7/16/2025 12:20

NODE=S091

Page 1

DOCUMENT ID VALUE (MeV) TECN COMMENT 1 AAIJ 6274.47± 0.27± 0.17 20R LHCB pp at 7, 8, 13 TeV • • We do not use the following data for averages, fits, limits, etc. • • • ² AAIJ $6274.28 \pm 1.40 \pm 0.32$ 17L LHCB Repl. by AAIJ 20R ³ AAIJ $6274.0~\pm~~1.8~\pm~~0.4$ 14AQ LHCB Repl. by AAIJ 20R 13AS LHCB Repl. by AAIJ 20R ⁴ AAIJ $6276.28 \pm 1.44 \pm 0.36$ ⁵ AAIJ $6273.7 ~\pm ~1.3 ~\pm ~1.6$ 12AV LHCB Repl. by AAIJ 20R ⁶ AALTONEN 08M CDF $6275.6~\pm~~2.9~\pm~~2.5$

⁶ ABULENCIA 06c CDF 6285.7 \pm 5.3 \pm 1.2 Repl. by AALTONEN 08M ⁷ ABE 98M CDF $p\overline{p}$ at 1.8 TeV $6400 \pm 390 \pm 130$ ⁸ ACKERSTAFF 980 OPAL $e^+e^-
ightarrow Z$ $6320 \quad \pm \ 60$ ¹AAIJ 20R uses the $B_c^+ \rightarrow J/\psi \pi^+$, $J/\psi \pi^+ \pi^- \pi^+$, $J/\psi p \overline{p} \pi^+$, $J/\psi D_s^+$, $J/\psi D^0 K^+$ and $B_s^0 \pi^+$ modes. ² Measured using $B_c^+ \rightarrow J/\psi D^0 K^+$ decays.

⁶ ABAZOV

Quantum numbers shown are quark-model predictions.

 B_{c}^{+} MASS

³Uses $B_c^+ \rightarrow J/\psi p \overline{p} \pi^+$ decays.

 $6300 \hspace{0.2cm} \pm \hspace{0.2cm} 14 \hspace{0.2cm} \pm \hspace{0.2cm} 5$

⁴AAIJ 13AS uses the $B_c^+ \rightarrow J/\psi D_s^+$. ⁵AAIJ 12AV uses the $B_c^+ \rightarrow J/\psi \pi^+$ mode and also measures the mass difference M(B_c^+) - M(B⁺) = 994.6 \pm 1.3 \pm 0.6 MeV/c².

08T D0

⁶ Measured using a fully reconstructed decay mode of $B_c \rightarrow J/\psi \pi$. ⁷ ABE 98M observed 20.4^{+6.2}_{-5.5} events in the $B_c^+ \rightarrow J/\psi(1s)\ell\nu_\ell$ with a significance of > 4.8 standard deviations. The mass value is estimated from $m(J/\psi(1S)\ell)$.

⁸ACKERSTAFF 980 observed 2 candidate events in the $B_{C}^{+} \rightarrow J/\psi(1S)\pi^{+}$ channel with an estimated background of 0.63 \pm 0.20 events.

т _{в+}	- m _{B⁰}
-----------------	------------------------------

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
907.75±0.37±0.27	¹ AAIJ	20R	LHCB	<i>pp</i> at 7, 8, 13 TeV
¹ AAIJ 20R uses the $B_c^+ \rightarrow$	$J/\psi \pi^+$, $J/\psi \pi^+ \pi^-$	π+,	$J/\psi p \overline{p} \pi$	+, $J/\psi D_s^+$, $J/\psi D^0 K^+$
and $B_c^0 \pi^+$ modes.				

B_{c}^{+} MEAN LIFE

NODE=S091T $VALUE (10^{-12} s)$ COMMENT DOCUMENT ID TECN 0.510 \pm 0.009 OUR EVALUATION (Produced by HFLAV) \rightarrow UNCHECKED \leftarrow 0.510 ± 0.009 OUR AVERAGE ¹ SIRUNYAN $0.541 \ \pm 0.026 \ \pm 0.014$ 18BY CMS pp at 8 TeV 2,3 AAIJ $0.5134 \pm 0.0110 \pm 0.0057$ 15G LHCB *pp* at 7, 8 TeV ⁴ AAIJ $0.509 \ \pm 0.008 \ \pm 0.012$ 14G LHCB pp at 8 TeV ³ AALTONEN $0.452\ \pm 0.048\ \pm 0.027$ 13 CDF $p\overline{p}$ at 1.96 TeV $0.448 \begin{array}{c} +0.038 \\ -0.036 \end{array} \pm 0.032$ ⁵ ABAZOV 09H D0 pp at 1.96 TeV $\begin{array}{ccc} 0.463 & + \ 0.073 \\ - \ 0.065 & \pm \ 0.036 \end{array}$ ⁵ ABULENCIA 060 CDF $p\overline{p}$ at 1.96 TeV $\begin{array}{rrr} 0.46 & +0.18 \\ -0.16 & \pm 0.03 \end{array}$ ⁵ ABE 98M CDF pp 1.8 TeV ¹The lifetime is measured using the decays $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$. ²Also measures the width difference $\Delta\Gamma = \Gamma_{B_c^+} - \Gamma_{B^+} = 4.46 \pm 0.14 \pm 0.07 \text{ mm}^{-1} \text{ c.}$

³Uses fully reconstructed $B_c^+ \rightarrow J/\psi \pi^+$ decays.

⁴Measured using $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu X$ decays.

⁵ The lifetime is measured from the $J/\psi e$ decay vertices.

NODE=S091T;LINKAGE=C

NODE=S091T;LINKAGE=AA NODE=S091T;LINKAGE=AL NODE=S091T;LINKAGE=B NODE=S091T;LINKAGE=A

 $I(J^P) = 0(0^-)$ I, J, P need confirmation.

 $p\overline{p}$ at 1.96 TeV

pp at 1.96 TeV

NODE=S091

NODE=S091M

NODE=S091M

NODE=S091M;LINKAGE=E

NODE=S091M;LINKAGE=C

NODE=S091M;LINKAGE=AI

NODE=S091M;LINKAGE=B NODE=S091M;LINKAGE=AA

NODE=S091M;LINKAGE=AN NODE=S091M;LINKAGE=A

NODE=S091M;LINKAGE=D

NODE=S091A01:LINKAGE=A

NODE=S091A01 NODE=S091A01

NODE=S091T

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)

The following quantities are not pure branching ratios; rather the fractions $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c)$. B_c^- modes are charge conjugates of the modes below.

Mode

Fraction (Γ_i/Γ)

Confidence level

NODE=S091215;NODE=S091

NODE=S091

Γ_1	$J/\psi(1S)\ell^+ u_\ell$ anything	seen		CLUMP=A;DESIG=1;OUR EVAL;
Γ2	$J/\psi(1S)\mu^+ u_\mu$	seen		$DESIG^{\texttt{SIG}}_{\texttt{SIG}} \stackrel{\texttt{SIG}}{=} 19; OUREVAL; \rightarrow UNCHECKED \leftarrow$
Г ₃	$J/\psi(1S) au^+ u_ au$	seen		$DESIG{=}32; OUR\;EVAL; \rightarrow UNCHECKED \leftarrow$
Γ4	$J/\psi(1S)\pi^+$	seen		$DESIG{=}2; OUR \; EVAL; \rightarrow UNCHECKED \leftarrow$
Γ ₅	$J/\psi(1S){ m K}^+$	seen		$DESIG{=}14{;}OUR\;EVAL{;}{\rightarrow}\;UNCHECKED \leftarrow$
Г ₆	$J/\psi(1S)\pi^+\pi^0$			DESIG=56
Γ ₇	$J/\psi(1S)\pi^+\pi^+\pi^-$	seen		$DESIG{=}3; OUR \ EVAL; {\rightarrow} \ UNCHECKED \leftarrow$
Г ₈	$J/\psi(1S){ m K}^+\pi^-\pi^+$			DESIG=51
Г۹	$J/\psi(1S) K^+ K^- K^+$			DESIG=52
Γ ₁₀	$J/\psi(1S)a_1(1260)$	not seen		$DESIG{=}4{;}OUR\;EVAL{;}{\rightarrow}\;UNCHECKED \leftarrow$
Γ_{11}	$J/\psi(1S){ m K}^+{ m K}^-\pi^+$	seen		$DESIG{=}17;\!OUR\;EVAL;\!\rightarrowUNCHECKED \leftarrow$
Γ_{12}	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen		$DESIG{=}18;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₁₃	$\psi(2S)\pi^+$	seen		$DESIG{=}11;\!OUR\;EVAL;\!\rightarrowUNCHECKED \leftarrow$
Γ_{14}	$\psi(2S)\pi^+\pi^-\pi^+$			DESIG=53
Γ ₁₅	$\psi(2S)K^+K^-\pi^+$			DESIG=54
Γ ₁₆	$J/\psi(1S)D^0K^+$	seen		$DESIG{=}22;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₁₇	$J/\psi(1S) D^*(2007)^0 K^+$	seen		$DESIG{=}23;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₁₈	$J/\psi(1S) D^*(2010)^+ K^{*0}$	seen		$DESIG{=}24;\!OUR\;EVAL;\!\rightarrowUNCHECKED \leftarrow$
Γ ₁₉	$J/\psi(1S) D^+ K^{*0}$	seen		$DESIG{=}25;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₂₀	$J/\psi(1S)D_s^+$	seen		$DESIG{=}12;\!OUR\;EVAL;\!\rightarrowUNCHECKED \leftarrow$
Γ ₂₁	$J/\psi(1S) D_{s}^{*+}$	seen		$DESIG{=}13;\!OUR\;EVAL;\!\rightarrowUNCHECKED \leftarrow$
Γ ₂₂	$J/\psi(1S)p\bar{\overline{p}}\pi^+$	seen		$DESIG{=}20; OUR\ EVAL; {\rightarrow}\ UNCHECKED \leftarrow$
Γ ₂₃	$\chi_{c0}\pi^+$			DESIG=26
Γ ₂₄	$\chi_{c1}\pi^+$			DESIG=58
Γ ₂₅	$\chi_{c2}\pi^+$			DESIG=57
Γ ₂₆	$p\overline{p}\pi^+$	not seen		$DESIG{=}21;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₂₇	$D^0 K^+$	seen		$DESIG{=}27;\!OUR\;EVAL;\!\rightarrowUNCHECKED \leftarrow$
Γ ₂₈	$D^{0}\pi^{+}$	not seen		$DESIG{=}28; OUR\ EVAL; {\rightarrow}\ UNCHECKED \leftarrow$
Γ ₂₉	$D^{*0}\pi^+$	not seen		$DESIG{=}29;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₃₀	$D^{*0}K^+$	not seen		$DESIG{=}31;\!OUR\;EVAL;\!\rightarrowUNCHECKED\leftarrow$
Γ ₃₁	$D_s^+ D_s^0$	$< 7.2 \times 10^{-4}$	90%	DESIG=33
Γ ₃₂	$D_s^+ D^0$	$< 3.0 \times 10^{-4}$	90%	DESIG=35
Γ ₃₃	$D^+ \overline{D}{}^0$	$< 1.9 \times 10^{-4}$	90%	DESIG=36
Г ₃₄	$D^{+}D^{0}$	$< 1.4 \times 10^{-4}$	90%	DESIG=37
Γ ₃₅	$D_s^{*+}\overline{D}^0$	$< 5.3 \times 10^{-4}$	90%	DESIG=38
Γ ₃₆	$D_{s}^{+}\overline{D}^{*}(2007)^{0}$	$< 4.6 \times 10^{-4}$	90%	DESIG=39
Γ37	$D_{c}^{*+}D^{0}$	$< 9 \times 10^{-4}$	90%	DESIG=40
Г <u>зя</u>	$D^{+}_{-}D^{*}(2007)^{0}$	$< 6.6 \times 10^{-4}$	90%	DESIG=41
<u>Г</u> 20	$D^{*}(2010)^{+}\overline{D}^{0}$	$< 3.8 \times 10^{-4}$	90%	
Γ ₄₀	$D^*(2010)^+\overline{D}^0$ $D^{*+} \rightarrow$	not seen	5070	DESIG=49.0UR EVAL \rightarrow UNCHECKED \leftarrow
• 40	$D^+\pi^0/\gamma$			
Γ41	$D^+ \overline{D^*}(2007)^{0'}$	$< 6.5 \times 10^{-4}$	90%	DESIG=42
Γ_{42}	$D^{*}(2007)^{+}D^{0}$	$< 2.0 \times 10^{-4}$	90%	DESIG=50
Γ_{43}	$D^{*}(2010)^{+}D^{0}, D^{*+} \rightarrow D^{+}\pi^{0}/\gamma$	not seen		DESIG=43;OUR EVAL; \rightarrow UNCHECKED \leftarrow
Γ_{44}	$D^+ D^* (2007)^0$	$< 3.7 \times 10^{-4}$	90%	DESIG=44
Γ_{45}	$D_{2}^{*+}\overline{D}^{*}(2007)^{0}$	$< 1.3 \times 10^{-3}$	90%	DESIG=45
ц.	$D^{*+}D^{*}(2007)^{0}$	$< 1.3 \times 10^{-3}$	90%	DESIG=46
Γ40	$D^{*}(2010)^{+} \overline{D}^{*}(2007)^{0}$	$<1.0 \times 10^{-3}$	90%	DESIG-47
· 4/ [40	$D^{*}(2010)^{+}D^{*}(2007)^{0}$	$< 7.7 \times 10^{-4}$	90%	DFSIG=48
· 48 Γ40	$D^+ K^{*0}$	not seen	5070	DESIG=6:011R EVAL \rightarrow LINCHECKED \leftarrow
• 49		not seen		

DESIG=7;OUR EVAL;→ UNCHECKED ←

DESIG=8;OUR EVAL; \rightarrow UNCHECKED \leftarrow

 $\mathsf{DESIG}{=}9; \mathsf{OUR}\ \mathsf{EVAL}; \rightarrow \mathsf{UNCHECKED} \leftarrow$

DESIG=10;OUR EVAL;→ UNCHECKED ←

DESIG=15; OUR EVAL; \rightarrow UNCHECKED \leftarrow

DESIG=16;OUR EVAL;→ UNCHECKED ←

I 50	$D^+ K^{*0}$	not seen
Γ ₅₁	$D_{s}^{+} K^{*0}$	not seen
Γ ₅₂	$D_s^+\overline{K}^{*0}$	not seen
Γ ₅₃	$D_s^+\phi$	not seen
Γ ₅₄	K^+K^0	not seen
Γ ₅₅	$B_s^0 \pi^+ / B(\overline{b} \rightarrow B_s)$	seen
Γ ₅₆	$B_{s}^{0}\pi^{+}$	
Γ ₅₇	$\pi^+ \mu^+ \mu^-$	
Γ ₅₈	$D_{s}^{+}\mu^{+}\mu^{-}$	

 $n + \overline{x} * 0$

B⁺_c BRANCHING RATIOS

$\Gamma(J/\psi(1S)\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)$ $\Gamma_1/\Gamma \times B$ NODE=S091R1 NODE=S091R1 VALUE (units 10^{-5}) DOCUMENT ID CL% TECN COMMENT 8.2±1.3 OUR AVERAGE Error includes scale factor of 1.4. 1,2 AALTONEN 16A CDF $8.8\!\pm\!1.0\!\pm\!0.2$ pp at 1.96 TeV $5.2^{+2.4}_{-2.1}$ ³ ABE 98M CDF *pp* 1.8 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • ⁴ ACKERSTAFF 980 OPAL $e^+e^- ightarrow Z$ ۹N < 16⁵ ABREU 97E DLPH $e^+e^- \rightarrow Z$ $<\!\!19$ 90 ⁶ BARATE <12 90 97H ALEP $e^+e^- \rightarrow Z$ ¹AALTONEN 16A reports $[\Gamma(B_c^+ \rightarrow J/\psi(1S)\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] / [B(B^+ \rightarrow J/\psi(1S)K^+)] = 0.211 \pm 0.012 \stackrel{+0.021}{-0.020}$ which we multiply NODE=S091R1;LINKAGE=E by our best values $B(\overline{b} \rightarrow B^+) = (40.8 \pm 0.7) \times 10^{-2}$, $B(B^+ \rightarrow J/\psi(1S)K^+) =$ $(1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. 2 AALTONEN 16A also measures the cross-section $\sigma(B_c) imes$ B $(B_c o J/\psi\mu u_\mu)=$ 0.60 \pm NODE=S091R1;LINKAGE=F 0.09 nb and estimates the total cross-section $\sigma(B_c)$ to be in the range 25 \pm 4 to 52 \pm 8 nb for $p_T(B_c) > 6 \text{ GeV/c and } |y(B_c)| < 1$. ³ABE 98M result is derived from the measurement of $[\sigma(B_c) \times B(B_c \rightarrow J/\psi(1S) \ell \nu_{\ell})] / [\sigma(B^+) \times B(B^+ \rightarrow J/\psi(1S) K^+)] = 0.132 \substack{+0.041 \\ -0.037} (\text{stat}) \pm 0.031 (\text{sys}) \substack{+0.032 \\ -0.020} (\text{lifetime})$ NODE=S091R1;LINKAGE=C by using PDG 98 values of $B(b \rightarrow B^+)$ and $B(B^+ \rightarrow J/\psi(1S)K^+)$. ⁴ ACKERSTAFF 980 reports $B(Z \rightarrow B_{c}X)/B(Z \rightarrow qq) \times B(B_{c} \rightarrow J/\psi(1S)\ell\nu_{\ell}) < 1$ NODE=S091R1;LINKAGE=D $6.95 imes 10^{-5}$ at 90%CL. We rescale to our PDG 98 values of B($Z o b \overline{b}$). 5 ABREU 97E value listed is for an assumed $au_{B_c}=$ 0.4 ps and improves to $1.6 imes 10^{-4}$ for NODE=S091R1;LINKAGE=A $au_{B_c} = 1.4$ ps. ⁶ BARATE 97H reports B(Z \rightarrow B_cX)/B(Z \rightarrow qq)·B(B_c \rightarrow J/ ψ (1S) $\ell \nu_{\ell}$) < 5.2×10⁻⁵ NODE=S091R1;LINKAGE=B at 90%CL. We rescale to our PDG 96 values of B(Z $ightarrow ~b \,\overline{b}$). A $B_c^+ ightarrow ~J/\psi(1S) \mu^+ u_{\mu}$ candidate event is found, compared to all the known background sources 2×10^{-3} , which gives $m_{B_c}=5.96^{+0.25}_{-0.19}$ GeV and $\tau_{B_c}=1.77\pm0.17$ ps. (1)

$\Gamma(J/\psi(1S)\tau^+\nu_{\tau})/\Gamma(J/\psi(1S)\mu^+\nu_{\mu})$						Γ3/Γ2		
VALUE			DOCUMEN	T ID		TECN	COMMENT	
0.71±0.17±0.18			¹ AAIJ		18C	LHCB	<i>pp</i> at 7, 8 TeV	
1	1	1						

¹ AAIJ 18C uses $\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_{\tau}$ mode to obtain the ratio value.

$\Gamma(J/\psi(1S)\pi^+)/I$		$\Gamma_4/\Gamma imes B$			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
seen		¹ AABOUD	21	ATLS	pp at 8 TeV
seen		² AAIJ	15M	LHCB	pp at 8 TeV
seen		³ KHACHATRY.	15AA	CMS	pp at 7 TeV
seen		AALTONEN	13	CDF	<i>р</i> рат 1.96 ТеV
seen		⁴ AAIJ	12AV	LHCB	pp at 7 TeV
seen		AALTONEN	08M	CDF	<i>pp</i> at 1.96 TeV
seen		ABAZOV	08T	D0	<i>pp</i> at 1.96 TeV
\bullet \bullet \bullet We do not use	e the followin	g data for averages	, fits,	limits, e	etc. • • •
$< 2.4 imes 10^{-4}$	90	⁵ ACKERSTAFF	980	OPAL	$e^+e^- \rightarrow Z$
$< 3.4 \times 10^{-4}$	90	⁶ ABREU	97E	DLPH	$e^+e^- \rightarrow Z$
$< 8.2 \times 10^{-5}$	90	⁷ BARATE	97H	ALEP	$e^+e^- \rightarrow Z$
$< 2.0 \times 10^{-5}$	95	⁸ ABE	96r	CDF	<i>pp</i> 1.8 TeV

NODE=S091225	
--------------	--

DFSIG=55 DESIG=59 DESIG=60

NODE=S091R29 NODE=S091R29

NODE=S091R29;LINKAGE=A

NODE=S091R2 NODE=S091R2

NODE=S091R2;LINKAGE=G

¹AABOUD 21 reports a measurement of B($B_c^+ \rightarrow J/\psi \pi^+$) / B($B^+ \rightarrow J/\psi K^+$) $f_c/f_u = (0.34 \pm 0.04 {+0.06 \atop -0.02} \pm 0.01)$ %, at p_T > 13 GeV and |y| < 2.3.

²AAIJ 15M reports a measurement of B($B_c^+ \rightarrow J/\psi \pi^+$) / B($B^+ \rightarrow J/\psi K^+$) $\cdot f_c/f_u$ $= (0.683 \pm 0.018 \pm 0.009)\%$ at $p_T(B) \stackrel{c}{<} 20$ GeV and 2.0 < y(B) < 4.5.

 3 KHACHATRYAN 15AA reports a measurement of B($B^+_{\ c} \rightarrow \ J/\psi \, \pi^+)$ / B($B^+ \rightarrow$ $J/\psi \, {\cal K}^+) \cdot f_{\cal C}/f_{\cal U} = (0.48 \pm 0.05 \pm 0.03 \pm 0.05)\%$, at $p_{\cal T}~>15~{
m GeV}$ and $\left|\eta(B)
ight|~<1.6$.

⁴ AAIJ 12AV reports a measurement of $B(B_c^+ \rightarrow J/\psi \pi^+)/B(B^+ \rightarrow J/\psi K^+) f_c/f_u = (0.68 \pm 0.10 \pm 0.03 \pm 0.05)\%$ at $p_T(B) > 4$ GeV and 2.5 $< \eta(B) < 4.5$.

⁵ACKERSTAFF 980 reports $B(Z \rightarrow B_{C}X)/B(Z \rightarrow qq) \times B(B_{C} \rightarrow J/\psi(1S)\pi^{+}) <$ 1.06×10^{-4} at 90%CL. We rescale to our PDG 98 values of B($Z \rightarrow b\overline{b}$).

⁶ABREU 97E value listed is for an assumed $\tau_{B_c} =$ 0.4 ps and improves to 2.7×10^{-4} for $\tau_{B_c} = 1.4 \text{ ps.}$

⁷ BARATE 97H reports B(Z \rightarrow B_cX)/B(Z \rightarrow qq)·B(B_c \rightarrow J/ ψ (1S) π) < 3.6 × 10⁻⁵ at 90%CL. We rescale to our PDG 96 values of $B(Z \rightarrow b\overline{b})$.

 $J/\psi(1S)K^+)$ < 0.053 at 95%CL for au_{B_c} = 0.8 ps. It changes from 0.15 to 0.04 for 0.17 ps< au_{B_c} < 1.6 ps. We rescale to our PDG 96 values of B($b
ightarrow B^+$) = 0.378 \pm 0.022 and $B(B^+ \rightarrow J/\psi(1S)K^+) = 0.00101 \pm 0.00014$.

$\Gamma(J/\psi(1S)\pi^+)/\Gamma(J/\psi(1S)\mu^+\nu_\mu)$

$\Gammaig(J/\psi(1S)\pi^+ig)/\Gammaig(J/\psi(1S)\pi^+ig)$	$(S)\mu^+ u_\mu$				Γ_4/Γ_2
VALUE (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT	
4.69±0.28±0.46	¹ AAIJ	14W	LHCB	pp at 7 TeV	
1 AAIJ 14W reports also a 0.271 \pm 0.016 \pm 0.016 in	measurement B($B^+_{m{c}} ightarrow$ n the region $m_{J/\psi\mu^+}$	J/ψ > 5.3	$(\pi^+) / GeV.$	$B(B_c^+ \to J/\psi\mu)$	$(\iota^+ \nu_\mu) =$

$\Gamma(J/\psi(1S)K^+)/\Gamma(J/\psi(1S)\pi^+)$							
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT			
$0.079 \pm 0.007 \pm 0.003$		AAIJ	16AF LHCB	<i>pp</i> at 7, 8 TeV			
\bullet \bullet \bullet We do not use the	ne following	g data for average	es, fits, limits, e	etc. • • •			
$0.069\!\pm\!0.019\!\pm\!0.005$	50	AAIJ	13BY LHCB	Repl. by AAIJ 16A	F		
$\Gamma(1/1/1) = + -0 / \Gamma(1/1/1) = + $							

$(J/\psi(15)\pi^{+}\pi^{*})/(J/\psi(15)\pi^{+})$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$2.80 \pm 0.15 \pm 0.19$	AAIJ	24L	LHCB	<i>pp</i> at 7, 8, 13 TeV	

$\Gamma(J/\psi(1S)\pi^+\pi^+\pi^-$	$\Gamma_7/\Gamma \times B$				
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
seen		AAIJ	12Y	LHCB	<i>pp</i> at 7 TeV
\bullet \bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$< 5.7 imes 10^{-4}$	90	¹ ABREU	97E	DLPH	$e^+e^- \rightarrow Z$
1					

¹ABREU 97E value listed is independent of 0.4 ps< $\tau_{B_c} < 1.4$ ps.

$\Gamma(J/\psi(1S)\pi^+\pi^+\pi^-)/\Gamma(J/\psi(1S)\pi^+)$				
VALUE	DOCUMENT ID	TECN	COMMENT	
2.4 \pm 0.4 OUR AVERAGE				
$2.55 \!\pm\! 0.80 \!\pm\! 0.33 \!+\! 0.04 \!-\! 0.01$	KHACHATRY	15AA CMS	<i>pp</i> at 7 TeV	
$2.41 \pm 0.30 \pm 0.33$	AAIJ	12Y LHCB	<i>pp</i> at 7 TeV	

$\Gamma(J/\psi(1S)a_1(1260))/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$					$\Gamma_{10}/\Gamma imes B$
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<1.2 × 10 ⁻³	90	¹ ACKERSTAFF 980	OPAL	$e^+e^- \rightarrow$	Ζ
¹ ACKERSTAFF 980 r	eports B(<i>Z</i>	$\rightarrow B_{c}X)/B(Z \rightarrow q)$	$q) \times B(B)$	$c \rightarrow J/\psi(1)$	S)a ₁ (1260))
$< 5.29 imes 10^{-4}$ at 90	%CL. We r	rescale to our PDG 98	values o	$f B(Z \rightarrow b)$	\overline{b}).

$\Gamma(J/\psi(1S)K^+K^-\pi^+)/\Gamma_0$		$\Gamma_{11}/\Gamma imes E$	
VALUE	DOCUMENT ID	TECN	COMMENT
seen	¹ AAIJ	13CA LHCB	<i>pp</i> at 7, 8 TeV

 1 A signal yield of 78 \pm 14 decays is reported with a significance of 6.2 standard deviations using an integrated luminosity of 3 fb⁻¹ data.

NODE=S091R2;LINKAGE=E
NODE=S091R2;LINKAGE=F
NODE=S091R2;LINKAGE=AA
NODE=S091R2;LINKAGE=D

NODE=S091R2;LINKAGE=A

NODE=S091R2;LINKAGE=B

NODE=S091R2;LINKAGE=C

NODE=S091R17 NODE=S091R17

NODE=S091R17;LINKAGE=A

NODE=S091R14 NODE=S091R14

NODE=S091R65 NODE=S091R65

NODE=S091R3 NODF=S091R3

NODE=S091R3;LINKAGE=A

NODE=S091R01 NODE=S091R01

NODE=S091R4 NODE=S091R4

NODE=S091R4;LINKAGE=D

NODE=S091R03 NODE=S091R03

NODE=S091R03;LINKAGE=AA

$\Gamma(J/\psi(1S)K^+K^-\pi^+)/\Gamma($	$(J/\psi(1S)\pi^+)$	TECH	COMMENT	Γ_{11}/Γ_4	NODE=S091R04
<u>value</u> 0.53±0.10±0.05	¹ AAIJ 1	3CA LHCB	pp at 7.8 Te	eV	NODE=3091R04
1 A signal yield of 78 \pm 14 dec using an integrated luminos	cays is reported with a s ity of 3 fb $^{-1}$ data.	ignificance	of 6.2 standard	l deviations	NODE=S091R04;LINKAGE=AA
$\Gamma(J/\psi(1S)\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-)$	-)/Γ(<i>J/ψ</i> (1 <i>S</i>)π ⁺) <u>DOCUMENT ID</u>	TECN	COMMENT	Γ_{12}/Γ_4	NODE=S091R16 NODE=S091R16
$1.74 \pm 0.44 \pm 0.24$	¹ AAIJ 14	4P LHCB	<i>pp</i> at 7, 8 Te	eV	
1 A signal yield of 32 \pm 8 dec	ays is reported with a sig	gnificance c	of 4.5 standard	deviations.	NODE=S091R16;LINKAGE=A
$\Gamma(J/\psi(1S)D_s^+)/\Gamma_{\text{total}} \times B$	$(\overline{b} \rightarrow B_c)$	TECN	C OMMENT	₂₀ /Γ × Β	NODE=S091R69 NODE=S091R69
6.7±0.8±0.1	¹ AAIJ 2 ⁴	4F LHCB	pp at 7, 8, 1	3 TeV	
¹ AAIJ 24F reports $[\Gamma(B_c^+ - (4.5 \pm 0.13) \times (40.8 \pm 0.7) \times 10^{-2}]$. Our the systematic error from us	$\rightarrow J/\psi(1S)D_s^+)/\Gamma_{\text{total}}$ 10 ⁻⁵ which we multiply first error is their exper sing our best value.	$I imes B(\overline{b} o$ y by our be iment's erro	$B_c)] / [B(\overline{b})$ est value $B(\overline{b})$ or and our second	$b \rightarrow B^+)] \rightarrow B^+) =$ ond error is	NODE=S091R69;LINKAGE=C
$\Gamma(J/\psi(1S)D_s^{*+})/\Gamma(J/\psi(1S)D_s^{*+}))$.S)D ⁺ _s)	TECN	COMMENT	Γ_{21}/Γ_{20}	NODE=S091R71
$1.91 \pm 0.20 \pm 0.07$	AAIJ 2.	4F LHCB	<i>pp</i> at 7, 8, 1	3 TeV	NODE=5091R/1
$\Gamma(\psi(2S)\pi^+)/\Gamma(J/\psi(1S)\pi)$.+) DOCUMENT ID	TECN	COMMENT	Γ ₁₃ /Γ ₄	NODE=S091R11 NODE=S091R11
$0.254 \pm 0.018 \pm 0.006$	^{1,2} AAIJ 24	4w LHCB	<i>pp</i> at 7, 8 an	d 13 TeV	
• • • We do not use the follow	ing data for averages, f	its, limits, e	etc. • • •		
$\begin{array}{c} 0.268 \pm 0.032 \pm 0.007 \pm 0.006 \\ 0.250 \pm 0.068 \pm 0.014 \pm 0.006 \end{array}$	³ AAIJ 1	3AMLHCB	pp at 7, 8 Te Repl. by AAI	J 15AY	
¹ The last uncertainty include J/ψ and $\psi(2S)$ decays (±0 ² Supersedes AAIJ 15AY. ³ The last uncertainty is due $\mu^+\mu^-$) ratio measurement	s the uncertainties on th).005). to the uncertainty of t	he branchin $he \; B(\psi(2S))$	g fractions of t $\mu^+\mu^-)$	he leptonic $/\mathrm{B}(J/\psi ightarrow \mathrm{B})$	NODE=S091R11;LINKAGE=A NODE=S091R11;LINKAGE=B NODE=S091R11;LINKAGE=AA
⁴ Replaced by AAIJ 24W.				I	NODE=S091R11;LINKAGE=C
$\Gamma(\psi(2S)\pi^+)/\Gamma(J/\psi(1S)\pi)$.+ π + π -) <u>DOCUMENT ID</u>	TECN	COMMENT	Γ ₁₃ /Γ ₇	NODE=S091R62 NODE=S091R62
$(3.5\pm0.6\pm0.2) imes10^{-2}$	AAIJ 2:	2P LHCB	<i>pp</i> at 7, 8, 1	3 TeV	
$\frac{\Gamma(\psi(2S)K^+K^-\pi^+)}{\Gamma(J)}$	'ψ (1S) K⁺ K⁻ π⁺) DOCUMENT ID	TECN	COMMENT	Γ_{15}/Γ_{11}	NODE=S091R61 NODE=S091R61
$(3.7\pm1.2\pm0.1)\times10^{-2}$	AAIJ 22	2P LHCB	<i>pp</i> at 7, 8, 1	3 TeV	
$\frac{\Gamma(J/\psi(1S)K^+K^-K^+)}{\Gamma}$	$(J/\psi(1S)K^+K^-\pi^+)$	-)	COMMENT	Γ ₉ /Γ ₁₁	NODE=S091R59
$(7.0\pm1.8\pm0.2)\times10^{=2}$	AAIJ 2	2P LHCB	<i>pp</i> at 7. 8. 1	3 TeV	NODE_30911(39
$\Gamma(J/\psi(1S)K^+\pi^-\pi^+)/\Gamma(1)$	$J/\psi(1S)K^+K^-\pi^+)$)	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Γ ₈ /Γ ₁₁	NODE=S091R60
VALUE 0 35+0 06+0 01	DOCUMENT ID		COMMENT	3 Ta\/	NODE=S091R60
		21 LITED	<i>pp</i> at 1, 0, 1		
$\Gamma(J/\psi(1S)K^+K^-\pi^+)/\Gamma($	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-})$	TECH	COMMENT	Γ_{11}/Γ_7	
<u>value</u> 0.185±0.013±0.006	AAIJ 2	2P LHCB	<i>pp</i> at 7, 8, 1	3 TeV	NODE=2091K38
$\Gamma(\psi(2S)\pi^+\pi^-\pi^+)/\Gamma(J/\eta)$	$\psi(1S)\pi^{+}\pi^{+}\pi^{-})$	TECH	CONVERT	Γ ₁₄ /Γ ₇	NODE=S091R63
$\frac{VALUE}{(1.9+0.4+0.1) \times 10^{-2}}$	$\frac{DOCUMENTID}{AATT}$	<u>IECN</u> 2P	COMMENI	3 TeV	NODE=2031K03
		LIICD	ρραι 1, 0, 1	_ /_	
$\frac{I(J/\psi(1S)D^{\vee}K^{+})}{\Gamma(J/\psi)}$ VALUE	(15)π ⁺) DOCUMENT ID	TECN	COMMENT	Г ₁₆ /Г ₄	NODE=S091R05 NODE=S091R05

AAIJ 17L LHCB pp at 7, 8 TeV

 $0.432 \pm 0.136 \pm 0.028$

Г (J/ψ(15) D*(2007)⁰ К +)/Г	¹(J/ψ(1S)D⁰K⁻ DOCUMENT ID	+) TECN	Γ₁₇/Γ₁₆	NODE=S091R20 NODE=S091R20
5.1±1.8±0.4	AAIJ	17L LHCB	<i>pp</i> at 7, 8 TeV	
$\frac{\Gamma(J/\psi(1S)D^*(2010)^+ K^{*0})}{\frac{VALUE}{2} 10+108+034}$	Γ(<i>J/ψ</i> (1 <i>S</i>) <i>D</i> ⁰ <i>K</i> <u>DOCUMENT ID</u>	(+) 	Γ₁₈/Γ₁₆ <u>comment</u> nn at 7, 8 TeV	NODE=S091R21 NODE=S091R21
$\Gamma(J/\psi(1S)D^+K^{*0})/\Gamma(J/\psi(1S)D^+K^{*0})$	1 <i>S</i>) <i>D</i> ⁰ <i>K</i> ⁺)	In Lineb	Γ ₁₉ /Γ ₁₆	NODE=S091R22
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	NODE=S091R22
0.05±0.59±0.08	AAIJ	IT LINCB	pp at 1, 8 lev	
$\frac{\Gamma(J/\psi(1S)D_s^+)}{\Gamma(J/\psi(1S)\eta)}$	r †) <u>DOCUMENT ID</u>	TECN	Г ₂₀ /Г ₄ 	NODE=S091R12 NODE=S091R12
2.8 ±0.4 OUR AVERAGE 2.76±0.33±0.33 2.90±0.57±0.24 ● ● ● We do not use the following	¹ AAD AAIJ data for averages,	220 ATLS 13AS LHCB fits, limits, e	<i>pp</i> at 13 TeV <i>pp</i> at 7, 8 TeV ttc. ● ● ●	
3.8 ±1.1 ±0.4	AAD	16н ATLS	<i>pp</i> at 7, 8 TeV	
¹ Supersedes the measurement o	f AAD 16H.			NODE=S091R12;LINKAGE=A
$\frac{\Gamma(J/\psi(1S)D_{s}^{*+})}{\Gamma(J/\psi(1S)}$ <u>VALUE</u> 5.33±0.61±0.74 ••• We do not use the following 10.4 ±3.1 ±1.6	π ⁺) <u>DOCUMENT ID</u> AAD data for averages, AAD	<u></u> <u>ТЕСМ</u> 220 ATLS fits, limits, е 16н ATLS	Γ_{21}/Γ_4 <u>COMMENT</u> $pp \text{ at } 13 \text{ TeV}$ itc. ••• Repl. by AAD 220	NODE=S091R19 NODE=S091R19
$\frac{\Gamma(J/\psi(1S)D_s^{*+})}{\Gamma(J/\psi(1S))}$	D; DOCUMENT ID	TECN	Γ ₂₁ /Γ ₂₀	NODE=S091R13 NODE=S091R13
2.00±0.23 OUR AVERAGE $1.93\pm0.24\pm0.09$ $2.37\pm0.56\pm0.10$ ••• We do not use the following $2.8 + \frac{1}{2}.2 + 0.3$	¹ AAD AAIJ data for averages, AAD	220 ATLS 13AS LHCB fits, limits, e 16H ATLS	pp at 13 TeV pp at 7, 8 TeV etc. •••	
$1_{\text{Supersedes the measurement of }}$	f дар 16н			
$\Gamma(J/\psi(1S)p\overline{p}\pi^{+})/\Gamma(J/\psi(1S))$	$5)\pi^+)$	TECN	Γ ₂₂ /Γ ₄	NODE=S091R13;LINKAGE=A NODE=S091R18 NODE=S091R18
0.143 ^{+0.041} -0.036	AAIJ	14AQ LHCB	<i>pp</i> at 7, 8 TeV	
$\Gamma(\chi_{c0}\pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \to B)$ <i>VALUE</i> (units 10 ⁻⁶)	c)	<u>TECN</u>	Г₂₃/Г × В 	NODE=S091R23 NODE=S091R23
24.0 ^{+8.6} _{-7.6} ±0.4 ¹	-, ² AAIJ	16AT LHCB	<i>pp</i> at 7 and 8 TeV	
¹ AAIJ 16AT reports $[\Gamma(B_c^+ \rightarrow x)]$ = $(9.8^{+3.4}_{-3.0} \pm 0.8) \times 10^{-6}$ w 0.408 \pm 0.007. Our first error systematic error from using our	$(\chi_{c0} \pi^+) / \Gamma_{total} \times$ hich we divide by c r is their experiment r best value.	$B(\overline{b} \rightarrow B_{C})]$ our best value nt's error and	$ \begin{array}{l} \times [\Gamma(\overline{b} \rightarrow \ B^+) / \Gamma_{\text{total}}] \\ \mbox{e} \ \Gamma(\overline{b} \rightarrow \ B^+) / \Gamma_{\text{total}} = \\ \mbox{d our second error is the} \end{array} $	NODE=S091R23;LINKAGE=A
² The significance of the observe $\Gamma(x, x, \pi^+) / \Gamma(x, x, \pi^+)$	d signal is 4.0 stan	dard deviatio	ns.	NODE=S091R23;LINKAGE=B
' (Xc1^{#'})/' (Xc2[#]') VALUE	DOCUMENT ID	TECN	24/125	NODE=S091R67 NODE=S091R67
<0.49 90	AAIJ	24I LHCB	<i>pp</i> at 7, 8 and 13 TeV	
$\Gamma(\chi_{c2}\pi^+)/\Gamma(J/\psi(1S)\pi^+)$	DOCUMENT ID	TECN	Г <u>25</u> /Г <u>4</u> 	NODE=S091R66 NODE=S091R66
0.37±0.06±0.022	¹ AAIJ	24I LHCB	<i>pp</i> at 7, 8 and 13 TeV	
A The least the sector into it. I I	فاكت ومناورة التناوينا والمام	da a la	I full a characteria for a former at the set	

¹ The last uncertainty includes the knowledge of the $\chi_{c2} \rightarrow J/\psi\gamma$ branching fraction (±0.01).

NODE=S091R66;LINKAGE=A

7/16/2025	12:20	Page 7

$\Gamma(p\bar{p}\pi^+)/\Gamma_{\text{total}}$	Г26/Г DOCUMENT ID <u>TECN</u> <u>COMMENT</u>	NODE=S091R00 NODE=S091R00
not seen ¹ Measures the ratio (f_c/f_u) region $m(p\overline{p}) < 2.85$ GeV/ the <i>b</i> -quark into the B_c^+ (B	¹ AAIJ 16K LHCB pp at 7, 8 TeV × B($B_c^+ \rightarrow p\overline{p}\pi^+$) < 3.6 × 10 ⁻⁸ at 95% CL, in the /c ² , where $f_c(f_u)$ represents the fragmentation fraction of B_u^+) meson.	NODE=S091R00;LINKAGE=A
$\frac{\Gamma(D^{0}K^{+})}{\Gamma_{\text{total}} \times B(\overline{b} \rightarrow \underline{VALUE(\text{units } 10^{-7})})}$	<i>B_c</i>) Γ ₂₇ /Γ × Β	NODE=S091R25 NODE=S091R25
3.8+1.2 ±0.1 ¹ AAIJ 17AG reports $[\Gamma(B_c^+, (9.3^{+2.8}_{-2.5} \pm 0.6) \times 10^{-7} \text{ w}]$ $0.7) \times 10^{-2}$ Our first err	¹ AAIJ 17AG LHCB pp at 7, 8 TeV $\rightarrow D^0 K^+)/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] =$ hich we multiply by our best value $B(\overline{b} \rightarrow B^+) = (40.8 \pm$ for is their experiment's error and our second error is the	NODE=S091R25;LINKAGE=A
systematic error from using $\Gamma(D^0 \pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow \frac{VALUE}{<1.6 \times 10^{-7}}$	our best value. B_{c}) $\Gamma_{28}/\Gamma \times B$ $\frac{DOCUMENT ID}{1} \frac{TECN}{AAIJ} \frac{COMMENT}{1} 17AG LHCB} pp at 7, 8 TeV$	NODE=S091R26 NODE=S091R26
1 AAIJ 17AG reports [F(B_c^+ 3.9 $\times 10^{-7}$ which we multiplied to the multiplication of the second state of the second	$ \rightarrow D^0 \pi^+) / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] < $ ply by our best value $B(\overline{b} \rightarrow B^+) = 40.8 \times 10^{-2}.$	NODE=S091R26;LINKAGE=A
$\frac{\Gamma(D^{*0}\pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow \frac{VALUE}{<4 \times 10^{-7}} \frac{CL\%}{95}$	$ \begin{array}{c} F_{29}/\Gamma \times B \\ \hline DOCUMENT ID \\ 1 \text{ AAIJ} \\ \end{array} \begin{array}{c} TECN \\ TTAG LHCB \\ PP \text{ at } 7, 8 \text{ TeV} \end{array} $	NODE=S091R27 NODE=S091R27
1 AAIJ 17AG reports [F(B_c^+ $< 1.1 imes 10^{-6}$ which we might	$ \rightarrow D^{*0}\pi^+)/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] $ ultiply by our best value $B(\overline{b} \rightarrow B^+) = 40.8 \times 10^{-2}. $	NODE=S091R27;LINKAGE=A
$\frac{\Gamma(D^{*0}K^+)/\Gamma_{\text{total}} \times B(\overline{b} \to \mathbb{B})}{< 4 \times 10^{-7}} \xrightarrow{CL\%}{95}$	$F_{30}/\Gamma \times B$ $\frac{DOCUMENT ID}{1 \text{ AAIJ}} \qquad \frac{TECN}{1 \text{ COMMENT}} \qquad \frac{COMMENT}{pp \text{ at 7, 8 TeV}}$	NODE=S091R28 NODE=S091R28
1 AAIJ 17AG reports [$\Gamma(B_c^+)$ $< 1.1 imes 10^{-6}$ which we miss	$ \rightarrow D^{*0} \kappa^+) / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] $ ultiply by our best value $B(\overline{b} \rightarrow B^+) = 40.8 \times 10^{-2}. $	NODE=S091R28;LINKAGE=A
$\frac{\Gamma(D_s^+ \overline{D}^0)}{V_{ALUE}} \times \mathcal{B}(\overline{b} \rightarrow U_{ALUE}) \xrightarrow{CL\%} U_{ALUE}$	$B_{c}) \qquad \qquad \Gamma_{31}/\Gamma \times B$	NODE=S091R30 NODE=S091R30
<1.4 × 10⁻⁷ 90 ¹ AAIJ 18P reports $[\Gamma(B_c^+ - [B(B^+ \rightarrow \overline{D}^0 D^+)] < 0.9]$ $= 40.8 \times 10^{-2}, B(B^+ \rightarrow)$	$ \begin{array}{ll} \text{AAIJ} & \text{18P LHCB } pp \text{ at 7, 8 IeV} \\ \rightarrow & D_s^+ \overline{D}{}^0)/\Gamma_{\text{total}} \times & B(\overline{b} \rightarrow & B_c)] / & [B(\overline{b} \rightarrow & B^+)] / \\ \times & 10^{-3} \text{ which we multiply by our best values } & B(\overline{b} \rightarrow & B^+) \\ \overline{D}{}^0 D^+) &= 3.8 \times & 10^{-4}. \end{array} $	NODE=S091R30;LINKAGE=A
$ \frac{\Gamma(D_s^+ D^0) / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B(\overline{b} \rightarrow \overline{b}))}{\frac{VALUE}{<6 \times 10^{-8}}} \xrightarrow{CL\%}{90} $	$\begin{array}{c c} B_{c} \end{pmatrix} & \Gamma_{32}/\Gamma \times B \\ \hline DOCUMENT ID & TECN & COMMENT \\ \hline 1 \text{ AAIJ} & 18P \text{ LHCB } p_{P} \text{ at } 7.8 \text{ TeV} \end{array}$	NODE=S091R31 NODE=S091R31
¹ AAIJ 18P reports $[\Gamma(B_c^+ - [B(B^+ \rightarrow \overline{D}^0 D^+)] < 3.7]$ = 40.8 × 10 ⁻² , B(B ⁺ →	$ \begin{array}{l} \rightarrow D_s^+ D^0) / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] / \\ \times 10^{-4} \text{ which we multiply by our best values } B(\overline{b} \rightarrow B^+) \\ \overline{D}^0 D^+) = 3.8 \times 10^{-4}. \end{array} $	NODE=S091R31;LINKAGE=A
$\frac{\Gamma(D^+\overline{D}{}^0)/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow N^{\text{ALUE}})}{<3.0 \times 10^{-6}} \frac{CL\%}{90}$	$\begin{array}{c c} B_{c} \end{pmatrix} & & \Gamma_{33}/\Gamma \times B \\ \hline \begin{array}{c} DOCUMENT \ ID \\ 1 \ AAIJ \\ \end{array} & \begin{array}{c} TECN \\ BP \\ LHCB \\ pp \ at \ 7, \ 8 \ TeV \end{array}$	NODE=S091R32 NODE=S091R32
¹ AAIJ 18P reports $[\Gamma(B_c^+ \rightarrow \overline{D}^0 D^+)] < 1.9$ = 40.8 × 10 ⁻² , B(B ⁺ →	$ \begin{array}{l} \rightarrow D^+ \overline{D}{}^0) / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] / \\ \times 10^{-2} \text{ which we multiply by our best values } B(\overline{b} \rightarrow B^+) \\ \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}. \end{array} $	NODE=S091R32;LINKAGE=A
$\frac{\Gamma(D^+ D^0)}{\Gamma_{\text{total}} \times B(\overline{b} \rightarrow \underline{VALUE} \qquad \underline{CL\%}$ ••• We do not use the follow <1.9 × 10 ⁻⁶ 90	$B_{c}) \qquad \qquad \Gamma_{34}/\Gamma \times B$ $\underline{DOCUMENT ID} \qquad \underline{TECN} \qquad \underline{COMMENT}$ ing data for averages, fits, limits, etc. ••• $1 \text{ AAU} \qquad 18P \text{ IHCB} \text{Repl} \text{by AAU} 214F$	NODE=S091R33 NODE=S091R33
¹ AAIJ 18P reports $[\Gamma(B_c^+ \rightarrow \overline{D}^0 D^+)] < 1.2$ = 40.8 × 10 ⁻² , B(B ⁺ →	$\rightarrow D^+ D^0 / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] / \\ \times 10^{-2} \text{ which we multiply by our best values } B(\overline{b} \rightarrow B^+) \\ \overline{D}^0 D^+) = 3.8 \times 10^{-4}.$	NODE=S091R33;LINKAGE=A

$ \begin{bmatrix} \Gamma(D_s^{*+}\overline{D}^0) + \Gamma(D_s^{+}\overline{D}^{*}(2007)^0) \end{bmatrix} / \Gamma_{\text{total}} \times B(\overline{b} \to B_c) \qquad (\Gamma_{35} + \Gamma_{36}) / \Gamma \times B $ $ \underline{VALUE} \qquad \underline{CL\%} \qquad \underline{DOCUMENT ID} \qquad \underline{TECN} \qquad \underline{COMMENT} \qquad \underline{COMENT} \qquad COMEN$	NODE=S091R34 NODE=S091R34
• • We do not use the following data for averages, fits, limits, etc. • • •	
$<4 \times 10^{-7}$ 90 ¹ AAIJ 18P LHCB Repl. by AAIJ 21AF	
¹ AAIJ 18P reports $\left[\left[\Gamma(B_{c}^{+} \rightarrow D_{s}^{*+}\overline{D}^{0}) + \Gamma(B_{c}^{+} \rightarrow D_{s}^{+}\overline{D}^{*}(2007)^{0})\right]/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow D_{s}^{+}\overline{D}^{*}(2007)^{0})\right]$	NODE=S091R34;LINKAGE=A
$B_c)] / [B(b \rightarrow B^+)] / [B(B^+ \rightarrow D^0 D^+)] < 2.8 \times 10^{-3}$ which we multiply by our best values $B(\overline{b} \rightarrow B^+) = 40.8 \times 10^{-2}$, $B(B^+ \rightarrow \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}$.	
$\left[\Gamma(D_{s}^{*+}D^{0}) + \Gamma(D_{s}^{+}D^{*}(2007)^{0})\right]/\Gamma_{\text{total}} \times B(\overline{b} \to B_{c}) \qquad (\Gamma_{37} + \Gamma_{38})/\Gamma \times B$	NODE=S091R35 NODE=S091R35
• • We do not use the following data for averages, fits, limits, etc. • • •	NODE-SOSTINS
$<5 \times 10^{-7}$ 90 ¹ AAIJ 18P LHCB Repl. by AAIJ 21AF	
¹ AAIJ 18P reports $\left[\left[\Gamma(B_{c}^{+} \rightarrow D_{c}^{*+}D^{0}) + \Gamma(B_{c}^{+} \rightarrow D_{c}^{+}D^{*}(2007)^{0})\right]/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow D_{c}^{*+}D^{0})\right]$	
B_c)] / [B($\overline{b} \rightarrow B^+$)] / [B($B^+ \rightarrow \overline{D}{}^0 D^+$)] < 3.0 × 10 ⁻³ which we multiply by our best values B($\overline{b} \rightarrow B^+$) = 40.8 × 10 ⁻² , B($B^+ \rightarrow \overline{D}{}^0 D^+$) = 3.8 × 10 ⁻⁴ .	NODE-SUSTROS, EINRAGE-A
$\Gamma(D^*(2010)^+ \overline{D}{}^0) / \Gamma_{\text{total}} \times B(\overline{b} \to B_c) \qquad \qquad \Gamma_{39} / \Gamma \times B$	NODE=5091R5
VALUE CL% DOCUMENT ID TECN COMMENT	NODE=S091R5
<6.2 × 10⁻⁵ 90 ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$	
¹ BARATE 98Q reports $B(Z \rightarrow B_c X) \times B(B_c \rightarrow D^*(2010)^{-}D^0) < 1.9 \times 10^{-3}$ at 90%CL. We rescale to our PDG 98 values of $B(Z \rightarrow b\overline{b})$.	NODE=S091R5;LINKAGE=A
$\left[\Gamma(D^{*}(2010)^{+}\overline{D}^{0}, D^{*+} \rightarrow D^{+}\pi^{0}/\gamma) + \Gamma(D^{+}\overline{D}^{*}(2007)^{0})\right]/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow D^{+}\pi^{0}/\gamma)$	
$(\Gamma_{40}+\Gamma_{41})/\Gamma \times B$	NODE=S091R36
VALUE CL% DOCUMENT ID TECN COMMENT	NODE=S091R36
• • • We do not use the following data for averages, fits, limits, etc. • • • $< < 0 < 10^{-6}$ 00 1 AAU 180 HCR Bool by AAU 2145	
1 A 1 1 120 respects $\left[\left[\Gamma(R^+ \rightarrow R^*) \right] + \overline{\Omega}^0 \right] = 0$ (a) $\Gamma(R^+ \rightarrow R^*)$	
= AAJ TOP reports $\left[\left[1\left(B_{c}^{+} \rightarrow D\right)\left(2010\right) + D^{2}, D^{+} \rightarrow D^{+}\pi^{2}/\gamma\right)\right] + 1\left(B_{c}^{+} \rightarrow D^{+}\pi^{2}/\gamma\right) + 1\left(B_{c$	NODE=S091R36;LINKAGE=A
D = D = D = D = D = D = D = D = D = D =	
$B(B^+ \rightarrow \overline{D}^0 D^+) = 3.8 \times 10^{-4}$.	
$\left[\Gamma(D^*(2010)^+ D^0, D^{*+} \rightarrow D^+ \pi^0 / \gamma) + \Gamma(D^+ D^*(2007)^0)\right] / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow \overline{b})$	
B_{c} ($\Gamma_{43}+\Gamma_{44}$)/ $\Gamma \times B$	
VALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=S091R37 NODE=S091R37
• • We do not use the following data for averages, fits, limits, etc. • •	
$<3.4 \times 10^{-6}$ 90 ^I AAIJ 18P LHCB Repl. by AAIJ 21AF	
¹ AAIJ 18P reports $[[\Gamma(B_c^+ \rightarrow D^*(2010)^+ D^0, D^{*+} \rightarrow D^+ \pi^0 / \gamma) + \Gamma(B_c^+ \rightarrow D^+ \pi^0 / \gamma)]$	NODE=S091R37;LINKAGE=A
$D^{+}D^{*}(2007)^{0}] / \Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c})] / [B(\overline{b} \rightarrow B^{+})] / [B(B^{+} \rightarrow \overline{D}^{0}D^{+})]$	
< 2.2×10^{-2} which we multiply by our best values $B(\overline{b} \rightarrow B^+) = 40.8 \times 10^{-2}$, $B(B^+ \rightarrow \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}$.	
$\Gamma(D_{s}^{*+}\overline{D}^{*}(2007)^{0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_{c}) \qquad \Gamma_{45}/\Gamma \times B$ VALUE CL% DOCUMENT ID TECN COMMENT	NODE=S091R38 NODE=S091R38
• • We do not use the following data for averages, fits, limits, etc. • •	
${<}1.7\times10^{-6}$ 90 $^1\text{AAIJ}$ 18P LHCB Repl. by AAIJ 21AF	
¹ AAIJ 18P reports $[\Gamma(B_c^+ \rightarrow D_s^{*+}\overline{D}^{*}(2007)^0)/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_c)] / [B(\overline{b} \rightarrow B^+)] / [B(B^+ \rightarrow \overline{D}^0 D^+)] < 1.1 \times 10^{-2}$ which we multiply by our best values $B(\overline{b} \rightarrow B^+) = 40.8 \times 10^{-2}$, $B(B^+ \rightarrow \overline{D}^0 D^+) = 3.8 \times 10^{-4}$.	NODE=S091R38;LINKAGE=A
$\Gamma(D_s^{*+} D^*(2007)^0) / \Gamma_{\text{total}} \times B(\overline{b} \to B_c) \qquad \Gamma_{46} / \Gamma \times B$	NODE=S091R39
VALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=S091R39
• • vve do not use the following data for averages, fits, limits, etc. • • • $\sim 2.1 \times 10^{-6}$	
$< 3.1 \times 10^{-1}$ 90 - AAIJ 18P LHCB Kepi. by AAIJ 21AF 1 AAU 18P means to $[\Gamma(P^+), D^{*+}D^*(2007)^0)/\Gamma$ $\sim P(\overline{L}, P)/(LP(\overline{L}, D^{++}))$	
- And I for reports $[I(B_c^+ \rightarrow D_s^- D_s$	NODE=S091R39;LINKAGE=A
$= 40.8 \times 10^{-2}, B(B^+ \to \overline{D}{}^0 D^+) = 3.8 \times 10^{-4}.$	

$\frac{\Gamma(D^*(2010)^+ \overline{D}^*(2007)^0)}{\Gamma_{\text{total}}} \int_{U_{\text{LUE}}} \frac{CL\%}{D}$		NODE=S091R40 NODE=S091R40
• • • We do not use the following data	a for averages, fits, limits, etc. $ullet$ $ullet$	
$<1.0 \times 10^{-4}$ 90 ¹ A	AIJ 18P LHCB Repl. by AAIJ 21AF	
¹ AAIJ 18P reports $[\Gamma(B_c^+ \rightarrow D^*)]$	$(10)^+ \overline{D}^* (2007)^0) / \Gamma_{\text{total}} \times B(\overline{b} \to B_c)] / [B(\overline{b} \to B_c)]$	NODE=S091R40;LINKAGE=A
$[B^+)] / [B(B^+ o D^0 D^+)] < 6.5$ $[B^+) = 40.8 \times 10^{-2}, B(B^+ \to \overline{D})$	$ imes 10^{-1}$ which we multiply by our best values B($b ightarrow 10^{-1}$ D^+) = 3.8 $ imes 10^{-4}$.	
$\Gamma(D^*(2010)^+ D^*(2007)^0) / \Gamma_{total}$	$\times B(\overline{b} \rightarrow B_c) \qquad \Gamma_{48}/\Gamma \times B$	NODE=S091R41
VALUE <u>CL%</u> <u>D</u>	OCUMENT ID TECN COMMENT	NODE=S091R41
• • • We do not use the following data 10^{-5}	a for averages, fits, limits, etc. ● ● ●	
22.0×10^{-5} 90 - A	AIJ = 10P LICC Repl. by AAIJ ZIAF	
$ \begin{array}{c} \text{AAIJ 18P reports [I } (B_c^+ \rightarrow D^+/2000) \\ B^+)] / [B(B^+ \rightarrow \overline{D}{}^0 D^+)] < 1.3 \\ B^+) = 40.8 \times 10^{-2}, \ B(B^+ \rightarrow \overline{D}{}^0) \\ \end{array} $	$ \begin{array}{l} 100^{+} D^{+} (2007)^{\circ})/1 \text{ total } \times B(\overline{b} \rightarrow B_{C})] / [B(\overline{b} \rightarrow 10^{-1} \text{ which we multiply by our best values } B(\overline{b} \rightarrow 10^{-1} D^{+}) = 3.8 \times 10^{-4}. \end{array} $	NODE=S091R41;LINKAGE=A
$\Gamma(D^+ K^{*0}) / \Gamma_{\text{total}} \times B(\overline{b} \to B_c)$	Г ₄₉ /Г × В	
VALUE <u>CL%</u> D	OCUMENT ID TECN COMMENT	NODE=S091R06
<2.0 × 10 ⁻⁷ 90 ¹ A	AIJ 13R LHCB pp at 7 TeV	
¹ AAIJ 13R reports [$\Gamma(B_{c}^{+} ightarrow D^{+}$ $0.5 imes 10^{-6}$ which we multiply by o	$(K^{*0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)] / [B(\overline{b} \to B^+)] < 0$ our best value $B(\overline{b} \to B^+) = 40.8 \times 10^{-2}$.	NODE=S091R06;LINKAGE=AA
$\Gamma(D^+\overline{K}^{*0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$	Г ₅₀ /Г × В	
VALUE <u>CL%</u> D	OCUMENT ID TECN COMMENT	NODE=S091R07
<1.6 × 10 ⁻⁷ 90 ¹ A	AIJ 13R LHCB pp at 7 TeV	
¹ AAIJ 13R reports $[\Gamma(B_c^+ \rightarrow D^+)]$	$\overline{K}^{*0})/\Gamma_{\text{total}} \times \begin{array}{c} B(\overline{b} \to B_{c}) \end{bmatrix} / \left[B(\overline{b} \to B^{+})\right] < 0$	NODE=S091R07;LINKAGE=AA
$0.4 imes 10^{-6}$ which we multiply by o	bur best value B $(\overline{b} ightarrow B^+) = 40.8 imes 10^{-2}$.	
$\frac{\Gamma(D_s^+ K^{*0})}{\Gamma_{\text{total}} \times B(\overline{b} \to B_c)} \xrightarrow{VALUE} \xrightarrow{CL\%} \xrightarrow{DD}$	Γ ₅₁ /Γ × Β	NODE=S091R08 NODE=S091R08
<2.9 × 10 ⁻⁷ 90 ¹ A	AIJ 13R LHCB pp at 7 TeV	
¹ AAIJ 13R reports [$\Gamma(B_{c}^{+} ightarrow D_{s}^{+})$ 0.7 $ imes$ 10 ⁻⁶ which we multiply by o	$(K^{*0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)] / [B(\overline{b} \to B^+)] < 0$ our best value $B(\overline{b} \to B^+) = 40.8 \times 10^{-2}$.	NODE=S091R08;LINKAGE=AA
$\Gamma(D^+_{\epsilon}\overline{K}^{*0})/\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$	Г ₅₂ /Г × В	
VALUE <u>CL%</u> D	OCUMENT ID TECN COMMENT	NODE=S091R09
<4 × 10 ⁻⁷ 90 ¹ A	AIJ 13R LHCB pp at 7 TeV	
¹ AAIJ 13R reports $[\Gamma(B_c^+ \rightarrow D_s^+)]$ 1.1×10^{-6} which we multiply by o	\overline{K}^{*0})/ $\Gamma_{\text{total}} \times B(\overline{b} \to B_c)$] / $[B(\overline{b} \to B^+)] < 0$ our best value $B(\overline{b} \to B^+) = 40.8 \times 10^{-2}$.	NODE=S091R09;LINKAGE=AA
$\Gamma(D^+_{s}\phi)/\Gamma_{\text{total}} imes B(\overline{b} o B_{c})$	Г ₅₃ /Г × В	NODE=S091R10
$\frac{VALUE}{23 \times 10^{-7}} \qquad \frac{CL\%}{00} \qquad \frac{D}{1}$	OCUMENT ID TECN COMMENT	NODE=S091R10
1_{AALL} 12D reports $[\Gamma(P^+), D^+]$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	
10^{-6} which we multiply by our bes	$B(\overline{b} \to B^+) = 40.8 \times 10^{-2}.$	NODE=S091R10;LINKAGE=AA
$\Gamma(K^+ K^0) / \Gamma_{\text{total}} \times B(\overline{b} \to B_c)$	Γ ₅₄ /Γ × Β	NODE=S091R02
VALUE <u>CL%</u> <u>D</u>	OCUMENT ID TECN COMMENT	NODE=S091R02
$<4.6 \times 10^{-1}$ 90 A	AIJ 13BS LHCB pp at 7 leV	
90% CL using normalization mode and assuming a <i>B</i> production ratio	$ \begin{array}{l} B_c) / (B(B^+ \rightarrow K^0 \pi^+) B(b \rightarrow B^+)) < 5.8\% \text{ at} \\ B(B^+ \rightarrow K^0 \pi^+) = (23.97 \pm 0.53 \pm 0.71) \times 10^{-6} \\ f(\overline{b} \rightarrow B_u^+) = 0.33. \end{array} $	NODE=S091R02;LINKAGE=AA
$\Gamma(B_s^0 \pi^+ / B(\overline{b} \to B_s)) / \Gamma_{\text{total}} \times I$	$B(\overline{b} \to B_c) \qquad \Gamma_{55}/\Gamma \times B$	NODE=S091R15
<u>VALUE (units 10 °)</u> D	OCUMENTID IECN COMMENT	
$2.37 \pm 0.31 \pm 0.11 - 0.13$	AIJ 13BU LHCB pp at 7, 8 TeV	

¹The last uncertainty is due to the uncertainty of the B_c^+ lifetime measurument.

NODE=S091R15;LINKAGE=AA

7/16/2025 12:20 Page 9

$\Gamma(D_s^+ \overline{D}^0) / \Gamma_{\text{tota}}$			TECH	CONTRACT	Г ₃₁ /Г
$\sim 7.2 \times 10^{-4}$	<u>CL%</u>		21 AE LHCR	<u>comment</u>	
¹ Uses B($\overline{b} \rightarrow E$	$(\overline{b} \rightarrow B_{a})/B(\overline{b} \rightarrow B_{a})$	$(B^+) = 0.76\%$ deter	mined by AAI.	J 19AL	
	2)/=(-	_)			_ /_
$\Gamma(D_s^{+}D^{0})/\Gamma_{\text{tota}}$			TEAN	601415NT	Г ₃₂ /Г
\sqrt{ALUE}	<u>CL%</u>	1 AALL		COMMENT	
$\frac{1}{1} I_{\text{SPS}} = B(\overline{h} \rightarrow B)$	90 3)/B($\overline{b} \rightarrow$	(AAIJ) = 0.76% deter	ZIAF LITCD		
Uses $B(b \rightarrow b)$	$(D \rightarrow C)/D(D \rightarrow C)/D($	$B^{+}) = 0.70\%$ deter	mined by AAI.	J 19AI.	
$\Gamma(D^+\overline{D}^0)/\Gamma_{\rm tota}$	d.				Г ₃₃ /Г
VALUE	<u> </u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
<1.9 × 10 ⁻⁴	90	¹ AAIJ	21AF LHCB	<i>pp</i> at 13 TeV	
¹ Uses $B(b \rightarrow E)$	$B_c)/B(b \rightarrow$	$B^+) = 0.76\%$ deter	mined by AAI.	J 19AI.	
$\Gamma(D^+D^0)/\Gamma_{\rm tota}$					Г ₃₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
<1.4 × 10 ⁻⁴	90	¹ AAIJ	21AF LHCB	<i>pp</i> at 13 TeV	
1 Uses B $(\overline{b} ightarrow$ B	$B_c)/B(\overline{b} \rightarrow$	$B^+)=0.76\%$ deter	mined by AAI.	J 19ai.	
Г(Л*+70)/г					Г /Г
VALUE	ci %	DOCUMENT ID	TECN	COMMENT	· 35/ ·
<5.3 × 10 ⁻⁴	<u>0270</u> 90	¹ AAIJ	21AF LHCB	pp at 13 TeV	
$1_{\text{Uses B}}(\overline{h} \rightarrow F)$	$(\overline{b} \rightarrow B_{a})/B(\overline{b} \rightarrow B_{a$	$(B^+) = 0.76\%$ deter	mined by AAI	J 19AI.	
	c,, = (~ '	,,			
$\Gamma(D^+_{\mathfrak{s}}\overline{D}^*(2007))$	^ν)/Γ _{total}				Г ₃₆ /Г
VALUE	<u> </u>	DOCUMENT ID	TECN	COMMENT	
<4.6 × 10	90	+ AAIJ	21AF LHCB	pp at 13 TeV	
¹ Uses B($b \rightarrow B$	$B_c)/B(b \rightarrow$	$B^+) = 0.76\%$ deter	mined by AAI.	J 19ai.	
Г(<i>D</i> ^{*+} <i>D</i> ⁰)/Гна	al				Г37/Г
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	51/
$< 0.9 \times 10^{-3}$	90	¹ AAIJ	21AF LHCB	<i>pp</i> at 13 TeV	
1 Uses B $(\overline{b} ightarrow$ E	$(B_c)/B(\overline{b} \rightarrow$	$B^+)=0.76\%$ deter	mined by AAI.	J 19AI.	
	0)/г				F / F
$(D_{s}^{2}D^{2}(2007))$)/I total	DOCUMENT ID	TECN	COMMENT	1 38/1
$< 6.6 \times 10^{-4}$	<u>CL%</u> 00		21 AE LHCB	np at 13 TeV	
$1_{\text{Uses }} \mathbb{R}(\overline{h} \to F)$	$(\overline{h} \rightarrow)/B(\overline{h} \rightarrow)$	$(B^+) = 0.76\%$ deter	mined by AAI		
		2	All by AAL	, <i>130</i> 1.	
Г(<i>D</i> *(2010)+ <i>D</i>	^υ)/Γ _{total}				Г ₃₉ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
<3.8 × 10 ⁻⁴	90	¹ AAIJ	21AF LHCB	<i>pp</i> at 13 TeV	
¹ Uses B($\overline{b} \rightarrow E$	$B_c)/B(\overline{b} \rightarrow$	$B^+) = 0.76\%$ deter	mined by AAI.	J 19AI.	
$\Gamma(D^*(2007)^+ D^0)$	⁰)/Γ _{total}				Г42/Г
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	/
<2.0 × 10 ⁻⁴	90	¹ AAIJ	21AF LHCB	<i>pp</i> at 13 TeV	
1 Uses B $(\overline{b} ightarrow$ E	$(B_c)/B(\overline{b} \rightarrow 0)$	$B^+)=0.76\%$ deter	mined by AAI.	J 19AI.	
Γ <i>(D</i> + <u>D</u> *(2007)	0)/Г				Г., /Г
VALUE	J/ ' total CL%	DOCUMENT ID	TECN	COMMENT	• 41/ •
<6.5 × 10 ⁻⁴	<u> </u>	¹ AAIJ	21AF LHCB	pp at 13 TeV	
¹ Uses B($\overline{b} \rightarrow E$	$B_c)/B(\overline{b} \rightarrow$	$(B^+) = 0.76\%$ deter	mined by AAI	J 19AI.	
	0),=(-, ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	
$\Gamma(D^+D^*(2007))$	י)/ר _{total}	_			Г ₄₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
< 3.1 × 10 ⁻	90	* AAIJ	21AF LHCB	pp at 13 TeV	

 1 Uses B $(\overline{b} \rightarrow ~B_c)/$ B $(\overline{b} \rightarrow ~B^+)=0.76\%$ determined by AAIJ 19AI.

NODE=S091R42 NODE=S091R42
NODE=S091R42;LINKAGE=A
NODE=S091R43 NODE=S091R43
NODE=S091R43;LINKAGE=A
NODE=S091R44 NODE=S091R44
NODE=S091R44;LINKAGE=A
NODE=S091R45 NODE=S091R45
NODE=S091R45;LINKAGE=A
NODE=S091R46 NODE=S091R46
NODE=S091R46;LINKAGE=A
NODE=S091R47 NODE=S091R47
NODE=S091R47;LINKAGE=A
NODE=S091R48 NODE=S091R48
NODE=S091R48;LINKAGE=A
NODE=S091R49 NODE=S091R49
NODE=S091R49;LINKAGE=A
NODE=S091R50 NODE=S091R50
NODE=S091R50;LINKAGE=A
NODE=S091R57 NODE=S091R57
NODE=S091R57;LINKAGE=A
NODE=S091R51 NODE=S091R51
NODE=S091R51;LINKAGE=A
NODE=S091R52 NODE=S091R52

NODE=S091R52;LINKAGE=A

$\Gamma(D_{\epsilon}^{*+}\overline{D}^{*}(2007))$	⁰)/Γ _{total}					Г ₄₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$<1.3 \times 10^{-3}$	90	¹ AAIJ	21AF	LHCB	<i>pp</i> at 13 TeV	
1 Uses B $(\overline{b} ightarrow B_{c}$	$(\overline{b} \rightarrow B)/B(\overline{b} \rightarrow B)$	$(3^+)=0.76\%$ deter	mined	by AAI.	J 19AI.	
$\Gamma(D_{s}^{*+}D^{*}(2007))$	⁰)/Γ _{total}					Г ₄₆ /Г
VALUE	<u> </u>	DOCUMENT ID		TECN	COMMENT	
<1.3 × 10 ⁻⁵	90	¹ AAIJ	21AF	LHCB	<i>pp</i> at 13 TeV	
¹ Uses B($\overline{b} \rightarrow B_{c}$	$B(\overline{b} \rightarrow B)$	$(3^+)=0.76\%$ deter	rmined	by AAI.	J 19AI.	
Γ(<i>D</i> *(2010) ⁺ <i>D</i> *	(2007) ⁰)/Г	total				Г ₄₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<1.0 × 10 ⁻³	90	¹ AAIJ	21AF	LHCB	<i>pp</i> at 13 TeV	
1 Uses B $(\overline{b} ightarrow B_{c}$	$_{\rm c})/{\rm B}(\overline{b} \rightarrow B)$	$(3^+)=0.76\%$ deter	rmined	by AAI.	J 19AI.	
Γ(<i>D</i> *(2010) ⁺ <i>D</i> *	(2007) ⁰)/Г	total				Г ₄₈ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<7.7 × 10 ⁼⁴	90	¹ AAIJ	21AF	LHCB	<i>pp</i> at 13 TeV	
1 Uses B $(\overline{b} ightarrow B_{c}$	$_{\rm c})/{\rm B}(\overline{b} \rightarrow B)$	$(3^+)=0.76\%$ deter	rmined	by AAI.	J 19AI.	
$\Gamma \left(B_{s}^{0}\pi^{+} ight) /\Gamma \left(J/\psi^{+} ight)$	$(1S)\pi^+)$					Г ₅₆ /Г ₄
VALUE		DOCUMENT ID		TECN	COMMENT	
$91 \pm 10 \pm 8.5$		¹ AAIJ	23M	LHCB	pp at 13 TeV	
¹ The B_s^0 mesons third uncertainty fractions (±3).	are reconstru / includes sys	cted via the decays stematic (± 8) and	$B^0_s \rightarrow B^0_s$	$J/\psi\phi$ ecise kn	and $B^0_{s} o D^{s}$ owledge of the	π^+ . The branching
$\Gamma(\pi^+\mu^+\mu^-)/\Gamma(\pi)$	$J/\psi(1S)\pi^{-1}$	+)				Г ₅₇ /Г4
VALUE	<u> </u>	DOCUMENT ID		TECN	COMMENT	
<2.1 × 10 ⁼⁴	90	AAIJ	24W	LHCB	<i>pp</i> at 7, 8 and	l 13 TeV
$\Gamma(D_s^+\mu^+\mu^-)/\Gamma_t$	$_{otal} \times B(\overline{b})$	$\rightarrow B_c$)			Г5	₈ /Г × В
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	

 $\begin{array}{cccc} \textbf{<3.1 \times 10^{-8}} & 90 & ^{1}\text{ AAIJ} & 24\text{F} \text{ LHCB} & pp \text{ at } 7, 8, 13 \text{ TeV} \\ \\ ^{1}\text{ AAIJ 24F reports} \left[\Gamma(B_{c}^{+} \rightarrow D_{s}^{+}\mu^{+}\mu^{-})/\Gamma_{\text{total}} \times B(\overline{b} \rightarrow B_{c}) \right] / \left[B(\overline{b} \rightarrow B^{+}) \right] \\ < 7.5 \times 10^{-8} \text{ which we multiply by our best value } B(\overline{b} \rightarrow B^{+}) = 40.8 \times 10^{-2}. \end{array}$

POLARIZATION IN B_c^+ DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (*L*) or both are transverse and parallel (||) or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases $\phi_{||}$ and ϕ_\perp . See the definitions in the note on "Polarization in *B* Decays" review in the *B*⁰ Particle Listings.

Γ_L/Γ in $B_c^+ \rightarrow J/\psi D_s^{*+}$					NODE=\$091EL1
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S091FL1
0.34±0.09 OUR AVERAGE					
$0.30 \pm 0.10 \pm 0.04$	^{1,2} AAD	220	ATLS	<i>pp</i> at 13 TeV	
0.48 ± 0.20	³ AAIJ	13AS	LHCB	<i>pp</i> at 7, 8 TeV	
$\bullet~\bullet~\bullet$ We do not use the follow	ing data for average	es, fits, l	imits, e	etc. • • •	
0.62 ± 0.24	⁴ AAD	16H .	ATLS	<i>pp</i> at 7, 8 TeV	
1 Supersedes the measuremen 2 AAD 220 measures $1 - \Gamma_L$ 3 AAIJ 13AS measures $1 - \Gamma_L$ 4 AAD 16H measures $1 - \Gamma_L$	t of AAD 16H. $/\Gamma = 0.70 \pm 0.10 \pm 0.10 \pm 0.52 \pm 0.20.$ $/\Gamma = 0.38 \pm 0.24.$	± 0.04.			NODE=S091FL1;LINKAGE=B NODE=S091FL1;LINKAGE=C NODE=S091FL1;LINKAGE=AA NODE=S091FL1;LINKAGE=A

NODE=S091R53 NODE=S091R53

NODE=S091R53;LINKAGE=A

NODE=S091R54 NODE=S091R54

NODE=S091R54;LINKAGE=A

NODE=S091R55 NODE=S091R55

NODE=S091R55;LINKAGE=A

NODE=S091R56 NODE=S091R56

NODE=S091R56;LINKAGE=A

NODE=S091R64 NODE=S091R64

NODE=S091R64;LINKAGE=A

NODE=S091R68 NODE=S091R68

NODE=S091R70 NODE=S091R70

NODE=S091R70;LINKAGE=B

NODE=S091230

NODE=S091230

$\mathbf{A}_{P}(\boldsymbol{B}_{c}^{+})$ $\mathbf{A}_{P}(\boldsymbol{B}_{c}^{+}) = [\sigma(\boldsymbol{B}_{c}^{-}) - \sigma(\boldsymbol{B}_{c}^{+})] / [\sigma(\boldsymbol{B}_{c}^{-}) + \sigma(\boldsymbol{B}_{c}^{+})]$						
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT		
-1.0 ± 1.0 OUR AVERAGE						
$-2.5\pm2.1\pm0.5$	¹ AAIJ	19AI	LHCB	pp at 7 TeV		
$-0.5\!\pm\!1.1\!\pm\!0.4$	¹ AAIJ	19AI	LHCB	pp at 13 TeV		
1 Measured using ${\it B}^+_{\it c}$ semilept	onic decays.					

B_c^+ REFERENCES

AAIJ	24F	JHEP 2402 032	R.	Aaij <i>et al.</i>	(LHCb	Collab.)
AAIJ	241	JHEP 2402 173	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	24L	JHEP 2404 151	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	24W	EPJ C84 468	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	23M	JHEP 2307 066	R.	Aaii et al.	ÌLНСЬ	Collab.)
AAD	220	JHEP 2208 087	G.	Aad et al.	(ÀTLAS	Collab.)
AALI	22P	IHEP 2201 065	R	Aaii et al	(I HCb	Collab)
AABOUD	21	PR D104 012010	M	Aaboud et al	(ATLAS	Collab.)
AALI	21AF	IHEP 2112 117	R	Aaii et al	(I HCb	Collab.)
AALI	20R	IHEP 2007 123	R	Aaii et al	(I HCb	Collab)
AALI	19AI	PR D100 112006	R	Aaii et al	(LHCb	Collab.)
	180	PRI 120 121801	R	Apii et al	(LHCh	Collab.)
	18P	NP 8930 563	R	Apii et al	(LHCh	Collab.)
SIRLINVAN	18RV	EP1 C78 457	Δ.Ν	M Sirunyan et al	(CMS	Collab.)
	17AG	PRI 118 111803	R	Agii et al	(LHCh	Collab.)
	171	PR D05 032005	R	Apii et al	(LHCb	Collab.)
	16H	FP1 C76 A	G.	And et al		Collab.)
	16AE	IHED 1600 153	D.	Agu et al.		Collab.)
	16AT	DR D04 001102	R.	Aaij et al	(LHCb	Collab.)
	161	DI D750 212	р	Aaij et al.		Collab.)
	164	PD D02 052001	т.	Adij el di. Asitonon et si	(CDE	Collab.)
AALIONEN	16 AV	PR D03 032001	Т. D			Collab.)
	1561	PK D92 012001	П. П.			Collab.)
	150	PDI 114 122001	П. П.			Collab.)
	15101	PRL 114 152001	к. V	Aaij et al. Khashatman at al		
	1440	JHEP 1501 005	V.	A di atal		Collab.)
AAIJ	14AQ	PRL 113 152003	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	14G	EPJ C/4 2839	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	14P	JHEP 1405 148	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	1400	PR D90 032009	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	13AM	PR D87 071103	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	13AS	PR D87 112012	K.	Aaij et al.	(LHCb	Collab.)
Also	1000	PR D89 019901 (errat.)	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	1382	PL B726 646	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	13BU	PRL 111 181801	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	13BY	JHEP 1309 075	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	13CA	JHEP 1311 094	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	13R	JHEP 1302 043	Т	Aaij et al.	(LHCb	Collab.)
AALIONEN	13	PR D87 011101	Ι.	Aaltonen <i>et al.</i>	(CDF	Collab.)
AAIJ	12AV	PRL 109 232001	R.	Aaij et al.	(LHCb	Collab.)
AAIJ	12Y	PRL 108 251802	R.	Aaij et al.	(LHCb	Collab.)
ABAZOV	09H	PRL 102 092001	V.M	M. Abazov <i>et al.</i>	(D0	Collab.)
AALIONEN	08M	PRL 100 182002	1.	Aaltonen <i>et al.</i>	(CDF	Collab.)
ABAZOV	08T	PRL 101 012001	V.N	M. Abazov <i>et al.</i>	(D0	Collab.)
ABULENCIA	06C	PRL 96 082002	Α.	Abulencia <i>et al.</i>	(CDF	Collab.)
ABULENCIA	060	PRL 97 012002	Α.	Abulencia <i>et al.</i>	(CDF	Collab.)
ABE	98M	PRL 81 2432	F.	Abe et al.	(CDF	Collab.)
Also		PR D58 112004	F.	Abe <i>et al.</i>	(CDF	Collab.)
ACKERSTAFF	980	PL B420 157	Κ.	Ackerstaff <i>et al.</i>	(OPAL	Collab.)
BARATE	98Q	EPJ C4 387	R.	Barate <i>et al.</i>	(ALEPH	Collab.)
PDG	98	EPJ C3 1	C.	Caso et al.	(PDG	Collab.)
ABREU	97E	PL B398 207	Ρ.	Abreu et al.	(DELPHI	Collab.)
BARATE	97H	PL B402 213	R.	Barate <i>et al.</i>	(ALEPH	Collab.)
ABE	96R	PRL 77 5176	F.	Abe et al.	(CDF	Collab.)
PDG	96	PR D54 1	R.	M. Barnett <i>et al.</i>	(PDG	Collab.)

NODE=S091A00;LINKAGE=C

OCCUR=2

NODE=S091A00 NODE=S091A00 NODE=S091A00

NODE=S091

DEE	ID 60001
REF	D = 02831
REF	ID = 62837
REF	ID=62847
REF	ID=62890
REE	ID-62150
	ID_61017
	ID=01017
REF	ID=01//5
REF	ID=61363
REF	ID=61489
REE	ID-60513
	D = 60040
	ID=00040
REF	D = 58813
REF	ID=59040
REF	ID = 59185
REE	D=57918
DEE	ID-57767
	ID_J7707
REF	D=57031
REF	ID = 57412
REF	ID=57719
RFF	ID = 57235
REE	10 - 57263
DEE	ID-56204
	ID 50094
REF	D = 50373
REF	ID=56456
REF	ID=56540
REE	D = 56069
REE	ID-55603
	D_55095
	D = 55729
REF	D = 55817
REF	ID = 55136
REF	ID=55160
RFF	ID = 55642
REE	ID-55/38
	D = 53430
	ID 55471
REF	D = 55520
REF	ID=55528
REF	ID=54991
REF	ID=54798
REE	ID-54764
DEE	ID-54210
	ID 54219
KEF	D = 52702
REF	ID = 52252
REF	ID=52398
REF	D=51085
REF	ID=51241
DEC	ID-46120
KEF	D=40488
REF	D = 46029
REF	ID=46146
REF	ID=45838
REF	ID=45322
DEC	ID-45490
KEF	U=45159
REF	ID=44495