NODE=S061210;NODE=S061

NODE=S061

NODE=S061

NODE=S061T

NODE=S061T

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the *b*-baryon mean life is an average over an admixture of various *b* baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *b*-baryon mean life. More *b*-baryon flavor specific channels are not included in the measurement.

$VALUE (10^{-12} s)$	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S061T
• • • We do not use th	e followin	g data for averages	, fits,	limits, e	etc. • • •	
$1.218^{+0.130}_{-0.115}{\pm}0.042$		¹ ABAZOV	07s	D0	Repl. by ABAZOV 120	
$1.22 \ {+0.22 \atop -0.18} \ \pm 0.04$		¹ ABAZOV	05 C	D0	Repl. by ABAZOV 07s	
$1.16\ \pm 0.20\ \pm 0.08$		² ABREU			$e^+e^- \rightarrow Z$	
$1.19 \ \pm 0.14 \ \pm 0.07$		³ ABREU			$e^+e^- \rightarrow Z$	OCCUR=2
$1.14\ \pm 0.08\ \pm 0.04$		⁴ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$	OCCUR=3
$1.11 \begin{array}{c} +0.19 \\ -0.18 \end{array} \pm 0.05$		⁵ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$	OCCUR=4
$1.29 \begin{array}{c} +0.24 \\ -0.22 \end{array} \pm 0.06$		⁵ ACKERSTAFF	9 8G	OPAL	$e^+e^- \rightarrow Z$	
$1.20\ \pm 0.08\ \pm 0.06$		⁶ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$	
1.21 ± 0.11		⁵ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$	OCCUR=2
$1.32 \ \pm 0.15 \ \pm 0.07$		⁷ ABE	96M	CDF	<i>p</i> p at 1.8 TeV	
$1.46 \begin{array}{c} +0.22 \\ -0.21 \end{array} \begin{array}{c} +0.07 \\ -0.09 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W	
$1.10 \ {+0.19 \atop -0.17} \ \pm 0.09$		⁵ ABREU	96D	DLPH	$e^+e^- \rightarrow Z$	OCCUR=2
$1.16 \ \pm 0.11 \ \pm 0.06$		⁵ AKERS	96	OPAL	$e^+e^- \rightarrow Z$	
$1.27 \begin{array}{c} +0.35 \\ -0.29 \end{array} \pm 0.09$		ABREU	95 S	DLPH	Repl. by ABREU 99W	
$1.05 \begin{array}{c} +0.12 \\ -0.11 \end{array} \pm 0.09$	290	BUSKULIC	95L	ALEP	Repl. by BARATE 98D	
$1.04 \begin{array}{c} +0.48 \\ -0.38 \end{array} \pm 0.10$	11	⁸ ABREU	93F	DLPH	Excess $\Lambda\mu^-$, decay lengths	
$1.05 \ {}^{+0.23}_{-0.20} \ \pm 0.08$	157	⁹ AKERS	93	OPAL	Excess $\Lambda \ell^-$, decay lengths	
$1.12 \ \begin{array}{c} +0.32 \\ -0.29 \end{array} \pm 0.16$	101	¹⁰ BUSKULIC	921	ALEP	Excess $\Lambda \ell^-$, impact parameters	
1 Measured mean life	using full	y reconstructed Λ^0_L	\rightarrow .	I/ψ Λ de	cays.	
² Measured using $\Lambda \ell^-$		<i>D</i>				NODE=S061T;LINKAGE=AB NODE=S061T;LINKAGE=N2
³ Measured using $p\ell^-$						NODE=S061T;LINKAGE=N2
	result is t	he combined resul	t of t	he $\Lambda \ell^-$, $p\ell^-$, and excess $\Lambda\mu^-$	NODE=S061T;LINKAGE=N4
⁵ Measured using Λ_{c}						NODE=S061T;LINKAGE=LP
⁶ Measured using the			t par	ameter		NODE=S061T;LINKAGE=KK
⁷ Measured using Λ_{c}		, iopton impac	re pui			NODE=S061T;LINKAGE=AE
⁸ ABREU 93F superse		BREU 96D				NODE=S061T;LINKAGE=AE
⁹ AKERS 93 supersed						NODE=S061T;LINKAGE=B
¹⁰ BUSKULIC 92I supe						NODE=S061T;LINKAGE=D
·	5					
<i>b</i> -	barvon	ADMIXTURE D	FCA)FS	NODE COGIDIO NODE COGI

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the *b*-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of

b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ_1	$p\mu^-\overline{ u}$ anything	$(5.8^+2.3)\%$	
Γ_2	$p\ell\overline{ u}_\ell$ anything	$(5.6 \pm 1.2)\%$	
Γ_3^-	panything	(70 ±22)%	
Γ4	$\Lambda \ell^- \overline{ u}_\ell$ anything	(3.8± 0.6) %	
Γ ₅	$\Lambda\ell^+ u_\ell$ anything	(3.2± 0.8) %	
Γ ₆	Λ anything	$(39 \pm 7)\%$	
Γ ₇	$\Xi^-\ell^-\overline{ u}_\ell$ anything	$(4.6 \pm 1.4) \times 10^{-3}$	1.2

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) BRANCHING RATIOS

$\Gamma(p\mu^-\overline{\nu}anything)/\Gamma_{total}$								
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT			
$5.8^{+2.2}_{-1.9}\pm0.8$	125	¹ ABREU	95 S	DLPH	$e^+e^- \rightarrow Z$			

¹ABREU 95S reports [$\Gamma(b\text{-baryon} \rightarrow p\mu^- \overline{\nu}anything)/\Gamma_{total}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0049 ± 0.0011^{+0.0015} which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\ell\overline{ u}_{\ell}anything)/\Gamma_{total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$5.6 {\pm} 0.9 {\pm} 0.7$	¹ BARATE	98V	ALEP	$e^+e^- \rightarrow ~Z$	

¹BARATE 98V reports $[\Gamma(b\text{-baryon} \rightarrow p\ell \overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ = $(4.72 \pm 0.66 \pm 0.44) \times 10^{-3}$ which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon})$ = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\rho \ell \overline{\nu}_{\ell} \text{ anything}) / \Gamma(\rho \text{ anything})$

VALUE (%)	DOCUMENT ID	TECN	COMMENT	-•
8.0±1.2±1.4	BARATE 98V	ALEP	$e^+e^- \rightarrow Z$	

$\Gamma(\Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$

The values and averages in this section serve only to show what values result if one assumes our B($b \rightarrow b$ -baryon). They cannot be thought of as measurements since the underlying product branching fractions were also used to determine B($b \rightarrow b$ -baryon) as described in the note on "Production and Decay of *b*-Flavored Hadrons."

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
3.8±0.6 OUR AVERA	GE				
$3.9\!\pm\!0.5\!\pm\!0.5$		¹ BARATE	98 D	ALEP	$e^+ e^- \rightarrow Z$
$3.5\!\pm\!0.4\!\pm\!0.5$		² AKERS	96	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$3.6\!\pm\!0.9\!\pm\!0.5$	262	³ ABREU	95 S	DLPH	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$7.3\!\pm\!1.4\!\pm\!1.0$	290	⁴ BUSKULIC	95L	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
$\bullet \bullet \bullet$ We do not use	the followi	ng data for averag	ges, fit	s, limits	, etc. • • •
seen	157	⁵ AKERS	93	OPAL	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
$8.3\!\pm\!2.5\!\pm\!1.1$	101	⁶ BUSKULIC	921	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$
¹ BARATE 98D repo	orts [Γ(b-b	paryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$	anyth	$(ing)/\Gamma_{to}$	$[b_{\text{tal}}] \times [B(\overline{b} \rightarrow b \text{-baryon})]$

¹ BARATE 98D reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = 0.00326 ± 0.00016 ± 0.00039 which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon})$ = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda \ell^-$, lepton impact parameter.

² AKERS 96 reports $[\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})] = 0.00291 \pm 0.00023 \pm 0.00025$ which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ABREU 95S reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = 0.0030 ± 0.0006 ± 0.0004 which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

DESIG=8
DESIG=9
DESIG=10
DESIG=5
DESIG=2
DESIG=7
DESIG=1

NODE=S061215

NODE=S061R8 NODE=S061R8

NODE=S061R8;LINKAGE=CA

NODE=S061R9 NODE=S061R9

NODE=S061R9;LINKAGE=A

NODE=S061R10 NODE=S061R10

 Γ_2/Γ_3

Γ₄/Γ

NODE=S061R5 NODE=S061R5

NODE=S061R5

NODE=S061R5;LINKAGE=KK

NODE=S061R5;LINKAGE=AA

NODE=S061R5;LINKAGE=CA

⁴ BUSKULIC 95L reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{total}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0061 \pm 0.0006 \pm 0.0010 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ AKERS 93 superseded by AKERS 96.

⁶BUSKULIC 92I reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0070 \pm 0.0010 \pm 0.0018 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything}) / \Gamma(\Lambda \text{ anything})$

$\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything}) / \Gamma(\Lambda \text{ anything})$							
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT			
$8.0 \pm 1.2 \pm 0.8$	ABBIENDI	99L	OPAL	$e^+ e^- \rightarrow Z$			
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet							

 $7.0 \pm 1.2 \pm 0.7$ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

Γ(Λanything)/Γ _{total}					Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$39\pm$ 7 OUR AVERAGE					
$42\pm$ 6 ± 5	¹ ABBIENDI	99L	OPAL	$e^+e^- \rightarrow$	Ζ
$27^{+15}_{-9}{\pm}3$	² ABREU	95 C	DLPH	$e^+e^- \rightarrow$	Ζ

• • • We do not use the following data for averages, fits, limits, etc. • • •

³ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L $47\pm~7\pm6$

¹ABBIENDI 99L reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = 0.035 \pm 0.0032 \pm 0.0035 which we divide by our best value B($\overline{b} \rightarrow ~b\text{-baryon})$ = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ²ABREU 95C reports 0.28 $^{+0.17}_{-0.12}$ from a measurement of [F(b-baryon $\rightarrow \Lambda$ anything)/

 Γ_{total}] \times [B($\overline{b} \rightarrow b$ -baryon)] assuming B($\overline{b} \rightarrow b$ -baryon) = 0.08 \pm 0.02, which we rescale to our best value B($\overline{b} \rightarrow b$ -baryon) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ACKERSTAFF 97N reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0393 \pm 0.0046 \pm 0.0037 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $=(5.9\pm2.1\pm1.0) imes10^{-4}$ which we divide by our best value B($\overline{b}
ightarrow\,$ b-baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is

the systematic error from using our best value.

$\Gamma(\Xi^{-}\ell^{-}\overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$ Γ_7/Γ NODE=S061R1 NODE=S061R1 ____<u>TECN</u>___COMMENT VALUE (units 10^{-3}) DOCUMENT ID **4.6±1.4 OUR AVERAGE** Error includes scale factor of 1.2. ¹ABDALLAH 05C DLPH $e^+e^- \rightarrow Z^0$ SYCLP=A $3.6 \pm 1.2 \pm 0.5$ ² BUSKULIC 96T ALEP Excess $\Xi^- \ell^-$ over $\Xi^- \ell^+$ SYCLP=A $6.4\!\pm\!1.6\!\pm\!0.8$ • • • We do not use the following data for averages, fits, limits, etc. • • • ³ ABREU 95V DLPH Repl. by ABDALLAH 05C $7.0\!\pm\!2.8\!\pm\!0.9$ SYCLP=A ¹ABDALLAH 05C reports [$\Gamma(b\text{-baryon} \rightarrow \overline{\Xi}^- \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = (3.0 ± 1.0 ± 0.3) × 10⁻⁴ which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) NODE=S061R1;LINKAGE=D $= (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ²BUSKULIC 96T reports [$\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] \times [B($\overline{b} \rightarrow b$ -NODE=S061R1;LINKAGE=C baryon)] = $(5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ABREU 95V reports [$\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] NODE=S061R1;LINKAGE=B

NODE=S061R5;LINKAGE=BL

NODE=S061R5;LINKAGE=KA NODE=S061R5;LINKAGE=BA

NODE=S061R2 NODE=S061R2

NODE=S061R7 NODE=S061R7

NODE=S061R7;LINKAGE=D

NODE=S061R7;LINKAGE=AA

NODE=S061R7:LINKAGE=C

NODE=S061

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) REFERENCES

ABAZOV ABAZOV ABAZOV ABDALLAH ABBIENDI ABREU ACKERSTAFF BARATE BARATE BARATE ACKERSTAFF ABE ABREU AKERS BUSKULIC ABREU ABREU BUSKULIC ABREU AKERS BUSKULIC	12U 07S 05C 99L 98G 98D 98V 97N 96M 96D 96 96 96 95S 95V 95L 93F 93 93F 93 92I	PR D85 112003 PRL 99 142001 PRL 94 102001 PRJ C44 299 EPJ C9 1 EPJ C10 185 PL B426 161 EPJ C2 197 EPJ C5 205 ZPHY C74 423 PRL 77 1439 ZPHY C69 195 PL B384 449 PL B347 447 ZPHY C68 375 ZPHY C68 355 ZPHY C68 541 PL B357 685 PL B311 379 PL B316 435 PL B297 449	 V.M. Abazov et al. V.M. Abazov et al. V.M. Abazov et al. J. Abdallah et al. G. Abbiendi et al. P. Abreu et al. R. Barate et al. R. Barate et al. R. Barate et al. R. Ackerstaff et al. F. Abre et al. P. Abreu et al. R. Akers et al. D. Buskulic et al. P. Abreu et al. R. Akers et al. R. Akers et al. B. Buskulic et al. 	(D0 Collab.) (D0 Collab.) (D0 Collab.) (D0 Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.)	REFID=54350 REFID=52008 REFID=50511 REFID=51221 REFID=47024 REFID=45875 REFID=45878 REFID=45878 REFID=44810 REFID=444810 REFID=444691 REFID=444691 REFID=44407 REFID=444210 REFID=44468 REFID=44468 REFID=44337 REFID=43541 REFID=43221
--	--	---	--	---	---