7/16/2025 12:15

NODE=S048

NODE=S048

NODE=S048M

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Status: ***

Neither J or P has actually been measured.

Ξ_c^0 MASS

The fit uses the Ξ_c^0 and Ξ_c^+ mass and mass-difference measurements.						
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT		
2470.44 ± 0.28 OUR FIT	Error inclu	udes scale factor of 1.	2.			

2470.99^{+0.30}_{-0.50} OUR AVERAGE

2470.8	5 ± 0.24	1 ± 0.55	3.4k	AALIONEN	14B	CDF	p p at 1.96 TeV	SYC
2471.0	± 0.3	$^{+0.2}_{-1.4}$	8.6k	¹ LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$	SYC
2470.0	± 2.8	± 2.6	85	FRABETTI	98 B	E687	γ Be, $\overline{\textit{E}}_{\gamma}=$ 220 GeV	
2469	± 2	± 3	9	HENDERSON	92 B	CLEO	$\Omega^{-}\kappa^{+}$	
2472.1	± 2.7	± 1.6	54	ALBRECHT	90F	ARG	e^+e^- at $arphi(4S)$	SYC
2473.3	± 1.9	± 1.2	4	BARLAG	90	ACCM	π^- (K $^-$) Cu 230 GeV	SYC
2472	± 3	± 4	19	ALAM	89	CLEO	$e^+ e^-$ 10.6 GeV	SYC
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
2462.1	± 3.1	± 1.4	42	² FRABETTI	93 C	E687	See FRABETTI 98B	
2471	± 3	± 4	14	AVERY	89	CLEO	See ALAM 89	
1 Th	e syste	matic error	was (wror	ngly) given the otl	ner wa	ay round	in LESIAK 05.	NO
² Th	e FRA	BETTI 93C	mass is w	ell below the othe	r mea	suremen	ts.	NO

$\Xi_c^0 - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV	′)	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S0
2.72 ± 0.23	OUR FIT	Error includes	s scale factor of	1.1.			
2.91 ± 0.26	OUR AVER	AGE					
2.85 ± 0.30	± 0.04	5.1/3.4k	AALTONEN	14B	CDF	<i>р</i> рат 1.96 ТеV	SYCLP2=
$2.9\ \pm 0.5$			LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$	SYCLP2=
$7.0 \ \pm 4.5$	± 2.2		ALBRECHT	90F	ARG	e^+e^- at $\Upsilon(4S)$	SYCLP2=
6.8 ±3.3	± 0.5		BARLAG	90	ACCM	π^{-} (K ⁻) Cu 230 GeV	SYCLP2=
5 ±4	± 1		ALAM	89	CLEO	$\Xi_c^0 \rightarrow \Xi^- \pi^+, \Xi_c^+ \rightarrow$	SYCLP2=
						$=-\pi + \pi +$	

Ξ_c^0 MEAN LIFE

$VALUE (10^{-15} s)$	EVTS	DOCUMENT ID	TECN	COMMENT	NODE=S048T
150.4± 2.8 OUR A	VERAGE	Error includes sc	ale factor of 1.	4.	
$148.0 \pm \ 2.3 {\pm} 2.2$		¹ AAIJ	22Y LHCB	$pp \rightarrow \Xi_c^0 + X, \Xi_c^0 \rightarrow$	
153.4± 2.4±0.7	22k	^{2,3} AAIJ	19AG LHCB	$ \begin{array}{c} pK^-K^-\pi^+ \\ \Xi_b^- \to \Xi_c^0 \mu^- \overline{\nu}_\mu + X, \\ \Xi_c^0 \to pK^-K^-\pi^+ \end{array} $	
$118 \begin{array}{c} +14\\ -12 \end{array} \pm 5$	110	LINK	02H FOCS	γ nucleus, $\approx 180~{\rm GeV}$	
$101 \ \begin{array}{c} +25 \\ -17 \end{array} \pm 5$	42	FRABETTI	93c E687	$\gamma{ m Be}$, $\overline{E}_{\gamma}{=}$ 220 GeV	
$82 \ +59 \ -30$	4	BARLAG	90 ACCM	π^- (K $^-$) Cu 230 GeV	
¹ Measured in Ξ_c^0 normalisation mo 10^{-15} s where the form PDC 20 second	produce ode. AAI. the last u	d promptly in pp of J 22Y reports this lincertainty is due t	collisions, usin fetime value as to the uncertai	$\begin{array}{l} {\rm g} \ D^0 \ \rightarrow \ {\rm K}^+ {\rm K}^- \pi^+ \pi^- \ {\rm as} \\ {\rm s} \ (148.0 \pm 2.3 \pm 2.2 \pm 0.2) \times \\ {\rm nty \ on \ the} \ D^0 \ {\rm lifetime \ value} \end{array}$	NODE=S048T;LINKAGE=B

from PDG 20 average, $\tau_{D^0} = (410.1 \pm 1.5)$ fs. ²AAIJ 19AG reports [Ξ_c^0 MEAN LIFE] / [D^{\pm} MEAN LIFE] = 0.1485 ± 0.0017 ± 0.0016 which we multiply by our best value \textit{D}^\pm MEAN LIFE = (1.033 \pm 0.005) \times 10 $^{-12}$ s. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³Measured in Ξ_c^0 produced in semileptonic Ξ_b^- decays.

NODE=S048T;LINKAGE=C

NODE=S048T;LINKAGE=A

Page 1

NODE=S048M NODE=S048M

CLP2=G CLP2=D

CLP2=C CLP2=B CLP2=A

DE=S048M;LINKAGE=LE NODE=S048M;LINKAGE=B

NODE=S048D

048D

G D C ÷В A

NODE=S048T

Ξ_c^0 DECAY MODES

NODE=S048215;NODE=S048

Cabibbo-favored decays NC Γ_1 $p K^- K^- \pi^+$ (4.9 ±1.0) × 10 ⁻³ DE Γ_2 $p K^- \overline{K}^* (892)^0$ $\overline{K}^{*0} \to K^- \pi^+$ (2.0 ±0.6) × 10 ⁻³ DE	ODE=S048;CLUMP=A ESIG=10 ESIG=2
$\Gamma_{\mu\nu} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}$	ECIC 11
$\Gamma_{4} = \Lambda K_{5}^{0} \qquad (3.2 \pm 0.6) \times 10^{-3} \qquad \text{De}$	ESIG=11 ESIG=6
$ \begin{array}{cccc} \Gamma_{5} & \Lambda \overline{K} & \pi^{+} & & (1.45 \pm 0.28) \% & & \text{DE} \\ \Gamma_{6} & \Lambda \overline{K}^{*} (892)^{0} & & (2.6 \pm 0.6) \times 10^{-3} & & \text{DE} \\ \Gamma_{7} & \Lambda \overline{K}^{0} \pi^{+} \pi^{-} & & \text{seen} & & \text{DE} \end{array} $	ESIG=12 ESIG=19 ESIG=8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ESIG=9 ESIG=25
$ \begin{array}{cccc} \Gamma_{10} & \Sigma^{+} K^{-} & (1.8 \pm 0.4 \) \times 10^{-3} & \text{DE} \\ \Gamma_{11} & \Sigma^{0} \overline{K}^{*} (892)^{0} & (9.9 \pm 1.9 \) \times 10^{-3} & \text{DE} \end{array} $	ESIG=26 ESIG=20
$ \begin{array}{cccc} \Gamma_{12} & \Sigma^+ K^*(892)^- & (4.9 \pm 1.3) \times 10^{-3} & \text{DE} \\ \Gamma_{13} & \Xi^- \pi^+ & (1.43 \pm 0.27) \% & \text{DE} \\ \Gamma_{14} & \Xi^- \pi^+ \pi^+ \pi^- & (4.8 \pm 2.2) \% & \text{DE} \end{array} $	ESIG=21 ESIG=1 ESIC-2
$ \Gamma_{14} = \pi \pi \pi \pi \pi $ $ \Gamma_{15} = \overline{2}^{0} \pi^{0} $ $ \Gamma_{16} = \overline{2}^{0} \eta $ $ (4.3 \pm 2.3) \% $ $ (6.9 \pm 1.4) \times 10^{-3} $ $ DE $ $ (6.9 \pm 1.4) \times 10^{-3} $ $ DE $ $ (1.6 \pm 0.4) \times 10^{-3} $	ESIG=30 ESIG=31
$ \begin{array}{ccc} \Gamma_{17} & \Xi^0 \eta' & & (1.1 \pm 0.4 \) \times 10^{-3} & & \text{DE} \\ \Gamma_{18} & \Xi^0 \kappa^+ \kappa^- & & & \text{DE} \end{array} $	ESIG=32 ESIG=22
$ \begin{array}{cccc} \Gamma_{19} & \overline{\Xi}^{0}\phi, \ \phi \to \ K^{+}K^{-} & (5.2 \pm 1.2) \times 10^{-4} & \text{DE} \\ \Gamma_{20} & \overline{\Xi}^{0}K^{+}K^{-} \text{ nonresonant} & (5.6 \pm 1.2) \times 10^{-4} & \text{DE} \\ \Gamma_{20} & \overline{\Xi}^{0}K^{+}K^{-} \text{ nonresonant} & (5.6 \pm 1.2) \times 10^{-4} & \text{DE} \\ \Gamma_{20} & \Gamma_{20} & \Gamma_{20} & \Gamma_{20} & \Gamma_{20} & \Gamma_{20} \\ \Gamma_{20} & \Gamma_{20}$	ESIG=23 ESIG=24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ESIG=4 ESIG=7 ESIG=18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ESIG=27 ESIG=28 ESIG=29
Cabibbo-suppressed decays NC	ODE=S048;CLUMP=B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ESIG=17 ESIG=13 ESIG=14 ESIG=15

FIT INFORMATION

An overall fit to 7 branching ratios uses 8 measurements to determine 4 parameters. The overall fit has a $\chi^2=$ 1.4 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

×5	64		
×13	86	74	
×27	64	55	75
	<i>x</i> ₁	×5	×13

		NODE=S048220					
Cabibbo-favored (S = -2) decays							NODE=S048240
$\Gamma(\rho K^{-} K^{-} \pi^{+}) / \Gamma$	total				I	Г1/Г	NODE=S048R05
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT		NODE=S048R05
0.49±0.10 OUR FIT							
0.58±0.23±0.05	17 ± 5	LI	19A	BELL	e^+e^- at $arLambda(4S)$		

$\Gamma(pK^-K^-\pi^+)/\Gamma(\Xi^-\pi^+)$				Γ_1/Γ_{13}	NODE=\$048R10
VALUE EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S048R10
0.339 ± 0.035 OUR FIT 0.34 ± 0.04 OUR AVERAGE					
$0.33\ \pm 0.03\ \pm 0.03\ \ 1908 \pm 62$	LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$	
$0.35 \ \pm 0.06 \ \pm 0.03 \ 148 \pm 18$	DANKO	04	CLEO	e ⁺ e ⁻	
$\Gamma(nK^{-}\overline{K}^{*}(892)^{0} \ \overline{K}^{*0} \rightarrow K$	′ ⁻ π ⁺)/Γ(= ⁻ π ⁻	+)		Γο/Γιο	
VALUE	DOCUMENT ID	,	TECN	• 2/ • 13 COMMENT	NODE=S048R11 NODE=S048R11
0.14±0.03±0.01	DANKO	04	CLEO	e ⁺ e ⁻	
$\Gamma(-K-K+(\overline{K}))/\Gamma($	(- +)			F /F	
$(p K K \pi' (n o K''))/I($	$(= \pi')$		TECN	I 3/I 13	NODE=S048R12
0.21±0.04±0.02	DANKO	04	CLEO	e^+e^-	NODE-3040112
$\Gamma(AVQ) / \Gamma(=-+)$				F /F	
$(\pi \chi_{\tilde{S}})/\Gamma(=\pi^{-1})$	DOCUMENT ID		TECN	4/113	NODE=S048R6
0.225±0.013 OUR AVERAGE	DOCOMENT ID		TECN	COMMENT	NODE=304010
$0.229 \pm 0.008 \pm 0.012$ 5.6k	LI	21F	BELL	e^+e^- at $arLambda(nS)$	
$0.21 \ \pm 0.02 \ \pm 0.02 \ \ 465 \pm 37$	LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$	
$\Gamma(\Lambda K^{-}\pi^{+})/\Gamma_{max}$				Г₌ /Г	
VALUE (%) EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S048R04 NODE=S048R04
1.45±0.28 OUR FIT					
1.17±0.37±0.09 24 ± 6	LI	19A	BELL	e^+e^- at $arLambda(4S)$	
$\Gamma(\Lambda K^{-}\pi^{+})/\Gamma(\Xi^{-}\pi^{+})$				Γ5/Γ13	
VALUE EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S048R13 NODE=S048R13
1.02±0.14 OUR FIT Error inclu	ides scale factor of	1.1.			
1.07 \pm 0.12 \pm 0.07 2979 \pm 212	1 LESIAK	05	BELL	$e^+ e^-$, $\Upsilon(4S)$	
$\Gamma(\Lambda \overline{K}^*(892)^0)/\Gamma(\Xi^-\pi^+)$				Г6/Г13	
VALUE EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S048R08 NODE=S048R08
0 19 + 0 02 + 0 01 44	11.4	01	DELL	$+$ $ +$ $\gamma(-c)$	
0.10±0.02±0.01 4K	JIA	21	DELL	e'e at i (nS)	
$\Gamma(\Lambda \overline{K}^0 \pi^+ \pi^-) / \Gamma_{}$	JIA	21	DELL	$e \cdot e$ at $I(nS)$	
$\Gamma(\Lambda \overline{K}^0 \pi^+ \pi^-) / \Gamma_{\text{total}}$	JIA DOCUMENT ID	21	TECN	ε'ε at / (ns) Γ₇/Γ <i>COMMENT</i>	NODE=S048R8 NODE=S048R8
$\frac{\Gamma(\Lambda \overline{K}^0 \pi^+ \pi^-)}{\Gamma_{\text{total}}}$	JIA <u>DOCUMENT ID</u> FRABETTI	98B	<u>TECN</u> E687	Γ_{7}/Γ <u>COMMENT</u> γ Be, $\overline{E}_{\gamma} = 220$ GeV	NODE=S048R8 NODE=S048R8
$\frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{VALUE}{\text{seen}}}$	JIA <u>DOCUMENT ID</u> FRABETTI	21 98в	<u>TECN</u> E687	$\frac{\Gamma_7/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$	NODE=S048R8 NODE=S048R8
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$ $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$	JIA <u>DOCUMENT ID</u> FRABETTI	21 98в	<u>TECN</u> E687	$\frac{\Gamma_7/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$	NODE=S048R8 NODE=S048R8 NODE=S048R9
$\frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{V A L U E}{\text{seen}}}$ $\frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{V A L U E}{\text{seen}}}$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> EDADETTI	98B	<u>TECN</u> E687 <u>TECN</u>	$\frac{\Gamma_7/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ $\frac{\Gamma_8/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9
$\frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{VALUE}{\text{seen}}}$ $\frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{VALUE}{\text{seen}}}$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> FRABETTI	98b 98b	<u>TECN</u> E687 <u>TECN</u> E687	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$ $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$ $\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> FRABETTI	98B 98B	<u>TECN</u> E687 <u>TECN</u> E687	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13}	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9
$\frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{VALUE}{\text{seen}}}$ $\frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\frac{VALUE}{\text{seen}}}$ $\frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{VALUE (\text{units } 10^{-2})} \underline{EVTS}$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> <u>DOCUMENT ID</u>	98B 98B	<u>TECN</u> E687 <u>TECN</u> <u>TECN</u>	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{\Gamma_{9}/\Gamma_{13}}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ seen $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ VALUE seen $\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})$ VALUE (units 10 ⁻²) EVTS 3.8 \pm 0.6 \pm 0.4 279	JIA <u>DOCUMENT ID</u> FRABETTI FRABETTI <u>DOCUMENT ID</u> LI	21 98B 98B 21F	<u>TECN</u> E687 <u>TECN</u> E687 <u>TECN</u> BELL	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$ $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$ $\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE (\text{units } 10^{-2})}{3.8 \pm 0.6 \pm 0.4} \qquad \sum_{279}^{EVTS}$ $\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})$	JIA <u>DOCUMENT ID</u> FRABETTI FRABETTI <u>DOCUMENT ID</u> LI	98B 98B 21F	TECN E687 TECN E687 TECN BELL	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ seen $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ seen $\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE (\text{units } 10^{-2})}{3.8 \pm 0.6 \pm 0.4} \qquad EVTS$ $\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE (\text{unite } 10^{-2})}{5.8 \pm 0.6 \pm 0.4} \qquad EVTS$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI DOCUMENT ID	98B 98B 21F	TECN E687 TECN E687 TECN BELL	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$ Γ_{10}/Γ_{13}	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ seen $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ seen $\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE (\text{units } 10^{-2})}{3.8 \pm 0.6 \pm 0.4} \xrightarrow{EVTS}$ $\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE (\text{units } 10^{-2})}{12.3 \pm 0.7 \pm 1.0} \xrightarrow{EVTS}$ $\frac{EVTS}{880}$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u>	21 98B 98B 21F	TECN E687 TECN E687 TECN BELL TECN BELL	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$ $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ $\frac{VALUE}{$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI	21 98B 98B 21F 21F	TECN E687 TECN E687 TECN BELL TECN BELL	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\sum_{\substack{VALUE \\ \text{seen}}}}$ $\frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\sum_{\substack{VALUE \\ \text{seen}}}}$ $\frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\sum_{\substack{ALUE \\ 3.8 \pm 0.6 \pm 0.4}} \sum_{\substack{EVTS \\ 279}}}$ $\frac{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\sum_{\substack{12.3 \pm 0.7 \pm 1.0}} \sum_{\substack{B89 \\ 889}}}$ $\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI	988 988 21F 21F	TECN E687 TECN E687 TECN BELL TECN BELL	Γ_{7}/Γ $\frac{\Gamma_{7}/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13}	NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19
$\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ seen $\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}$ $\frac{VALUE}{VALUE}$ seen $\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE (\text{units } 10^{-2})}{3.8 \pm 0.6 \pm 0.4} \xrightarrow{EVTS}$ $\frac{VALUE (\text{units } 10^{-2})}{12.3 \pm 0.7 \pm 1.0} \xrightarrow{EVTS}$ $\frac{VALUE (\text{units } 10^{-2})}{8.89}$ $\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})$ $\frac{VALUE}{VALUE} \xrightarrow{EVTS}$	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u>	988 988 21F 21F	TECN E687 TECN E687 TECN BELL TECN BELL	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\Gamma_{\text{total}}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\Gamma_{\text{total}}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Sigma^{0} K^{-} \pi^{+}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE \text{ (units 10^{-2})}}{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE \text{ (units 10^{-2})}}{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE \text{ (units 10^{-2})}}{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE \text{ (units 10^{-2})}}{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE \text{ (units 10^{-2})}}{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE \text{ (units 10^{-2})}}{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})} $	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> JIA	21 98B 98B 21F 21F 21F	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL	Γ_{7}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(\text{nS})}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R09
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\Gamma_{\text{total}}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\Gamma_{\text{total}}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Sigma^{0} K^{-}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Gamma(\Sigma^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Gamma(\Sigma^{-} K^{*}(892)^{0}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Gamma(\Sigma^{+} K^{*}(892)^{-}) / \Gamma(\Xi^{-} \pi^{+})} $	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> JIA	21 98B 98B 21F 21F 21	TECN E687 TECN E687 TECN BELL TECN BELL	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13}	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R09
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\Gamma_{\text{total}}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{\Gamma_{\text{total}}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Sigma^{3.8 \pm 0.6 \pm 0.4}} $ $ \frac{EVTS}{279} $ $ \frac{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{\Sigma^{3.2 \pm 0.7 \pm 1.0}} $ $ \frac{EVTS}{889} $ $ \frac{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE}{\Sigma^{0.69 \pm 0.03 \pm 0.03}} $ $ \frac{EVTS}{6.3k} $ $ \frac{\Gamma(\Sigma^{+} K^{*} (892)^{-}) / \Gamma(\Xi^{-} \pi^{+})}{VALUE} $ $ \frac{EVTS}{\Sigma^{0.69 \pm 0.03 \pm 0.03}} $	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> JIA <u>DOCUMENT ID</u>	21 988 988 21F 21F 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{COMMENT}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R09 NODE=S048R14
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{total}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{total}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{0}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V_{ALUE} (units 10^{-2})} \frac{EVTS}{2.3 \pm 0.6 \pm 0.4} $ $ \frac{EVTS}{279} $ $ \frac{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{V_{ALUE} (units 10^{-2})}{V_{ALUE} (units 10^{-2})} \frac{EVTS}{2.3 \pm 0.7 \pm 1.0} $ $ \frac{EVTS}{2.3 \pm 0.7 \pm 0.03} $ $ \frac{EVTS}{2.3 \pm 0.06 \pm 0.02} $ $ \frac{2VTS}{2.3 \pm 0.05} $	JIA DOCUMENT ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID LI DOCUMENT ID JIA DOCUMENT ID JIA	21 98B 98B 21F 21F 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL	Γ_{7}/Γ $\frac{\Gamma_{7}/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R09 NODE=S048R14
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V_{ALUE (\text{units } 10^{-2})} \underbrace{EVTS}_{279} $ $ \frac{EVTS}{12.3 \pm 0.7 \pm 1.0} \underbrace{EVTS}_{889} $ $ \frac{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V_{ALUE (\text{units } 10^{-2})} \underbrace{EVTS}_{6.3k} $ $ \frac{EVTS}{12.3 \pm 0.7 \pm 1.0} $ $ \frac{EVTS}{889} $ $ \frac{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE}{VALUE (1005 \pm 0.02)} $ $ \frac{EVTS}{373} $ $ \frac{\Gamma(\Xi^{-} \pi^{+}) / \Gamma_{\text{total}}}{\Gamma(\Xi^{-} \pi^{+}) / \Gamma_{\text{total}}} $	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> JIA <u>DOCUMENT ID</u> JIA	21 98B 98B 21F 21F 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL	Γ_{7}/Γ $\frac{\Gamma_{7}/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13}	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R14 NODE=S048R14
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{V^{ALUE}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{V^{ALUE}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V^{ALUE} (\text{units } 10^{-2})} \frac{EVTS}{279} $ $ \frac{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{V^{ALUE} (\text{units } 10^{-2})}{12.3 \pm 0.7 \pm 1.0} \frac{EVTS}{889} $ $ \frac{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V^{ALUE} (\Sigma^{+} K^{*} (892)^{-}) / \Gamma(\Xi^{-} \pi^{+})} $ $ \frac{V^{ALUE} (\Sigma^{+} K^{*} (892)^{-}) / \Gamma(\Xi^{-} \pi^{+})}{V^{ALUE} (\Sigma^{-} \pi^{+}) / V^{ALUE} (\Sigma^{-} \pi^{+}) / V^{ALUE} (\Sigma^{-} \pi^{+}) / V^{ALUE} (\Sigma^{-} \pi^{+}) / V^{ALUE} (\Sigma^{-} \pi^{+}) / \Gamma_{\text{total}} $	JIA <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> FRABETTI <u>DOCUMENT ID</u> LI <u>DOCUMENT ID</u> JIA <u>DOCUMENT ID</u> JIA <u>DOCUMENT ID</u>	21 98B 98B 21F 21F 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{13}/Γ	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R09 NODE=S048R14 NODE=S048R14 NODE=S048R10
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{total}}{\Gamma_{total}} $ seen $ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{total}}{\Gamma_{total}} $ seen $ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{total}}{\Gamma_{total}} $ seen $ \frac{\Gamma(\Sigma^{0} \overline{K}_{0}^{0}) / \Gamma(\overline{z}^{-} \pi^{+})}{\Gamma(\Sigma^{+} \overline{K}^{-}) / \Gamma(\overline{z}^{-} \pi^{+})} $ $ \frac{VALUE (units 10^{-2})}{VALUE (units 10^{-2})} \frac{EVTS}{279} $ $ \frac{\Gamma(\Sigma^{+} \overline{K}^{-}) / \Gamma(\overline{z}^{-} \pi^{+})}{\Gamma(\Sigma^{+} \overline{K}^{*} (892)^{0}) / \Gamma(\overline{z}^{-} \pi^{+})} $ $ \frac{VALUE}{VALUE} \frac{EVTS}{0.69 \pm 0.03 \pm 0.03} 6.3k $ $ \frac{\Gamma(\Sigma^{+} \overline{K}^{*} (892)^{-}) / \Gamma(\overline{z}^{-} \pi^{+})}{VALUE} \frac{EVTS}{0.34 \pm 0.06 \pm 0.02} 373 $ $ \frac{\Gamma(\overline{z}^{-} \pi^{+}) / \Gamma_{total}}{VALUE (\%)} \frac{EVTS}{1.43 \pm 0.27 \text{ OUR FIT}} $	JIA DOCUMENT ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID LI DOCUMENT ID JIA DOCUMENT ID JIA DOCUMENT ID JIA	21 988 988 21F 21F 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL TECN	Γ_{7}/Γ $\frac{\Gamma_{7}/\Gamma}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{13}/Γ $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R00 NODE=S048R00 NODE=S048R00
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{total}}{\Gamma_{total}} $ seen $ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{total}}{\Gamma_{total}} $ seen $ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{total}}{\Gamma_{total}} $ seen $ \frac{\Gamma(\Sigma^{0} \overline{K}_{S}^{0}) / \Gamma(\overline{\Xi}^{-} \pi^{+})}{\Gamma(\Sigma^{0} \pi^{+}) / \Gamma(\overline{\Xi}^{-} \pi^{+})} $ $ \frac{VALUE (units 10^{-2})}{VALUE (units 10^{-2})} \frac{EVTS}{279} $ $ \frac{\Gamma(\Sigma^{+} \overline{K}^{-}) / \Gamma(\overline{\Xi}^{-} \pi^{+})}{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\overline{\Xi}^{-} \pi^{+})} $ $ \frac{VALUE (units 10^{-2})}{VALUE} \frac{EVTS}{6.69 \pm 0.03 \pm 0.03} $ $ \frac{EVTS}{6.3k} $ $ \frac{\Gamma(\Sigma^{+} \overline{K}^{*} (892)^{-}) / \Gamma(\overline{\Xi}^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+}) / \Gamma_{total}} $ $ \frac{VALUE}{VALUE (\%)} \frac{EVTS}{1.43 \pm 0.27 \text{ OUR FIT}} $ $ 1.80 \pm 0.50 \pm 0.14 $ $ 45 \pm 7 $	JIA DOCUMENT ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID LI DOCUMENT ID JIA DOCUMENT ID JIA DOCUMENT ID LI	21 98B 98B 21F 21F 21 21 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{13}/Γ $e^{+}e^{-} \text{ at } \Upsilon(nS)$ Γ_{13}/Γ $e^{+}e^{-} \text{ at } \Upsilon(nS)$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R09 NODE=S048R14 NODE=S048R14 NODE=S048R10
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{total}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{total}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V_{ALUE} (units 10^{-2})} \frac{EVTS}{279} $ $ \frac{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{V_{ALUE} (units 10^{-2})}{12.3 \pm 0.7 \pm 1.0} \frac{EVTS}{889} $ $ \frac{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V_{ALUE} (UP} \frac{EVTS}{6.3 k} $ $ \frac{\Gamma(\Sigma^{+} K^{*} (892)^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+}) / \Gamma_{total}} $ $ \frac{V_{ALUE} (\%)}{1.43 \pm 0.27 \text{ OUR FIT}} \frac{EVTS}{1.80 \pm 0.50 \pm 0.14} $ $ \frac{4 \pi^{-}}{45 \pm 7} $	JIA JIA DOCUMENT ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID LI DOCUMENT ID JIA DOCUMENT ID JIA DOCUMENT ID JIA DOCUMENT ID JIA	21 98B 98B 21F 21F 21 21 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL BELL	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{13}/Γ $e^{+}e^{-} \text{ at } \Upsilon(4S)$ Γ_{13}/Γ_{14}	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R00 NODE=S048R00 NODE=S048R00
$ \frac{\Gamma(\Lambda \overline{K}^{0} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Lambda K^{-} \pi^{+} \pi^{+} \pi^{-}) / \Gamma_{\text{total}}}{V_{ALUE}} $ seen $ \frac{\Gamma(\Sigma^{0} K_{S}^{0}) / \Gamma(\Xi^{-} \pi^{+})}{V_{ALUE} (\text{units } 10^{-2})} \frac{EVTS}{279} $ $ \frac{EVTS}{12.3 \pm 0.6 \pm 0.4} 279 $ $ \frac{\Gamma(\Sigma^{+} K^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE (\text{units } 10^{-2})}{12.3 \pm 0.7 \pm 1.0} \frac{EVTS}{889} $ $ \frac{\Gamma(\Sigma^{0} \overline{K}^{*} (892)^{0}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+})} $ $ \frac{VALUE}{0.69 \pm 0.03 \pm 0.03} \frac{EVTS}{6.3 \text{k}} $ $ \frac{\Gamma(\Sigma^{+} K^{*} (892)^{-}) / \Gamma(\Xi^{-} \pi^{+})}{\Gamma(\Xi^{-} \pi^{+}) / \Gamma_{\text{total}}} $ $ \frac{VALUE}{VALUE} \frac{EVTS}{373} $ $ \frac{\Gamma(\Xi^{-} \pi^{+}) / \Gamma_{\text{total}}}{\Gamma(\Xi^{-} \pi^{+} \pi^{-})} $ $ \frac{VALUE}{VALUE} (\%) $ $ \frac{VALUE}{1.43 \pm 0.27 \text{ OUR FIT}} $ $ \frac{VALUE}{1.80 \pm 0.50 \pm 0.14} 45 \pm 7 $ $ \frac{\Gamma(\Xi^{-} \pi^{+}) / \Gamma(\Xi^{-} \pi^{+} \pi^{-})}{VALUE} $	JIA DOCUMENT ID FRABETTI DOCUMENT ID FRABETTI DOCUMENT ID LI DOCUMENT ID JIA DOCUMENT ID JIA DOCUMENT ID LI DOCUMENT ID LI	21 98B 98B 21F 21F 21 21 21	TECN E687 TECN E687 TECN BELL TECN BELL TECN BELL TECN BELL TECN BELL TECN	Γ_{7}/Γ $\frac{\Gamma_{7}}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{8}/Γ $\frac{COMMENT}{\gamma \text{ Be, } \overline{E}_{\gamma} = 220 \text{ GeV}}$ Γ_{9}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{10}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{11}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{12}/Γ_{13} $\frac{COMMENT}{e^{+}e^{-} \text{ at } \Upsilon(nS)}$ Γ_{13}/Γ $e^{+}e^{-} \text{ at } \Upsilon(4S)$ Γ_{13}/Γ_{14} $COMMENT$	NODE=S048R8 NODE=S048R8 NODE=S048R9 NODE=S048R9 NODE=S048R18 NODE=S048R18 NODE=S048R19 NODE=S048R19 NODE=S048R19 NODE=S048R09 NODE=S048R00 NODE=S048R14 NODE=S048R10 NODE=S048R10

	L)				F /F	
 (32 K ')/ (= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	') EVTS	DOCUMENT ID	TEC	N COMMENT	₂₁ / ₁₃	NODE=S048R2 NODE=S048R2
0.294±0.018±0.016	650	AUBERT,B	05м ВА	BR $e^+e^-\approx 1$	$\Upsilon(4S)$	
$\Gamma(\Xi^0\phi, \phi \to K^+K^-)$ VALUE	=)/Γ(Ξ= _ <u>EVTS</u>	π +) DOCUMENT ID	<u>TEC</u>	<u>N COMMENT</u>	Γ ₁₉ /Γ ₁₃	NODE=S048R15 NODE=S048R15
0.036±0.004±0.002	311	¹ MCNEIL	21 BEI	L e^+e^- at 7	r(nS)	
¹ MCNEIL 21 assumes nonresonant contribu	an azimut utions to 3	hally symmetric and $\overline{E}_{c}^{0} \rightarrow \overline{\Xi}^{0} \kappa^{+} \kappa^{-}$	nplitude n	nodel to recover	resonant and	NODE=S048R15;LINKAGE=A
$\Gamma(\Xi^0\pi^0)/\Gamma(\Xi^-\pi^+)$)				Γ_{15}/Γ_{13}	NODE=S048R24
VALUE	<u>EVTS</u>	1	<u>TEC</u>	$\frac{N}{2}$ $\frac{COMMENT}{2}$	$\gamma(nS)$	NODE=S048R24
¹ Analysis of Belle and	2.2k I Belle II d	ata samples	243 DEI		· / (IIS)	
$\Gamma(-0) / \Gamma(+)$					- /-	NODE-30401/24,EININAGE-A
$(=^{\circ}\eta)/((=\pi'))$	FVTS	DOCUMENT ID	TEC	N COMMENT	16/13	NODE=S048R25 NODE=S048R25
0.11±0.01±0.01	0.14k		24s BEI	$12 e^+e^-$ at \sim	$\sim \gamma(nS)$	10002-0010120
1 Analysis of Belle and	l Belle II d	ata samples.				NODE=S048R25;LINKAGE=A
$\Gamma(\Xi^0\eta')/\Gamma(\Xi^-\pi^+)$					Γ_{17}/Γ_{13}	NODE=S048R26
VALUE 0 08+0 02+0 01	<u>EVTS</u> 31	1 ADACHI	<u>TEC</u> 245 BEI	$\frac{N}{2}$ e^+e^- at a	$\gamma(nS)$	NODE=S048R26
¹ Analysis of Belle and	d Belle II d	ata samples.	243 DEI		<i>• 1</i> (113)	NODE=S048R26;LINKAGE=A
$\Gamma(\Xi^0 K^+ K^- \text{ nonreso})$	onant)/F	$(\Xi^{-}\pi^{+})$			Γ20/Γ13	
VALUE	<u>_EVTS</u>	DOCUMENT ID	TEC	<u>COMMENT</u>	• 20/ • 15	NODE=S048R16 NODE=S048R16
0.039±0.004±0.002	311	¹ MCNEIL	21 BEI	LL e ⁺ e ⁻ at 7	r(nS)	
¹ MCNEIL 21 assumes nonresonant contribu	an azimut utions to E	hally symmetric and $\Xi_{c}^{0} \rightarrow \Xi_{c}^{0} \kappa^{+} \kappa^{-}$	mplitude n	nodel to recover	resonant and	NODE=S048R16;LINKAGE=A
$\Gamma(=-e^+v_{-})/\Gamma(=-e^+v_{-})$	π +)	C			Γοο /Για	
<u>VALUE</u>	<u>vts</u> <u>I</u>	DOCUMENT ID	TECN	COMMENT	• 22/ • 13	NODE=S048R7 NODE=S048R7
$0.730 \pm 0.021 \pm 0.039$	¹ l	. 210	BELL	e^+e^- at 10.52	2, 10.58 GeV	
• • • We do not use the	e following	data for averages	, fits, limi [.]	ts, etc. $\bullet \bullet \bullet$		
$1.38 \pm 0.14 \pm 0.22$	- A	ACHARYA 21	A ALCE	pp at 13 TeV	<u>۱</u>	
$3.1 \pm 1.0 - 0.5$	10 2	ALEXANDER 95	A DC	$e^+e^-\approx 1(43)$)	
$1_{11210} \pm 0.43 \pm 0.18$	R = 0	= $(= 1 + 1) / B(=$	3 ARG	$e^+e^- \approx 10.4$	Gev ⊢0.05 + 0.07	
² This ALBRECHT 9	$B = C \rightarrow C$ $B = C \rightarrow C$ B =	is the average of	$c \rightarrow =$ the (Ξ^{-})	$(\mu + \nu_{\mu}) = 1.03 \pm$	$\sqrt{\Xi^{-}\pi^{+}}$ and $\overline{\Xi^{-}\pi^{+}}$	NODE=S048R7;LINKAGE=B NODE=S048R7;LINKAGE=A
$(= \mu \cdot \text{anytning})/2$	$= \pi \cdot rat$	los. Here we avera	ige it with	the = $e \cdot \nu_e/2$	$= \pi$ ' ratio.	
$\Gamma(\Xi^{-}e^{+}\nu_{e})/\Gamma(\Xi^{-})$	μ ⁺ ν _μ) [⊆]	OCUMENT ID	<u>TECN</u>	COMMENT	Γ ₂₂ /Γ ₂₃	NODE=S048R17 NODE=S048R17
• • • Vve do not use the $1.02 \pm 0.05 \pm 0.07$	e following	data for averages	, fits, limi [.]	ts, etc. • • •		
$^{1.03\pm0.05\pm0.07}$ 1 LI 21C value is not in	ndependen	t from other quote	ed measur	er e - at 10.52 ements.	2, 10.58 Gev	NODE=S048R17;LINKAGE=A
$\Gamma(\Xi^{-}\mu^{+}\nu_{})/\Gamma(\Xi^{-})$	π ⁺)				[22/[12	
$\frac{(- \mu)}{(- \mu)} = \frac{(- \mu)}{(- \mu)}$, 1	OCUMENT ID	TECN	COMMENT	• 25/ • 15	NODE=S048R07 NODE=S048R07
0.708±0.033±0.056	L ت مرجان		BELL	e ⁺ e ⁻ at 10.52	2, 10.58 GeV	
¹ LI 21C measures ratio	$B(\Xi_c^0 \rightarrow$	$= e^+ \nu_e) / B(=$	$c \rightarrow = -$	$\mu^{+} \nu_{\mu}) = 1.03 \pm$	$\pm 0.05 \pm 0.07.$	NODE=S048R07;LINKAGE=A
$\Gamma(\Xi^{\cup}\gamma)/\Gamma(\Xi^{-}\pi^{+})$	CL%	DOCLIMENT ID	TFC	N COMMENT	Γ_{24}/Γ_{13}	NODE=S048R21 NODE=S048R21
<1.2 × 10 ⁻²	90	LI	23 BEI	$L e^+e^- \rightarrow$	$\Upsilon(nS)$	
$\Gamma(\Xi^0\mu^+\mu^-)/\Gamma(\Xi^-)$	π ⁺)				Γ25/Γ13	
VALUE C	<u>L%</u>	DOCUMENT ID	TECN	COMMENT		NODE=5048R22 NODE=S048R22
<4.3 × 10 ⁻³ 90	0	CUI 24	BELL	980fb $^{-1}$, $e^+ e^-$	e ⁻ at Y(4S)	

NODE=S048225

$\Gamma(\Xi^0 e^+ e^-) / \Gamma(\Xi^- \pi^+) \qquad \qquad \Gamma_{26} / \Gamma_{26$	/ Г_{13 NODE=S048R23}
VALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> $<6.7 \times 10^{-3}$ 90 CUI 24 BELL 980fb ⁻¹ . e^+e^- at YU	$\underbrace{\text{NODE}=\text{S048R23}}_{(4.5)}$
——— Cabibbo-suppressed decays ———	NODE=\$048250
$\Gamma(\Lambda^+\pi^-)/\Gamma$	-/ F
('c'')/(total) 2 VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT	NODE=S048R06 NODE=S048R06
5.5±1.1 OUR FIT	
5.5±0.2±1.8 6.3k ¹ AAIJ 20AH LHCB <i>pp</i> at 13 TeV	
¹ AAIJ 20AH extracts B($\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$) using two different normalization modes: Λ_c^-	$\stackrel{+}{c} \rightarrow$ NODE=S048R06;LINKAGE=A
$pK^{-}\pi^{+}$ and $\Xi_{c}^{+} \rightarrow pK^{-}\pi^{+}$. The mean value of both results, taking their correlation of account, is presented as the final result. The measurement assumes product fraction ratios $f_{\Xi_{c}^{0}}/f_{\Lambda_{c}^{+}} = (9.7 \pm 0.9 \pm 3.1) \times 10^{-2}$ (from AAIJ 19AB plus h	tions ction eavy
quark symmetry arguments) as well as $f_{\pm 0}/f_{c} = 1.00 \pm 0.01$. It further uses	s the
inputs $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.23 \pm 0.33) \times 10^{-2}$ and $B(\Xi_c^+ \rightarrow pK^-\pi^+$ (4.5 ± 2.1 ± 0.7) × 10 ⁻³ (from LI 19c). Its correlation with $B(\Xi_c^+ \rightarrow pK^-\pi^+$ measured in AAIJ 20AH, is 0.414.) =), as
$\frac{\Gamma(\Lambda_c^+ \pi^-) / \Gamma(\Xi^- \pi^+)}{0.38 \pm 0.05 \text{ OUR FIT}} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{COMMENT}$	/ Г₁₃ NODE=S048R20 NODE=S048R20
0.38 \pm 0.04 \pm 0.04 1468 TANG 23 BELL $e^+e^- \rightarrow T(nS)$ ¹ TANG 23 reports fitted masses $m_{\Lambda_c^+} = 2286.55 \pm 0.03$ MeV and $m_{\Xi_c^0} = 2470.43 \pm$ MeV.	0.06 NODE=S048R20;LINKAGE=A
$\Gamma(\Xi^{-}K^{+})/\Gamma(\Xi^{-}\pi^{+}) \qquad \Gamma_{28}/$	/Γ ₁₃ NODE=5048R01
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN COMMENT	NODE=S048R01
2.75±0.51±0.25 314 ± 58 CHISTOV 13 BELL $e^+e^- \approx \Upsilon(4S)$)
$\Gamma(\Lambda K^+ K^- (no \phi)) / \Gamma(\Xi^- \pi^+) \qquad \qquad \Gamma_{29} / $	/F13 NODE=S048R02
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN COMMENT	NODE=S048R02
2.86±0.61±0.37 510±110 CHISTOV 13 BELL $e^+e^- \approx \Upsilon(4S)$)
$\Gamma(\Lambda\phi)/\Gamma(\Xi^{-}\pi^{+})$ $\Gamma_{30}/$	/ Г 13 NODE=S048R03
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN COMMENT	NODE=S048R03
3.43±0.58±0.32 316 ± 54 CHISTOV 13 BELL $e^+e^- \approx \Upsilon(4S)$)
Ξ_c^0 DECAY PARAMETERS	NODE=S048225
See the note on "Baryon Decay Parameters" in the neutron Listings.	NODE=S048225

 $\begin{array}{c} \alpha \text{ FOR } \varXi_c^0 \rightarrow \varXi^- \pi^+ \\ \underline{\text{VALUE}} & \underline{\text{EVTS}} \end{array}$ NODE=S048A NODE=S048A DOCUMENT ID TECN COMMENT $-0.64 {\pm} 0.05 {\pm} 0.01$ LI 21C BELL e^+e^- at 10.52, 10.58 GeV \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet $-0.56 {\pm} 0.39 {+} 0.10 {-} 138$ CHAN 01 CLE2 $e^+e^- \approx \Upsilon(4S)$ $\alpha \operatorname{FOR} \overline{\Xi}{}^0_c \to \overline{\Xi}{}^+ \pi^-$ NODE=S048A01 NODE=S048A01 VALUE DOCUMENT ID TECN COMMENT $0.61 \pm 0.05 \pm 0.01$ 21C BELL e^+e^- at 10.52, 10.58 GeV LL NODE=S048A02 NODE=S048A02 DOCUMENT ID TECN COMMENT **0.15±0.22±0.04** 4k 1 JIA 21 BELL e^+e^- at $\Upsilon(nS)$ ¹ JIA 21 measures $\alpha(\Xi_c^0 \rightarrow \Lambda \overline{K}^*(892)^0) \ \alpha(\Lambda \rightarrow p\pi^-) = 0.115 \pm 0.164 \pm 0.031$, and NODE=S048A02;LINKAGE=A uses $\alpha(\Lambda \to \ p\pi^{-}) = 0.747 \pm 0.010.$ $\alpha \text{ FOR } \Xi_c^0 \rightarrow \Sigma^+ K^* (892)^-$ NODE=S048A03 <u>EVTS</u> VALUE DOCUMENT ID TECN COMMENT NODE=S048A03 **-0.52±0.30±0.02** 373 ¹ JIA 21 BELL e^+e^- at $\Upsilon(nS)$ ¹ JIA 21 measures $\alpha(\Xi_c^0 \to \Sigma^+ \overline{K}^*(892)^-) \alpha(\Sigma^+ \to \rho \pi^0) = 0.514 \pm 0.295 \pm 0.012$, and uses $\alpha(\Sigma^+ \to \rho \pi^0) = -0.980 \pm 0.017$. NODE=S048A03;LINKAGE=A

7/16/2025 12:15 Page 6

$\begin{array}{c} \alpha \text{ FOR } \Xi_c^0 \rightarrow \Xi^0 \\ \frac{VALUE}{-0.90 \pm 0.15 \pm 0.23} \end{array}$	π^{0} $- \frac{EVTS}{2.2k} \qquad \frac{DOCUMENT \ ID}{1 \ ADACHI} \qquad \frac{TECN}{24s} \qquad \frac{COMMENT}{e^{+}e^{-} \ at} \sim \Upsilon(nS)$	NODE=S048A04 NODE=S048A04
¹ Analysis of Belle a	nd Belle II data samples.	NODE=S048A04;LINKAGE=A
	Ξ_c^0 Tests of Baryon Number Violation	NODE=S048230
τ_{mix} , $\Xi_c^0 - \overline{\Xi}_c^0$ ose VALUE (10 ⁻¹² s)	cillation period	NODE=S048B00 NODE=S048B00

24 BELL $e^+e^- \rightarrow \Upsilon(4S)$

NODE=S048B00;LINKAGE=A

Ξ_c^0 REFERENCES

¹Search for baryon-number violating decay $B^- \rightarrow \overline{\Xi}_c^0 \overline{\Lambda}_c^-$, which can be interpreted as a search for $B^- \rightarrow \overline{\Xi}_c^0 \overline{\Lambda}_c^-$ followed by $\overline{\Xi}_c^0 - \overline{\Xi}_c^0$ baryon-number violating oscillation, from which a bound on the oscillation period τ_{mix} can be inferred, assuming no direct

 $^{1}\,{
m GU}$

>1.3

 $B^-
ightarrow \ \overline{\Xi}{}^0_c \overline{\Lambda}{}^-_c$ decay.

ADACHI 24S CUI 24 GU 24 GU 23 AAIJ 23 AAIJ 21 LI 21 ACHARYA 21A JIA 21 LI 21C MCNEIL 21 MCNEIL 21 AAIJ 20A PDG 20 AAIJ 194 AIJ 194 AII 197 AAIJ 194 LI 197 AAIJ 194 LI 197 AAIJ 194 LI 197 AAIJ 194 LI 197 ALTONEN 14E CHISTOV 13 AUBERT,B 05N LESIAK 05 Also 21 ALINK 02 CHAN 01 FRABETTI 936	 JHEP 2410 045 PR D109 052003 PRL 133 071802 PR D107 032001 PR D107 032005 SCIB 67 479 A PRL 127 272001 JHEP 2106 160 PR D105 L011102 PR D103 112002 AH PR D102 071101 PTEP 2020 083C01 AB PR D99 052006 AG PR D100 032001 A PRL 122 082001 C PR D100 03101 B PR D99 052006 AG PR D100 03101 B PR D89 072014 PR D88 071103 PL B617 198 (errat.) PR D63 111102 B PL 95 142003 PL B426 403 PRL 74 3113 PRL 75 4155 (errat.) B PL B303 368 PL B243 161 PL B247 121 PL B246 195 PL B247 121 PL B246 195 PL B246 195 PL B247 121 PL B246 195 	 Adachi et al. J.X.Cui et al. T. Gu et al. Y. Li et al. S.S. Tang et al. R. Aaij et al. S. Acharya et al. S. Acharya et al. Y. Li et al. Y. Li et al. Y. Li et al. J.T. McNeil et al. R. Aaij et al. P.A. Zyla et al. R. Aaij et al. P.A. Zyla et al. R. Aaij et al. R. Aaij et al. P.B. Li et al. Y.B. Li et al. T. Acltonen et al. R. Chistov et al. B. Aubert et al. T. Lesiak et al. J.M. Link et al. S. Chan et al. J. Alexander et al. J. Alexander et al. H. Albrecht et al. S. Henderson et al. H. Albrecht et al. 	(BELLE and BELLE II Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (ALICE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (LHCb Collab.) (LHCb Collab.) (LHCb Collab.) (BELLE Collab.) (CLEO Collab.) (FNAL FOCUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (FNAL E687 Collab.) (CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.)
HENDERSON 92E	B PL B283 161	S. Henderson <i>et al.</i>	(CLEO Collab.)
ALBRECHT 90F	- PL B247 121 DL B226 405	H. Albrecht et al.	(ACCMOR Callab.)
BARLAG 90	PL B230 495	5. Barlag <i>et al.</i>	(ACCMOR Collab.)
ALAM 89	PL B226 401	M.S. Alam <i>et al.</i>	(CLEO Collab.)
AVERY 89	PRL 62 863	P. Avery et al.	(CLEO Collab.)

NODE=S048

REFID=63125
REFID -62770
REI ID=02779
REFID=62744
REFID-62078
REFID=02081
RFFID=62186
DEEID_61477
KEFID=01477
REFID=61126
RFFID=61420
REFID-61/85
DEEID_61116
REFID=00723
REFID=60676
REFID=59843
REFID=59957
RFFID=59595
REFID-50006
REFID=55452
REFID=50831
REFID=50383
REFID=50652
RFFID=49960
REFID-48775
DEEID_40150
NEFID 46006
REFID=40080
REFID=44197
REFID=44579
REFID=43298
REFID=43240
REFID-42050
REFID=42030
DEEID_40000
KEFID=40745
REFID=40720