Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review.

See the related review(s):

Searches for Quark and Lepton Compositeness

CONTENTS:

Scale Limits for Contact Interactions: $\Lambda(eee)$ Scale Limits for Contact Interactions: $\Lambda(ee\mu\mu)$ Scale Limits for Contact Interactions: $\Lambda(ee\tau\tau)$ Scale Limits for Contact Interactions: $\Lambda(\ell \ell \ell \ell)$ Scale Limits for Contact Interactions: $\Lambda(eeqq)$ Scale Limits for Contact Interactions: $\Lambda(\mu \mu q q)$ Scale Limits for Contact Interactions: $\Lambda(\ell \nu \ell \nu)$ Scale Limits for Contact Interactions: $\Lambda(e\nu q q)$ Scale Limits for Contact Interactions: $\Lambda(q q q q)$ Scale Limits for Contact Interactions: $\Lambda(\nu \nu q q)$ Mass Limits for Excited $e(e^*)$ - Limits for Excited $e(e^*)$ from Pair Production - Limits for Excited $e(e^*)$ from Single Production - Limits for Excited e (e^{*}) from $e^+e^- \rightarrow \gamma\gamma$ - Indirect Limits for Excited $e(e^*)$ Mass Limits for Excited μ (μ^*) – Limits for Excited μ (μ^*) from Pair Production - Limits for Excited μ (μ^*) from Single Production - Indirect Limits for Excited μ (μ^*) Mass Limits for Excited τ (τ^*) – Limits for Excited τ (τ^*) from Pair Production – Limits for Excited au (au^*) from Single Production Mass Limits for Excited Neutrino (ν^*) - Limits for Excited ν (ν^*) from Pair Production - Limits for Excited ν (ν^*) from Single Production Mass Limits for Excited q (q^*) - Limits for Excited $q(q^*)$ from Pair Production - Limits for Excited $q(q^*)$ from Single Production Mass Limits for Color Sextet Quarks (q_6) Mass Limits for Color Octet Charged Leptons (ℓ_8) Mass Limits for Color Octet Neutrinos (ν_8)

Mass Limits for W_8 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: $\Lambda(eee)$

		. +		``			NODE=5054CTE
Lin	nits are for	Λ_{LL}^{-} on	ly. For other cases,	see e	ach refer	ence.	NODE=S054CTE
$\Lambda^+_{LL}({\rm TeV})$	$\Lambda^{-}_{LL}(TeV)$	CL%	DOCUMENT ID		TECN	COMMENT	NODE=S054CTE
>8.3	>10.3	95	¹ BOURILKOV	01	RVUE	$E_{\rm cm} = 192 - 208 {\rm GeV}$	
• • • We	e do not us	e the fo	llowing data for ave	erages	, fits, lin	nits, etc. • • •	
>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189-209 {\rm GeV}$	
>5.3	>6.8	95	ABDALLAH	06C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$	
>4.7	>6.1	95	³ ABBIENDI	04G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$	
>4.3	>4.9	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$	
¹ A cor	NODE=S054CTE;LINK						
² SCHA	NODE=S054CTE;LINK						
³ ABBI	NODE=S054CTE;LINK						

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ_{LL}^{\pm} only. For other cases, see each reference.

$\Lambda^+_{LL}({\rm TeV})$	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	>9.5	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 {\rm GeV}$
> 8.5	>3.8	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	e do not use	e the fol	lowing data for ave	erages,	, fits, lin	nits, etc. • • •
>7.3	>7.6	95	ABDALLAH	06C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$
>8.1	>7.3	95	² ABBIENDI	04G	OPAL	$E_{\rm cm} = 130 - 207 {\rm GeV}$

NODE=S054 NODE=S054

NODE=S054CNT NODE=S054CNT

NODE=S054CTE

NODE=S054CNT

KAGE=BT KAGE=SE KAGE=AB

NODE=S054CTM

NODE=S054CTM NODE=S054CTM

 1 SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 2 ABBIENDI 04G limits are from $e^+\,e^- \rightarrow~\mu\mu$ cross section at $\sqrt{s}=$ 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID		TECN	COMMENT		
>7.9	>5.8	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189-209 {\rm GeV}$		
>7.9	>4.6	95	ABDALLAH	06C	DLPH	$E_{\rm cm}^{\rm om} = 130-207 {\rm GeV}$		
>4.9	>7.2	95	² ABBIENDI			$E_{\rm cm}^{\rm om} = 130-207 {\rm GeV}$		
• • • We	e do not use	e the follo	owing data for ave	erages	, fits, lin	nits, etc. • • •		
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{cm} = 130 - 189 \text{ GeV}$		
¹ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements. ² ABBIENDI 04G limits are from $e^+e^- \rightarrow \tau \tau$ cross section at $\sqrt{s} = 130$ –207 GeV.								

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	$\Lambda^{-}_{LL}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT			
>7.9	> 10.3	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$			
>9.1	>8.2	95	ABDALLAH	06C	DLPH	$E_{\rm cm}^{\rm cm} = 130-207 {\rm GeV}$			
• • • We	do not use	the follo	wing data for ave	rages,	, fits, lim	its, etc. • • •			
>7.7	>9.5	95	² ABBIENDI			$E_{\rm cm} = 130-207 {\rm GeV}$			
			³ BABICH						
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{cm} = 130 - 189 \text{ GeV}$			
1 SCHAEL 07A limits are from ${\it R}_c,~{\it Q}_{FB}^{depl}$, and hadronic cross section measurements.									
² ABBIENDI 04G limits are from $e^+e^- \rightarrow \ell^+\ell^-$ cross section at $\sqrt{s} = 130-207$ GeV.									
						0.095 TeV^{-2} (95%CL) in a			

model independent analysis allowing all of Λ_{LL} , Λ_{LR} , Λ_{RL} , Λ_{RR} to coexist.

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ^\pm_{LL} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>24	>37	95	¹ AABOUD	17AT ATLS	(eeqq)
> 8.4	>10.2	95	² ABDALLAH	09 DLPH	l (eebb)
> 9.4	>5.6	95	³ SCHAEL	07A ALEP	(eecc)
> 9.4	>4.9	95	² SCHAEL	07A ALEP	(eebb)
>23.3	>12.5	95	⁴ CHEUNG	01B RVUE	E (eeuu)
>11.1	>26.4	95	⁴ CHEUNG	01B RVUE	E (eedd)
• • • We	do not use	e the fo	llowing data for ave	erages, fits,	limits, etc. • • •
> 7.1	>7.1	95	⁵ AAD	21AU ATLS	(eebs)
>23.5	>26.1	95	⁶ AAD	21Q ATLS	(eeqq)
>19.5	>24.0	95	⁷ SIRUNYAN	21N CMS	(eeqq)
>23.5	>26.1	95	⁸ AAD	20AP ATLS	
> 4.5	>12.8	95	⁹ ABRAMOWICZ	Z19 ZEUS	6 (eeqq)
>16.8	>23.9	95	¹⁰ SIRUNYAN	19AC CMS	(eeqq)
>15.5	>19.5	95	¹¹ AABOUD	16∪ ATLS	
>13.5	>18.3	95	¹² KHACHATRY	.15AE CMS	(eeqq)
>16.4	>20.7	95	¹³ AAD	14be ATLS	(eeqq)
> 9.5	>12.1	95	¹⁴ AAD	13E ATLS	(eeqq)
>10.1	>9.4	95	¹⁵ AAD	12AB ATLS	(eeqq)
> 4.2	>4.0	95	¹⁶ AARON	11C H1	(eeqq)
> 3.8	>3.8	95	¹⁷ ABDALLAH	11 DLPH	l (eetc)
>12.9	>7.2	95	¹⁸ SCHAEL	07A ALEP	(eeqq)
> 3.7	>5.9	95	¹⁹ ABULENCIA	06L CDF	(eeqq)

NODE=S054CTM;LINKAGE=SE NODE=S054CTM;LINKAGE=AB

NODE=S054CTT

NODE=S054CTT NODE=S054CTT

NODE=S054CTT;LINKAGE=SE NODE=S054CTT;LINKAGE=AB

NODE=S054CTL NODE=S054CTL NODE=S054CTL

NODE=S054CTL;LINKAGE=SE NODE=S054CTL;LINKAGE=AB NODE=S054CTL;LINKAGE=HB

NODE=S054CTH

NODE=S054CTH NODE=S054CTH;CHECK LIMITS

OCCUR=2

OCCUR=2

OCCUR=2

OCCUR=3

- ¹AABOUD 17AT limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.
- ²ABDALLAH 09 and SCHAEL 07A limits are from R_b , A_{FB}^b .

ABDALLAT us and SCHALL UVA minute are notif N_b , N_{FB} . ³SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements. ⁴CHEUNG 01B is an update of BARGER 98E. ⁵AAD 21AU search for new phenomena in final states with e^+e^- and one or no *b*-tagged jets in *pp* collisions at $\sqrt{s} = 13$ TeV. The quoted limits assume $g_*^2 = 4 \pi$.

 6 AAD 21Q limits are from $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. A frequentist statistical framework is used to remove the prior dependence.

- ⁷SIRUNYAN 21N limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s}=13$ ⁸ TeV. 8 AAD 20AP limits are from e^+e^- mass distribution in *pp* collisions at $\sqrt{s} = 13$ TeV.

 9 ABRAMOWICZ 19 limits are from Q 2 spectrum measurements of $e^{\pm} p \rightarrow e^{\pm} X$.

- 10 SIRUNYAN 19AC limits are from $e^+\,e^-$ mass distribution in $p\,p$ collisions at \sqrt{s} = 13 TeV. 11 AABOUD 160 limits are from pp collisions at \sqrt{s} = 13 TeV. The quoted limit uses a
- uniform positive prior in $1/\Lambda^2$.
- 12 KHACHATRYAN 15AE limit is from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$ 8 TeV. 13 AAD 14BE limits are from pp collisions at $\sqrt{s}=$ 8 TeV. The quoted limit uses a uniform
- positive prior in $1/\Lambda^2$.

positive prior in $1/\Lambda^{-}$. 14 AAD 13E limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm} = 7$ TeV. 15 AAD 12AB limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm} = 7$ TeV. 16 AARON 11C limits are from Q^2 spectrum measurements of $e^{\pm}p \rightarrow e^{\pm}X$. 17 ABDALLAH 11 limit is from $e^+e^- \rightarrow t\bar{c}$ cross section. $\Lambda_{LL} = \Lambda_{LR} = \Lambda_{RL} = \Lambda_{RR}$ is assumed. 18 SCHAEL 07A limit assumes quark flavor universality of the contact interactions.

¹⁹ABULENCIA 06L limits are from $p \overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu\mu q q)$

				v	,	
Λ^+_{LL} (TeV)	$\Lambda^{-}_{LL}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>23.3	>40.0	95	¹ SIRUNYAN	21N	CMS	$(\mu \mu q q)$
• • • We	e do not use	e the follo	owing data for avera	ages,	fits, limi	ts, etc. ● ● ●
> 8.5	>8.5	95	² AAD	21AU	ATLS	$(\mu \mu b s)$
>22.3	>32.7	95	³ AAD	21Q	ATLS	$(\mu \mu q q)$
>22.3	>32.7	95	⁴ AAD	20AP	ATLS	$(\mu \mu q q)$
>20.4	>30.4	95	⁵ SIRUNYAN	19AC	CMS	$(\mu \mu q q)$
>20	>30	95	⁶ AABOUD	17AT	ATLS	$(\mu \mu q q)$
>15.8	>21.8	95	⁷ AABOUD	16 U	ATLS	$(\mu \mu q q)$
>12.0	>15.2	95	⁸ KHACHATRY	.15AE	CMS	$(\mu \mu q q)$
>12.5	>16.7	95	⁹ AAD	14BE	ATLS	$(\mu \mu q q)$
> 9.6	>12.9	95	¹⁰ AAD	13E	ATLS	$(\mu \mu q q)$ (isosinglet)
> 9.5	>13.1	95	¹¹ CHATRCHYAN	13K	CMS	$(\mu \mu q q)$ (isosinglet)
> 8.0	>7.0	95	¹² AAD	12ab	ATLS	$(\mu \mu q q)$ (isosinglet)
1.			1			_

¹SIRUNYAN 21N limits are from $\mu^+\mu^-$ mass distribution in pp collisions at $\sqrt{s}=$ 13 2 TeV. 2 AAD 21AU search for new phenomena in final states with $\mu^+\,\mu^-$ and one or no b-tagged

jets in pp collisions at $\sqrt{s} = 13$ TeV. The quoted limits assume $g_*^2 = 4 \pi$.

³ AAD 21Q limits are from pp collisions at $\sqrt{s} = 13$ TeV. A frequentist statistical framework is used to remove the prior dependence.

⁴AAD 20AP limits are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $\sqrt{s} = 13$ TeV.

 5 SIRUNYAN 19AC limits are from $\mu^+\mu^-$ mass distribution in pp collisions at $\sqrt{s}=$ 13

 6 AABOUD 17AT limits are from $p\,p$ collisions at $\sqrt{s}=$ 13 TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

⁷AABOUD 16U limits are from pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 8 KHACHATRYAN 15AE limit is from $\mu^+\,\mu^-$ mass distribution in $\it pp$ collisions at $\it E_{\rm cm}=$ 9^{8} TeV. 9 AAD 14BE limits are from pp collisions at $\sqrt{s}=8$ TeV. The quoted limit uses a uniform

positive prior in $1/\Lambda^2$.

¹⁰AAD 13E limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm} =$ 7 TeV.

¹¹CHATRCHYAN 13K limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=$ ⁷ TeV. ¹² AAD 12AB limis are from $\mu^+\mu^-$ mass distribution in *pp* collisions at $E_{\rm cm}$ = 7 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$

VALUE (TeV)	CL%	DOCUMENT ID	-	TECN	COMMENT
>3.10	90		86	SPEC	$\overline{\Lambda^{\pm}_{LR}(\nu_{\mu}\nu_{e}\mue)}$

NODE=S054CTH;LINKAGE=N

NODE=S054CTH;LINKAGE=AL

NODE=S054CTH;LINKAGE=SE NODE=S054CTH;LINKAGE=BC NODE=S054CTH;LINKAGE=T

NODE=S054CTH;LINKAGE=R

NODE=S054CTH;LINKAGE=S

NODE=S054CTH;LINKAGE=Q NODE=S054CTH;LINKAGE=O NODE=S054CTH;LINKAGE=P

NODE=S054CTH:LINKAGE=L

NODE=S054CTH;LINKAGE=K

NODE=S054CTH;LINKAGE=J

NODE=S054CTH;LINKAGE=I NODE=S054CTH;LINKAGE=G NODE=S054CTH;LINKAGE=RO NODE=S054CTH;LINKAGE=AA

NODE=S054CTH;LINKAGE=CE NODE=S054CTH;LINKAGE=AI

NODE=S054CTS NODE=S054CTS

NODE=S054CTS;LINKAGE=K NODE=S054CTS;LINKAGE=L NODE=S054CTS;LINKAGE=J NODE=S054CTS;LINKAGE=I NODE=S054CTS;LINKAGE=H NODE=S054CTS;LINKAGE=G NODE=S054CTS:LINKAGE=F NODE=S054CTS:LINKAGE=E NODE=S054CTS;LINKAGE=D NODE=S054CTS;LINKAGE=B NODE=S054CTS:LINKAGE=C NODE=S054CTS;LINKAGE=A \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

>3.8	² DIAZCRUZ	94	RVUE $\Lambda_{LL}^+(\tau \nu_{\tau} e \nu_{e})$
>8.1	² DIAZCRUZ	94	RVUE $\Lambda_{LL}^{-}(\tau \nu_{\tau} e \nu_{e})$
>4.1	³ DIAZCRUZ	94	RVUE $\Lambda_{LL}^+(\tau \nu_{\tau} \mu \nu_{\mu})$
>6.5	³ DIAZCRUZ	94	RVUE $\Lambda_{II}^{-}(\tau \nu_{\tau} \mu \nu_{\mu})$

¹ JODIDIO 86 limit is from $\mu^+ \rightarrow \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$

 $\left[\eta_{LL}\left(\bar{\nu}_{\mu L}\gamma^{\alpha}\mu_{L}\right)\left(\bar{e}_{L}\gamma_{\alpha}\nu_{eL}\right)+\eta_{LR}\left(\bar{\nu}_{\mu L}\gamma^{\alpha}\nu_{eL}\left(\bar{e}_{R}\gamma_{\alpha}\mu_{R}\right)\right] \text{ with } g^{2}/4\pi=1 \text{ and }$ $(\eta_{LL},\eta_{LR}) = (0,\pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL},\eta_{LR}) = (\pm 1,0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

 2 DIAZCRUZ 94 limits are from $\Gamma(au o ext{ } e
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

 3 DIAZCRUZ 94 limits are from $\Gamma(au
ightarrow \mu
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

SCALE LIMITS for Contact Interactions: $\Lambda(e \nu q q)$

VALUE (TeV)	<u>CL%</u>	DOCUMENT ID		TECN				
>2.81	95	^L AFFOLDER	011	CDF				
¹ AFFOLDER 001 bound is for a scalar interaction $\overline{q}_R q_L \overline{\nu} e_L$.								

SCALE LIMITS for Contact Interactions: $\Lambda(q q q q)$

			····/		
Λ^+_{LL} (TeV)	$\Lambda^{-}_{LL}(\text{TeV})$	CL%	DOCUMENT ID	TECN	COMMENT
>13.1 none 17.4-29.5	>21.8	95	¹ AABOUD	17AK ATLS	<i>pp</i> dijet angl.
$\bullet \bullet \bullet$ We do not use t	the following	g data f	or averages, fits, lim	its, etc. 🔹 🔹	
			² AABOUD	18AV ATLS	$pp ightarrow t \overline{t} t \overline{t}$
>12.8	>17.5	95	³ SIRUNYAN	18DD CMS	<i>pp</i> dijet angl.
>11.5	>14.7	95	⁴ SIRUNYAN	17F CMS	<i>pp</i> dijet angl.
>12.0	>17.5	95	⁵ AAD	16s ATLS	<i>pp</i> dijet angl.
			⁶ AAD	15AR ATLS	$pp ightarrow t \overline{t} t \overline{t}$
			⁷ AAD	15by ATLS	$pp ightarrow t \overline{t} t \overline{t}$
> 8.1	>12.0	95	⁸ AAD	15L ATLS	<i>pp</i> dijet angl.
> 9.0	>11.7	95	⁹ KHACHATRY.	15J CMS	<i>pp</i> dijet angl.
> 5		95	¹⁰ FABBRICHESI	14 RVUE	qqtt

¹AABOUD 17AK limit is from dijet angular distribution in pp collisions at $\sqrt{s} = 13$ TeV. u, d, and s quarks are assumed to be composite.

²AABOUD 18AV obtain limit on t_R compositeness $2\pi/\Lambda_{RR}^2 < 1.6 \text{ TeV}^{-2}$ at 95% CL from $t\bar{t}t\bar{t}$ production in the pp collisions at $E_{\rm cm} = 13$ TeV.

 3 SIRUNYAN 18DD limit is from dijet angular distribution in *pp* collisions at $\sqrt{s}=$ 13 TeV.

 4 SIRUNYAN 17F limit is from dijet angular cross sections in *pp* collisions at $E_{
m cm}=13$ TeV. All quarks are assumed to be composite.

⁵AAD 16S limit is from dijet angular selections in *pp* collisions at $E_{\rm cm}=$ 13 TeV. *u*, *d*, and *s* quarks are assumed to be composite.

⁶AAD 15AR obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 6.6 \text{ TeV}^{-2}$ at 95% CL from the $t\bar{t}t\bar{t}$ production in the pp collisions at $E_{\rm cm} = 8$ TeV. ⁷AAD 15BY obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 15.1$ TeV⁻² at 95% CL from the $t\bar{t}t\bar{t}$ production in the pp collisions at $E_{\rm cm} = 8$ TeV.

 8 AAD 15L limit is from dijet angular distribution in *pp* collisions at $E_{
m cm}$ = 8 TeV. *u*, *d*, and s quarks are assumed to be composite.

⁹KHACHATRYAN 15J limit is from dijet angular distribution in pp collisions at $E_{cm} =$ 8 TeV. *u*, *d*, *s*, *c*, and *b* quarks are assumed to be composite.

 $^{10}\,{\rm FABBRICHESI}$ 14 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using $pp \rightarrow t\bar{t}$ and $p\bar{p} \rightarrow t\bar{t}$ cross sections. The quoted limit on the $q \overline{q} t \overline{t}$ contact interaction is derived from their bound on the chromoelectric form factor.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu \nu q q)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ^+_{LL} (TeV)	Λ^{-}_{LL} (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5.0	>5.4	95	¹ MCFARLAND 98	CCFR	νN scattering

¹ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

NODE=S054CTN;LINKAGE=B

OCCUR=2 OCCUR=3 OCCUR=4

NODE=S054CTN;LINKAGE=A

NODE=S054CTN;LINKAGE=C

NODE=S054CQN NODE=S054CQN

NODE=S054CQN;LINKAGE=LI

NODE=S054CTQ NODE=S054CTQ

OCCUR=2

NODE=S054CTQ;LINKAGE=X NODE=S054CTQ;LINKAGE=Y

NODE=S054CTQ;LINKAGE=Z NODE=S054CTQ;LINKAGE=U

NODE=S054CTQ;LINKAGE=T

NODE=S054CTQ;LINKAGE=S

NODE=S054CTQ;LINKAGE=P

NODE=S054CTQ;LINKAGE=Q

NODE=S054CTQ;LINKAGE=R

NODE=S054CTQ;LINKAGE=O

NODE=S054CTD NODE=S054CTD NODE=S054CTD

NODE=S054CTD:LINKAGE=A

MASS LIMITS for Excited $e(e^*)$ NODE=S054220 Most e^+e^- experiments assume one-photon or Z exchange. The limits NODE=S054220 from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating ($\eta_L = \eta_R$). However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note. Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section Limits for Excited $e(e^*)$ from Pair Production NODE=S054EXP These limits are obtained from $e^+e^ightarrow \, e^{*+}e^{*-}$ and thus rely only on the (elec-NODE=S054EXP troweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \rightarrow e\gamma$ decay except the limits from $\Gamma(Z)$. For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)). TECN COMMENT NODE=S054EXP VALUE (GeV) CL% DOCUMENT ID >103.2 ¹ ABBIENDI 02G OPAL $e^+e^- \rightarrow e^*e^*$ Homodoublet type 95 • • • We do not use the following data for averages, fits, limits, etc. • • • $e^+\,e^ightarrow\,e^*\,e^*$ Homodoublet type ² ACHARD 03B L3 >102.8 95 ¹From e^+e^- collisions at $\sqrt{s} = 183-209$ GeV. f = f' is assumed. NODE=S054EXP;LINKAGE=GN 2 From e^+e^- collisions at \sqrt{s} = 189–209 GeV. f = f' is assumed. ACHARD 03B also NODE=S054EXP;LINKAGE=CR obtain limit for f = -f': $m_{e^*} > 96.6$ GeV. Limits for Excited $e(e^*)$ from Single Production NODE=S054EXS These limits are from $e^+e^- \rightarrow e^*e$, $W \rightarrow e^*\nu$, or $ep \rightarrow e^*X$ and depend on NODE=S054EXS transition magnetic coupling between e and e^* . All limits assume $e^* \rightarrow e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is papers. For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)). NODE=S054EXS VALUE (GeV) CL% DOCUMENT ID TECN COMMENT >5600 95 ¹ SIRUNYAN 20AJ CMS $pp \rightarrow ee^*X$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² AABOUD 95 19AZ ATLS $pp \rightarrow ee^*X$ >4800 ³ SIRUNYAN 19Z CMS $pp \rightarrow ee^*X$ >3900 95 ⁴ KHACHATRY...16AQ CMS $pp
ightarrow ee^* X$ >2450 95 ⁵ AAD 15AP ATLS $pp \rightarrow e^{(*)}e^*X$ 95 >3000 ⁶ AAD 13BB ATLS $pp \rightarrow ee^*X$ 95 >2200 ⁷ CHATRCHYAN 13AE CMS $pp \rightarrow ee^* X$ >1900 95 ⁸ AAD 12AZ ATLS $pp \rightarrow e^{(*)}e^*X$ >1870 95 1 SIRUNYAN 20AJ search for e^* production in 2e2j final states in pp collisions at $\sqrt{s}=$ NODE=S054EXS;LINKAGE=P 13 TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included. See their Fig.11 for exclusion limits in m_{e^*} - Λ plane. 2 AABOUD 19AZ search for single e^* production in pp collisions at $\sqrt{s}=$ 13 TeV. The NODE=S054EXS;LINKAGE=O limit quoted above is from $e^*
ightarrow \ e \, q \, \overline{q}$ and $e^*
ightarrow \
u \, W$ decays assuming f = f' = 1 and $m_{
m e^*}=\Lambda.$ The contact interaction is included in e^* production and decay amplitudes. See their Fig.6 for exclusion limits in $m_{e^*} - \Lambda$ plane. 3 SIRUNYAN 19Z search for e^* production in $\ell\ell\gamma$ final states in pp collisions at \sqrt{s} = NODE=S054EXS;LINKAGE=M 13 TeV. The quoted limit assumes $\Lambda = m_{\rho^*}$, f = f' = 1. The contact interaction is included in the e^* production and decay amplitudes. ⁴KHACHATRYAN 16AQ search for single e^* production in pp collisions at $\sqrt{s} = 8$ TeV. NODE=S054EXS;LINKAGE=K The limit above is from the $e^* \rightarrow e\gamma$ search channel assuming f = f' = 1, $m_{e^*} = \Lambda$. See their Table 7 for limits in other search channels or with different assumptions. 5 AAD 15AP search for e^* production in evens with three or more charged leptons in ppNODE=S054EXS;LINKAGE=F collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{e^*}$, f = f' = 1. The contact interaction is included in the e^* production and decay amplitudes. 6 AAD 13BB search for single e^* production in pp collisions with $e^*
ightarrow e \gamma$ decay. f=NODE=S054EXS:LINKAGE=E f'=1, and e^* production via contact interaction with $\Lambda=m_{e^*}$ are assumed.

4/12/2024 16:44

Page 5

⁷ CHATRCHYAN 13AE search for single e^* production in pp collisions with $e^* \rightarrow e\gamma$ decay. $f = f' = 1$, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.	NODE=S054EXS;LINKAGE=D
⁸ AAD 12AZ search for e^* production via four-fermion contact interaction in pp collisions with $e^* \rightarrow e\gamma$ decay. The quoted limit assumes $\Lambda = m_{e^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.	NODE=S054EXS;LINKAGE=B
Limits for Excited e (e [*]) from $e^+e^- \rightarrow \gamma\gamma$	
These limits for Excited $e(e)$ from $e^+e^- \rightarrow \gamma\gamma$ These limits are derived from indirect effects due to e^* exchange in the <i>t</i> channel and depend on transition magnetic coupling between <i>e</i> and e^* . All limits are for $\lambda_{\gamma} = 1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_L = \eta_R$ = 1. We choose the chiral coupling limit as the best limit and list it in the Summary Table.	NODE=S054EXG NODE=S054EXG
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).	
VALUE (GeV) CL% DOCUMENT ID TECN COMMENT	NODE=S054EXG
>356 $\overline{95}$ 1 ABDALLAH 04N DLPH \sqrt{s} = 161–208 GeV	
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet	
$>$ 310 95 ACHARD 02D L3 \sqrt{s} = 192–209 GeV	
$^1{\rm ABDALLAH}$ 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{e^*}^{}>$ 295 GeV at 95% CL.	NODE=S054EXG;LINKAGE=AB
Indirect Limits for Excited $e(e^*)$	
These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.	NODE=S054EXI NODE=S054EXI
VALUE (GeV) DOCUMENT ID TECN COMMENT	NODE=S054EXI
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet	
$\begin{array}{cccc} \mbox{1 DORENBOS 89$} & \mbox{CHRM } \overline{\nu}_{\mu} e \rightarrow \ \overline{\nu}_{\mu} e, \nu_{\mu} e \rightarrow \ \nu_{\mu} e \\ \hline 2 GRIFOLS $$ 86 $$ THEO $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	
2 GRIFOLS 86 THEO $ u_\mu e ightarrow u_\mu e$	
³ RENARD 82 THEO $g-2$ of electron	
¹ DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2 \Lambda_{\text{cut}}^2 / m_{e^*}^2 < 2.6 (95\% \text{ CL})$, where Λ_{cut} is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\text{cut}} = 1 \text{ TeV}$ and $\lambda_{\gamma} = 1$, one obtains $m_{e^*} > 620 \text{ GeV}$. However, one generally expects $\lambda_{\gamma} \approx m_{e^*} / \Lambda_{\text{cut}}$ in composite models.	NODE=S054EXI;LINKAGE=DD
² GRIFOLS 86 uses $\nu_{\mu}e \rightarrow \nu_{\mu}e$ and $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.	NODE=S054EXI;LINKAGE=H
³ RENARD 82 derived from $g-2$ data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.	NODE=S054EXI;LINKAGE=E
MASS LIMITS for Excited μ (μ^*)	NODE=S054225
Limits for Excited μ (μ^*) from Pair Production	
These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \rightarrow \mu\gamma$ decay except the limits from $\Gamma(Z)$.	NODE=S054MXP NODE=S054MXP
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).	
VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>103.2951ABBIENDI02GOPAL $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type	NODE=S054MXP
• • We do not use the following data for averages, fits, limits, etc. • •	
>102.8 95 2 ACHARD 03B L3 $e^+e^- ightarrow \mu^*\mu^*$ Homodoublet type	
¹ From $e^+ e^-$ collisions at $\sqrt{s} = 183$ –209 GeV. $f = f'$ is assumed. ² From $e^+ e^-$ collisions at $\sqrt{s} = 189$ –209 GeV. $f = f'$ is assumed. ACHARD 03B also obtain limit for $f = -f'$: $m_{\mu^*} > 96.6$ GeV.	NODE=S054MXP;LINKAGE=GN NODE=S054MXP;LINKAGE=CR
Limits for Excited μ (μ^*) from Single Production	
These limits are from $e^+e^- \rightarrow \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \rightarrow \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.	NODE=S054MXS NODE=S054MXS
For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).	

4/12/2024 16:44 Page 6

NODE=S054MXS

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5700	95	¹ SIRUNYAN 20AJ	CMS	$pp ightarrow \ \mu \mu^* X$

NODE=S054MXS;LINKAGE=J

NODE=S054MXS;LINKAGE=I

NODE=S054MXS:LINKAGE=H

NODE=S054MXS;LINKAGE=G

NODE=S054MXS;LINKAGE=F

NODE=S054MXS:LINKAGE=E

NODE=S054MXS;LINKAGE=D

NODE=S054MXS;LINKAGE=A

NODE=S054MXI;LINKAGE=O

NODE=S054MXI

NODE=S054230

NODE=S054TXP

NODE=S054TXP

• • • We do not use the following data for averages, fits, limits, etc. • • •

>3800	95	² SIRUNYAN	19z CMS	$pp ightarrow \mu \mu^* X$
>2800	95	³ AAD	16BMATLS	$pp ightarrow\ \mu\mu^{st}X$
>2470	95	⁴ KHACHATRY.		
>3000	95		15ap ATLS	$pp ightarrow\ \mu^{(*)}\mu^{*}X$
>2200	95			$p p ightarrow \ \mu \mu^* X$
>1900	95	⁷ CHATRCHYAN		
>1750	95	⁸ AAD	12AZ ATLS	$pp ightarrow\ \mu^{(*)}\mu^{*}X$

¹SIRUNYAN 20AJ search for μ^* production in $2\mu 2j$ final states in pp collisions at $\sqrt{s} =$ 13 TeV. The quoted limit assumes $\Lambda = m_{\mu^{*+}} f = f' = 1$. The contact interaction is included. See their Fig.11 for exclusion limits in $m_{\mu^*} - \Lambda$ plane.

²SIRUNYAN 19Z search for μ^* production in $\ell\ell\gamma$ final states in pp collisions at $\sqrt{s} =$ 13 TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact interaction is

included in the μ^* production and decay amplitudes.

³AAD 16BM search for μ^* production in $\mu \mu j j$ events in pp collisions at $\sqrt{s} = 8$ TeV. Both the production and decay are assumed to occur via a contact interaction with $\Lambda = m_{\mu^*}$.

⁴ KHACHATRYAN 16AQ search for single μ^* production in pp collisions at $\sqrt{s} = 8$ TeV. The limit above is from the $\mu^* \rightarrow \mu\gamma$ search channel assuming f = f' = 1, $m_{\mu^*} = \Lambda$. See their Table 7 for limits in other search channels or with different assumptions.

⁵ AAD 15AP search for μ^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\mu^*}$, f = f' = 1. The contact

interaction is included in the μ^* production and decay amplitudes.

⁶ AAD 13BB search for single μ^* production in pp collisions with $\mu^* \rightarrow \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.

- ⁷ CHATRCHYAN 13AE search for single μ^* production in pp collisions with $\mu^* \rightarrow \mu\gamma$ decay. f = f' = 1, and μ^* production via contact interaction with $\Lambda = m_{\mu^*}$ are assumed.
- ⁸ AAD 12AZ search for μ^* production via four-fermion contact interaction in pp collisions with $\mu^* \rightarrow \mu \gamma$ decay. The quoted limit assumes $\Lambda = m_{\mu^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Indirect Limits for Excited μ (μ^*)

These limits make use of loop	effects involving	g μ^{*} a	and are	therefore subject to the	eo-	NODE=S054MXI
retical uncertainty.						
VALUE (GeV)	DOCUMENT ID		TECN	COMMENT		NODE=S054MXI
\bullet \bullet We do not use the following of	data for averages	, fits,	limits, e	etc. • • •		
	¹ RENARD	82	THEO	g-2 of muon		

¹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited τ (τ^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \rightarrow \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	NODE=S054TXP
>103.2	95	¹ ABBIENDI	02G OPAL	$e^+e^- ightarrow au^* au^*$ Homodoublet type	
• • • We do	o not use	the following data	for averages,	fits, limits, etc. • • •	
>102.8	95	² ACHARD	03B L3	$e^+e^- ightarrow au^* au^*$ Homodoublet type	
		sions at $\sqrt{s}=183$			NODE=S054TXP;LINKAGE=GN
				f = f' is assumed. ACHARD 03B also	NODE=S054TXP;LINKAGE=CR
obtain li	mit for <i>f</i>	$= -f': m_{\tau^*} > 96$	5.6 GeV.		

NODE=S054TXS

NODE=S054TXS

Limits for Excited au (au^*) from Single Production

These limits are from $e^+e^- \rightarrow \tau^* \tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \rightarrow \tau \gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L=\eta_R=1.$ In most

papers, the lin See the origin	mit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane.	
VALUE (GeV)	CL% DOCUMENT ID TECN COMMENT	NODE=S054TXS
	(CL = 95%) [>2.500 \times 10 ³ GeV (CL = 95%) OUR 2023 BEST	
LIMIT]		
> 4600 • • • We do not us	95 ¹ AAD 23BJ ATLS $pp \rightarrow \tau \tau^*$ se the following data for averages, fits, limits, etc. • •	
>2500	95 ² AAD 15AP ATLS $pp \rightarrow \tau^{(*)}\tau^* X$	
> 180	95 ³ ACHARD 03B L3 $e^+e^- ightarrow au au^*$	
> 185	95 ⁴ ABBIENDI 02G OPAL $e^+e^- \rightarrow \tau \tau^*$	
	ch for τ^* produced in association with τ and decaying into $\tau q \overline{q}$ via a tion with $g_{\text{contact}}^2 = (4\pi)^2$. The limit quoted above assumes $\Lambda = m_{\tau^*}$.	NODE=S054TXS;LINKAGE=D
² AAD 15AP searc	ch for τ^* production in events with three or more charged leptons in $pp = 8$ TeV. The quoted limit assumes $\Lambda = m_{\tau^*}$, $f = f' = 1$. The contact	NODE=S054TXS;LINKAGE=C
	cluded in the $ au^*$ production and decay amplitudes.	
³ ACHARD 03B r	esult is from e^+e^- collisions at $\sqrt{s} = 189-209$ GeV. $f = f' = \Lambda/m_{\tau^*}$ their Fig. 4 for the exclusion plot in the mass-coupling plane.	NODE=S054TXS;LINKAGE=CR
⁴ ABBIENDI 02G	result is from $e^+ e^-$ collisions at $\sqrt{s} =$ 183–209 GeV. $f = f' = \Lambda/m_{ au^*}$	NODE=S054TXS;LINKAGE=GN
	* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling	
	MASS LIMITS for Excited Neutrino (ν^*)	NODE=S054233
Limits for Excite	d ν (ν^*) from Pair Production	
	are obtained from $e^+e^- \rightarrow \nu^*\nu^*$ and thus rely only on the (electroweak)	NODE=S054EXN
charge of $ u^*$. to be of seque	Form factor effects are ignored unless noted. The ν^* coupling is assumed ential type unless otherwise noted. All limits assume a dominant $\nu^* \rightarrow$ ept the limits from $\Gamma(Z)$.	NODE=S054EXN
VALUE (GeV) CL%	DOCUMENT ID TECN COMMENT	NODE=S054EXN
> 1600 95	$\frac{1}{AAD} \qquad 15AP \overline{ATLS} pp \rightarrow \nu^* \nu^* X$	
• • • We do not us	se the following data for averages, fits, limits, etc. • • •	
	² ABBIENDI 04N OPAL	
> 102.6 95	³ ACHARD 03B L3 $e^+e^- ightarrow u^* u^*$ Homodoublet type	
	ch for ν^* pair production in evens with three or more charged leptons in $\sqrt{s} = 8$ TeV. The quoted limit assumes $\Lambda = m_{\nu^*}$, $f = f' = 1$. The	NODE=S054EXN;LINKAGE=D
contact interact	ion is included in the $ u^*$ production and decay amplitudes.	
$\sigma(e^+e^- \rightarrow \nu$	collisions at $\sqrt{s} = 192-209$ GeV, ABBIENDI 04N obtain limit on $(\gamma^* \nu^*) B^2(\nu^* \rightarrow \nu \gamma)$. See their Fig.2. The limit ranges from 20 to ~ 45 GeV	NODE=S054EXN;LINKAGE=AB
	Ilisions at $\sqrt{s} = 189-209$ GeV. $f = -f'$ is assumed. ACHARD 03B also $f = f': m_{\nu_{\pi}^*} > 101.7$ GeV, $m_{\nu_{\pi}^*} > 101.8$ GeV, and $m_{\nu_{\pi}^*} > 92.9$ GeV.	NODE=S054EXN;LINKAGE=CR
	for the exclusion plot in the mass-coupling plane. $\nu_{ au}^{*}$	
Limits for Excited	d ν (ν^*) from Single Production	NODE=S054EXO
These limits a transition mag	are from $e^+e^- \rightarrow \nu\nu^*$, $Z \rightarrow \nu\nu^*$, or $ep \rightarrow \nu^*X$ and depend on gnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode	NODE=S054EXO
are given in fo VALUE (GeV) CL%		NODE=S054EXO
> 213 95	$\frac{DOCUMENT ID}{1 \text{ AARON}} \begin{array}{c} \underline{TECN} & \underline{COMMENT} \\ ep \rightarrow \nu^* X \end{array}$	
	se the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$	
>6000 95	² TUMASYAN 23AL CMS $pp \rightarrow \ell \nu^* \rightarrow \ell \ell q q, \ell = e$	
> 190 95	¹ OMASTAN 23AL CMS $pp \rightarrow e\nu \rightarrow eeq q, e = e$ ³ ACHARD 03B L3 $e^+e^- \rightarrow \nu\nu^*$	
none 50–150 95	⁴ ADLOFF 02 H1 $ep \rightarrow \nu^* X$	

03B L3 ⁴ ADLOFF 02 H1 $ep \rightarrow \nu^* X$ ⁵ CHEKANOV 02D ZEUS $ep \rightarrow \nu^* X$

none 50-150 95 > 158

95

¹AARON 08 search for single ν^* production in *ep* collisions with the decays $\nu^* \rightarrow \nu \gamma$, NODE=S054EXO;LINKAGE=AA νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{,,*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane. $^2\,{\rm TUMASYAN}$ 23AL search for Majorana excited neutrino ν^* produced and decaying via NODE=S054EXO;LINKAGE=B gauge and contact interactions. The limit quoted above is for $\ell = e$ with $\Lambda = M_{\mu^*}$. The limit becomes M_{ν^*} > 6.1 TeV for $\ell = \mu$. ³ACHARD 03B result is from e^+e^- collisions at $\sqrt{s} =$ 189–209 GeV. The quoted limit NODE=S054EXO;LINKAGE=CR is for ν_{ρ}^{*} . $f = -f' = \Lambda/m_{\nu^{*}}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane. ⁴ ADLOFF 02 search for single ν^* production in *ep* collisions with the decays $\nu^* \rightarrow \nu \gamma$, NODE=S054EXO;LINKAGE=LF νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\mu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane. ⁵CHEKANOV 02D search for single u^* production in ep collisions with the decays $u^*
ightarrow$ NODE=S054EXO;LINKAGE=KD $\nu\gamma$, νZ , eW. $f = -f' = \Lambda/m_{\nu^*}$ is assumed for the e* coupling. CHEKANOV 02D also obtain limit for $f=f'=\Lambda/m_{\nu^*}\colon$ $m_{\nu^*}>$ 135 GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane. MASS LIMITS for Excited $q(q^*)$ NODE=S054235 Limits for Excited $q(q^*)$ from Pair Production NODE=S054EQP These limits are mostly obtained from $e^+\,e^ightarrow\,q^*\,\overline{q}^*$ and thus rely only on the (elec-NODE=S054EQP troweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes. NODE=S054EQP VALUE (GeV) DOCUMENT ID CL% TECN COMMENT >338 95 ¹ AALTONEN 10H CDF $a^* \rightarrow t W$ • • • We do not use the following data for averages, fits, limits, etc. ² SIRUNYAN 95 18V CMS none 700-1200 $pp \rightarrow t^*_{3/2}t^*_{3/2} \rightarrow$ tīgg ³ BARATE 980 ALEP $Z \rightarrow q^* q^*$ ⁴ ADRIANI 93M L3 *u* or *d* type, $Z \rightarrow q^* q^*$ > 45.6 95 ⁵ BARDADIN-... 92 RVUE *u*-type, $\Gamma(Z)$ > 41.7 95 ⁵ BARDADIN-... 92 > 44.7 95 RVUE d-type, $\Gamma(Z)$ OCCUR=2 ⁶ DECAMP > 40.6 95 92 ALEP u-type, $\Gamma(Z)$ OCCUR=3 ⁶ DECAMP > 44.2 95 92 ALEP d-type, $\Gamma(Z)$ OCCUR=4 ⁷ DECAMP > 45 95 92 ALEP OCCUR=5 *u* or *d* type, $Z \rightarrow q^* q^*$ ⁶ ABREU 91F DLPH *u*-type, $\Gamma(Z)$ 95 > 45 ⁶ ABREU 95 91F DLPH *d*-type, $\Gamma(Z)$ OCCUR=2 > 45 ¹AALTONEN 10H obtain limits on the q^*q^* production cross section in $p\overline{p}$ collisions. NODE=S054EQP;LINKAGE=AA See their Fig. 3. ²SIRUNYAN 18v search for pair production of spin 3/2 excited top quarks. B($t_{3/2}^* \rightarrow$ NODE=S054EQP:LINKAGE=C tg) = 1 is assumed. 3 BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form NODE=S054EQP;LINKAGE=BU factor plane. ⁴ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type. NODE=S054EQP;LINKAGE=E ⁵ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV. NODE=S054EQP;LINKAGE=BO ⁶These limits are independent of decay modes. NODE=S054EQP;LINKAGE=I ⁷Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1. NODE=S054EQP;LINKAGE=J Limits for Excited $q(q^*)$ from Single Production NODE=S054EQS These limits are from $e^+e^- \rightarrow q^*\overline{q}$, $p\overline{p} \rightarrow q^*X$, or $pp \rightarrow q^*X$ and depend on NODE=S054EQS transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments. DOCUMENT ID TECN COMMENT NODE=S054EQS VALUE (GeV) CL% >6700 (CL = 95%) OUR LIMIT \rightarrow UNCHECKED \leftarrow ¹ TUMASYAN $pp \rightarrow b^*X, b^* \rightarrow bg$ none 1800-2500 95 23AF CMS ² TUMASYAN 23BC CMS $pp \rightarrow q^* X, q^* \rightarrow q\gamma$ none 1000-6000 95 ³ TUMASYAN $pp \rightarrow b^* X, b^* \rightarrow b\gamma$ OCCUR=2 none 1000-2200 95 23BC CMS 4 AAD 20T ATLS $pp \rightarrow q^*X, q^* \rightarrow qg$ none 2000-6700 95 ⁴ AAD $pp \rightarrow b^* X, b^* \rightarrow bg, b\gamma,$ none 1250-3200 20T ATLS OCCUR=2 95 bZ, tW ⁵ SIRUNYAN $pp \rightarrow q^*X, q^* \rightarrow qg$ 20AL CMS none 1800-6300 95 ⁶ AABOUD $pp \rightarrow b^*X, b^* \rightarrow bg$ 18AB ATLS none 1500-2600 95 ⁷ AABOUD $pp \rightarrow q^* X, q^* \rightarrow q\gamma$ 18ba ATLS none 1500-5300 95 $\begin{array}{cccc} pp \rightarrow & q^*X, & q^* \rightarrow & q\gamma \\ pp \rightarrow & b^*X, & b^* \rightarrow & b\gamma \end{array}$ ⁸ SIRUNYAN none 1000-5500 18AG CMS 95 ⁹ SIRUNYAN 18AG CMS OCCUR=2 none 1000-1800 95 ¹⁰ SIRUNYAN 18B0 CMS $pp \rightarrow q^* X, q^* \rightarrow qg$ none 600-6000 95

 $pp \rightarrow q^* X, q^* \rightarrow q W$

 $pp \rightarrow q^*X, q^* \rightarrow qZ$

17AK ATLS $pp \rightarrow q^*X$, $q^* \rightarrow qg$

OCCUR=2

¹¹ SIRUNYAN

¹¹ SIRUNYAN

¹² AABOUD

none 1200-5000

none 1200-4700

>6000

95

95

95

18P CMS

18P CMS

4/12/2024 16:44

Page 9

• • • We do not use the following data for averages, fits, limits, etc. • • •

none 700–3000 >2600	95 95	¹³ TUMASYAN 220 CM ¹⁴ SIRUNYAN 21AG CM	- F F
none 600–5400	95	¹⁵ KHACHATRY17W CM	$MS pp \to q^*X, \ q^* \to qg$
none 1100-2100	95	¹⁶ AABOUD 16 AT	TLS $pp \rightarrow b^*X$, $b^* \rightarrow bg$
>1500	95	17 AAD 16AH AT	TLS $pp \rightarrow b^*X$, $b^* \rightarrow tW$
>4400	95	¹⁸ AAD 16AL AT	TLS $pp \rightarrow q^*X$, $q^* \rightarrow q\gamma$
		¹⁹ AAD 16AV AT	TLS $pp \rightarrow q^*X, q^* \rightarrow Wb$
>5200	95	²⁰ AAD 165 AT	TLS $pp \rightarrow q^*X$, $q^* \rightarrow qg$
>1390	95	²¹ KHACHATRY161 CM	$MS pp \to b^*X, \ b^* \to tW$
>5000	95	22 KHACHATRY16K CM	$MS pp \to q^*X, \ q^* \to qg$
none 500–1600	95	23 KHACHATRY16L CM	$MS pp \to q^*X, \ q^* \to qg$
>4060	95	²⁴ AAD 15V AT	TLS $pp \rightarrow q^*X$, $q^* \rightarrow qg$
>3500	95	25 KHACHATRY15V CM	$MS pp o q^*X, \ q^* o qg$
>3500	95	²⁶ AAD 14A AT	TLS $pp \rightarrow q^*X$, $q^* \rightarrow q\gamma$
>3200	95	²⁷ KHACHATRY14 CM	
>2900	95	²⁸ KHACHATRY14 CM	
none 700–3500	95	²⁹ KHACHATRY14J CM	
>2380	95	³⁰ CHATRCHYAN 13AJ CM	
>2150	95	³¹ CHATRCHYAN 13AJ CM	$MS pp \to q^*X, \ q^* \to qZ$
1			

¹TUMASYAN 23AF limit quoted above assumes $bg \rightarrow b^*$ production. The limit becomes $m_{b^*} > 4$ TeV if contact interaction is included in the b^* production cross section. See their Fig. 5 for limits on $\sigma \cdot B$.

- ² TUMASYAN 23BC search for excited light flavor quark q^* in pp collisions at $\sqrt{s} = 13$ TeV. f = 1.0 is assumed.
- ³TUMASYAN 23BC search for excited *b* quark b^* in *pp* collisions at $\sqrt{s} = 13$ TeV. b^* production via gauge interactions and f = 1.0 are assumed. The limit becomes $m_{b^*} > 3.8$ TeV if contact interaction is included in the b^* production cross section.
- ⁴ AAD 20T search for resonances decaying into dijets in *pp* collisions at $\sqrt{s} = 13$ TeV. Assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- ⁵ SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s} = 13$ TeV. Assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- ⁶ AABOUD 18AB assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in b^* production and decay amplitudes.
- ⁷AABOUD 18BA search for first-generation excited quarks (u^* and d^*) with degenerate mass, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included
- in q^* production and decay amplitudes.
- ⁸SIRUNYAN 18AG search for first-generation excited quarks (u^* and d^*) with degenerate mass, assuming $\Lambda = m_{a^*}$, $f_s = f = f' = 1$.
- ⁹SIRUNYAN 18AG search for excited *b* quark assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- ¹⁰SIRUNYAN 18BO assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.

¹¹SIRUNYAN 18P use the hadronic decay of W or Z, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

- ¹²AABOUD 17AK assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes. Only the decay of $q^* \rightarrow g u$ and $q^* \rightarrow g d$ is simulated as the benchmark signals in the analysis.
- ¹³ TUMASYAN 220 search for b^* decaying to tW in pp collisions at $\sqrt{s} = 13$ TeV. The limit quoted above assumes $\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 0$. The limit becomes $m_{b^*} > 3.0$ TeV (>3.2 TeV) if we assume $\kappa_L^b = g_L = 0$, $\kappa_R^b = g_R = 1$ ($\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 1$). See their Fig. 3 for limits on $\sigma \cdot B$.
- ¹⁴ SIRUNYAN 21AG search for b^* decaying to tW in pp collisions at $\sqrt{s} = 13$ TeV. The limit quoted above assumes $\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 0$. The limit becomes $m_{b^*} > 2.8$ TeV (> 3.1 TeV) if we assume $\kappa_L^b = g_L = 0$, $\kappa_R^b = g_R = 1$ ($\kappa_L^b = g_L = \kappa_R^b = g_R = 1$). See their Fig. 5 for limits on $\sigma \cdot B$.

¹⁵ KHACHATRYAN 17W assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.

¹⁶AABOUD 16 assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in the b^* production and decay amplitudes.

¹⁷ AAD 16AH search for b^* decaying to tW in pp collisions at $\sqrt{s} = 8$ TeV. $f_g = f_L = f_R$ = 1 are assumed. See their Fig. 12b for limits on $\sigma \cdot B$. ¹⁸ AAD 16AI assume $\Lambda = m_{\sigma^*}$, $f_s = f = f' = 1$. OCCUR=2

OCCUR=2

NODE=S054EQS;LINKAGE=TA

NODE=S054EQS;LINKAGE=UA

NODE=S054EQS;LINKAGE=VA

NODE=S054EQS;LINKAGE=OA

NODE=S054EQS;LINKAGE=QA

NODE=S054EQS;LINKAGE=HA

NODE=S054EQS;LINKAGE=IA

NODE=S054EQS;LINKAGE=JA

NODE=S054EQS;LINKAGE=KA NODE=S054EQS;LINKAGE=LA

NODE=S054EQS;LINKAGE=MA NODE=S054EQS;LINKAGE=GA

NODE=S054EQS;LINKAGE=SA

NODE=S054EQS;LINKAGE=RA

NODE=S054EQS;LINKAGE=FA

NODE=S054EQS;LINKAGE=EA

NODE=S054EQS;LINKAGE=X

NODE=S054EQS;LINKAGE=Y

- 19 AAD 16AV search for single production of vector-like quarks decaying to W b in pp collisions. See their Fig. 8 for the limits on couplings and mixings. 20 AAD 16S assume $\Lambda=m_{q^*}$, $f_s=f=f'=1$. The contact interactions are not included
- in q^* production and decay amplitudes. 21 KHACHATRYAN 161 search for b^* decaying to $t\,W$ in $p\,p$ collisions at $\sqrt{s}=$ 8 TeV. κ^b_L
- $=g_L = 1$, $\kappa_R^b = g_R = 0$ are assumed. See their Fig. 8 for limits on $\sigma \cdot B$. ²²KHACHATRYAN 16K assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are
- not included in q^* production and decay amplitudes. $^{23}\,\rm KHACHATRYAN$ 16L search for resonances decaying to dijets in $p\,p$ collisions at $\sqrt{s}=$ 8 TeV using the data scouting technique which increases the sensitivity to the low mass resonances.
- 24 AAD 15V assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included
- in q^* production and decay amplitudes. 25 KHACHATRYAN 15V assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are
- not included in q^* production and decay amplitudes. ²⁶ AAD 14A assume $\Lambda=m_{q^*},\,f_s=f=f'=1.$

²⁷ KHACHATRYAN 14 use the hadronic decay of *W*, assuming $\Lambda = m_{a^*}$, $f_s = f = f' = 1$.

²⁸KHACHATRYAN 14 use the hadronic decay of Z, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.

²⁹KHACHATRYAN 14J assume $f_s = f = f' = \Lambda / m_{a^*}$.

- 30 CHATRCHYAN 13AJ use the hadronic decay of W.
- 31 CHATRCHYAN 13AJ use the hadronic decay of Z.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	¹ ABE	89 D	CDF	$p\overline{p} \rightarrow q_6 \overline{q}_6$

¹ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

$\lambda \equiv m_{\ell_8}/\Lambda$					
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>86	95	¹ ABE	89D	CDF	Stable $\ell_8: p\overline{p} \rightarrow \ell_8 \overline{\ell}_8$
• • • We do not use t	he followi	ng data for averag	ges, fit	ts, limits	a, etc. ● ● ●
		² ABT	93	H1	$e_8: e_p \rightarrow e_8 X$

 $^1\,\mathrm{ABE}$ 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

² ABT 93 search for e_8 production via *e*-gluon fusion in *e p* collisions with $e_8 \rightarrow eg$. See their Fig. 3 for exclusion plot in the m_{e_8} -A plane for $m_{e_8} = 35-220$ GeV.

MASS LIMITS for Color Octet Neutrinos (ν_8)

$\lambda \equiv m_{\ell_8}/$	Λ				
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>110	90	¹ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8\overline{\nu}_8$
• • • We do not	use the fo	llowing data for ave	rages	, fits, lin	nits, etc. • • •
none 3.8–29.8	95	² KIM	90	AMY	$\nu_{R}: e^+e^- ightarrow$ acoplanar jets
none 9–21.9	95	³ BARTEL	87 B	JADE	$ u_8: e^+e^- ightarrow acoplanar jets u_8: e^+e^- ightarrow acoplanar jets$
¹ BARGER 89	used ABE	89B limit for event	s wit	h large r	missing transverse momentum.

Two-body decay $\nu_8 \rightarrow \nu g$ is assumed.

² KIM 90 is at $E_{\rm cm} = 50-60.8$ GeV. The same assumptions as in BARTEL 87B are used. ³ BARTEL 87B is at $E_{\rm cm} = 46.3-46.78$ GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its $SU(2)_L \times U(1)_Y$ quantum numbers.

MASS LIMITS for W_8 (Color Octet W Boson)

U (
VALUE (GeV)	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet We do not use the follow	wing data for aver	ages, f	its, limi	ts, etc. • • •	
	¹ ALBAJAR	89	UA1	$p\overline{p} \rightarrow W_8 X, W_8$	$_3 \rightarrow Wg$

NODE=S054EQS;LINKAGE=DA

NODE=S054EQS;LINKAGE=Z

NODE=S054EQS;LINKAGE=W

NODE=S054EQS;LINKAGE=BA

NODE=S054EQS;LINKAGE=CA

NODE=S054EQS;LINKAGE=U

NODE=S054EQS;LINKAGE=V

NODE=S054EQS:LINKAGE=Q

NODE=S054EQS;LINKAGE=S

NODE=S054EQS;LINKAGE=T

NODE=S054EQS;LINKAGE=R

NODE=S054EQS;LINKAGE=J NODE=S054EQS;LINKAGE=M

NODE=S054CQ NODE=S054CQ

NODE=S054CQ;LINKAGE=A

NODE=S054CL NODE=S054CL NODE=S054CL

NODE=S054CL;LINKAGE=AC

NODE=S054CL;LINKAGE=G2

NODE=S054CN NODE=S054CN NODE=S054CN

OCCUR=3

NODE=S054CN;LINKAGE=C

NODE=S054CN;LINKAGE=D NODE=S054CN;LINKAGE=A

NODE=S054CW NODE=S054CW

NODE=S054CW;LINKAGE=A

NODE=S054

REFERENCES FOR Searches for Quark and Lepton Compositeness

AAD TUMASYAN TUMASYAN	23BJ 23AF	JHEP 2306 199 PR D108 012009 PL B843 137803
TUMASYAN TUMASYAN	23AL 23BC 220	JHEP 2312 189 JHEP 2204 048
AAD	21AU	PRL 127 141801
AAD	21Q	JHEP 2104 142
SIRUNYAN	21AG	JHEP 2112 106
SIRUNYAN	21N	JHEP 2107 208
AAD	20AP	JHEP 2011 005
AAD	20T	JHEP 2003 145
SIRUNYAN	20AI	JHEP 2005 033
SIRUNYAN	20AJ	JHEP 2005 052
AABOUD ABRAMOWICZ SIRUNYAN	19AZ 19 19AC	JHEP 2005 052 EPJ C79 803 PR D99 092006 JHEP 1904 114
SIRUNYAN AABOUD	19Z 18AB	PR D98 032016
AABOUD	18AV	JHEP 1807 089
AABOUD	18BA	EPJ C78 102
SIRUNYAN	18AG	PL B781 390
SIRUNYAN SIRUNYAN SIRUNYAN	18BO 18DD	JHEP 1808 130 EPJ C78 789 PR D97 072006
SIRUNYAN	18P 18V 17AK	PL B778 349 PL D96 052004 JHEP 1710 182
AABOUD KHACHATRY SIRUNYAN	1/AI	JHEP 1710 182 PL B769 520 JHEP 1707 013
AABOUD	16	PL B759 229
AABOUD	16U	PL B761 372
AAD AAD AAD	16AH 16AI 16AV	JHEP 1602 110 JHEP 1603 041 EPJ C76 442 NJP 18 073021
AAD AAD	16BM 16S	PL B754 302
KHACHATRY KHACHATRY KHACHATRY	101	JHEP 1603 125 JHEP 1601 166 PRL 116 071801
KHACHATRY AAD AAD	16L 15AP 15AR	PRL 116 071801 PRL 117 031802 JHEP 1508 138 JHEP 1508 105
AAD	15BY	JHEP 1510 150
AAD	15L	PRL 114 221802
AAD	15V	PR D91 052007
KHACHATRY	15AE	JHEP 1504 025
KHACHATRY	15J	PL B746 79
KHACHATRY	15V	PR D91 052009
AAD	14A	PL B728 562
AAD	14BE	EPJ C74 3134
FABBRICHESI	14	PR D89 074028
KHACHATRY	14	JHEP 1408 173
KHACHATRY	14J	PL B738 274
AAD	13BB	NJP 15 093011
AAD	13E	PR D87 015010
CHATRCHYAN CHATRCHYAN CHATRCHYAN	13AE 13AJ	PL B720 309 PL B723 280
AAD AAD	13K 12AB 12AZ	PL B712 40 PR D85 072003
AARON	11C	PL B705 52
ABDALLAH	11	EPJ C71 1555
AALTONEN	10H	PRL 104 091801
ABDALLAH AARON	09 08	EPJ C60 1 PL B663 382 EPJ C49 411
SCHAEL ABDALLAH ABULENCIA	07A 06C 06L	EPJ C45 589 PRI 96 211801
ABBIENDI	04G	EPJ C33 173
ABBIENDI	04N	PL B602 167
ABDALLAH	04N	EPJ C37 405
ACHARD	03B	PL B568 23
BABICH	03	EPJ C29 103
ABBIENDI	02G	PL B544 57
ACHARD	02D	PL B531 28
ADLOFF	02	PL B525 9
CHEKANOV	02D	PL B549 32
AFFOLDER	01I	PRL 87 231803
BOURILKOV	01	PR D64 071701
CHEUNG	01B	PL B517 167
ACCIARRI	00P	PL B489 81
AFFOLDER	00I	PR D62 012004
BARATE	98U	EPJ C4 571
BARGER	98E	PR D57 391
MCFARLAND	98	EPJ C1 509
DIAZCRUZ	94	PR D49 2149
ABT	93	NP B396 3
ADRIANI BARDADIN	93M 92	PRPL 236 1 ZPHY C55 163 PRPL 216 253
DECAMP PDG ABREU	92 92 91F	PRPL 210 253 PR D45 S1 NP B367 511 PL B240 243
KIM	90	PL B240 243
ABE	89B	PRL 62 1825
ABE	89D	PRL 63 1447
ABE	89J	ZPHY C45 175
ALBAJAR	89	ZPHY C44 15
BARGER	89	PL B220 464
DORENBOS	89	ZPHY C41 567
BARTEL	87B	ZPHY C36 15
GRIFOLS JODIDIO Also	86 86	PL 168B 264 PR D34 1967
RENARD	82	PR D37 237 (errat.) PL 116B 264

 G. Aad et al. A. Tumasyan et al. A. Tumasyan et al. A. Tumasyan et al. A. Tumasyan et al. G. Aad et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Saboud et al. A.M. Sirunyan et al. A.M. Soud et al. V. Khachatryan et al. A.Aboud et al. M. Aaboud et al	(ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (ATLAS Collab.)
G. Aad et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. M. Fabbrichesi, M. Pinamonti, A.	(ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
V. Khachatryan et al. V. Khachatryan et al. G. Aad et al. S. Chatrchyan et al. S. Chatrchyan et al. S. Chatrchyan et al. G. Aad et al. G. Aad et al. H. D. Aaron et al. J. Abdallah et al. F. D. Aaron et al. J. Abdallah et al. F. D. Aaron et al. J. Abdallah et al. H. D. Aaron et al. J. Abdallah et al. H. D. Aaron et al. J. Abdallah et al. H. Abulencia et al. J. Abdallah et al. H. Abulencia et al. J. Abdallah et al. H. Abulencia et al. J. Abdallah et al. H. Abdallah et al. H. Abulencia et al. J. Abdallah et al. H. Abdallah et al. J. Abdallah et al. H. Achard et al. P. Achard et al. P. Achard et al. P. Achard et al. S. Chekanov et al.	(CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DFLPHI Collab.) (DFLC Collab.) (CPAL Collab.) (L13 Collab.) (H1 Collab.) (ZEUS Collab.)
 Affolder et al. D. Bourilkov K. Cheung M. Acciarri et al. R. Barate et al. R. Barate et al. R. Barate et al. K.S. McFarland et al. J.L. Diaz Cruz, O.A. Sampayo I. Abt et al. O. Adriani et al. M. Bardadin-Otwinowska D. Decamp et al. K. Hikasa et al. P. Abreu et al. G.N. Kim et al. F. Abe et al. K. Abe et al. K. Abagre et al. K. Abagre et al. J. Dorenbosch et al. J. Dorenbosch et al. J. J. Grifols, S. Peris A. Jodidio et al. F. Aloe et al. F. Abe et al. F. Abe et al. K. Adiagre et al. J. Dorenbosch et al. J. Abreul et al. J. Actifols, S. Peris A. Jodidio et al. F.M. Renard 	(L2GF Collab.) (CDF Collab.) (CDF Collab.) (ALEPH Collab.) (CINV) (H1 Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (VENUS Collab.) (UA1 Collab.) (UA1 Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.) (LBL, NWES, TRIU) (LBL, NWES, TRIU) (CERN)

REFD=62293 REFD=622365 REFD=62365 REFD=62365 REFD=61498 REFD=61498 REFD=61498 REFD=61498 REFD=60492 REFD=60492 REFD=50492 REFD=50492 REFD=50492 REFD=50492 REFD=593180 REFD=593180 REFD=593180 REFD=593180 REFD=593180 REFD=593180 REFD=593180 REFD=593180 REFD=57323 REFD=57323 REFD=57323 REFD=57323 REFD=553800 REFD=554390 REFD=554390 REFD=554390 REFD=5544500 REFD=55445	$ \begin{array}{l} {\rm REFD} = 61298 \\ {\rm REFD} = 61298 \\ {\rm REFD} = 61298 \\ {\rm REFD} = 61317 \\ {\rm REFD} = 60492 \\ {\rm REFD} = 60492 \\ {\rm REFD} = 60492 \\ {\rm REFD} = 50492 \\ {\rm REFD} = 59876 \\ {\rm REFD} = 599876 \\ {\rm REFD} = 599177 \\ {\rm REFD} = 599177 \\ {\rm REFD} = 59142 \\ {\rm REFD} = 59318 \\ {\rm REFD} = 57233 \\ {\rm REFD} = 57323 \\ {\rm REFD} = 55330 \\ {\rm REFD} = 55308 \\ {\rm REFD} = 555308 \\ {\rm REFD} = 555308 \\ {\rm REFD} = 555308 \\ {\rm RE$
REFID=43371 REFID=43644 REFID=42109 REFID=41877 REFID=41000	REFID=41800 REFID=41800 REFID=41211 REFID=40784 REFID=40799 REFID=40799 REFID=40860 REFID=40973 REFID=40973 REFID=40455 REFID=40455 REFID=40407 REFID=40467 REFID=40467
	REFD=43644 REFD=43644 REFD=41807 REFD=41800 REFD=41840 REFD=40784 REFD=40784 REFD=40786 REFD=40860 REFD=40860 REFD=40860 REFD=40865 REFD=40865 REFD=40457 REFD=40467 REFD=40467 REFD=10605
	REFID=41055 REFID=40455 REFID=10625 REFID=40309 REFID=40467 REFID=10600
REFID=41211 REFID=40784 REFID=40799 REFID=41056 REFID=40860 REFID=40973	10009