaij et al.	`(LHCb Collab.)
HAYRAPETY		JHEP 2401 101	A. Hayrapetyan et al.	(CMS Collab.)
AABOUD	23A	JHEP 2312 158 (errat.)		(ATLAS Collab.)
AAD		PR D108 032015	G. Aad et al.	(ATLAS Collab.)
AAD		PL B847 138292	G. Aad et al.	(ATLAS Collab.)
AAD		EPJ C83 781	G. Aad et al.	(ATLAS Collab.)
AAD		JHEP 2312 107	G. Aad et al.	(ATLAS Collab.)
AAIJ		CP C47 093002	R. Aaij et al.	(LHCb Collab.)
TUMASYAN	23E	PL B842 137563	A. Tumasyan et al.	(CMS Collab.)
AALTONEN	22	SCI 376 170	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AAD		NATP 17 819	G. Aad et al.	(ATLAS Collab.)
AAD		JHEP 2107 005	G. Aad et al.	(ATLAS Collab.)
AAD		PRL 127 271801	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	210	EPJ C81 200	A.M. Sirunyan et al.	(CMS Collab.)
JANOT	20	PL B803 135319	P. Janot, S. Jadach	(CERN, CRAC)
VOUTSINAS	20	PL B800 135068	G. Voutsinas <i>et al.</i>	(CERN, CRAC)
AABOUD		JHEP 1910 127	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19A1	JHEP 1904 048	M. Aaboud et al.	(ATLAS Collab.)
	19IN 19			
RAINBOLT SIRUNYAN		PR D99 013004 EPJ C79 94	J.L. Rainbolt, M. Schmitt	(NWES)
SIRUNYAN		PL B797 134811	A.M. Sirunyan et al.	(CMS Collab.)
			A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	IOAU	JHEP 1807 127	M. Aaboud et al.	(ATLAS Collab.)
Also AABOUD	10DI	JHEP 2312 158 (errat.)	M. Aaboud et al.	(ATLAS Collab.) (ATLAS Collab.)
AABOUD		PL B786 134 PR D98 092010	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18Q	PR D97 032005	M. Aaboud et al.	(ATLAS Collab.)
AAIJ		JHEP 1809 159	R. Aaij et al.	(LHCb Collab.)
AALTONEN	18B	PR D97 112007	T. Aaltonen et al.	(CDF and D0 Collabs.)
ABAZOV	18	PRL 120 241802	V.M. Abazov et al.	(D0 Collab.)
ANDREEV	18A	EPJ C78 777	V. Andreev et al.	(H1 Collab.)
SIRUNYAN		EPJ C78 165	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C78 701	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 121 141801	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	17Q	EPJ C77 367	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	16K	PRL 117 111802	M. Aaboud et al.	(ATLAS Collab.)
AAD	16L	EPJ C76 210	G. Aad et al.	(ATLAS Collab.)
AAD	160	PR D93 112002	G. Aad et al.	(ATLAS Collab.)
AALTONEN	16D	PR D93 112002	T. Aaltonen et al.	(CDF Collab.)
ABRAMOWICZ		PR D93 092002	H. Abramowicz et al.	(ZEUS Collab.)
ABT	16	PR D94 052007	I. Abt et al.	(MPIM, OXF, HAMB, DESY)
KHACHATRY			V. Khachatryan et al.	(CMS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD		JHEP 1509 049	G. Aad et al.	(ATLAS Collab.)
AAD	1561	PRL 114 121801	G. Aad et al.	
AAIJ		JHEP 1511 190	R. Aaij et al.	(ATLAS Collab.)
ABAZOV	15BF	PRL 115 041801	V.M. Abazov et al.	(LHCb Collab.) (D0 Collab.)
		JHEP 1504 164		
KHACHATRY		PL B740 250	V. Khachatryan et al.	(CMS Collab.) (CMS Collab.)
			V. Khachatryan et al.	(
KHACHATRY AAD		PR D90 072010	V. Khachatryan et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
	14/10	I IV D30 012010	G. Add Ct al.	(ATEAS COIIAD.)

NODE=S044

REFID=63559 REFID=63358 REFID=62753 REFID=62759 REFID=63140 REFID=62829 REFID=62353 REFID=62479 REFID=62546 REFID=62574 REFID=62388 REFID=62106 REFID=61846 REFID=61396 REFID=61404 REFID=61509 REFID=61330 REFID=60226 REFID=60142 REFID=60086 REFID=59669 REFID=59607 REFID=59703 REFID=59934 REFID=59128 REFID=62575 REFID=59294 REFID=59476 REFID=58879 REFID=59347 REFID=58951 REFID=58842 REFID=59317 REFID=59151 REFID=59253 REFID=59523 REFID=57862 REFID=57462 REFID=57156 REFID=57171 REFID=57299 REFID=57775 REFID=57429 REFID=57244 REFID=57695 REFID=56850 REFID=56444 REFID=57091 REFID=56482 REFID=56542 REFID=56268 REFID=56939 REFID=56145

```
REFID=55848
REFID=55805
                                                                                       (ATLAS Collab.)
(CDF Collab.)
AAD
                      PRL 112 231806
                                               G. Aad et al.
               14N
AALTONEN
               14C
                      PR D89 072005
                                                  Aaltonen et al.
                                                                                          (CDF Collab.)
                                                                                                                        REFID=55835
AALTONEN
               14E
                      PRL 112 111803
                                                   Aaltonen et al.
CHATRCHYAN
               14AB
                     PR D89 092005
                                                                                          (CMS Collab.
                                                                                                                        REFID=56034
                                                  Chatrchyan et al.
                                                                                                                        REFID=55155
REFID=56591
REFID=54966
               13AN
                     PR D87 112003
                                                  Aad et al.
                                                                                        (ATLAS Collab.)
AAD
   Also
                      PR D91 119901 (errat.)
                                               G.
                                                  Aad et al.
                                                                                        (ATLAS Collab.)
AAD
                      IHEP 1303 128
               137
                                               G.
                                                  Aad et al.
                                                                                        (ATLAS Collab.)
CHATRCHYAN 13B
                      JHEP 1301 063
                                                                                                                        REFID=54820
                                                                                          (CMS Collab.)
                                               S.
                                                  Chatrchyan et al.
CHATRCHYAN 13BI
                      JHEP 1310 164
                                                  Chatrchyan et al.
                                                                                          (CMS Collab.)
                                                                                                                        REFID=55426
                                                                                                                        REFID=55475
REFID=54585
REFID=54348
SCHAEL
                      PRPL 532 119
                                                  Schael et al.
                                                                        (ALEPH, DELPHI,
                                                                                           L3, OPAL+)
AAD
               12BX
                     PL B717 49
                                               G. Aad et al.
                                                                                       (ATLAS Collab.)
ABAZOV
                      PR D85 052001
               125
                                               V.M. Abazov et al.
                                                                                           (D0 Collab.)
                                                                                                                        REFID=54777
CHATRCHYAN 12BN JHEP 1212 034
                                               S. Chatrchyan et al. T. Aaltonen et al.
                                                                                          (CMS Collab.)
                                                                                                                        REFID=34777
REFID=16457
REFID=16465
REFID=52865
AALTONEN
                      PRL 107 051802
                                                                                          (CDF Collab.)
               11S
ABAZOV
                      PR D84 012007
                                               V.M. Abazov et al.
                                                                                           (D0 Collab.)
CHATRCHYAN 11M
                      PL B701 535
                                               S. Chatrchyan et al.
                                                                                          (CMS Collab.)
                                               V.M. Abazov et al.
A. Beddall, A. Beddall, A. Bingul
ABAZOV
               09L
                      PRL 102 201802
                                                                                           (D0 Collab.)
                                                                                                                        REFID=52611
REFID=52779
BEDDALL
                      PL B670 300
                                                                                                (UGAZ)
               09
                      JHEP 0904 124
                                                                                       (ALEPH Collab.)
SCHAEL
                                               S. Schael et al.
               09
                                                                                                                        REFID=52179
REFID=52389
REFID=51928
REFID=51265
REFID=51010
ABAZOV
               08K
                      PRL 100 131801
                                                V.M. Abazov et al.
                                                                                           (D0 Collab.)
ABAZOV
               07M
                      PL B653 378
                                               V.M. Abazov et al.
                                                                                            D0 Collab.
ABDALLAH
               07C
                      EPJ C51 525
                                               J. Abdallah et al.
                                                                                       (DELPHI Collab.)
                      PL B639 179
                                               J. Abdallah et al.
ABDALLAH
               06E
                                                                                      (DELPHI Collab.)
                                               A. Aktas et al.
ALEPH, DELPHI, L3, OPAL, SLD and working groups
(ALEPH Collab.)
                      PL B632 35
PRPL 427 257
                                                                                           (H1 Collab.)
AKTAS
               06
                                                                                                                        REFID=51219;ERROR=1;ERROR=2
LEP-SLC
               06
                                                                                                                        REFID=51266
REFID=50321
REFID=51221
SCHAEL
               06A
                      PL B639 192
ABDALLAH
               05
                      EPJ C40 1
                                               J. Abdallah et al.
                                                                                      (DELPHI Collab.)
                                                                                      (DELPHI Collab.)
ABDALLAH
               05C
                      EPJ C44 299
                                               J. Abdallah et al.
                                                                                                                        REFID=50449
                      PRL 94 091801
ARF
               05
                                               K. Abe et al.
                                                                                                                        REFID=50666
ABE
               05F
                      PR D71 112004
                                               K. Abe et al.
                                                                                          (SLD Collab.)
ACOSTA
                                                                                                                        REFID=50721
               05M
                      PR D71 052002
                                               D. Acosta et al.
                                                                                          (CDF Collab.)
                                                                                                                        REFID=49616
REFID=49627
REFID=49886
ABBIENDI
                      PL B580 17
                                                                                         (OPAL Collab.
               04B
                                                  Abbiendi et al.
                      EPJ C32 303
ABBIENDI
               04C
                                                  Abbiendi et al.
                                                                                         OPAL Collab.
                                                  Abbiendi et al.
                                                                                         (OPAL Collab.)
ABBIEND
               04E
                      PL B586 167
                                               G.
                                                                                                                        REFID=49915
                      EPJ C33 173
                                                  Abbiendi et al.
ABBIEND
               04G
                      PR D70 032005
                                                                                                                        REFID=50050
ABBIENDI
               04L
                                                  Abbiendi et al.
                                                                                         (OPAL Collab.)
                                               G.
                                                                                                                        REFID=49918
REFID=49963
REFID=49832
ABDALLAH
                      EPJ C34 109
                                               J. Abdallah et al.
                                                                                      (DELPHI Collab.)
               04F
                      PR D69 072003
                                                                                          (SLD Collab.
ABE
               04C
                                               K. Abe et al.
ACHARD
               04C
                      PL B585 42
                                               P. Achard et al.
                                                                                            (L3 Collab.)
                                                                                                                        REFID=50107
ACHARD
                      PL B597 119
               04H
                                               P Achard et al
                                                                                            (L3 Collab )
                                                                                                                        REFID=50282
HEISTER
                      PL B602 31
                                               A. Heister et al.
                                                                                       (ALEPH Collab.)
               04A
                                               G. Abbiendi et al.
                                                                                                                        REFID=49606
ABBIENDI
               03P
                      PL B577 18
                                                                                         (OPAL Collab.)
                                                                                                                        REFID=49548
REFID=49645
REFID=49393
ABDALLAH
                      PL B569 129
                                                  Abdallah et al.
                                                                                       (DELPHI Collab.)
               03H
                      PL B576 29
PRL 90 141804
ABDALLAH
               03K
                                               J. Abdallah et al.
                                                                                       (DELPHI Collab.)
                                                                                          (SLD Collab.)
                                                  Abe et al.
Achard et al.
ABE
               03F
                                               K.
                                                                                                                        REFID=49556
ACHARD
               03D
                      PL B572 133
                                                                                            (L3 Collab.)
(L3 Collab.)
ACHARD
                                                                                                                        REFID=49808
                      PL B577 109
                                                  Achard et al.
               03G
ABBIENDI
                      PL B546 29
                                                  Abbiendi et al.
                                                                                         (OPAL Collab.)
                                                                                                                        REFID=48991
               021
                                                                                                                        REFID=48627
REFID=48778
ABE
ACHARD
                      PRL 88 151801
                                                  Abe et al.
                                                                                          (SLD Collab.
               02G
                                                  Achard et al.
               02G
                      PL B540 43
                                                                                            (L3 Collab.)
                                                                                                                        REFID=48562
HEISTER
                      PL B526 34
                                                                                       (ALEPH Collab.)
                                               A. Heister et al.
               02B
                                                                                                                        REFID=48564
HEISTER
               02C
                      PL B528 19
                                               A. Heister et al.
                                                                                       (ALEPH Collab.)
                      EPJ C24 177
                                                                                       (ALEPH Collab.)
                                                                                                                        REFID=48626
HEISTER
               02H
                                               A. Heister et al.
                                                                                                                        REFID=48022
REFID=48078
REFID=48283
ABBIENDI
               01A
                      EPJ C19 587
                                                  Abbiendi et al.
                                                                                         (OPAL Collab.
ABBIENDI
               01G
                      EPJ C18 447
                                                  Abbiendi et al.
                                                                                         OPAL Collab.
                                                  Abbiendi et al.
ABBIENDI
                      PL B516 1
                                                                                         OPAL Collab.
               01K
                                               G.
G.
                                                                                                                        REFID=48296
ABBIENDI
                      EPJ C20 445
                                                  Abbiendi et al.
                                                                                         (OPAL Collab.)
               01N
                      EPJ C21 1
                                                  Abbiendi et al.
                                                                                                                        REFID=48364
ABBIENDI
               010
                                               G.
                                                                                         (OPAL Collab.)
                      PRL 86 1162
                                                  Abe et al.
                                                                                          (SLD Collab.)
                                                                                                                        REFID=48042
ABE
                      PR D63 032005
                                               K.
                                                  Abe et al.
                                                                                          (SLD Collab.
                                                                                                                        REFID=48051
REFID=48127
               01C
ACCIARRI
                                                                                            (L3 Collab.
                                               M
               01F
                      PI R505 47
                                                   Acciarri et al.
ACCIARRI
                      PL B497 23
                                                                                                                        REFID=47915
                                               M. Acciarri et al.
                                                                                            (L3 Collab.)
               011
HEISTER
                      EPJ C20 401
                                               A. Heister et al.
                                                                                       (ALEPH Collab.)
                                                                                                                        REFID=48196
               01
HEISTER
                      EPJ C22 201
                                               A. Heister et al.
                                                                                        (ALEPH Collab.)
                                                                                                                        REFID=48508
                                                                                                                        REFID=47602
REFID=47850
REFID=47651
ABBIENDI
                      PL B476 256
                                               G. Abbiendi et al.
                                                                                         (OPAL Collab.
               00N
                      EPJ C17 553
PRL 84 5945
                                                                                         (OPAL Collab.)
(SLD Collab.)
ABBIENDI.G
               00C
                                               G.
                                                  Abbiendi et al.
                                                  Abe et al.
Abe et al.
               00B
ABE
                                               K.
               00D
                      PRL 85 5059
                                                                                          (SLD Collab.)
                                                                                                                        REFID=47880
ABE
                                                                                                                        REFID=47374
REFID=47375
ABREU
               00
                      EPJ C12 225
                                                  Abreu et al.
                                                                                       (DELPHI Collab.)
ABREU
               00B
                      EPJ C14 613
                                                  Abreu et al.
                                                                                       (DELPHI Collab.)
                                                                                                                        REFID=47481
REFID=47482
REFID=47585
ABREU
               00E
                      EPJ C14 585
                                                  Abreu et al.
                                                                                       DELPHI Collab.
                      EPJ C16 371
PL B475 429
                                                                                      (DELPHI Collab.)
ARREII
               00F
                                                  Abreu et al.
ABREU
               00P
                                                  Abreu et al.
ACCIARRI
               00
                      EPJ C13 47
                                               M. Acciarri et al.
                                                                                            (L3 Collab.)
                                                                                                                        REFID=47433
ACCIARRI
                      EPJ C16 1
                                                   Acciarri et al.
                                                                                            (L3 Collab.)
                                                                                                                        REFID=47483
                                                                                                                        REFID=47620
REFID=47758
REFID=47376
ACCIARRI
               00J
                      PL B479 79
                                               Μ.
                                                   Acciarri et al.
                                                                                            (L3 Collab.
ACCIARRI
               വവ
                      PL B489 93
                                               M. Acciarri et al.
                                                                                            (L3 Collab.)
BARATE
                      EPJ C16 597
                                                                                       (ALEPH Collab.)
(ALEPH Collab.)
               00B
                                               R. Barate et al.
                      EPJ C14 1
                                                                                                                        REFID=47377
BARATE
               00C
                                               R.
                                                  Barate et al.
                                                                                       (ALEPH Collab.
BARATE
               000
                      EPJ C16 613
                                                  Barate et al.
                                                                                                                        REFID=47786
ABBIENDI
               99B
                      EPJ C8 217
                                                  Abbiendi et al.
                                                                                         (OPAL Collab.)
                                                                                                                        REFID=46595
                                                                                                                        REFID=46717
REFID=46722
REFID=47146
ABBIENDI
               991
                      PL B447 157
                                               G.
                                                  Abbiendi et al.
                                                                                         OPAL Collab.
ARF
               aaF
                      PR D59 052001
                                               K.
K.
                                                  Abe et al.
Abe et al.
                                                                                          (SLD Collab.)
ABE
                      PRL 83 1902
               99L
                                                                                                                        REFID=46534
ABREU
               99
                      EPJ C6 19
                                                  Abreu et al.
                                                                                       (DELPHI Collab.)
ABREU
               99B
                      EPJ C10 415
                                                  Abreu et al.
                                                                                       (DELPHI Collab.)
                                                                                                                        REFID=46594
                                                                                                                        REFID=46917
ABREU
               99J
                      PL B449 364
                                                  Abreu et al.
                                                                                       (DELPHI Collab.)
ABREU
               99U
                      PL B462 425
                                               P. Abreu et al.
                                                                                       (DELPHI Collab.)
                                                                                                                        REFID=47225
                                                                                       (DELPHI Collab.)
                                                                                                                        REFID=47303
ABREU
               99Y
                      FPI C10 219
                                                  Abreu et al.
                      PL B448 152
                                                                                            (L3 Collab.)
                                                                                                                        REFID=46733
ACCIARRI
               99D
                                               M. Acciarri et al.
ACCIARRI
                      PL B453 94
                                                                                                                        REFID=46968
               99F
                                               M. Acciarri et al.
                                                                                            (L3 Collab.)
ACCIARRI
               99G
                      PL B450 281
                                                   Acciarri et al.
                                                                                            (L3 Collab.)
                                                                                                                        REFID=46991
                                                                                                                        REFID=47248
ACCIARRI
               990
                      PL B465 363
                                               M.
                                                   Acciarri et al.
                                                                                            L3 Collab.
                                                                                                                        REFID=46188
ABBOTT
               98M
                      PR D57 3817
                                                  Abbott et al.
                                                                                           (D0 Collab.)
```

ABE	98D	PRL 80 660	K. Abe <i>et al.</i>	(SLD Collab.)	REFID=45885
ABE	98I	PRL 81 942	K. Abe <i>et al.</i>	(SLD Collab.)	REFID=46094
ABREU	98K	PL B423 194	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.)	REFID=46224
ABREU	98L	EPJ C5 585		(DELPHI Collab.)	REFID=46265
ACCIARRI	98G	PL B431 199	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=45974
ACCIARRI	98H	PL B429 387	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=46064
ACCIARRI	98U	PL B439 225	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=46509
ACKERSTAFF	98A	EPJ C5 411	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)	REFID=46263
ACKERSTAFF	98E	EPJ C1 439	K. Ackerstaff et al.K. Ackerstaff et al.	(OPAL Collab.)	REFID=45837
ACKERSTAFF	98O	PL B420 157		(OPAL Collab.)	REFID=46029
ACKERSTAFF	98Q	EPJ C4 19	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)	REFID=46145
BARATE	98O	PL B434 415	R. Barate <i>et al.</i>	(ALEPH Collab.)	REFID=46133
BARATE	98T	EPJ C4 557	R. Barate <i>et al.</i>	(ALEPH Collab.)	REFID=46149
BARATE	98V	EPJ C5 205	R. Barate <i>et al.</i>	(ALEPH Collab.)	REFID=46151
ABE	97	PRL 78 17	K. Abe <i>et al.</i> P. Abreu <i>et al.</i>	(SLD Collab.)	REFID=45226
ABREU	97C	ZPHY C73 243		(DELPHI Collab.)	REFID=45288
ABREU	97E	PL B398 207	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.)	REFID=45322
ABREU	97G	PL B404 194		(DELPHI Collab.)	REFID=45454
ACCIARRI	97D	PL B393 465	M. Acciarri et al.	` (L3 Collab.)	REFID=45253
ACCIARRI	97J	PL B407 351	M. Acciarri et al. M. Acciarri et al.	(L3 Collab.)	REFID=45632
ACCIARRI	97L	PL B407 389		(L3 Collab.)	REFID=45655
ACCIARRI	97R	PL B413 167	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=45748
ACKERSTAFF	97M	ZPHY C74 413	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)	REFID=45487
ACKERSTAFF	97S	PL B412 210	K. Ackerstaff et al.K. Ackerstaff et al.	(OPAL Collab.)	REFID=45739
ACKERSTAFF	97T	ZPHY C76 387		(OPAL Collab.)	REFID=45785
ACKERSTAFF	97W	ZPHY C76 425	K. Ackerstaff et al.G. Alexander et al.	(OPAL Collab.)	REFID=45788
ALEXANDER	97C	ZPHY C73 379		(OPAL Collab.)	REFID=45289
ALEXANDER	97D	ZPHY C73 569	G. Alexander <i>et al.</i> G. Alexander <i>et al.</i>	(OPAL Collab.)	REFID=45292
ALEXANDER	97E	ZPHY C73 587		(OPAL Collab.)	REFID=45293
BARATE	97D	PL B405 191	R. Barate <i>et al.</i> R. Barate <i>et al.</i>	(ALEPH Collab.)	REFID=45457
BARATE	97E	PL B401 150		(ALEPH Collab.)	REFID=45473
BARATE	97F	PL B401 163	R. Barate <i>et al.</i> R. Barate <i>et al.</i>	(ALEPH Collab.)	REFID=45474
BARATE	97H	PL B402 213		(ALEPH Collab.)	REFID=45480
BARATE	97J	ZPHY C74 451	R. Barate et al.	(ALEPH Collab.)	REFID=45490
ABREU	96R	ZPHY C72 31	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44935
ABREU	96S	PL B389 405		(DELPHI Collab.)	REFID=44969
ABREU	96U	ZPHY C73 61	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=45285
ACCIARRI	96	PL B371 126	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=44637
ADAM	96	ZPHY C69 561	W. Adam <i>et al.</i>	(DELPHI Collab.)	REFID=44627
ADAM	96B	ZPHY C70 371	W. Adam <i>et al.</i>	(DELPHI Collab.)	REFID=44629
ALEXANDER	96B	ZPHY C70 197	G. Alexander et al. G. Alexander et al.	(OPAL Collab.)	REFID=44638
ALEXANDER	96F	PL B370 185		(OPAL Collab.)	REFID=44670
ALEXANDER	96N	PL B384 343	G. Alexander et al.	(OPAL Collab.)	REFID=44901
ALEXANDER	96R	ZPHY C72 1	G. Alexander et al.	(OPAL Collab.)	REFID=44933
BUSKULIC	96D	ZPHY C69 393	D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i>	(ÀLEPH Collab.)	REFID=44677
BUSKULIC	96H	ZPHY C69 379		(ALEPH Collab.)	REFID=44703
BUSKULIC	96T	PL B384 449	D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i>	(ALEPH Collab.)	REFID=44907
BUSKULIC	96Y	PL B388 648		(ALEPH Collab.)	REFID=44963
ABE ABREU	95J 95	PRL 74 2880	K. Abe et al. P. Abreu et al.	(SLD Collab.) (DELPHI Collab.)	REFID=44191 REFID=44104
ABREU	95D	ZPHY C65 709 (errat.) ZPHY C66 323	P. Abreu et al.	(DELPHI Collab.)	REFID=44261
ABREU	95L	ZPHY C65 587	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44390
ABREU	95M	ZPHY C65 603		(DELPHI Collab.)	REFID=44398
ABREU	95O	ZPHY C67 543	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44457
ABREU	95R	ZPHY C68 353	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44464
ABREU	95V	ZPHY C68 541	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44538
ABREU	95W	PL B361 207	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44542
ABREU	95X	ZPHY C69 1	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44685
ACCIARRI	95B	PL B345 589	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=44130
ACCIARRI	95C	PL B345 609	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=44132
ACCIARRI	95G	PL B353 136	M. Acciarri <i>et al.</i>	(L3 Collab.)	REFID=44281
AKERS	95C	ZPHY C65 47	R. Akers <i>et al.</i>	(OPAL Collab.)	REFID=44157
AKERS	95U	ZPHY C67 389	R. Akers <i>et al.</i>	(OPAL Collab.)	REFID=44380
AKERS	95W	ZPHY C67 555	R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(OPAL Collab.)	REFID=44458
AKERS	95X	ZPHY C68 1		(OPAL Collab.)	REFID=44459
AKERS	95Z	ZPHY C68 203	R. Akers <i>et al.</i> G. Alexander <i>et al.</i>	(OPAL Collab.)	REFID=44669
ALEXANDER	95D	PL B358 162		(OPAL Collab.)	REFID=44472
BUSKULIC MIYABAYASHI	95R	ZPHY C69 15	D. Buskulic et al.	(ALEPH Collab.)	REFID=44813 REFID=44209
ABE	94C	PL B347 171 PRL 73 25	K. Miyabayashi <i>et al.</i> K. Abe <i>et al.</i>	(TOPAZ Collab.) (SLD Collab.)	REFID=43754
ABREU	94B	PL B327 386	P. Abreu et al. P. Abreu et al.	(DELPHI Collab.)	REFID=43720
ABREU	94P	PL B341 109		(DELPHI Collab.)	REFID=44067
AKERS	94P	ZPHY C63 181	R. Akers et al. D. Buskulic et al.	(OPAL Collab.)	REFID=44059
BUSKULIC	94G	ZPHY C62 179		(ALEPH Collab.)	REFID=43911
BUSKULIC	94J	ZPHY C62 1	D. Buskulic <i>et al.</i> P. Vilain <i>et al.</i>	(ALEPH Collab.)	REFID=44011
VILAIN	94	PL B320 203		(CHARM II Collab.)	REFID=43882
ABREU	93	PL B298 236	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=43224
ABREU	93l	ZPHY C59 533	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=43506
Also	93L	ZPHY C65 709 (errat.)	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=44104
ABREU		PL B318 249	P. Abreu <i>et al.</i>	(DELPHI Collab.)	REFID=43632
ACTON	93	PL B305 407	P.D. Acton et al.	(OPAL Collab.)	REFID=43341
ACTON	93D	ZPHY C58 219	P.D. Acton et al.	(OPAL Collab.)	REFID=43378
ACTON	93E	PL B311 391	P.D. Acton et al.	(OPAL Collab.)	REFID=43438
ADRIANI	93	PL B301 136	O. Adriani et al.	(L3 Collab.)	REFID=43235
ADRIANI	93I	PL B316 427	O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i>	(L3 Collab.)	REFID=43540
BUSKULIC	93L	PL B313 520		(ALEPH Collab.)	REFID=43524
NOVIKOV	93C	PL B298 453	V.A. Novikov, L.B. Okun,		REFID=44105
ABREU	92I	PL B277 371	P. Abreu <i>et al.</i>		REFID=41986
ABREU ACTON	92M 92B	PL B289 199 ZPHY C53 539	P. Abreu <i>et al.</i> D.P. Acton <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.)	REFID=42151 REFID=41956
ACTON	92L	PL B294 436	P.D. Acton et al.	(OPAL Collab.)	REFID=43129 REFID=43139
ACTON	92N	PL B295 357	P.D. Acton et al.	(OPAL Collab.)	NEFID—43139