Page 1

NODE=S126



J = 0

In the following H refers to the signal that has been discovered in the Higgs searches. Whereas the observed signal is labeled as a spin 0 particle and is called a Higgs Boson, the detailed properties of Hand its role in the context of electroweak symmetry breaking need to be further clarified. These issues are addressed by the measurements listed below.

Concerning mass limits and cross section limits that have been obtained in the searches for neutral and charged Higgs bosons, see the sections "Searches for Neutral Higgs Bosons" and "Searches for Charged Higgs Bosons ( $H^{\pm}$  and  $H^{\pm\pm}$ )", respectively.

NODE=S126

|                                                                       | Н МА                      | ASS              |                                                                                                       | NODE=S126M |
|-----------------------------------------------------------------------|---------------------------|------------------|-------------------------------------------------------------------------------------------------------|------------|
| VALUE (GeV)                                                           | DOCUMENT ID               | TECN             | COMMENT                                                                                               | NODE=S126M |
| <b>125.13 <math>\pm</math> 0.11 OUR AVE</b> [125.20 $\pm$ 0.11 GeV OU |                           |                  | of 1.5. See the ideogram below.<br>.4]                                                                | NEW        |
| $125.04 \pm 0.12$                                                     | <sup>1</sup> HAYRAPETY    | .25L CMS         | $pp$ , 13 TeV, $ZZ^* 	o 4\ell$                                                                        |            |
| $125.10 \pm 0.11$                                                     | <sup>2</sup> AAD          | 23BP ATLS        | $pp$ , 13 TeV, $\gamma\gamma$ , $ZZ^* \rightarrow 4\ell$                                              |            |
| $125.78 \pm 0.26$                                                     | <sup>3</sup> SIRUNYAN     | 20L CMS          | $pp$ , 13 TeV, $\gamma\gamma$                                                                         |            |
| $125.09 \pm 0.21 \pm 0.11$                                            | <sup>4,5</sup> AAD        | 15B LHC          | pp, 7, 8 TeV                                                                                          |            |
| ullet $ullet$ We do not use the                                       | ne following data for ave | erages, fits, li | mits, etc. • • •                                                                                      |            |
| $124.99 \pm 0.18 \pm 0.04$                                            | <sup>6</sup> AAD          | 23AU ATLS        | pp, 13 TeV, $ZZ^* \rightarrow 4\ell$                                                                  |            |
| $124.94 \pm 0.17 \pm 0.03$                                            | <sup>7</sup> AAD          | 23AU ATLS        | $pp$ , 7, 8, 13 TeV, $ZZ^* \rightarrow$                                                               | OCCUR=2    |
| $125.11 \pm 0.11$                                                     | <sup>8</sup> AAD          | 23BP ATLS        | $ \begin{array}{c} 4\ell \\ pp, 7, 8, 13 \text{ TeV}, \gamma\gamma, \end{array} $                     | OCCUR=2    |
| $125.17 \pm 0.11 \pm 0.09$                                            | <sup>9</sup> AAD          | 23BU ATLS        | $ZZ^* \rightarrow 4\ell$                                                                              |            |
| $125.17 \pm 0.11 \pm 0.09$<br>$125.22 \pm 0.11 \pm 0.09$              | 10 AAD                    | 23BU ATLS        | $pp$ , 13 TeV, $\gamma\gamma$<br>$pp$ , 7, 8, 13 TeV, $\gamma\gamma$                                  | OCCUR=2    |
| $125.22 \pm 0.11 \pm 0.09$<br>$125.46 \pm 0.16$                       | 11 SIRUNYAN               | 20L CMS          | $pp$ , 7, 6, 13 TeV, $\gamma\gamma\gamma$<br>$pp$ , 13 TeV, $\gamma\gamma$ , $ZZ^* \rightarrow 4\ell$ | OCCUR=2    |
| $125.40 \pm 0.16$ $125.38 \pm 0.14$                                   | 12 SIRUNYAN               | 20L CMS          | $pp$ , 13 TeV, $\gamma\gamma$ , 22 $\rightarrow$ 4 $\ell$ $pp$ , 7, 8, 13 TeV, $\gamma\gamma$ ,       | OCCUR=3    |
| 123.30 ± 0.14                                                         | SIRUNTAN                  | 20L CIVIS        | $ZZ^* \rightarrow 4\ell$                                                                              | OCCUR=3    |
| $124.79 \pm 0.37$                                                     | <sup>13</sup> AABOUD      | 18BM ATLS        | $pp$ , 13 TeV, $ZZ^* \rightarrow 4\ell$                                                               |            |
| 124.93±0.40                                                           | <sup>14</sup> AABOUD      | 18BM ATLS        | $pp$ , 13 TeV, $\gamma\gamma$                                                                         | OCCUR=2    |
| $124.86 \pm 0.27$                                                     | <sup>4</sup> AABOUD       | 18BM ATLS        | $pp$ , 13 TeV, $\gamma\gamma$ , $ZZ^* \rightarrow 4\ell$                                              | OCCUR=3    |
| $124.97 \pm 0.24$                                                     | 4,15 AABOUD               | 18BM ATLS        | $pp$ , 7, 8, 13 TeV, $\gamma\gamma$ ,                                                                 | OCCUR=4    |
| 124.57 ± 0.24                                                         | 700000                    | TODIVITATES      | $ZZ^* \rightarrow 4\ell$                                                                              | OCCON-4    |
| $125.26 \pm 0.20 \pm 0.08$                                            | <sup>16</sup> SIRUNYAN    | 17AV CMS         | $pp$ , 13 TeV, $ZZ^* \rightarrow 4\ell$                                                               |            |
| $125.07 \pm 0.25 \pm 0.14$                                            | <sup>5</sup> AAD          | 15B LHC          | pp, 7, 8 TeV, γγ                                                                                      | OCCUR=2    |
| $125.15 \pm 0.37 \pm 0.15$                                            | <sup>5</sup> AAD          | 15B LHC          | $pp$ , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$                                                             | OCCUR=3    |
| $126.02 \pm 0.43 \pm 0.27$                                            | AAD                       | 15B ATLS         | pp, 7, 8 TeV, γγ                                                                                      | OCCUR=4    |
| $124.51 \pm 0.52 \pm 0.04$                                            | AAD                       | 15B ATLS         | $pp$ , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$                                                             | OCCUR=5    |
| $125.59 \pm 0.42 \pm 0.17$                                            | AAD                       | 15B CMS          | $pp$ , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$                                                             | OCCUR=6    |
| $125.02 + 0.26 + 0.14 \\ -0.27 - 0.15$                                | <sup>17</sup> KHACHATRY   | .15AM CMS        | pp, 7, 8 TeV                                                                                          |            |
| $125.36 \pm 0.37 \pm 0.18$                                            | 4,18 AAD                  | 14W ATLS         | pp, 7, 8 TeV                                                                                          |            |
| $125.98 \pm 0.42 \pm 0.28$                                            | <sup>18</sup> AAD         | 14W ATLS         | pp, 7, 8 TeV, γγ                                                                                      | OCCUR=2    |
| $124.51 \pm 0.52 \pm 0.06$                                            | <sup>18</sup> AAD         | 14W ATLS         | $pp$ , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$                                                             | OCCUR=3    |
| 125.6 $\pm 0.4 \pm 0.2$                                               | <sup>19</sup> CHATRCHYAN  | 14AA CMS         | $pp$ , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$                                                             |            |
| 122 ±7                                                                | <sup>20</sup> CHATRCHYAN  |                  | pp, 7, 8 TeV, ττ                                                                                      |            |
| $124.70 \pm 0.31 \pm 0.15$                                            | <sup>21</sup> KHACHATRY   | .14P CMS         | $pp$ , 7, 8 TeV, $\gamma\gamma$                                                                       |            |
| 125.5 $\pm 0.2  ^{+0.5}_{-0.6}$                                       | 4,22 AAD                  | 13AK ATLS        | pp, 7, 8 TeV                                                                                          |            |
| $126.8 \pm 0.2 \pm 0.7$                                               | <sup>22</sup> AAD         | 13AK ATLS        | $pp$ , 7, 8 TeV, $\gamma\gamma$                                                                       | OCCUR=2    |
| $124.3 \begin{array}{c} +0.6 & +0.5 \\ -0.5 & -0.3 \end{array}$       | <sup>22</sup> AAD         | 13AK ATLS        | $pp$ , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$                                                             | OCCUR=3    |
| -0.5 - 0.5<br>125.8 $\pm 0.4 \pm 0.4$                                 | 4,23 CHATRCHYAN           | 131 CMS          | pp, 7, 8 TeV                                                                                          |            |
| $126.2 \pm 0.6 \pm 0.2$                                               | 23 CHATRCHYAN             |                  | pp, 7, 8  TeV<br>$pp, 7, 8 \text{ TeV}, ZZ^* \rightarrow 4\ell$                                       | OCCUR=2    |
| $126.0 \pm 0.4 \pm 0.4$                                               | 4,24 AAD                  | 12AI ATLS        | pp, 7, 8 TeV, 22 - 4c                                                                                 | 000011-2   |
| $125.3 \pm 0.4 \pm 0.4$ $125.3 \pm 0.4 \pm 0.5$                       | 4,25 CHATRCHYAN           |                  | pp, 7, 8 TeV<br>pp, 7, 8 TeV                                                                          |            |
| 120.0 10.7 10.0                                                       | CHAIRCHIAN                | LIN CIVIS        | pp, 1, 0 100                                                                                          |            |

 $^1$  HAYRAPETYAN 25L use 138 fb $^{-1}$  of  $\it p\, p$  collisions at  $\it E_{\sf cm}=$  13 TeV with  $\it H 
ightarrow \it Z\it Z^* 
ightarrow$ 4 $\ell$  where  $\ell$  = e,  $\mu$ .

 $^2$ AAD 23BP combine 13 TeV results of  $H o \gamma \gamma$  (AAD 23BU) and  $H o ZZ^* o$ 4 $\ell$  where  $\ell$  = e,  $~\mu$  (AAD 23AU) using 140 fb $^{-1}$  of pp collision data. The result is  $125.10 \pm 0.09(\text{stat}) \pm 0.07(\text{syst}) \text{ GeV}.$ 

 $^3$  SIRUNYAN 20L use 35.9 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$  13 TeV with  $H \to \gamma \gamma$ .

 $\begin{tabular}{ll} 4 \\ - \begin{tabular}{ll} Combined value from $\gamma \gamma$ and $ZZ^* \to $4\ell$ final states. \end{tabular}$ 

 $^5$  ATLAS and CMS data are fitted simultaneously.  $^6$  AAD 23AU use 139 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$  13 TeV with  $H\to~ZZ^*\to~4\ell$ where  $\ell = e, \mu$ .

7 AAD 23AU combine 13 TeV results with 7 and 8 TeV results (AAD 14W).

 $^{8}\,\text{AAD}$  23BP combine 13 TeV results with 7 and 8 TeV results. The result is 125.11  $\pm$  $0.09(\text{stat}) \pm 0.06(\text{syst})$  GeV.

 $^{9}\,\rm{AAD}$  23BU use 140 fb  $^{-1}$  of pp collisions at  $E_{\rm cm}=$  13 TeV with  $H\to~\gamma\gamma.$ 

 $^{10}\,\mathrm{AAD}$  23BU combine 13 TeV results with 7 and 8 TeV results (AAD 15B).

<sup>11</sup>SIRUNYAN 20L result of  $H \to \gamma \gamma$  is combined with that of  $H \to ZZ^* \to 4\ell$  where  $\ell$ = e,  $\mu$  (SIRUNYAN 17AV).

 $^{12}$ SIRUNYAN 20L combine 13 TeV results with 7 and 8 TeV results (KHACHA-

 $^{13}$  AABOUD 18BM use 36.1 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  13 TeV with  $H 
ightarrow ~ZZ^* 
ightarrow$ 4 $\ell$  where  $\ell$  = e,  $\mu$ .

 $^{14}$  AABOUD 18BM use 36.1 fb  $^{-1}$  of  $\it pp$  collisions at  $\it E_{\rm cm}=$  13 TeV with  $\it H\to~\gamma\gamma$ 

 $^{15} \, \text{AABOUD} \, \, \text{18BM} \, \, \text{combine} \, \, \text{13 TeV} \, \, \text{results} \, \, \text{with} \, \, \text{7 and} \, \, \text{8 TeV} \, \, \text{results}.$  Other combined results are summarized in their Fig. 4.

 $^{16}$  SIRUNYAN 17AV use 35.9 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  13 TeV with  $H 
ightarrow ~ZZ^* 
ightarrow$  $4\ell$  where  $\ell = e, \mu$ .

 $^{17}$ KHACHATRYAN 15AM use up to 5.1 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  7 TeV and up to 19.7 fb<sup>-1</sup> at  $E_{\rm cm} = 8$  TeV.

<sup>18</sup> AAD 14W use  $4.5 \text{ fb}^{-1}$  of pp collisions at  $E_{\rm cm}=7 \text{ TeV}$  and  $20.3 \text{ fb}^{-1}$  at 8 TeV.

 $^{19}$  CHATRCHYAN 14AA use 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$  7 TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV.

 $^{20}$  CHATRCHYAN 14K use 4.9 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  7 TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV.

 $^{21}$  KHACHATRYAN 14P use 5.1 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  7 TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV.

<sup>22</sup> AAD 13AK use 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$ 7 TeV and 20.7 fb $^{-1}$  at  $E_{\rm cm}=$ 8 TeV. Superseded by AAD 14W.

 $^{23}\,\mathrm{CHATRCHYAN}$  13J use 5.1 fb $^{-1}$  of pp collisions at  $E_\mathrm{cm}=7$  TeV and 12.2 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV.

<sup>24</sup> AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  7 TeV and 5.8–5.9 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. An excess of events over background with a local significance of 5.9  $\sigma$  is observed at  $m_H=126$  GeV. See also AAD 12DA.

 $^{25}$  CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$  of pp collisions at  $E_{
m cm}=7$ TeV and 5.1–5.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. An excess of events over background with a local significance of 5.0  $\sigma$  is observed at about  $m_H=125$  GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.

NODE=S126M;LINKAGE=T

NODE=S126M;LINKAGE=P

NODE=S126M;LINKAGE=J NODE=S126M;LINKAGE=AA NODE=S126M;LINKAGE=LC NODE=S126M;LINKAGE=N

NODE=S126M;LINKAGE=O NODE=S126M;LINKAGE=Q

NODE=S126M;LINKAGE=R NODE=S126M;LINKAGE=S NODE=S126M;LINKAGE=K

NODE=S126M;LINKAGE=M

NODE=S126M;LINKAGE=G

NODE=S126M;LINKAGE=H NODE=S126M;LINKAGE=I

NODE=S126M;LINKAGE=F

NODE=S126M;LINKAGE=E

NODE=S126M;LINKAGE=A NODE=S126M:LINKAGE=B

NODE=S126M;LINKAGE=D

NODE=S126M;LINKAGE=C

NODE=S126M;LINKAGE=LH

NODE=S126M;LINKAGE=CT

NODE=S126M;LINKAGE=AI

NODE=S126M;LINKAGE=CH





### H SPIN AND CP PROPERTIES

NODE=S126CP

The observation of the signal in the  $\gamma\gamma$  final state rules out the possibility that the discovered particle has spin 1, as a consequence of the Landau-Yang theorem. This argument relies on the assumptions that the decaying particle is an on-shell resonance and that the decay products are indeed two photons rather than two pairs of boosted photons, which each could in principle be misidentified as a single photon.

Concerning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some care has to be taken in modelling the latter in order to ensure that the discriminating power is actually based on the spin properties rather than on unphysical behavior that may affect the model of the spin 2 state.

Under the assumption that the observed signal consists of a single state rather than an overlap of more than one resonance, it is sufficient to discriminate between distinct hypotheses in the spin analyses. On the other hand, the determination of the *CP* properties is in general much more difficult since in principle the observed state could consist of any admixture of *CP*-even and *CP*-odd components. As a first step, the compatibility of the data with distinct hypotheses of pure *CP*-even and pure *CP*-odd states with different spin assignments has been investigated. In order to treat the case of a possible mixing of different *CP* states, certain cross section ratios are considered. Those cross section ratios need to be distinguished from the amount of mixing between a *CP*-even and a *CP*-odd state, as the cross section ratios depend in addition also on the coupling strengths of the *CP*-even and *CP*-odd components to the involved particles. A small relative coupling implies a small sensitivity of the corresponding cross section ratio to effects of *CP* mixing.

NODE=S126CP

```
ALUE <u>DOCUMENT ID TECN COMMENT</u>
```

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

```
<sup>1</sup> HAYRAPETY...25R CMS t\bar{t}H, tH, H \rightarrow b\bar{b}, 13 TeV
  <sup>2</sup> AAD
                          24AG ATLS H \rightarrow ZZ^* \rightarrow 4\ell, VBF, 13 TeV
  ^{3} AAD
                          24J ATLS t\overline{t}H, tH, H \rightarrow b\overline{b}, 13 TeV
  <sup>4</sup> AAD
                          23AK ATLS H 
ightarrow 	au	au, 13 TeV
  <sup>5</sup> AAD
                          23AN ATLS H 
ightarrow \gamma \gamma, VBF, 13 TeV
  <sup>6</sup> TUMASYAN
                          23AJ CMS
                                             H \rightarrow \tau \tau, 13 TeV
 <sup>7</sup> TUMASYAN
                          23P CMS
                                             t \bar{t} H, H \rightarrow WW^*, \tau \tau, 13 TeV
 8 AAD
                          22V ATLS WW^* (\rightarrow e \nu \mu \nu) + 2j, 13 TeV
 <sup>9</sup> TUMASYAN
                          22Y CMS
                                             H \rightarrow \tau \tau, 13 TeV
^{10}\,\mathrm{AAD}
                          20N ATLS H \rightarrow \tau \tau, VBF, 13 TeV
^{11} AAD
                          20z ATLS
                                             t\bar{t}H, H \rightarrow \gamma\gamma, 13 TeV
<sup>12</sup> SIRUNYAN
                          20AS CMS
                                             t \bar{t} H, H \rightarrow \gamma \gamma , 13 TeV
<sup>13</sup> SIRUNYAN
                                             pp, 7, 8, 13 TeV, ZZ^*/ZZ \rightarrow 4\ell
                          19BL CMS
<sup>14</sup> SIRUNYAN
                          19<sub>BZ</sub> CMS
                                             pp \rightarrow H+2jets (VBF, ggF, VH), H \rightarrow
                                                 \tau \tau, 13 TeV
<sup>15</sup> AABOUD
                          18AJ ATLS
                                             H \rightarrow ZZ^* \rightarrow 4\ell \ (\ell = e, \mu), 13 \text{TeV}
<sup>16</sup> SIRUNYAN
                          17AM CMS
                                             pp \rightarrow H+ \geq 2j, H \rightarrow 4\ell \ (\ell = e, \mu)
^{17}\,\mathrm{AAD}
                          16 ATLS
                                             H \rightarrow \gamma \gamma
^{18} AAD
                                             pp \rightarrow HjjX (VBF), H \rightarrow \tau \tau, 8 TeV
                          16BL ATLS
<sup>19</sup> KHACHATRY...16AB CMS
                                             pp \rightarrow WH, ZH, H \rightarrow b\overline{b}, 8 \text{ TeV}
<sup>20</sup> AAD
                          15AX ATLS
                                             H \rightarrow WW^*
^{21}\,\mathrm{AAD}
                          15CI ATLS H 
ightarrow ZZ^*, WW^*, \gamma\gamma
<sup>22</sup> AALTONEN
                          15
                                 TEVA
                                             p\overline{p} \rightarrow WH, ZH, H \rightarrow b\overline{b}
<sup>23</sup> AALTONEN
                                             p\overline{p} \rightarrow WH, ZH, H \rightarrow b\overline{b}
                          15B CDF
<sup>24</sup> KHACHATRY...15Y CMS
                                             H \rightarrow 4\ell, WW^*, \gamma\gamma
<sup>25</sup> ABAZOV
                          14F D0
                                             p\overline{p} \rightarrow WH, ZH, H \rightarrow b\overline{b}
^{26} CHATRCHYAN 14AA CMS
                                             H \rightarrow ZZ^*
<sup>27</sup> CHATRCHYAN 14G CMS
                                             H \rightarrow WW^*
<sup>28</sup> KHACHATRY...14P CMS
                                             H \rightarrow \gamma \gamma
<sup>29</sup> AAD
                          13AJ ATLS H 	o \gamma \gamma, ZZ^* 	o 4\ell, WW^* 	o \ell \nu \ell \nu
30 CHATRCHYAN 13 J CMS
                                             H \rightarrow ZZ^* \rightarrow 4\ell
```

 $^1$  HAYRAPETYAN 25R measure the  $t\overline{t}\,H$  and  $t\,H$  productions with  $H\to b\,\overline{b}$  decay channel using  $138~{\rm fb}^{-1}$  of data at  $E_{\rm cm}=13~{\rm TeV}.$  Two-dimensional likelihood scan of  $(\kappa_t,\,\widetilde{\kappa}_t)$  to measure the CP structure of the top Yukawa coupling is shown in their Fig. 16, where  $\kappa_V=1.$  With other channels (SIRUNYAN 20AS, SIRUNYAN 21AE, TUMASYAN 23P), the CP-odd fraction  $f_{CP}$  and the CP mixing angle  $\alpha$  are constrain to be  $\left|f_{CP}\right|<0.85$  and  $\cos\alpha>0.39$  at 95% CL.

<sup>2</sup> AAD 24AG search for *CP* violation in the decay kinematics and VBF production of the Higgs boson using  $H \to ZZ^* \to 4\ell$  decay channel ( $\ell = e, \mu$ ) with 139 fb<sup>-1</sup> at  $E_{\rm cm} = 13$  TeV. By using the optimal observables, the data constrain six *CP*-odd Wilson coefficients in two effective field theory bases: the Warsaw basis and the Higgs basis. The result is given in their Table 5 and Figs. 7–11. The differential fiducial cross sections for the four optimal observables are measured as shown in their Fig. 13. The VBF fiducial cross sections are given in their Table 6.

 $^3$  AAD 24J measure the CP structure of the top Yukawa coupling using  $139~{\rm fb}^{-1}$  of data at  $E_{\rm cm}=13~{\rm TeV}.$  The CP-mixing angle  $\alpha$  for top Yukawa coupling is measured to be  $(11^{+52}_{-73})^{\circ}$  with the top Yukawa coupling strength modifier  $\kappa_t.$  See their Fig. 3. The data disfavour the pure CP-odd  $(\alpha=90^{\circ})$  at  $1.2~\sigma.$ 

 $^4$  AAD 23AK measure the  $C\!P$  structure of the  $\tau$  Yukawa coupling using 139 fb $^{-1}$  of data at  $E_{\rm CM}=13$  TeV. The  $C\!P$ -mixing angle  $\alpha$  for  $\tau$  Yukawa coupling is measured to be  $9\pm16^\circ$ . The data disfavour the pure  $C\!P$ -odd  $(\alpha=90^\circ)$  at 3.4  $\sigma$ .

 $^5$  AAD 23AN test CP invariance in H production via VBF using  $H\to \gamma\gamma$  decay channel with 139 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. By using the Optimal Observable method, the data constrain parameters describing the strength of the CP-odd component in the coupling between Higgs and W/Z in effective field theory bases:  $\widetilde{d}$  in the HISZ basis and  $c_{H\widetilde{W}}$  in the Warsaw basis. The result is -0.010  $\leq$   $\widetilde{d}$   $\leq$  0.040 and -0.15  $\leq$   $c_{H\widetilde{W}}$   $\leq$  0.67 at 68% CL. See their Table I, which shows the result combined with  $H\to \tau\tau$  (AAD 20N): -0.012  $\leq$   $\widetilde{d}$   $\leq$  0.030 at 68% CL.

 $^6$  TUMASYAN 23AJ constraint anomalous couplings of the Higgs to vector bosons and fermions using  $pp \to H \to \tau\tau$  at  $E_{\rm cm}=13$  TeV with 138 fb $^{-1}$  data. The CP-violating parameter in gluon-fusion production  $f_{a3}^{ggH}$  and the effective mixing angle  $\alpha^{H}ff$  are given in their Table VII with  $H\to \tau\tau$  and  $f_{a3}^{ggH}$  in their Table X with  $H\to \tau\tau$  and  $H\to 4\ell$ . Using the VBF production analysis, the CP-violating parameter  $f_{a3}$  and the CP-conserving parameters  $f_{a2}$ ,  $f_{\Lambda 1}$  and  $f_{\Lambda 1}^{Z\gamma}$  are given in their Table VIII with  $H\to \tau\tau$  and Table IX with  $H\to \tau\tau$  and  $H\to 4\ell$ . The CP-violating parameter  $f_{CP}^{Htt}$  is constrained to be  $0.03^{+0.17}_{-0.03}$  using  $H\to \tau\tau$ ,  $H\to 4\ell$  and  $H\to \gamma\gamma$ .

 $^7$  TUMASYAN 23P constrain  $\widetilde{\kappa}_t$  from  $t\bar{t}H$  and tH decaying  $H\to WW^*$  and  $H\to \tau\tau$  (multilepton decay mode) with 138 fb $^{-1}$  pp collision data at  $E_{\rm CM}=13$  TeV. The  $\widetilde{\kappa}_t$  is constrained to be  $|\widetilde{\kappa}_t|\leq 1.4$  at 95% CL by fixing  $\kappa_t=1$  and other couplings ( $\kappa_V$  etc.) to the SM values, see their Table 6 (see their Fig. 9 for 2-dim contours). The fractional contribution of the CP-odd component  $|f_{CP}^{H\,tt}|$  is constrained to (0.24, 0.81) at 68% CL with a best fit value of 0.59. The combination with other  $t\bar{t}H$  decaying  $H\to \gamma\gamma$  (SIRUNYAN 20AS) and  $H\to 4\ell$  (SIRUNYAN 21AE) constraints to be  $|\widetilde{\kappa}_t|\leq 1.07$  at 95% CL and  $|f_{CP}^{H\,tt}|<0.55$  at 68% CL with a best fit value of 0.28.

<sup>8</sup> AAD 22V measure the *CP* properties of the effective Higgs-gluon interaction using gluon fusion  $H \to WW^* \to e \nu \mu \nu$  plus two jets with 36.1 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The measured tangent of the *CP*-mixing angle  $\tan \alpha$  is  $0.0 \pm 0.4 \pm 0.3$  assuming the standard model HVV couplings. See their Fig. 6.

 $^9$  TUMASYAN 22Y measure the *CP* structure of the  $\tau$  Yukawa coupling using 137 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The *CP*-mixing angle  $\alpha$  for  $\tau$  Yukawa coupling is measured to be  $-1\pm19^\circ$ . The data disfavour the pure *CP*-odd  $(\alpha=90^\circ)$  at 3.0  $\sigma$ .

 $^{10}$  AAD 20N test CP invariance in H production via VBF using  $H\to \tau\tau$  decay channel with 36.1 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. By using the Optimal Observable method, the data constrain a parameter  $\stackrel{\frown}{d}$ , which is for the strength of CP violation in an effective field theory, to be  $-0.090 \leq \stackrel{\frown}{d} \leq 0.035$  at 68% CL (see their Fig. 6).

 $^{11}$  AAD 20Z exclude a CP-mixing angle  $\alpha,~|\alpha|~>43^{\circ}$  at 95% CL, where  $\alpha=0$  represents the Standard Model, in 139 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The pure CP-odd structure of the top Yukawa coupling ( $\alpha=90^{\circ}$ ) is excluded at 3.9  $\sigma.$ 

 $^{12}$  SIRUNYAN 20AS exclude the pure *CP*-odd structure of the top Yukawa coupling at 3.2  $\sigma$  using  $t\bar{t}H,\,H\to\,\gamma\gamma$  in 137 fb $^{-1}$  of data at  $E_{\rm Cm}=13$  TeV. The fractional contribution of the *CP*-odd component  $f^{t\bar{t}}_{CP}H$  is measured to be 0.00  $\pm$  0.33.

 $^{13}$  SIRUNYAN 19BL measure the anomalous HVV couplings from on-shell and off-shell production in the  $4\ell$  final state. Data of 80.2 fb $^{-1}$  at 13 TeV, 19.7 fb $^{-1}$  at 8 TeV, and 5.1 fb $^{-1}$  at 7 TeV are used. See their Tables VI and VII for anomalous HVV couplings of CP-violating and CP-conserving parameters with on- and off-shells.

 $^{14}$  SIRUNYAN 19BZ constrain anomalous HVV couplings of the Higgs boson with data of 35.9 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV using Higgs boson candidates with two jets produced in VBF, ggF, and VH that decay to  $\tau\tau$ . See their Table 2 and Fig. 10, which show 68%

NODE=S126CP;LINKAGE=CA

NODE=S126CP;LINKAGE=BA

NODE=S126CP;LINKAGE=Z

NODE=S126CP;LINKAGE=V

NODE=S126CP;LINKAGE=X

NODE=\$126CP;LINKAGE=W

NODE=S126CP;LINKAGE=Y

NODE=S126CP;LINKAGE=U

NODE = S126CP; LINKAGE = T

NODE=S126CP;LINKAGE=Q

NODE=S126CP;LINKAGE=S

NODE=S126CP;LINKAGE=R

NODE=S126CP;LINKAGE=P

NODE=S126CP:LINKAGE=O

CL and 95% CL intervals. Combining those with the  $H 
ightarrow ~4\ell$  (SIRUNYAN 19BL, on-shell scenario), results shown in their Tables 3, 4, and Fig. 11 are obtained. A CP-violating parameter is set to be  $f_{a3}\cos(\phi_{a3})=(0.00\pm0.27)\times10^{-3}$  and CP-conserving parameters are  $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$ ,  $f_{\Lambda1}\cos(\phi_{\Lambda1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$ , and  $f_{\Lambda}^{2}\cos(\phi_{\Lambda2})=(0.00^{+0.13}_{-0.21})\times10^{-3}$  $f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma}) = (0.0^{+1.1}_{-1.3}) \times 10^{-3}.$ 

 $^{15}\,\mathrm{AABOUD}$  18AJ study the tensor structure of the Higgs boson couplings using an effective Lagrangian using 36.1 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV. Constraints are set on the non-Standard-Model CP-even and CP-odd couplings to Z bosons and on the CP-odd coupling to gluons. See their Figs. 9 and 10, and Tables 10 and 11.

 $^{16}$ SIRUNYAN 17AM constrain anomalous couplings of the Higgs boson with 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV,  $19.7~{\rm fb^{-1}}$  at  $E_{\rm cm}=8$  TeV, and  $38.6~{\rm fb^{-1}}$  at  $E_{\rm cm}=13$  TeV. See their Table 3 and Fig. 3, which show 68% CL and 95% CL intervals. A CP violation parameter  $f_{a3}$  is set to be  $f_{a3}\cos(\phi_{a3})=[-0.38,\,0.46]$  at 95% CL  $(\phi_{a3}=0)$ 

 $^{17}$  AAD  $^{16}$  study  $H 
ightarrow \gamma \gamma$  with an effective Lagrangian including  $\it CP$  even and odd terms in  $20.3~{
m fb^{-1}}$  of pp collisions at  $E_{
m cm}=8~{
m TeV}$ . The data is consistent with the expectations for the Higgs boson of the Standard Model. Limits on anomalous couplings are also given.

 $^{18}$  AAD 16BL study VBF H 
ightarrow ~ au au with an effective Lagrangian including a  $\it CP$  odd term in 20.3 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  8 TeV. The measurement is consistent with the expectation of the Standard Model. The CP-mixing parameter  $\overset{\sim}{d}$  (a dimensionless coupling  $\widetilde{d} = -(m_W^2/\Lambda^2)f_{\widetilde{W}\,W}$ ) is constrained to the interval of (-0.11, 0.05) at 68% CL under the assumption of  $\tilde{d} = \tilde{d}_B$ .

 $^{19}\mathrm{KHACHATRYAN}$  16AB search for anomalous pseudoscalar couplings of the Higgs boson

 $WW^* \rightarrow e \nu \mu \nu$ . 2<sup>+</sup> hypotheses are excluded at 84.5–99.4%CL, 0<sup>-</sup> at 96.5%CL,  $0^+$  (field strength coupling) at 70.8%CL. See their Fig. 19 for limits on possible  $\it CP$ 

 $^{21}$  AAD 15CI compare the  $J^{CP} = 0^+$  Standard Model assignment with other  $J^{CP}$  hypotheses in 4.5 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV, using the processes  $H \to ZZ^* \to 4\ell$ .  $H \to \gamma\gamma$  and combine with AAD 15AX data.  $0^+$  (field strength coupling),  $0^-$  and several  $2^+$  hypotheses are excluded at more than 99.9% CL. See their Tables 7–9 for limits on possible CP mixture parameters.

 $^{22}$ AALTONEN 15 combine AALTONEN 15B and ABAZOV 14F data. An upper limit of 0.36 of the Standard Model production rate at 95% CL is obtained both for a  $0^-$  and a  $2^+$  state. Assuming the SM event rate, the  $J^{CP}=0^-$  ( $2^+$ ) hypothesis is excluded at the  $5.0\sigma$  (4.9 $\sigma$ ) level.

<sup>23</sup> AALTONEN 15B compare the  $J^{CP}=0^+$  Standard Model assignment with other  $J^{CP}$  hypotheses in 9.45 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm cm}=1.96$  TeV, using the processes  $ZH\to$  $\ell\ell b\overline{b}$ ,  $WH \to \ell\nu b\overline{b}$ , and  $ZH \to \nu\nu b\overline{b}$ . Bounds on the production rates of 0<sup>-</sup> and

 $2^+$  (graviton-like) states are set, see their tables II and III.  $2^+$  KHACHATRYAN 15Y compare the  $J^{CP}=0^+$  Standard Model assignment with other  $J^{CP}$  hypotheses in up to 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and up to 19.7 fb $^{-1}$  at  $E_{\rm cm}=$  8 TeV, using the processes  $H o 4\ell$ ,  $H o WW^*$ , and  $H o \gamma\gamma$ . 0 $^$ is excluded at 99.98% CL, and several  $2^+$  hypotheses are excluded at more than 99%CL. Spin 1 models are excluded at more than 99.999% CL in  $ZZ^*$  and  $WW^*$  modes. Limits on anomalous couplings and several cross section fractions, treating the case of CP-mixed states, are also given.

 $^{25}$  ABAZOV 14F compare the  $^{JCP}$  =  $^{0+}$  Standard Model assignment with  $^{JCP}$  =  $^{0-}$  and  $2^+$  (graviton-like coupling) hypotheses in up to 9.7 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm Cm}=1.96$  TeV. They use kinematic correlations between the decay products of the vector boson and the Higgs boson in the final states  $ZH\to ~\ell\ell b\,\overline{b},~WH\to ~\ell\nu\,b\,\overline{b},$  and  $ZH\to$  $u \, \nu \, b \, \overline{b}$ . The  $0^- \, (2^+)$  hypothesis is excluded at 97.6% CL (99.0% CL). In order to treat the case of a possible mixture of a  $0^+$  state with another  $J^{CP}$  state, the cross section fractions  $f_X=\sigma_X/(\sigma_{0^+}+\sigma_X)$  are considered, where  $X=0^-$ ,  $2^+$ . Values for  $f_{0^-}(f_{2^+})$  above 0.80 (0.67) are excluded at 95% CL under the assumption that the total

cross section is that of the SM Higgs boson. 

26 CHATRCHYAN 14AA compare the  $J^{CP}=0^+$  Standard Model assignment with various  $J^{CP}$  hypotheses in 5.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at  $E_{\rm cm}=0$ = 8 TeV.  $J^{CP}=0^-$  and  $1^\pm$  hypotheses are excluded at 99% CL, and several J=2 hypotheses are excluded at 95% CL. In order to treat the case of a possible mixture of  $0^+$  state with another  $J^{CP}$  state, the cross section fraction  $f_{a3}=|a_3|^2~\sigma_3~/~(|a_1|^2~\sigma_1)$  $+ |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3$ ) is considered, where the case  $a_3 = 1$ ,  $a_1 = a_2 = 0$  corresponds to a pure *CP*-odd state. Assuming  $a_2 = 0$ , a value for  $f_{a3}$  above 0.51 is excluded at

NODE=S126CP;LINKAGE=N

NODE=S126CP;LINKAGE=M

NODE=S126CP;LINKAGE=J

NODE=S126CP;LINKAGE=L

NODE=S126CP;LINKAGE=K

NODE=S126CP;LINKAGE=F

NODE=S126CP:LINKAGE=G

NODE=S126CP;LINKAGE=E

NODE=S126CP;LINKAGE=D

NODE=S126CP;LINKAGE=I

NODE=\$126CP;LINKAGE=AB

NODE=S126CP;LINKAGE=A

 $^{27}$  CHATRCHYAN 14G compare the  $J^{CP}=0^+$  Standard Model assignment with  $J^{CP}=0^-$  and  $2^+$  (graviton-like coupling) hypotheses in 4.9 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 19.4 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. Varying the fraction of the production of the  $2^+$  state via  $g\,g$  and  $q\,\overline{q},\,2^+$  hypotheses are disfavored at CL between 83.7 and 99.8%. The  $0^-$  hypothesis is disfavored against  $0^+$  at the 65.3% CL.

 $^{28}$  KHACHATRYAN 14P compare the  $J^{CP}=0^+$  Standard Model assignment with a  $2^+$  (graviton-like coupling) hypothesis in 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. Varying the fraction of the production of the  $2^+$  state via  $g\,g$  and  $q\,\overline{q}$ ,  $2^+$  hypotheses are disfavored at CL between 71 and 94%.

<sup>29</sup> AAD 13AJ compare the spin 0, *CP*-even hypothesis with specific alternative hypotheses of spin 0, *CP*-odd, spin 1, *CP*-even and *CP*-odd, and spin 2, *CP*-even models using the Higgs boson decays  $H \rightarrow \gamma \gamma$ ,  $H \rightarrow ZZ^* \rightarrow 4\ell$  and  $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$  and combinations thereof. The data are compatible with the spin 0, *CP*-even hypothesis, while all other tested hypotheses are excluded at confidence levels above 97.8%.

<sup>30</sup> CHATRCHYAN 13J study angular distributions of the lepton pairs in the  $ZZ^*$  channel where both Z bosons decay to e or  $\mu$  pairs. Under the assumption that the observed particle has spin 0, the data are found to be consistent with the pure CP-even hypothesis, while the pure CP-odd hypothesis is disfavored.

NODE=S126CP;LINKAGE=C

NODE=\$126CP;LINKAGE=B

NODE=S126CP;LINKAGE=AA

NODE=S126CP;LINKAGE=CH

NODE=S126W

NODE=S126W

NODE=S126W

### **H DECAY WIDTH**

The total decay width for a light Higgs boson with a mass in the observed range is not expected to be directly observable at the LHC. For the case of the Standard Model the prediction for the total width is about 4 MeV, which is three orders of magnitude smaller than the experimental mass resolution. There is no indication from the results observed so far that the natural width is broadened by new physics effects to such an extent that it could be directly observable. Furthermore, as all LHC Higgs channels rely on the identification of Higgs decay products, the total Higgs width cannot be measured indirectly without additional assumptions. The different dependence of on-peak and off-peak contributions on the total width in Higgs decays to  $ZZ^*$  and interference effects between signal and background in Higgs decays to  $\gamma\gamma$  can provide additional information in this context. Constraints on the total width from the combination of on-peak and off-peak contributions in Higgs decays to  $ZZ^*$  rely on the assumption of equal on- and off-shell effective couplings. Without an experimental determination of the total width or further theoretical assumptions, only ratios of couplings can be determined at the LHC rather than absolute values of couplings.

DOCUMENT ID

VALUE (MeV)

CL%

| 3.5 <sup>+1.6</sup> <sub>-1.2</sub> OU | JR AVER   | AGE                         |             |                                                                      |   | NEW     |
|----------------------------------------|-----------|-----------------------------|-------------|----------------------------------------------------------------------|---|---------|
| $[3.7^{+1.9}_{-1.4} \text{ MeV OU}]$   | JR 2025   | AVERAGE]                    |             |                                                                      |   | IVEVV   |
| $4.3^{+2.7}_{-1.9}$                    |           | <sup>1</sup> AAD 25AG       | ≀ ATLS      | pp, 13 TeV, $ZZ^*/ZZ  ightarrow$ $4\ell$ , $ZZ  ightarrow 2\ell 2 u$ | I |         |
| $3.0^{+2.0}_{-1.5}$                    |           | <sup>2</sup> HAYRAPETY25L   | CMS         | pp, 13 TeV, $ZZ^*/ZZ  ightarrow 4\ell$ , $ZZ  ightarrow 2\ell 2 u$   | I | OCCUR=3 |
| • • • We do not                        | use the f | ollowing data for averages  | s, fits, li | mits, etc. • • •                                                     |   |         |
| < 160                                  | 95        | <sup>3</sup> AAD 25E        | ATLS        | $pp$ , 13 TeV, on-shell Higgs and $t\bar{t}t\bar{t}$                 | I |         |
| < 330                                  | 95        | <sup>4</sup> HAYRAPETY25L   | CMS         | $pp$ , 13 TeV, $ZZ^* \rightarrow 4\ell$                              | I |         |
| $2.9 {+2.3 \atop -1.7}$                |           | <sup>5</sup> HAYRAPETY25L   | CMS         | $pp$ , 13 TeV, $ZZ^*  ightarrow 4\ell$                               | I | OCCUR=2 |
| $4.4^{+3.0}_{-2.2}$                    |           | <sup>6</sup> AAD 23BF       | ≀ ATLS      | pp, 13 TeV, $ZZ^*/ZZ  ightarrow 4\ell$ , $ZZ  ightarrow 2\ell 2 u$   |   |         |
| $3.2^{+2.4}_{-1.7}$                    |           | <sup>7</sup> TUMASYAN 22AN  | иCMS        | pp, 13 TeV, $ZZ^*/ZZ  ightarrow$ $4\ell$ , $ZZ  ightarrow 2\ell 2 u$ |   |         |
| $3.2^{+2.8}_{-2.2}$                    |           | <sup>8</sup> SIRUNYAN 19BL  | CMS         | pp, 7, 8, 13 TeV,<br>$ZZ^*/ZZ \rightarrow 4\ell$                     |   |         |
| < 14.4                                 | 95        | <sup>9</sup> AABOUD 18BF    | , ATLS      | $pp$ , 13 TeV, $ZZ \rightarrow 4\ell$ , $2\ell 2\nu$                 |   |         |
| <1100                                  | 95        | 10                          |             | $pp$ , 13 TeV, $ZZ^* \rightarrow 4\ell$                              |   |         |
| < 26                                   | 95        | <sup>11</sup> KHACHATRY16BA | CMS         | pp, 7, 8 TeV, WW <sup>(*)</sup>                                      |   |         |
| < 13                                   | 95        | <sup>12</sup> KHACHATRY16BA |             | $pp$ , 7, 8 TeV, $ZZ^{(*)}$ , $WW^{(*)}$                             |   | OCCUR=2 |
| < 22.7                                 | 95        |                             |             | $pp$ , 8 TeV, $ZZ^{(*)}$ , $WW^{(*)}$                                |   |         |
| <1700                                  | 95        | 14 KHACHATRY15AN            |             | <i>pp</i> , 7, 8 TeV                                                 |   |         |
| $> 3.5 \times 10^{-9}$                 | 95        | <sup>15</sup> KHACHATRY15BA | CMS         | pp, 7, 8 TeV, flight distance                                        |   |         |

TECN COMMENT

OCCUR=2

OCCUR=2

AAD 25AQ use 140 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The off-shell Higgs boson production in the  $ZZ oup 4\ell$  ( $\ell=e$ ,  $\mu$ ) decay channel is combined with the on-shell production in the  $ZZ^* oup 4\ell$  ( $\ell=e$ ,  $\mu$ ) decay channel and the off-shell production in the  $ZZ oup 2\ell 2\nu$  decay channel (AAD 23BR, AAD 25AP) to measure the total width assuming the same on-shell and off-shell coupling modifiers for gluon-fusion and for gauge-boson ( $\kappa^2_{g,\rm on-shell} \kappa^2_{V,\rm on-shell} = \kappa^4_{V,\rm on-shell} \kappa^2_{V,\rm on-shell} = \kappa^4_{V,\rm off-shell}$ ).  $R_{gg} = \kappa^2_{g,\rm on-shell} \kappa^2_{V,\rm on-shell} \kappa^2_{V,\rm on-shell} = \kappa^2_{V,\rm on-shell} \kappa^2_{V,\rm on-shell}$  are measured to be  $1.19^{+0.89}_{-0.66}$  and  $0.95^{+0.44}_{-0.35}$ , respectively. Using AAD 25AQ and AAD 23BR,

NODE=S126W;LINKAGE=S

 $\kappa_{g,\rm off-shell}$  and  $\kappa_{V,\rm off-shell}$  are measured to be  $1.09^{+0.39}_{-0.35}$  and  $0.99^{+0.16}_{-0.19}$ , respectively. The quoted errors are values at 68%CL.

NODE=S126W;LINKAGE=Q

<sup>2</sup> HAYRAPETYAN 25L use  $138~{\rm fb^{-1}}$  at  $E_{\rm cm}=13~{\rm TeV}$ . The on- and off-shell Higgs boson production in the  $ZZ \to 4\ell~(\ell=e,~\mu)$  decay channel is combined with the off-shell Higgs boson production in the  $ZZ \to 2\ell 2\nu$  (TUMASYAN 22AM) decay channel to measure the total width. The off-shell Higgs signal strength is measured to be  $0.67^{+0.42}_{-0.32}$ . The scenario of no off-shell contribution is excluded at  $3.8~\sigma$ .

NODE=S126W;LINKAGE=R

 $^3$  AAD  $^2$ SE constrain the total width using on-shell Higgs measurements and the four top quarks production with 13 TeV data. The tree-level Higgs-top Yukawa coupling is assumed to be the same for on-shell and off-shell Higgs boson production processes. Another assumption is that no BSM contributions affect the  $t\bar{t}t\bar{t}$  production. The quoted value is obtained by assuming the loop-induced ggF,  $H\to\gamma\gamma$ , and  $H\to Z\gamma$  rates can be modeled as a function of  $\kappa_t$  and other SM couplings. Otherwise,  $\Gamma_H<450$  MeV is obtained at 95% CL. Two-dimensional likelihood scan of  $(\Gamma_H/\Gamma_H^{\rm SM},\,\kappa_t)$  is shown in their Fig. 3.

NODE=S126W;LINKAGE=O

<sup>4</sup> HAYRAPETYAN 25L obtain an upper limit on the width from the on-shell  $H \to ZZ^* \to 4\ell$  ( $\ell=e,~\mu$ ) decays. Data of 138 fb<sup>-1</sup> pp collisions at  $E_{\rm cm}=13$  TeV is used.

NODE=\$126W;LINKAGE=P

<sup>5</sup> HAYRAPETYAN 25L use 138 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The on- and off-shell Higgs boson production in the  $ZZ \to 4\ell$  ( $\ell=e, \mu$ ) decay channel is used assuming that no new particles affect the gluon fusion production. The scenario of no off-shell contribution is excluded at  $3.0~\sigma$ .

NODE=S126W;LINKAGE=N

excluded at 3.0  $\sigma$ . 6 AAD 23BR use 139 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The off-shell Higgs boson production in the  $ZZ \to 4\ell$  and  $ZZ \to 2\ell 2\nu$  decay channels and the on-shell production in the  $ZZ^* \to 4\ell$  ( $\ell=e, \mu$ , AAD 20AQ) decay channels are used to measure the total width. The off-shell Higgs signal strength is measured to be  $1.1^{+0.7}_{-0.6}$  assuming the same on-shell and off-shell coupling modifiers are used individually for gluon-fusion and for gauge-boson modes. The scenario of no off-shell contribution is excluded at 3.3  $\sigma$ . Combining with the on-shell signal strength measurement, the total width normalized to its SM expectation  $\Gamma_H/\Gamma_H^{SM}$  is measured to be  $1.1^{+0.7}_{-0.5}$  assuming the same on-shell and off-shell coupling modifiers are used individually for gluon-fusion and for gauge-boson modes. The observed upper limit on the total width is 10.1 MeV at 95% CL. See their Fig. 7. See corrected width values in their erratum AAD 25AP.

NODE=\$126W;LINKAGE=M

 $^7$  TUMASYAN 22AM use up to 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The off-shell Higgs boson production in the  $ZZ\to 4\ell$  and  $ZZ\to 2\ell 2\nu$  decay channels and the on-shell production in the  $ZZ^*\to 4\ell$  ( $\ell=e,~\mu$ ) decay channels are used to measure the total width. The off-shell Higgs signal strength is measured to be  $0.62^{+0.68}_{-0.45}$  without the constraint on the ratio of the off-shell signal strengths for gluon-fusion and gauge-boson modes. The scenario of no off-shell contribution is excluded at 3.6  $\sigma$ . The results are shown in their Table 1 with other constraint scenarios and the decay widths assuming the same coupling modifiers for on- and off-shell couplings  $(g_p$  and  $g_d$  in their notation). The measurement of anomalous HVV couplings is shown in their Extended Data Table 1 and Fig. 8.

NODE=S126W;LINKAGE=L

<sup>8</sup> SIRUNYAN 19BL measure the width and anomalous HVV couplings from on-shell and off-shell production in the  $4\ell$  final state. Data of 80.2 fb<sup>-1</sup> at 13 TeV, 19.7 fb<sup>-1</sup> at 8 TeV, and 5.1 fb<sup>-1</sup> at 7 TeV are used. The total width for the SM-like couplings is measured to be also [0.08, 9.16] MeV with 95% CL, assuming SM-like couplings for onand off-shells (see their Table VIII). Constraints on the total width for anomalous HVV interaction cases are found in their Table IX. See their Table X for the Higgs boson signal strength in the off-shell region.

NODE=\$126W;LINKAGE=K

<sup>9</sup> AABOUD 18BP use 36.1 fb<sup>-1</sup> at  $E_{\rm CM}=13$  TeV. An observed upper limit on the off-shell Higgs signal strength of 3.8 is obtained at 95% CL using off-shell Higgs boson production in the  $ZZ \to 4\ell$  and  $ZZ \to 2\ell 2\nu$  decay channels  $(\ell=e, \mu)$ . Combining with the on-shell signal strength measurements, the quoted upper limit on the Higgs boson total width is obtained, assuming the ratios of the relevant Higgs-boson couplings to the SM predictions are constant with energy from on-shell production to the high-mass range.

- $^{10}$  SIRUNYAN 17AV obtain an upper limit on the width from the  $m_{4\ell}$  distribution in  $ZZ^* 
  ightarrow$ 4 $\ell$  ( $\ell=e, \mu$ ) decays. Data of 35.9 fb<sup>-1</sup> pp collisions at  $E_{cm}=13$  TeV is used. The expected limit is 1.60 GeV.
- $^{11}$ KHACHATRYAN 16BA derive constraints on the total width from comparing  $WW^{(st)}$ production via on-shell and off-shell H using 4.9 fb<sup>-1</sup> of pp collisions at  $E_{cm} = 7$  TeV and 19.4 fb $^{-1}$  at 8 TeV.  $^{12}$  KHACHATRYAN 16BA combine the  $WW^{(*)}$  result with  $ZZ^{(*)}$  results of KHACHA-
- TRYAN 15BA and KHACHATRYAN 14D.
- 13 AAD 15BE derive constraints on the total width from comparing  $ZZ^{(*)}$  and  $WW^{(*)}$ production via on-shell and off-shell H using 20.3 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=8$  TeV. The K factor for the background processes is assumed to be equal to that for the signal.
- $^{14}$  KHACHATRYAN 15AM combine  $\gamma\gamma$  and ZZ\*  $\rightarrow~4\ell$  results. The expected limit is 2.3 GeV.
- $15\,\mathrm{KHACHATRYAN}$   $15\,\mathrm{BA}$  derive a lower limit on the total width from an upper limit on the decay flight distance  $\tau < 1.9 \times 10^{-13}$  s. 5.1 fb<sup>-1</sup> of pp collisions at  $E_{cm} = 7$
- TeV and 19.7 fb $^{-1}$  at 8 TeV are used. 16 KHACHATRYAN 15BA derive constraints on the total width from comparing  $ZZ^{(*)}$ production via on-shell and off-shell H with an unconstrained anomalous coupling.  $4\ell$ final states in 5.1 fb $^{-1}$  of pp collisions at  $E_{
  m cm}=$  7 TeV and 19.7 fb $^{-1}$  at  $E_{
  m cm}=$  8
- 17 AAD 14W use 4.5 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at 8 TeV. The expected limit is 6.2 GeV.
- $^{18}$  CHATRCHYAN 14AA use 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The expected limit is 2.8 GeV.
- <sup>19</sup> KHACHATRYAN 14D derive constraints on the total width from comparing  $ZZ^{(*)}$  production via on-shell and off-shell H.  $4\ell$  and  $\ell\ell\nu\nu$  final states in 5.1 fb<sup>-1</sup> of pp collisions
- at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV are used. <sup>20</sup> KHACHATRYAN 14P use 5.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The expected limit is 3.1 GeV.

NODE=S126W;LINKAGE=J

NODE=S126W;LINKAGE=H

NODE=S126W;LINKAGE=I

NODE=S126W;LINKAGE=G

NODE=S126W;LINKAGE=D

NODE=S126W;LINKAGE=E

NODE=S126W;LINKAGE=F

NODE=S126W;LINKAGE=AA

NODE=S126W;LINKAGE=B

NODE=S126W:LINKAGE=A

NODE=S126W;LINKAGE=C

NODE=S126220;NODE=S126

### **H DECAY MODES**

|                                  | Mode                         |    | Fraction $(\Gamma_i/\Gamma)$                      | Confid                    | ence level |          |
|----------------------------------|------------------------------|----|---------------------------------------------------|---------------------------|------------|----------|
| $\overline{\Gamma_1}$            | WW*                          |    | (25.7 ±2.5                                        | ) %                       |            | DESIG=1  |
| $\Gamma_2$                       | Z Z*                         |    | $(2.80\pm0.30$                                    |                           |            | DESIG=2  |
| Γء                               | $\gamma \gamma$              |    | ( 2.50±0.20                                       |                           |            | DESIG=3  |
| Γ <sub>3</sub><br>Γ <sub>4</sub> | $\dot{b} \dot{\overline{b}}$ |    | •                                                 | ,<br>) %                  |            | DESIG=4  |
| $\Gamma_5^{T}$                   | $e^+e^-$                     |    | < 3.0                                             | $\times 10^{-4}$          | 95%        | DESIG=10 |
| $\Gamma_6^3$                     | $\mu^+\mu^-$                 |    | ( $2.6 \pm 1.3$                                   |                           |            | DESIG=8  |
| Γ <sub>7</sub>                   | $\tau^+\tau^-$               |    | $(6.0 \begin{array}{c} +0.8 \\ -0.7 \end{array})$ | *                         |            | DESIG=5  |
| Γ <sub>8</sub>                   | $Z\gamma$                    |    | ( $3.4 \pm 1.1$                                   | $) \times 10^{-3}$        |            | DESIG=6  |
| Γ <sub>9</sub>                   | $Z\rho(770)$                 |    | < 1.21                                            | %                         | 95%        | DESIG=25 |
| $\Gamma_{10}$                    | $Z\phi(1020)$                |    | < 3.6                                             | $\times 10^{-3}$          | 95%        | DESIG=26 |
| $\Gamma_{11}$                    | $Z\eta_c$                    |    |                                                   |                           |            | DESIG=27 |
| $\Gamma_{12}$                    | $ZJ/\psi$                    |    | < 1.9                                             | $\times 10^{-3}$          | 95%        | DESIG=28 |
| $\Gamma_{13}$                    | $Z\psi(2S)$                  |    | < 6.6                                             | $\times 10^{-3}$          | 95%        | DESIG=29 |
| $\Gamma_{14}$                    | $J/\psi  \gamma$             |    | < 2.0                                             | $\times 10^{-4}$          | 95%        | DESIG=11 |
| $\Gamma_{15}$                    | $J/\psiJ/\psi$               |    | < 3.8                                             | $\times 10^{-4}$          | 95%        | DESIG=22 |
| $\Gamma_{16}$                    | $\psi(2S)\gamma$             |    | < 9.9                                             | $\times$ 10 <sup>-4</sup> | 95%        | DESIG=20 |
| $\Gamma_{17}$                    | $\psi$ (2S) $J/\psi$         |    | < 2.1                                             | $\times$ 10 <sup>-3</sup> | 95%        | DESIG=30 |
| $\Gamma_{18}$                    | $\psi(2S)\psi(2S)$           |    | < 3.0                                             | $\times 10^{-3}$          | 95%        | DESIG=31 |
| $\Gamma_{19}$                    | $\Upsilon(1S)\gamma$         |    | < 2.5                                             | $\times 10^{-4}$          | 95%        | DESIG=12 |
| Γ <sub>20</sub>                  | $\Upsilon(1S) \Upsilon(1S)$  |    | < 1.7                                             | $\times 10^{-3}$          | 95%        | DESIG=32 |
| $\Gamma_{21}$                    | $\Upsilon(2S)\gamma$         |    | < 4.2                                             | $\times 10^{-4}$          | 95%        | DESIG=13 |
| $\Gamma_{22}$                    | $\Upsilon(3S)\gamma$         |    | < 3.4                                             | $\times 10^{-4}$          | 95%        | DESIG=14 |
| Γ <sub>23</sub>                  | $\Upsilon(nS) \Upsilon(mS)$  |    | < 3.5                                             | × 10 <sup>-4</sup>        | 95%        | DESIG=23 |
| $\Gamma_{24}$                    | $D^* \gamma$                 |    | < 1.0                                             | $\times 10^{-3}$          | 95%        | DESIG=35 |
| Γ <sub>25</sub>                  | $ ho$ (770) $\gamma$         |    | < 3.7                                             | $\times 10^{-4}$          | 95%        | DESIG=19 |
| Γ <sub>26</sub>                  | $\omega$ (782) $\gamma$      |    | < 5.5                                             | $\times 10^{-4}$          | 95%        | DESIG=33 |
| Γ <sub>27</sub>                  | $K^*(892)\gamma$             |    | < 2.2                                             | $\times 10^{-4}$          | 95%        | DESIG=34 |
| Γ <sub>28</sub>                  | $\phi$ (1020) $\gamma$       |    | < 3.0                                             | $\times 10^{-4}$          | 95%        | DESIG=15 |
| $\Gamma_{29}$                    | e $\mu$                      | LF | < 4.4                                             | $\times$ 10 <sup>-5</sup> | 95%        | DESIG=17 |
| Γ <sub>30</sub>                  | e	au                         | LF | < 2.0                                             | $\times 10^{-3}$          | 95%        | DESIG=18 |
| $\Gamma_{31}$                    | $\mu	au$                     | LF | < 1.5                                             | $\times$ 10 <sup>-3</sup> | 95%        | DESIG=9  |
| $\Gamma_{32}$                    | invisible                    |    | < 10.7                                            | %                         | 95%        | DESIG=7  |
| Γ <sub>33</sub>                  | $\gamma$ invisible           |    | < 1.3                                             | %                         | 95%        | DESIG=24 |

# H RRANCHING RATIOS

|                                                                                                                                               |                                                              | NODE=S126225                     |                                             |                       |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|---------------------------------------------|-----------------------|----------------------------------------------------|
| $\Gamma(WW^*)/\Gamma_{\text{total}}$                                                                                                          | DOCUMENT ID                                                  | TECN                             | COMMENT                                     | $\Gamma_1/\Gamma$     | NODE=\$126R20<br>NODE=\$126R20                     |
| 0.257+0.026                                                                                                                                   | <sup>1</sup> ATLAS 2                                         | <br>22 ATLS                      | <i>рр</i> , 13 TeV                          |                       |                                                    |
| $^{1}$ ATLAS 22 report combine fb $^{-1}$ of data at $E_{\rm cm} =$ production cross-sections a                                               | 13 TeV, assuming $m_H$                                       | = 125.09                         |                                             |                       | NODE=S126R20;LINKAGE=A                             |
| $\Gamma(ZZ^*)/\Gamma_{\text{total}}$ VALUE                                                                                                    | DOCUMENT ID                                                  | <u>TECN</u>                      | COMMENT                                     | Γ <sub>2</sub> /Γ     | NODE=\$126R21<br>NODE=\$126R21                     |
| $0.028 \pm 0.003$                                                                                                                             |                                                              | 22 ATLS                          | <i>pp</i> , 13 TeV                          |                       |                                                    |
| $^{1}$ ATLAS 22 report combine $^{1}$ of data at $E_{\rm cm} = ^{1}$ production cross-sections a                                              | 13 TeV, assuming $m_H$                                       | = 125.09                         | Table 1) using u<br>GeV. SM value           | p to 139<br>s for the | NODE=S126R21;LINKAGE=A                             |
| $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$                                                                                                  | DOCUMENT ID                                                  | TECN                             | COMMENT                                     | $\Gamma_3/\Gamma$     | NODE=S126R22<br>NODE=S126R22                       |
| 0.0025±0.0002                                                                                                                                 | 1                                                            | <u>TECN</u><br>22 ATLS           | pp, 13 TeV                                  |                       | NODE_3120R22                                       |
| <sup>1</sup> ATLAS 22 report combine                                                                                                          |                                                              |                                  |                                             | n to 120              |                                                    |
| fb <sup>-1</sup> of data at $E_{cm}$ = production cross-sections a                                                                            | 13 TeV, assuming $m_H$                                       | = 125.09                         |                                             |                       | NODE=S126R22;LINKAGE=A                             |
| $\Gamma(b\overline{b})/\Gamma_{\text{total}}$                                                                                                 | DOCUMENT ID                                                  | TECN                             | COMMENT                                     | $\Gamma_4/\Gamma$     | NODE=\$126R23<br>NODE=\$126R23                     |
| 0.53±0.08                                                                                                                                     | 1                                                            |                                  | pp, 13 TeV                                  |                       | 11002=31201(23                                     |
| $^{1}$ ATLAS 22 report combine fb $^{-1}$ of data at $E_{\rm cm} =$ production cross-sections a                                               | od results (see their Extended 13 TeV, assuming $m_H$        | ended Data $_{i} = 125.09$       | Table 1) using u                            |                       | NODE=\$126R23;LINKAGE=A                            |
| $\Gamma(e^+e^-)/\Gamma_{\text{total}}$                                                                                                        |                                                              |                                  |                                             | $\Gamma_5/\Gamma$     | NODE—\$126D02                                      |
| VALUE CL%                                                                                                                                     | DOCUMENT ID                                                  | TECN                             | COMMENT                                     | 3/                    | NODE=S126R03<br>NODE=S126R03                       |
| <b>&lt;3.0 × 10<sup>−4</sup></b> 95<br>• • • We do not use the follow                                                                         | <sup>1</sup> TUMASYAN 2                                      | 23AU CMS<br>fits, limits,        | <i>pp</i> , 13 TeV<br>etc. • • •            |                       |                                                    |
| $<3.6 \times 10^{-4}$ 95<br>$<1.9 \times 10^{-3}$ 95                                                                                          | <sup>2</sup> AAD 2<br><sup>3</sup> KHACHATRY1                |                                  | рр, 13 TeV<br>рр, 7, 8 TeV                  |                       |                                                    |
| $^{1}$ TUMASYAN 23AU use 138 $^{2}$ AAD 20F use 139 fb $^{-1}$ o $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ | f $pp$ collisions at $E_{ m cm}$ on is $(0.0\pm1.7\pm0.6)$ > | $= 13$ TeV. $\times 10^{-4}$ for | The best-fit value $m_H = 125 \text{ GeV}.$ |                       | NODE=\$126R03;LINKAGE=C<br>NODE=\$126R03;LINKAGE=B |
| <sup>3</sup> KHACHATRYAN 15H use<br>8 TeV.                                                                                                    | 5.0 fb <sup>-1</sup> of $pp$ collision                       | is at $E_{ m cm}$ =              | = 7 TeV and 19.7                            | fb <sup>-1</sup> at   | NODE=S126R03;LINKAGE=A                             |
| $\Gamma(\mu^+\mu^-)/\Gamma_{total}$                                                                                                           |                                                              |                                  |                                             | $\Gamma_6/\Gamma$     | NODE=S126R24                                       |
| VALUE (units 10 <sup>-4</sup> )                                                                                                               | DOCUMENT ID                                                  | TECN                             | COMMENT                                     |                       | NODE=S126R24                                       |
| 2.6±1.3                                                                                                                                       | _                                                            |                                  | <i>pp</i> , 13 TeV                          |                       |                                                    |
| $^{1}$ ATLAS 22 report combine fb $^{-1}$ of data at $E_{\rm cm} = $ production cross-sections a                                              | 13 TeV, assuming $m_H$                                       | = 125.09                         | Table 1) using u<br>GeV. SM value           | p to 139<br>s for the | NODE=S126R24;LINKAGE=A                             |
| $\Gamma(	au^+	au^-)/\Gamma_{	ext{total}}$                                                                                                     |                                                              |                                  |                                             | $\Gamma_7/\Gamma$     | NODE=S126R25                                       |
| <u>VALUE</u>                                                                                                                                  | DOCUMENT ID                                                  | <u>TECN</u>                      |                                             |                       | NODE=S126R25                                       |
| 0.060 + 0.008                                                                                                                                 |                                                              |                                  | <i>pp</i> , 13 TeV                          |                       |                                                    |
| $^{1}$ ATLAS 22 report combine fb $^{-1}$ of data at $E_{\rm cm} = {\rm production\ cross-sections\ a}$                                       | 13 TeV, assuming $m_H$                                       | = 125.09                         |                                             |                       | NODE=S126R25;LINKAGE=A                             |
| $\Gamma(Z\gamma)/\Gamma_{total}$                                                                                                              |                                                              |                                  |                                             | $\Gamma_8/\Gamma$     | NODE=S126R26                                       |
| VALUE (units 10 <sup>-3</sup> )                                                                                                               | DOCUMENT ID                                                  | TECN                             | COMMENT                                     |                       | NODE=S126R26                                       |
| 3.4±1.1                                                                                                                                       |                                                              | 24D LHC                          | <i>pp</i> , 13 TeV                          |                       |                                                    |
| • • • We do not use the follow                                                                                                                | -                                                            |                                  |                                             |                       |                                                    |
| $3.2 \pm 1.5$                                                                                                                                 |                                                              |                                  | <i>pp</i> , 13 TeV                          |                       |                                                    |
| <sup>1</sup> AAD 24D report combined<br>SM values for the producti<br><sup>2</sup> ATLAS 22 report combine                                    | ion cross-sections are ass                                   | sumed.                           |                                             |                       | NODE=S126R26;LINKAGE=B NODE=S126R26;LINKAGE=A      |
| ${ m fb}^{-1}$ of data at ${ m \emph{E}_{cm}}={ m \emph{production}}$ cross-sections a                                                        | 13 TeV, assuming $m_H$                                       | = 125.09                         |                                             |                       |                                                    |

| $\Gamma(Z\rho(770))/\Gamma_{\text{total}}$                                                                                         | <u>CL%_</u>                    | DOCUMENT ID                                                                                                       | TECN_                                               | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ9/Γ                       | NODE=\$126R16<br>NODE=\$126R16                   |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|
| $<1.21 \times 10^{-2}$                                                                                                             | 95                             | <sup>1</sup> SIRUNYAN                                                                                             | 20BK CMS                                            | <i>pp</i> , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                  |
| $^{1}$ SIRUNYAN 20BK sea $^{1}$ fb $^{-1}$ of $pp$ collision unpolarized decay. S                                                  | data at E                      | $t_{\rm cm}=13$ TeV. The                                                                                          | ne quoted bra                                       | nching fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | NODE=S126R16;LINKAGE=A                           |
| $\Gamma(Z\phi(1020))/\Gamma_{total}$                                                                                               | <u>CL%</u>                     | DOCUMENT ID                                                                                                       | TECN                                                | <u>COMMENT</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Γ <sub>10</sub> /Γ         | NODE=S126R17<br>NODE=S126R17                     |
| $< 3.6 \times 10^{-3}$                                                                                                             | 95                             | <sup>1</sup> SIRUNYAN                                                                                             | 20BK CMS                                            | <i>pp</i> , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                  |
| $^1$ SIRUNYAN 20BK sea $^{1}$ of $^{1}$ of $^{1}$ collision unpolarized decay. S                                                   |                                |                                                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | NODE=S126R17;LINKAGE=A                           |
| $\Gamma(Z\eta_c)/\Gamma_{\text{total}}$                                                                                            |                                | DOCUMENT ID                                                                                                       | <u>TECN</u>                                         | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ <sub>11</sub> /Γ         | NODE=S126R18<br>NODE=S126R18                     |
| • • • We do not use the                                                                                                            | following                      | 1                                                                                                                 | fits, limits, 6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                  |
| $^{1}$ AAD 20AE search for 139 fb $^{-1}$ of $pp$ collis $Z\eta_{c}$ ) is 110 pb at 99                                             | ion data a                     |                                                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | NODE=S126R18;LINKAGE=A                           |
| $\Gamma(ZJ/\psi)/\Gamma_{	ext{total}}$                                                                                             | <u>CL%_</u>                    | DOCUMENT ID                                                                                                       | TECN_                                               | <u>COMMENT</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Γ <sub>12</sub> /Γ         | NODE=\$126R19<br>NODE=\$126R19                   |
| <1.9 × 10 <sup>-3</sup> • • • We do not use the                                                                                    | 95                             | data for averages,                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                  |
| <sup>1</sup> TUMASYAN 23C se<br>with 138 fb <sup>-1</sup> of <i>pp</i><br>decays for longitudin<br><sup>2</sup> AAD 20AE search fo | collision o                    | $J  ightarrow \ ZJ/\psi, \ Z  ightarrow ZJ/\psi, \ Z  ightarrow Z$ data at $E_{	extsf{cm}}=13$ zed mesons. See th | TeV. The quo                                        | $\mu^+\mu^-$ , $J/\psi$ – oted value is for other cases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the Higgs                  | NODE=S126R19;LINKAGE=B  NODE=S126R19;LINKAGE=A   |
| using 139 fb $^{-1}$ of $\mu$ $H)\cdot B(H	o ZJ/\psi)$                                                                             | p collision<br>is 100 pb a     | n data at $E_{\rm cm} =$ at 95% CL.                                                                               | 13 TeV. The                                         | e upper limit o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f \ \sigma(pp  ightarrow$ |                                                  |
| $\Gamma(Z\psi(2S))/\Gamma_{\text{total}}$                                                                                          | <u>CL%</u>                     | DOCUMENT ID                                                                                                       | TECN_                                               | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ <sub>13</sub> /Γ         | NODE=S126R27<br>NODE=S126R27                     |
| <6.6 × 10 <sup>-3</sup> <sup>1</sup> TUMASYAN 23C sea with 138 fb <sup>-1</sup> of <i>pp</i> decays for longitudin                 | collision c                    | $ ightarrow~Z\psi(2S),~Z ightarrow$<br>Hata at $E_{ m cm}=13$                                                     | TeV. The quo                                        | ted value is for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | NODE=S126R27;LINKAGE=A                           |
| $\Gamma(J/\psi\gamma)/\Gamma_{	ext{total}}$                                                                                        | CL%                            | DOCUMENT ID                                                                                                       | TECN                                                | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Gamma_{14}/\Gamma$       | NODE=\$126R04<br>NODE=\$126R04                   |
| <2.0 × 10 <sup>-4</sup>                                                                                                            | 95                             | <sup>1</sup> AAD                                                                                                  | 23CD ATLS                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $b^{-1}$                   |                                                  |
| • • • We do not use the                                                                                                            | following                      | data for averages,                                                                                                | fits, limits, e                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                          |                                                  |
| $< 2.6 \times 10^{-4}$                                                                                                             | 95                             | <sup>2</sup> HAYRAPETY                                                                                            |                                                     | 13 TeV, 123 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                  |
| $< 7.6 \times 10^{-4}$<br>$< 3.5 \times 10^{-4}$                                                                                   | 95<br>95                       |                                                                                                                   | 19AJ CMS                                            | 13 TeV, 35.9 to 13 TeV, 36.1 to 15 TeV, 36.1 t |                            |                                                  |
| $< 3.5 \times 10^{-3}$                                                                                                             | 95<br>95                       | <sup>5</sup> KHACHATRY                                                                                            |                                                     | 8 TeV, 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ъ –                        |                                                  |
| $<1.5 \times 10^{-3}$                                                                                                              | 95                             | 6 AAD                                                                                                             | 15ı ATLS                                            | 8 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                  |
| $^{1}$ AAD 23CD search for at $E_{\rm cm}=13$ TeV. S                                                                               | fH	o J/SM values               | $(\psi\gamma,\ J/\psi  ightarrow \ \mu^+ \mu$ for the production                                                  | $\iota^-$ with 138 cross-section                    | ${\rm fb}^{-1}$ of $pp$ cols are assumed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lision data                | NODE=S126R04;LINKAGE=E                           |
| <sup>2</sup> HAYRAPETYAN 25<br>collision data at E <sub>cm</sub><br>See their Table 4 and                                          | = 13  TeV                      | for $H	o J/\psi\gamma$ , $J$ . SM values for the                                                                  | $J/\psi \rightarrow \mu^{+}\mu^{-}$<br>production c | $\mu^-$ with 123 fb<br>ross-sections are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $^{-1}$ of $pp$ e assumed. | NODE=S126R04;LINKAGE=F                           |
| $^3$ SIRUNYAN 19AJ sea data at $E_{\rm cm}=13^{\circ}$ and by combining th                                                         | rch for <i>H</i> -<br>TeV. The | upper limit corresp                                                                                               | onds to 260                                         | times the SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | prediction                 | NODE=S126R04;LINKAGE=D                           |
| $^4$ AABOUD 18BL search data at $E_{\sf cm}=13$ T                                                                                  | ch for <i>H —</i><br>eV.       | $\rightarrow$ $J/\psi \gamma$ , $J/\psi \rightarrow$                                                              | $\mu^+\mu^-$ with                                   | 36.1 fb $^{-1}$ of <i>p</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | NODE=S126R04;LINKAGE=C                           |
| <sup>5</sup> KHACHATRYAN 16<br><sup>6</sup> AAD 151 use 19.7 fb                                                                    |                                |                                                                                                                   |                                                     | TeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | NODE=S126R04;LINKAGE=B<br>NODE=S126R04;LINKAGE=A |

| $\Gamma(J/\psi J/\psi)/\Gamma_{\text{total}}$                                         | CL%                                             | DOCUMENT ID                                               | TECN                                        | COMMENT                                         | $\Gamma_{15}/\Gamma$                | NODE=S126R13<br>NODE=S126R13 |
|---------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------|------------------------------|
| <3.8 × 10 <sup>-4</sup>                                                               |                                                 | <sup>1</sup> TUMASYAN                                     | 23C CMS                                     | pp, 13 TeV                                      |                                     |                              |
| • • • We do not use the                                                               | e following                                     | data for averages                                         | , fits, limits,                             | etc. • • •                                      |                                     |                              |
| $< 1.8 \times 10^{-3}$                                                                | 95                                              | <sup>2</sup> SIRUNYAN                                     | 19BR CMS                                    | pp at 13 TeV                                    |                                     |                              |
| $^{1}$ TUMASYAN 23C sea data at $E_{\rm cm}=13$ polarized mesons. Se                  | TeV. The                                        | quoted value is                                           | for the Higgs                               | th $138~{ m fb}^{-1}~{ m of}~p$ decays for long | <i>p</i> collision<br>gitudinally   | NODE=S126R13;LINKAGE=B       |
| $^2$ SIRUNYAN 19BR sea sion data at $E_{\rm cm} =$ For fully longitudinal             | 13 TeV. J/                                      | $\psi$ s from the Higg                                    | s decay are a                               | ssumed to be un                                 | polarized.                          | NODE=S126R13;LINKAGE=A       |
| $\Gamma(\psi(2S)\gamma)/\Gamma_{	ext{total}}$                                         | CL%_                                            | DOCUMENT ID                                               | TECN                                        | COMMENT                                         | $\Gamma_{16}/\Gamma$                | NODE=S126R12<br>NODE=S126R12 |
| $<9.9 \times 10^{-4} \text{ (CL} = 9)$                                                |                                                 | •                                                         |                                             |                                                 | <br>/IT1                            | 140DE-3120N12                |
| <9.9 × 10 <sup>-4</sup>                                                               |                                                 | $^{1}$ HAYRAPETY                                          |                                             |                                                 |                                     |                              |
| • • • We do not use the                                                               |                                                 |                                                           |                                             |                                                 | _                                   |                              |
| $<1.05 \times 10^{-3}$<br>$<2.0 \times 10^{-3}$                                       |                                                 | <sup>2</sup> AAD<br><sup>3</sup> AABOUD                   |                                             |                                                 |                                     |                              |
| <sup>1</sup> HAYRAPETYAN 25<br>pp collision data at<br>assumed. See their             | 6H search fo<br>E $E_{ m cm}=13$<br>Table 4 and | r $H	o \psi(2S)\gamma$<br>3 TeV. SM value<br>Fig. 5.      | , $\psi(2S)  ightarrow 0$<br>s for the pro- | $\mu^+\mu^-$ with 123 duction cross-se          | $3~{ m fb}^{-1}~{ m of}$ ctions are | NODE=S126R12;LINKAGE=C       |
| $^2$ AAD 23CD search for data at $E_{\rm cm}=13$ T                                    | or $H	o \psi($<br>TeV. SM va                    | $(2S)\gamma,\;\psi(2S) ightarrow 0$ lues for the produces | $\mu^+\mu^-$ with action cross-se           | $138~{ m fb}^{-1}$ of $p$ ections are assui     | p collision<br>ned.                 | NODE=S126R12;LINKAGE=B       |
| $^3$ AABOUD 18BL sear collision data at $E_{ m cn}$                                   |                                                 |                                                           | $S) \rightarrow \mu^+ \mu$                  | — with 36.1 fb                                  | <sup>-1</sup> of <i>pp</i>          | NODE=S126R12;LINKAGE=A       |
| $\Gamma(\psi(2S)J/\psi)/\Gamma_{total}$                                               | ]                                               |                                                           |                                             |                                                 | Γ <sub>17</sub> /Γ                  | NODE=S126R28                 |
| VALUE                                                                                 | <u>CL%</u>                                      | DOCUMENT ID                                               | TECN_                                       |                                                 |                                     | NODE=S126R28                 |
| <2.1 × 10 <sup>-3</sup>                                                               |                                                 | <sup>1</sup> TUMASYAN                                     | 23C CMS                                     | pp, 13 TeV                                      |                                     |                              |
| $^{1}$ TUMASYAN 23C set $^{138}$ fb $^{-1}$ of $pp$ coldecays for longitudin          | llision data                                    | at $E_{cm} = 13 \text{ Te}$                               | eV. The quot                                | ted value is for                                |                                     | NODE=\$126R28;LINKAGE=A      |
| $\Gamma(\psi(2S)\psi(2S))/\Gamma_{to}$                                                | <b>tal</b><br><u>CL%_</u>                       | DOCUMENT ID                                               | TECN                                        | <u>COMMENT</u>                                  | Γ <sub>18</sub> /Γ                  | NODE=S126R29<br>NODE=S126R29 |
| $<3.0 \times 10^{-3}$                                                                 | 95                                              | $^{ m 1}$ TUMASYAN                                        | 23C CMS                                     | <i>pp</i> , 13 TeV                              |                                     |                              |
| <sup>1</sup> TUMASYAN 23C se<br>of <i>pp</i> collision data<br>longitudinally polariz | at $E_{\rm cm} =$                               | 13 TeV. The qu                                            | ioted value is                              | for the Higgs                                   | $138~{ m fb}^{-1}$ decays for       | NODE=S126R29;LINKAGE=A       |
| $\Gamma(\Upsilon(1S)\gamma)/\Gamma_{total}$                                           |                                                 |                                                           |                                             |                                                 | Γ <sub>19</sub> /Γ                  | NODE=S126R05                 |
| VALUE                                                                                 | <u>CL%</u>                                      | DOCUMENT ID                                               |                                             |                                                 |                                     | NODE=S126R05                 |
| <2.5 × 10 <sup>-4</sup>                                                               |                                                 | <sup>1</sup> AAD                                          |                                             | 13 TeV, 138 fl                                  | $^{-1}$                             |                              |
| • • We do not use the                                                                 |                                                 |                                                           |                                             |                                                 | 1                                   |                              |
| $<4.9 \times 10^{-4}$<br>$<1.3 \times 10^{-3}$                                        |                                                 | <sup>2</sup> AABOUD<br><sup>3</sup> AAD                   | 18BL ATLS                                   | 13 TeV, 36.1 f<br>8 TeV                         | b ±                                 |                              |
| $^{1}$ AAD 23CD search fo data at $E_{\rm cm}=13~{\rm T}$                             | TeV. SM va                                      | lues for the produ                                        | iction cross-se                             | ections are assui                               | med.                                | NODE=S126R05;LINKAGE=C       |
| $^2$ AABOUD 18BL sear collision data at $E_{cn}$                                      | $_{\sf m}=13~{\sf TeV}$                         | <i>'</i> .                                                |                                             | ⊤ with 36.1 fb                                  | of <i>pp</i>                        | NODE=S126R05;LINKAGE=B       |
| <sup>3</sup> AAD 151 use 19.7 fb                                                      | $^{-1}$ of $pp$ c                               | ollision data at 8                                        | TeV.                                        |                                                 |                                     | NODE=S126R05;LINKAGE=A       |
| $\Gamma(\Upsilon(1S)\Upsilon(1S))/\Gamma_{to}$ VALUE                                  | <b>otal</b><br><u>CL%_</u>                      | DOCUMENT ID                                               | <u>TECN</u>                                 | COMMENT                                         | Γ <sub>20</sub> /Γ                  | NODE=S126R30<br>NODE=S126R30 |
| $<1.7 \times 10^{-3}$                                                                 | 95                                              | <sup>1</sup> TUMASYAN                                     | 23C CMS                                     | pp, 13 TeV                                      |                                     |                              |
| <sup>1</sup> TUMASYAN 23C se<br>of <i>pp</i> collision data<br>longitudinally polariz | at $E_{cm} =$                                   | 13 TeV. The qu                                            | ioted value is                              | for the Higgs                                   | $138~{ m fb}^{-1}$ decays for       | NODE=S126R30;LINKAGE=A       |

| $\Gamma(\Upsilon(2S)\gamma)/\Gamma_{total}$                                                              | <u>CL%_</u>                                         | DOCUMENT ID                                                                         | <u>TECN</u>                      | <u>COMMENT</u>                                        | Γ <sub>21</sub> /Γ               | NODE=S126R06<br>NODE=S126R06   |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|----------------------------------|--------------------------------|
| $<4.2 \times 10^{-4}$                                                                                    | 95                                                  | <sup>1</sup> AAD                                                                    |                                  | 13 TeV, 138 fb                                        | -1                               |                                |
| • • • We do not use th                                                                                   | e followin                                          |                                                                                     | s, fits, limits,                 | etc. • • •                                            |                                  |                                |
| $<5.9 \times 10^{-4}$<br>$<1.9 \times 10^{-3}$                                                           | 95<br>95                                            | <sup>2</sup> AABOUD<br><sup>3</sup> AAD                                             | 18BL ATLS<br>15I ATLS            | 13 TeV, 36.1 fl<br>8 TeV                              | $_{ m o}^{-1}$                   |                                |
| $^{1}$ AAD 23CD search for data at $E_{ m cm}=13^{-3}$                                                   | or $H 	o f$ reV. SM $^\circ$                        | $\Upsilon(2S)\gamma,\; \varUpsilon(2S)  ightarrow \gamma$ values for the production | $\mu^+\mu^-$ with uction cross-s | $138~{ m fb}^{-1}~{ m of}~p_{ m p}$ ections are assun | collision<br>ned.                | NODE=\$126R06;LINKAGE=C        |
| $^2$ AABOUD 18BL sear collision data at $E_{\rm cr}$                                                     | <sub>n</sub> = 13 T                                 | eV.                                                                                 | ,                                | _ with 36.1 fb <sup>-</sup>                           | $^{-1}$ of $pp$                  | NODE=S126R06;LINKAGE=B         |
| <sup>3</sup> AAD 151 use 19.7 fb                                                                         | $^{-1}$ of $p\mu$                                   | collision data at 8                                                                 | 3 TeV.                           |                                                       |                                  | NODE=S126R06;LINKAGE=A         |
| $\Gamma(\Upsilon(3S)\gamma)/\Gamma_{\text{total}}$                                                       | CL%                                                 | DOCUMENT ID                                                                         | TECN                             | COMMENT                                               | $\Gamma_{22}/\Gamma$             | NODE=S126R07<br>NODE=S126R07   |
| <3.4 × 10 <sup>-4</sup>                                                                                  | 95                                                  | <sup>1</sup> AAD                                                                    |                                  | 13 TeV, 138 fb                                        | $\overline{-1}$                  |                                |
| • • • We do not use th                                                                                   | e followin                                          | g data for averages                                                                 |                                  |                                                       |                                  |                                |
| $< 5.7 \times 10^{-4}$                                                                                   | 95                                                  | <sup>2</sup> AABOUD                                                                 |                                  | 13 TeV, 36.1 fl                                       | _1                               |                                |
| $<1.3 \times 10^{-3}$                                                                                    | 95                                                  | <sup>3</sup> AAD                                                                    | 151 ATLS                         |                                                       | ,                                |                                |
| $^{1}$ AAD 23CD search for data at $E_{ m cm} = 13^{-1}$                                                 | IeV. SM ¹                                           | values for the produ                                                                | uction cross-s                   | ections are assun                                     | ned.                             | NODE=S126R07;LINKAGE=C         |
| $^2$ AABOUD 18BL sear collision data at $E_{cr}$                                                         | $_{\sf n}=13~{\sf T}$                               | eV.                                                                                 | ,                                | — with 36.1 fb⁻                                       | $^{-1}$ of $pp$                  | NODE=S126R07;LINKAGE=B         |
| <sup>3</sup> AAD 151 use 19.7 fb                                                                         | $p^{-1}$ of $p\mu$                                  | collision data at 8                                                                 | 3 TeV.                           |                                                       |                                  | NODE=S126R07;LINKAGE=A         |
| $\Gamma(\Upsilon(nS)\Upsilon(mS))/\Gamma_t$                                                              | otal                                                |                                                                                     |                                  |                                                       | $\Gamma_{23}/\Gamma$             | NODE=S126R14                   |
| VALUE                                                                                                    | <u>CL%</u>                                          | DOCUMENT ID                                                                         | <u>TECN</u>                      | COMMENT                                               |                                  | NODE=S126R14                   |
| <3.5 × 10 <sup>-4</sup>                                                                                  | 95                                                  | <sup>1</sup> TUMASYAN                                                               | 23C CMS                          | pp, 13 TeV                                            |                                  |                                |
| • • We do not use th                                                                                     |                                                     |                                                                                     |                                  |                                                       |                                  |                                |
| $<1.4 \times 10^{-3}$                                                                                    | 95                                                  | <sup>2</sup> SIRUNYAN                                                               | 19BR CMS                         | <i>рр</i> , 13 TeV                                    |                                  |                                |
| <sup>1</sup> TUMASYAN 23C se                                                                             |                                                     |                                                                                     |                                  |                                                       |                                  | NODE=S126R14;LINKAGE=B         |
| m = 1, 2, 3) with 1 is for the Higgs decayses.                                                           | ays for lo                                          | ngitudinally polariz                                                                | ed mesons. S                     | ee their Table 1                                      | for other                        |                                |
| $^2$ SIRUNYAN 19BR se = 1, 2, 3) for 37.5 decay are assumed 1 limits change by $-2$ GeV are not distingu | $ m fb^{-1}$ of<br>to be unp<br>$2\%$ ( $+10^\circ$ | pp collision data a colarized. For fully                                            | at $E_{ m cm}=13$                | TeV. $\Upsilon$ s from the (transverse) polarized     | the Higgs<br>rized $\Upsilon$ s, | NODE=S126R14;LINKAGE=A         |
| $\Gamma(D^*\gamma)/\Gamma_{total}$                                                                       |                                                     |                                                                                     |                                  |                                                       | $\Gamma_{24}/\Gamma$             | NODE C106D22                   |
| VALUE                                                                                                    | CL%                                                 | DOCUMENT ID                                                                         | <u>TECN</u>                      | COMMENT                                               | 24/                              | NODE=\$126R33<br>NODE=\$126R33 |
| <1.0 × 10 <sup>-3</sup>                                                                                  | 95                                                  | <sup>1</sup> AAD                                                                    |                                  | <i>рр</i> , 13 TeV                                    |                                  |                                |
| $^{1}$ AAD 24R use 136.3 cross section times t of $m_{H} = 125.09$ Ge                                    | he branch                                           | ning ratio is 58 fb.                                                                | The SM Higg                      |                                                       |                                  | NODE=S126R33;LINKAGE=A         |
| $\Gamma( ho$ (770) $\gamma)/\Gamma_{ m total}$                                                           |                                                     |                                                                                     |                                  |                                                       | $\Gamma_{25}/\Gamma$             |                                |
| VALUE                                                                                                    | CL%                                                 | DOCUMENT ID                                                                         | TECN                             | COMMENT                                               | 1 23/1                           | NODE=\$126R11<br>NODE=\$126R11 |
| $< 3.7 \times 10^{-4} \text{ (CL} = 9)$                                                                  |                                                     |                                                                                     |                                  |                                                       | IT]                              |                                |
| < 3.7 × 10 <sup>-4</sup> • • • We do not use th                                                          | 95                                                  | <sup>1</sup> HAYRAPETY.                                                             | 25G CMS                          | pp, 13 TeV                                            | Í                                |                                |
| $< 10.4 \times 10^{-4}$                                                                                  | 95                                                  |                                                                                     | 18AU ATLS                        |                                                       |                                  |                                |
| $^1$ HAYRAPETYAN 25 collision data at $E_{cr}$                                                           | G search                                            | for $H \rightarrow \rho^0 \gamma$ , $\rho^0$                                        |                                  |                                                       | $^{-1}$ of $pp$                  | NODE=S126R11;LINKAGE=B         |
| <sup>2</sup> AABOUD 18AU use<br>AABOUD 23A.                                                              |                                                     |                                                                                     | n data at 13                     | TeV. See their                                        | erratum                          | NODE=\$126R11;LINKAGE=A        |
| $\Gamma(\omega(782)\gamma)/\Gamma_{\text{total}}$                                                        | CL 0/                                               | DOCUMENT IS                                                                         | TEGN                             | COMMENT                                               | $\Gamma_{26}/\Gamma$             | NODE=\$126R31                  |
| <u>VALUE</u> <5.5 × 10 <sup>−4</sup>                                                                     | _ <i>CL%</i><br>95                                  | DOCUMENT ID  1 AAD                                                                  |                                  |                                                       |                                  | NODE=S126R31                   |
|                                                                                                          |                                                     |                                                                                     |                                  | <i>pp</i> , 13 TeV                                    |                                  |                                |
| <sup>1</sup> AAD 23BS use 89.5                                                                           | tb of p                                             | op collision data at                                                                | : 13 leV                         |                                                       |                                  | NODE=S126R31;LINKAGE=A         |

| $\Gamma(K^*(892)\gamma)/\Gamma_{\text{total}}$ $VALUE$ $<2.2 \times 10^{-4}$ • • • We do not use the                                                   | <u>CL%_</u><br>95<br>e following                                  |                                                                                                                                       | s, fits, limits,                             | <i>pp</i> , 13 TeV etc. • •                                                                                        | Γ <sub>27</sub> /Γ   | NODE=\$126R32<br>NODE=\$126R32                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|
| <3.0 × 10 <sup>-4</sup> <sup>1</sup> AAD 23BS use 134 ff <sup>2</sup> HAYRAPETYAN 250 pp collision data at                                             | G search fo                                                       | r H $ ightarrow$ K $^{*0}\gamma$ , K                                                                                                  | 13 TeV.                                      | $pp$ , 13 TeV $^{\mp}$ with up to 138                                                                              | I                    | NODE=S126R32;LINKAGE=A<br>NODE=S126R32;LINKAGE=B |
| $\frac{\Gamma(\phi(1020)\gamma)/\Gamma_{\text{total}}}{<3.0\times10^{-4} \text{ (CL} = 95)}$                                                           | _ <u>CL%</u><br><b>%)</b> [<5 >                                   |                                                                                                                                       | %) OUR 202                                   | 5 BEST LIMIT]                                                                                                      | Γ <sub>28</sub> /Γ   | NODE=S126R00<br>NODE=S126R00                     |
| <3.0 × 10 <sup>-4</sup> • • • We do not use the                                                                                                        | 95<br>e following                                                 | <sup>1</sup> HAYRAPETY.<br>data for averages                                                                                          |                                              | <i>pp</i> , 13 TeV etc. • • •                                                                                      | I                    |                                                  |
| $<5.0 \times 10^{-4}$ $<1.4 \times 10^{-3}$                                                                                                            | 95<br>95                                                          | <sup>2</sup> AABOUD<br><sup>3</sup> AABOUD                                                                                            |                                              | рр, 13 TeV<br>рр, 13 TeV                                                                                           |                      |                                                  |
| $^{1}$ HAYRAPETYAN 25 collision data at $E_{cn}$                                                                                                       | G search fo                                                       | or $H	o$ $\phi\gamma$ , $\phi$ —                                                                                                      |                                              |                                                                                                                    | $^{-1}$ of $pp$      | NODE=S126R00;LINKAGE=C                           |
| <sup>2</sup> AABOUD 18AU use                                                                                                                           | 35.6 fb <sup>-</sup>                                              | $^{1}$ of $pp$ collision                                                                                                              |                                              | TeV. See their                                                                                                     | erratum              | NODE=S126R00;LINKAGE=B                           |
| <sup>3</sup> AABOUD 16K use 2                                                                                                                          | .7 fb $^{-1}$ of                                                  | pp collision data                                                                                                                     | at 13 TeV.                                   |                                                                                                                    |                      | NODE=S126R00;LINKAGE=A                           |
| $\frac{\Gamma(e\mu)/\Gamma_{\text{total}}}{^{\text{VALUE}}}$ • • • We do not use the                                                                   | <u>CL%_</u><br>95<br>e following                                  | DOCUMENT ID  1 HAYRAPETY data for averages                                                                                            |                                              | <i>pp</i> , 13 TeV                                                                                                 | Γ <sub>29</sub> /Γ   | NODE=S126R09<br>NODE=S126R09                     |
| $<6.1 \times 10^{-5}$<br>$<3.5 \times 10^{-4}$                                                                                                         | 95                                                                | <sup>2</sup> AAD                                                                                                                      | 20F ATLS                                     | pp, 13 TeV                                                                                                         |                      |                                                  |
| $^{1}$ HAYRAPETYAN 23 strains the $Y_{e\mu}$ Yuk (see their Fig. 6).                                                                                   | kawa coupl                                                        | ing to $\sqrt{ Y_{e\mu} ^2}$                                                                                                          | ions at $E_{ m cm} +  Y_{\mu  m e} ^2 <$     | = 13 TeV. The li $1.9 	imes 10^{-4}$ at                                                                            | 95% CL               | NODE=S126R09;LINKAGE=C                           |
| <sup>2</sup> AAD 20F use 139 fb $H \rightarrow e\mu$ branching                                                                                         | $\mathrm{o}^{-1}$ of $pp$ fraction is                             | collisions at $E_{\rm cn}$ (0.4 $\pm$ 2.9 $\pm$ 0.3                                                                                   | $_{\sf n}=13$ TeV. $)	imes10^{-5}$ for       | The best-fit value $m_H = 125 \text{ GeV}.$                                                                        | ue of the            | NODE=S126R09;LINKAGE=B                           |
| <sup>3</sup> KHACHATRYAN 16<br>The limit constrains<br>at 95% CL (see their                                                                            | CD search for the $Y_{e\mu}$ Y                                    | or $	extcolor H  ightarrow $ e $\mu$ in 19.7                                                                                          | 7 fb $^{-1}$ of $pp$                         | collisions at $E_{cm}$                                                                                             | = 8 TeV.             | NODE=S126R09;LINKAGE=A                           |
| $\Gamma(e	au)/\Gamma_{	ext{total}}$                                                                                                                    |                                                                   |                                                                                                                                       |                                              |                                                                                                                    | $\Gamma_{30}/\Gamma$ | NODE=S126R10                                     |
| VALUE < 2.0 × 10 <sup>-3</sup> <ul> <li>• • • We do not use the</li> </ul>                                                                             | _ <u>CL%</u><br>95<br>e following                                 | $\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ 1 \\ \text{AAD} \\ \text{data for averages} \end{array}$                        | 23Q ATLS                                     | $\begin{array}{c} \underline{COMMENT} \\ pp, \ 13 \ \text{TeV} \\ \text{etc.} \bullet \bullet \bullet \end{array}$ |                      | NODE=S126R10                                     |
| $ < 2.3 \times 10^{-3} $ $ < 2.2 \times 10^{-3} $ $ < 4.7 \times 10^{-3} $ $ < 6.1 \times 10^{-3} $ $ < 10.4 \times 10^{-3} $ $ < 6.9 \times 10^{-3} $ | 95<br>95<br>95<br>95<br>95<br>95                                  | <sup>2</sup> AAD<br><sup>3</sup> SIRUNYAN<br><sup>4</sup> AAD<br><sup>5</sup> SIRUNYAN<br><sup>6</sup> AAD<br><sup>7</sup> KHACHATRY. | 21z CMS<br>20a ATLS<br>18BH CMS<br>17 ATLS   | pp, 13 TeV<br>pp, 13 TeV                                                                                           |                      | OCCUR=2                                          |
| $^{1}$ AAD 23Q search for $I$ obtained from a simu 13 and 14). The lim $1.3 \times 10^{-3}$ at $95\%$                                                  | ıltaneous fii<br>iit constraii                                    | t of possible $H  ightarrow$ ns the $Y_{e	au}$ Yukav                                                                                  | e	au and $H	o$                               | $\mu \tau$ signals (see t                                                                                          | heir Figs.           | NODE=S126R10;LINKAGE=F                           |
| <sup>2</sup> AAD 23Q search for constrains the $Y_{e\tau}$ (see their Fig. 12).                                                                        | $H\stackrel{ ightharpoonup}{ ightharpoonup} e	au$ i<br>Yukawa cou | n 138 fb $^{-1}$ of $pp$ upling to $\sqrt{ Y_{e	au} }$                                                                                | $2 +  Y_{\tau e} ^2$                         | $<~1.4 \times 10^{-3}$ at                                                                                          | 95% CL               | NODE=S126R10;LINKAGE=G                           |
| <sup>3</sup> SIRUNYAN 21Z sear<br>The limit constrains<br>at 95% CL (see their                                                                         | rch for $H$ -                                                     | $\rightarrow$ $e\tau$ in 137 fb <sup>-</sup>                                                                                          | $^{-1}$ of $pp$ coll                         | isions at $E_{cm} =$                                                                                               | 13 TeV.              | NODE=S126R10;LINKAGE=E                           |
|                                                                                                                                                        | r Fig. 8).                                                        |                                                                                                                                       |                                              |                                                                                                                    |                      |                                                  |
| <sup>4</sup> AAD 20A search for constrains the $Y_{e\tau}$ (see their Fig. 5). <sup>5</sup> SIRUNYAN 18BH search                                       | r Fig. 8). $H ightarrow e	au$ ir<br>Yukawa cou                    | n 36.1 fb $^{-1}$ of $p_{E}$ upling to $\sqrt{ Y_{e	au} }$                                                                            | collisions at $\frac{1}{2} +  Y_{\tau e} ^2$ | $E_{\rm cm} = 13  {\rm TeV}.$ < $2.0 \times 10^{-3}  {\rm at}$                                                     | The limit<br>95% CL  | NODE=S126R10;LINKAGE=D                           |

<sup>6</sup> AAD 17 search for  $H \rightarrow e\tau$  in 20.3 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=8$  TeV. <sup>7</sup> KHACHATRYAN 16CD search for  $H \rightarrow e\tau$  in 19.7 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=8$  TeV.

NODE=S126R10;LINKAGE=B NODE=S126R10;LINKAGE=A

| The limit constra<br>at 95% CL (see t              |                              | Yukawa coupling .                                          | to $\sqrt{ Y_{e	au} ^2}$ -    | $+ Y_{\tau e} ^2 < 2$                    | $2.4 \times 10^{-3}$    |                                |
|----------------------------------------------------|------------------------------|------------------------------------------------------------|-------------------------------|------------------------------------------|-------------------------|--------------------------------|
| $\Gamma(\mu 	au)/\Gamma_{	ext{total}}$             |                              |                                                            |                               |                                          | $\Gamma_{31}/\Gamma$    | NODE=S126R02                   |
| VALUE                                              | <u>CL%_</u>                  | DOCUMENT ID                                                | TECN_                         | COMMENT                                  |                         | NODE=S126R02                   |
| $< 1.5 \times 10^{-3}$                             | 95                           | <sup>1</sup> SIRUNYAN                                      | 21Z CMS                       | <i>pp</i> , 13 TeV                       |                         |                                |
| • • • We do not use                                | the following                | ng data for average                                        | s, fits, limits,              | etc. • • •                               |                         |                                |
| $< 1.8 \times 10^{-3}$                             | 95                           | <sup>2</sup> AAD                                           | 23Q ATLS                      | <i>рр</i> , 13 TeV                       |                         |                                |
| $< 1.7 \times 10^{-3}$                             | 95                           | <sup>3</sup> AAD                                           | 23Q ATLS                      | <i>pp</i> , 13 TeV                       |                         | OCCUR=2                        |
| $< 2.8 \times 10^{-3}$                             | 95                           | <sup>4</sup> AAD                                           | 20A ATLS                      | <i>pp</i> , 13 TeV                       |                         |                                |
| $<26 \times 10^{-2}$                               | 95                           | <sup>5</sup> AAIJ                                          | 18AM LHCB                     | <i>рр</i> , 8 TeV                        |                         |                                |
| $< 2.5 \times 10^{-3}$                             | 95                           | <sup>6</sup> SIRUNYAN                                      | 18BH CMS                      | <i>рр</i> , 13 TeV                       |                         |                                |
| $< 1.43 \times 10^{-2}$                            | 95                           | <sup>7</sup> AAD                                           | 17 ATLS                       | <i>pp</i> , 8 TeV                        |                         |                                |
| $< 1.51 \times 10^{-2}$                            | 95                           | <sup>8</sup> KHACHATRY                                     |                               | <i>рр</i> , 8 TeV                        |                         |                                |
|                                                    | ins the $Y_{\mu	au}$         | $H  ightarrow \ \mu 	au$ in 137 fb<br>. Yukawa coupling t  |                               |                                          |                         | NODE=S126R02;LINKAGE=F         |
| <sup>2</sup> AAD 23Q search f<br>obtained from a s | for $H	o \mu	au$ imultaneous | in 138 fb $^{-1}$ of $pp$ if it of possible $H  ightarrow$ |                               |                                          |                         | NODE=\$126R02;LINKAGE=G        |
| 13 and 14). The                                    | limit const                  | rains the $Y_{\mu	au}$ Yuk                                 | awa coupling t                | to $\sqrt{ Y_{\mu\tau} ^2}$ +            | $ Y_{\tau\mu} ^2 <$     |                                |
| $1.2 	imes 10^{-3}$ at $95$                        |                              |                                                            |                               |                                          |                         |                                |
| <sup>3</sup> AAD 23Q search                        | for $H 	o \mu$               | $	au$ in 138 fb $^{-1}$ of $p$                             | p collisions at               | $E_{\rm cm} = 13 \text{ TeV}$            | /. The limit            | NODE=S126R02;LINKAGE=H         |
| constrains the $Y$                                 | ,, Yukawa                    | coupling to $\sqrt{ Y_{\mu} }$                             | $ x ^2 +  y_{\pi,\mu} ^2$     | $\overline{2}$ < $1.2 \times 10^{\circ}$ | $^{-3}$ at 95%          |                                |
| CL (see their Fig                                  |                              | , σ γ, μ                                                   | $II \rightarrow I \mu$        |                                          |                         |                                |
|                                                    |                              | $	au$ in 36.1 fb $^{-1}$ of $p$                            | p collisions at               | $E_{\rm cm} = 13 \text{ TeV}$            | /. The limit            | NODE=S126R02;LINKAGE=E         |
|                                                    |                              | coupling to $\sqrt{ Y_{\mu} }$                             |                               |                                          |                         | 140DE=3120N02,EN410N0E=E       |
| CL (see their Fig                                  |                              | $\mu$                                                      | $\tau$   '   ' $\tau$ $\mu$   | ( 2.0 // 20                              | ut 5070                 |                                |
|                                                    |                              | $\mu	au$ in 2.0 fb $^{-1}$ of $\mu$                        | nn collisions at              | - F — 8 TeV                              | / The limit             | NODE GASCOS LINUAGE D          |
|                                                    |                              |                                                            |                               |                                          |                         | NODE=S126R02;LINKAGE=D         |
| constrains the Y                                   | $\mu 	au$ Yukawa             | coupling to $\sqrt{ Y_{\mu} }$                             | $\tau^{ 2} +  Y_{\tau\mu} ^2$ | < 1.7 × 10                               | - at 95%                |                                |
| CL assuming SM                                     |                              |                                                            | . – 1                         | Datama at F                              | 12 T-V                  |                                |
|                                                    |                              | $H  ightarrow \ \mu 	au$ in 35.9 f<br>. Yukawa coupling t  |                               |                                          |                         | NODE=S126R02;LINKAGE=C         |
| at 95% CL (see t                                   | heir Fig. 10                 | 1).                                                        |                               |                                          |                         |                                |
|                                                    |                              | in 20.3 fb $^{-1}$ of $\it p$                              |                               |                                          |                         | NODE=S126R02;LINKAGE=B         |
|                                                    |                              | for $	extit{H}  ightarrow ~\mu  	au$ with $	au$            |                               |                                          |                         | NODE=S126R02;LINKAGE=A         |
| $19.7~{ m fb}^{-1}~{ m of}~ppc$ with a significand |                              | $E_{\rm cm}=8$ TeV. The                                    | e fit gives B( <i>H</i>       | $\rightarrow \mu \tau) = (0.8$           | $34^{+0.39}_{-0.37})\%$ |                                |
| $\Gamma(\text{invisible})/\Gamma_{\text{total}}$   | ı                            |                                                            |                               |                                          | $\Gamma_{32}/\Gamma$    |                                |
| ,                                                  |                              |                                                            |                               |                                          | • 32/ •                 | NODE=S126R01                   |
| Invisible final s<br>VALUE                         | tates.<br><u>CL%_</u>        | DOCUMENT ID                                                | TECN C                        | OMMENT                                   |                         | NODE=\$126R01<br>NODE=\$126R01 |
| <0.107                                             |                              | 1                                                          |                               | p, 7, 8, 13 TeV                          | /                       | OCCUR=2                        |
| • • • We do not use                                |                              |                                                            | -                             | •                                        | •                       | 0001(-2                        |

| Invisible f<br><i>VALUE</i> | final states.<br>CL% | DOCUMENT ID            | TECN             | COMMENT                                                                                                                              | NODE=S126R0<br>NODE=S126R0 |
|-----------------------------|----------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <0.107                      | 95                   | <sup>1</sup> AAD       |                  | pp, 7, 8, 13 TeV                                                                                                                     | OCCUR=2                    |
| • • • We do no              | ot use the foll      | owing data for aver    | ages, fits, limi | ts, etc. • • •                                                                                                                       |                            |
| < 0.113                     | 95                   | <sup>2</sup> AAD       | 23A ATLS         | pp, 13 TeV                                                                                                                           |                            |
| < 0.38                      | 95                   | <sup>3</sup> AAD       | 23AF ATLS        | $pp  ightarrow t \overline{t} H$ , 13 TeV                                                                                            |                            |
| < 0.54                      | 95                   | <sup>4</sup> TUMASYAN  | 23BA CMS         | $egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta eta & ar{t} H, \ V(	o & q  \overline{q}) \ H, \ 13 \ TeV \end{aligned}$ |                            |
| < 0.15                      | 95                   | <sup>5</sup> TUMASYAN  | 23BA CMS         | pp, 7, 8, 13 TeV                                                                                                                     | OCCUR=2                    |
| < 0.19                      | 95                   | <sup>6</sup> AAD       | 22D ATLS         | $pp  ightarrow \ ZH$ , 13 TeV                                                                                                        |                            |
| < 0.145                     | 95                   | <sup>7</sup> AAD       | 22P ATLS         | $pp  ightarrow \ qqH$ , 13 TeV                                                                                                       |                            |
| < 0.37                      | 95                   | <sup>8</sup> AAD       | 22s ATLS         | $pp ightarrow  qqH\gamma$ , 13 TeV                                                                                                   |                            |
| < 0.13                      | 95                   | <sup>9</sup> ATLAS     | 22 ATLS          | <i>рр</i> , 13 TeV                                                                                                                   |                            |
| < 0.16                      | 95                   | <sup>10</sup> CMS      | 22 CMS           | <i>рр</i> , 13 TeV                                                                                                                   |                            |
| < 0.18                      | 95                   | <sup>11</sup> TUMASYAN | 22G CMS          | pp  ightarrow qqH, 8, 13 TeV                                                                                                         |                            |
| < 0.18                      | 95                   | <sup>12</sup> TUMASYAN | 22G CMS          | pp  ightarrow qqH, 13 TeV                                                                                                            | OCCUR=2                    |
| < 0.34                      | 95                   | <sup>13</sup> AAD      | 21F ATLS         | <i>рр</i> , 13 TeV                                                                                                                   |                            |
| < 0.29                      | 95                   | <sup>14</sup> SIRUNYAN | 21A CMS          | $pp  ightarrow \ ZH$ , 13 TeV                                                                                                        |                            |
| <0.278                      | 95                   | <sup>15</sup> TUMASYAN | 21D CMS          | $pp$ , $13$ TeV, jet or $V( ightarrow q\overline{q})$                                                                                |                            |
| < 0.37                      | 95                   | <sup>16</sup> AABOUD   | 19AL ATLS        | $pp \rightarrow qqH$ , 13 TeV                                                                                                        |                            |
| < 0.38                      | 95                   | <sup>17</sup> AABOUD   | 19AL ATLS        | pp, 13 TeV                                                                                                                           |                            |

| < 0.26                                              | 95           | <sup>18</sup> AABOUD 19AL ATLS                                           | pp, 7, 8, 13 TeV                               | OCCUR=2                  |
|-----------------------------------------------------|--------------|--------------------------------------------------------------------------|------------------------------------------------|--------------------------|
| < 0.22                                              | 95           | <sup>19</sup> SIRUNYAN 19AT CMS                                          | pp, 13 TeV                                     |                          |
| < 0.33                                              | 95           | <sup>20</sup> SIRUNYAN 19BO CMS                                          | $pp \rightarrow qqH$ , 13 TeV                  |                          |
| < 0.26                                              | 95           | <sup>21</sup> SIRUNYAN 19BO CMS                                          | pp, 13 TeV                                     | OCCUR=2                  |
| < 0.19                                              | 95           | <sup>22</sup> SIRUNYAN 19BO CMS                                          | pp, 7, 8, 13 TeV                               | OCCUR=3                  |
| < 0.67                                              | 95           | <sup>23</sup> AABOUD 18 ATLS                                             | $pp \rightarrow ZH$ , 13 TeV                   |                          |
| < 0.83                                              | 95           | <sup>24</sup> AABOUD 18CA ATLS                                           | $pp \rightarrow WH/ZH$ ,                       |                          |
|                                                     |              | 05                                                                       | $W/Z \rightarrow jj$ , 13 TeV                  |                          |
| < 0.40                                              | 95           | <sup>25</sup> SIRUNYAN 18 <sub>BV</sub> CMS                              | $pp  ightarrow \ ZH$ , 13 TeV                  |                          |
| < 0.53                                              | 95           | <sup>26</sup> SIRUNYAN 18S CMS                                           | <i>pp</i> , 13 TeV, jet or $V(\rightarrow$     |                          |
|                                                     |              | 27                                                                       | $q\overline{q})$                               |                          |
| < 0.46                                              | 95           | 27 AABOUD 17BD ATLS                                                      | $pp  ightarrow  Hj,  q q H,  13  {\sf TeV}$    |                          |
| < 0.24                                              | 95           | <sup>28</sup> KHACHATRY17F CMS                                           | pp, 7, 8, 13 TeV                               |                          |
| < 0.28                                              | 95           | <sup>29</sup> AAD 16AF ATLS                                              | pp  ightarrow qqH, 8 TeV                       |                          |
| < 0.34                                              | 95           | <sup>30</sup> AAD 16AN LHC                                               | pp, 7, 8 TeV                                   |                          |
| < 0.78                                              | 95           | 31 AAD 15BD ATLS                                                         | $pp \rightarrow WH/ZH$ , 8 TeV                 |                          |
| < 0.25                                              | 95           | <sup>32</sup> AAD 15cx ATLS                                              | pp, 7, 8 TeV                                   |                          |
| < 0.75                                              | 95           | <sup>33</sup> AAD 140 ATLS                                               | $pp \rightarrow ZH$ , 7, 8 TeV                 |                          |
| < 0.58                                              | 95           | <sup>34</sup> CHATRCHYAN 14B CMS                                         | $pp \rightarrow ZH, qqH$                       |                          |
| < 0.81                                              | 95           | <sup>35</sup> CHATRCHYAN 14B CMS                                         | $pp \rightarrow ZH$ , 7, 8 TeV                 | OCCUR=2                  |
| < 0.65                                              | 95           | <sup>36</sup> CHATRCHYAN 14B CMS                                         | $pp \rightarrow qqH$ , 8 TeV                   | OCCUR=3                  |
| <sup>1</sup> AAD 23A re <sub>l</sub><br>Standard Mo | port the cor | nbined results of 7, 8 (AAD 15CX ction ( $m_H=125~{ m GeV}$ ). See their | () and 13 TeV assuming the Table 1 and Fig. 3. | NODE=S126R01;LINKAGE=GA  |
|                                                     |              | bined results using 139 fb $^{-1}$ of da                                 |                                                | NODE C126D01.LINICACE FA |
|                                                     |              | nol states in VPE (AAD 22D) 7 H                                          |                                                | NODE=\$126R01;LINKAGE=FA |

AND 23A report the combined results using 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV, where H decaying to invisible final states in VBF (AAD 22P), ZH,  $Z\to ee$ ,  $\mu\mu$  (AAD 22D),  $\mu\nu$  (AAD 22D),  $\mu\nu$  (AAD 22AF)  $\mu\nu$  $pp \rightarrow t\bar{t}H$  (AAD 23AF), VBF+ $\gamma$  (AAD 22S) and gluon-fusion production with an energetic jet (AAD 21F) assuming the Standard Model cross section ( $m_H=125~{
m GeV}$ ). See their Table 1 and Fig. 3.

 $^3$  AAD 23AF search for  $pp 
ightarrow t \bar{t} H$  with H decaying to invisible final states using 139  ${
m fb^{-1}}$  of data. The quoted limit on the branching ratio is given for  $m_H=125~{
m GeV}$  and assumes the Standard Model cross section. See their Table 3 for different decay topologies.

 $^4$  TUMASYAN 23BA search for H decaying to invisible final states produced in association with a  $t\bar{t}$  or a V, which decay to a fully hadronic final state. 138 fb<sup>-1</sup> of data is used. The quoted limit on the branching ratio is given for  $m_H=125~{\rm GeV}$  and assumes the Standard Model cross section. See their Fig. 6 for the results of individual topologies.

 $^{5}\,\text{TUMASYAN}$  23BA report the combined results of 7, 8, and 13 TeV assuming the Standard Model cross section ( $m_H=125~{
m GeV}$ ). They combine results from TUMASYAN 22G, SIRUNYAN 21A, SIRUNYAN 21B, TUMASYAN 21D, SIRUNYAN 20AH, KHACHA-TRYAN 17F, CHATRCHYAN 14B as shown in their Table 8. See their Fig. 7 and Table 9 for the results of individual topologies.

 $^6\mathrm{AAD}$  22D search for H decaying to invisible final states associated with a Z decaying  $e\,e/\mu\mu$  using 139 fb $^{-1}$  at 13 TeV. The limit is obtained for  $m_H=$  125 GeV and assuming the SM ZH production cross section. The branching ratio is obtained to be  $(0.3 \pm 9.0)\%$ .

 $^{7}$ AAD 22P search for pp o qqHX (VBF) with H decaying to invisible final states using 139 fb $^{-1}$  of data. The quoted limit on the branching ratio is given for  $m_H=125~{
m GeV}$ and assumes the Standard Model cross section.

8 AAD 22S observe electroweak  $Z( o 
u
u)\gamma+2$  jets production process with 139 fb $^{-1}$  of data. This result is applicable to search for  $pp \rightarrow qqH\gamma X$  (VBF+ $\gamma$ ) with H decaying to invisible final states. The quoted limit on the branching ratio is given for  $m_H=125$ GeV and assumes the Standard Model cross section.

9 ATLAS 22 report the combined results using 139 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV, where H decaying to invisible final states in VBF (AAD 22P), and ZH,  $Z\to ee$ ,  $\mu\mu$ (AAD 22D), assuming  $\kappa_{V}~\leq~1$  and  $\textit{B}_{undetected}~\geq~$  0.

 $^{10}\,\mathrm{CMS}$  22 report the combined results using (a part of) 138 fb $^{-1}$  of data at  $E_{\mathrm{cm}}=13$  TeV, where H decaying to invisible final states in VBF (SIRUNYAN 19BO), associated with an energetic jet or a  $V(\to q \overline{q})$  (TUMASYAN 21D), and ZH,  $Z\to ee$ ,  $\mu\mu$  (SIRUNYAN 21A) and assuming  $\kappa_V \le 1$  and  $B_{undetected} \ge 0$ .

 $^{11}$  TUMASYAN 22G combine 13 TeV 101 fb $^{-1}$  results with 8 TeV (KHACHATRYAN 17F) and other 13 TeV (KHACHATRYAN 17F for 2015 and SIRUNYAN 19BO for 2016) for  $\dot{H}$ decaying to invisible final states with VBF topology. The quoted limit on the branching ratio is given for  $m_{H}=125.38~{\rm GeV}$  and assumes the Standard Model production rates. The branching ratio is obtained to be  $0.086 {+0.054}$ . See their Figs. 11 and 12.

 $^{12}$ TUMASYAN 22G search for pp o qqHX (VBF) with H decaying to invisible final states using  $101 \text{ fb}^{-1}$  of data (2017 and 2018). The quoted limit on the branching ratio is given for  $m_{H}=125.38~{\rm GeV}$  and assumes the Standard Model cross section. See their Figs. 11 and 12.

 $^{13}$  AAD 21F search for an invisibly decaying Higgs boson with an energetic jet (p  $_{\mathcal{T}} > 150$ GeV) and missing transverse momentum (> 200 GeV) in 139 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The quoted limit on the branching ratio is given for  $m_H = 125$  GeV.

NODE=S126R01;LINKAGE=EA

NODE=S126R01;LINKAGE=HA

NODE=S126R01;LINKAGE=IA

NODE=S126R01;LINKAGE=X

NODE=S126R01;LINKAGE=Y

NODE=S126R01;LINKAGE=BA

NODE=S126R01;LINKAGE=DA

NODE=S126R01;LINKAGE=CA

NODE=S126R01;LINKAGE=Z

NODE=\$126R01;LINKAGE=AA

NODE=S126R01;LINKAGE=V

- $^{14}$  SIRUNYAN 21A search for H decaying to invisible final states associated with a Z decaying  $ee/\mu\mu$  using 137 fb $^{-1}$  at 13 TeV. The limit is obtained for  $m_H=125$  GeV and assuming the SM ZH production cross section.
- $^{15}$  TUMASYAN 21D search for H decaying to invisible final states associated with an energetic jet or a  $V,\,V\to\,q\,\overline{q}$  using 101 fb $^{-1}$  at 13 TeV and the result is combined with SIRUNYAN 18S.
- <sup>16</sup> AABOUD 19AI search for  $pp \to qqHX$  (VBF) with H decaying to invisible final states using 36.1 fb<sup>-1</sup> of data. The quoted limit on the branching ratio is given for  $m_H = 125$  GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
- $^{17}$  AABOUD 19AL combine results of H decaying to invisible final states with VBF(AABOUD 19AI), ZH, and WH productions (AABOUD 18, AABOUD 18CA), which use 36.1 fb $^{-1}$  of data at 13 TeV. The quoted limit is given for  $m_{H}=125~{\rm GeV}$  and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions.
- $^{18}$  AABOUD 19AL combine results of 7, 8 (AAD 15CX), and 13 TeV for H decaying to invisible final states.
- $^{19}\,\rm SIRUNYAN$  19AT perform a combined fit with visible decay using 35.9 fb $^{-1}$  of data at 13 TeV.
- <sup>20</sup> SIRUNYAN 19BO search for  $pp \to qqHX$  (VBF) with H decaying to invisible final states using 35.9 fb<sup>-1</sup> of data. The quoted limit on the branching ratio is given for  $m_H = 125.09$  GeV and assumes the Standard Model production rates.
- $^{21}$  SIRUNYAN 19B0 combine the VBF channel with results of other 13 TeV analyses: SIRUNYAN 18BV and SIRUNYAN 18S. The quoted limit on the branching ratio is given for  $m_{H}=125.09$  GeV and assumes the Standard Model production rates.
- $^{22}$  SIRUNYAN 19BO combine 13 TeV 35.9 fb $^{-1}$  results with 7, 8, 13 TeV (KHACHATRYAN 17F) for H decaying to invisible final states. The quoted limit on the branching ratio is given for  $m_H=125.09$  GeV and assumes the Standard Model production rates. The branching ratio is obtained to be 0.05  $\pm$  0.03 (stat)  $\pm$  0.07(syst).
- <sup>23</sup> AABOUD 18 search for  $pp \to HZX$ ,  $Z \to ee$ ,  $\mu\mu$  with H decaying to invisible final states in 36.1 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The quoted limit on the branching ratio is given for  $m_H=125$  GeV and assumes the Standard Model rate for HZ production.
- <sup>24</sup> AABOUD 18CA search for H decaying to invisible final states using WH, and ZH productions, where W and Z hadronically decay. The data of 36.1 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV is used. The quoted limit assumes SM production cross sections with combining the contributions from WH, ZH, ggF and VBF production modes.
- $^{25}$  SIRUNYAN 18BV search for H decaying to invisible final states associated with a  $Z,Z\to\ell\ell$  using 35.9 fb $^{-1}$  at 13 TeV.The limit is obtained for  $m_H=125$  GeV and assuming the SM ZH production cross section.
- <sup>26</sup> SIRUNYAN 18S search for H decaying to invisible final states associated with an energetic jet or a V,  $V \to q \overline{q}$  using 35.9 fb<sup>-1</sup> at 13 TeV.
- 27 AABOUD 17BD search for H decaying to invisible final states with  $\geq 1$  jet and VBF events using 3.2 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV. A cross-section ratio  $R^{\rm miss}$  is used in the measurement. The quoted limit is given for  $m_H=125$  GeV.
- $^{28}$  KHACHATRYAN 17F search for H decaying to invisible final states with gluon fusion, VBF, ZH, and WH productions using 2.3 fb $^{-1}$  of  $p\,p$  collisions at  $E_{\rm cm}=13$  TeV, 19.7 fb $^{-1}$  at 8 TeV, and 5.1 fb $^{-1}$  at 7 TeV. The quoted limit is given for  $m_H=125$  GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions.
- AAD 16AF search for  $pp \rightarrow qqHX$  (VBF) with H decaying to invisible final states in 20.3 fb<sup>-1</sup> at  $E_{\rm cm} = 8$  TeV. The quoted limit on the specific feet and gluon-fusion production.
- $^{30}$  AAD 16AN perform fits to the ATLAS and CMS data at  $E_{\rm cm}=7$  and 8 TeV. The branching fraction of decays into BSM particles that are invisible or into undetected decay modes is measured for  $m_0=125.09$  GeV.
- $^{31}$  AAD 15BD search for  $pp \to HWX$  and  $pp \to HZX$  with W or Z decaying hadronically and H decaying to invisible final states using data at  $E_{\rm cm}=8$  TeV. The quoted limit is given for  $m_H=125$  GeV, assumes the Standard Model rates for the production processes and is based on a combination of the contributions from  $HW,\,HZ$  and the gluon-fusion process.
- <sup>32</sup>AAD 15CX search for H decaying to invisible final states with VBF, ZH, and WH productions using 20.3 fb<sup>-1</sup> at 8 TeV, and 4.7 fb<sup>-1</sup> at 7 TeV. The quoted limit is given for  $m_H = 125.36$  GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions. The upper limit is improved to 0.23 by adding the measured visible decay rates.
- <sup>33</sup> AAD 140 search for  $pp \to HZX$ ,  $Z \to \ell\ell$ , with H decaying to invisible final states in 4.5 fb<sup>-1</sup> at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted limit on the branching ratio is given for  $m_H=125.5$  GeV and assumes the Standard Model rate for HZ production.
- $^{34}$  CHATRCHYAN 14B search for  $pp\to HZX,\,Z\to\ell\ell$  and  $Z\to\,b\overline{b}$ , and also  $pp\to qqHX$  with H decaying to invisible final states using data at  $E_{\rm cm}=7$  and 8 TeV. The quoted limit on the branching ratio is obtained from a combination of the limits from HZ and qqH. It is given for  $m_H=125$  GeV and assumes the Standard Model rates for the two production processes.
- $^{35}$  CHATRCHYAN 14B search for  $pp \to HZX$  with H decaying to invisible final states and  $Z \to \ell\ell$  in 4.9 fb $^{-1}$  at  $E_{\rm cm}=$  7 TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=$  8 TeV, and also

- NODE=S126R01;LINKAGE=U
- NODE=S126R01:LINKAGE=W
- NODE=S126R01;LINKAGE=K
- NODE=S126R01;LINKAGE=M
- NODE=S126R01;LINKAGE=N
- NODE=S126R01;LINKAGE=O
- NODE=S126R01;LINKAGE=P
- NODE=S126R01;LINKAGE=S
- NODE=S126R01;LINKAGE=T
- NODE=S126R01;LINKAGE=H
- NODE=S126R01;LINKAGE=J
- NODE=\$126R01;LINKAGE=R
- NODE=S126R01;LINKAGE=Q
- NODE=S126R01;LINKAGE=I
- NODE=S126R01;LINKAGE=G
- NODE=\$126R01;LINKAGE=E
- NODE=S126R01;LINKAGE=F
- NODE=S126R01;LINKAGE=D
- NODE=S126R01;LINKAGE=L
- NODE=S126R01;LINKAGE=A
- NODE=S126R01;LINKAGE=B
- NODE=\$126R01;LINKAGE=CH

with  $Z \to b \, \overline{b}$  in 18.9 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted limit on the branching ratio is given for  $m_H=125$  GeV and assumes the Standard Model rate for HZ production.

 $^{36}$  CHATRCHYAN 14B search for  $pp \rightarrow qqHX$  (vector boson fusion) with H decaying to invisible final states in 19.5 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted limit on the branching ratio is given for  $m_H=125$  GeV and assumes the Standard Model rate for qqH

NODE=S126R01;LINKAGE=C

| $\Gamma(\gamma)$ invisible | $)/\Gamma_{total}$ |                  |           |                                    | Г <sub>33</sub> /Г            | NODE=S126R1 |
|----------------------------|--------------------|------------------|-----------|------------------------------------|-------------------------------|-------------|
| VALUE                      | <u>CL%</u>         | DOCUMENT ID      | TECN      | COMMENT                            |                               | NODE=S126R1 |
| <0.013                     | 95                 | <sup>1</sup> AAD | 24BH ATLS | VBF, $HZ$ , $H \rightarrow$ 13 TeV | $\gamma  +  {\rm invisible,}$ |             |

• • We do not use the following data for averages, fits, limits, etc.

| < 0.035 | 95 | <sup>2</sup> SIRUNYAN   | 21L CMS    | VBF, $H  ightarrow \gamma +$ invisible, 13 TeV                                              |
|---------|----|-------------------------|------------|---------------------------------------------------------------------------------------------|
| < 0.029 | 95 | <sup>2,3</sup> SIRUNYAN | 21L CMS    | VBF, $HZ$ , $H \rightarrow \gamma$ + invisible,                                             |
| <0.046  | 95 | <sup>4</sup> SIRUNYAN   | 19cg CMS   | 13 TeV                                                                                      |
| < 0.046 | 95 | SIRUNTAN                | 19CG CIVIS | $pp \rightarrow HZ, H \rightarrow \gamma + \text{invisible}, Z \rightarrow \ell\ell$ 13 TeV |

NODE=S126R15;LINKAGE=D

OCCUR=2

 $^2$ SIRUNYAN 21L search for H decaying to an invisible final state plus a  $\gamma$  in the VBF production using 130 fb $^{-1}$  data at  $E_{\rm cm}=13$  TeV. The invisible state is called a dark photon. The quoted limit on the branching ratio is given for  $m_H=125$  GeV assuming the Standard Model rates.

 $^3$  The result of the VBF production is combined with the pp o HZ result (SIRUN-YAN 19CG).

 $^4$  SIRUNYAN 19CG search for pp ightarrow HZ, Z ightarrow e.e.,  $\mu\mu$  with H decaying to invisible final states plus a  $\gamma$  in 137 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The quoted limit on the branching ratio is given for  $m_H=125$  GeV assuming the Standard Model rate for HZ production and is obtained in the context of a theoretical model, where the undetected (invisible) particle is massless.

NODE=S126R15;LINKAGE=C

NODE=S126R15;LINKAGE=B

NODE=S126R15;LINKAGE=A

### H SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The H signal strength in a particular final state xx is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value,  $\sigma \cdot B(H \rightarrow xx) / (\sigma \cdot B(H \rightarrow xx))_{SM}$ , for the specified mass value of H. For the SM predictions, see DITTMAIER 11, DITTMAIER 12, and HEINEMEYER 13A. Results for fiducial and differential cross sections are also listed below.

NODE=S126230

NODE=S126230

NODE=S126SA

### Combined final state

| VALUE THAT STATE                                                                   | DOCUMENT ID             | TECN             | COMMENT                                     | NODE=S126SA |
|------------------------------------------------------------------------------------|-------------------------|------------------|---------------------------------------------|-------------|
| 1.03 ±0.04 OUR AVERAGE                                                             |                         |                  |                                             |             |
| $1.05 \pm 0.06$                                                                    | <sup>1</sup> ATLAS      | 22 ATLS          | ρρ, 13 TeV                                  |             |
| $1.002 \pm 0.057$                                                                  | <sup>2</sup> CMS        | 22 CMS           | ρρ, 13 TeV                                  |             |
| $1.09 \ \pm 0.07 \ \pm 0.04 {+0.08 \atop -0.07}$                                   | 3,4 AAD                 | 16AN LHC         | pp, 7, 8 TeV                                |             |
| $1.44 \begin{array}{l} +0.59 \\ -0.56 \end{array}$                                 | <sup>5</sup> AALTONEN   | 13M TEVA         | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV |             |
| • • • We do not use the following                                                  | ng data for averages    | s, fits, limits, | etc. • • •                                  |             |
| $1.11 \begin{array}{c} +0.09 \\ -0.08 \end{array}$                                 | <sup>6</sup> AAD        | 20 ATLS          | <i>pp</i> , 13 TeV                          |             |
| $1.17 \pm 0.10$                                                                    | <sup>7</sup> SIRUNYAN   | 19AT CMS         | pp, 13 TeV                                  |             |
|                                                                                    | <sup>8</sup> SIRUNYAN   | 19BA CMS         | pp, 13 TeV, diiferential                    |             |
| . 0.00                                                                             | 4                       |                  | cross sections                              | OCCUR=2     |
| $1.20 \pm 0.10 \pm 0.06 ^{+0.09}_{-0.08}$                                          | <sup>4</sup> AAD        | 16AN ATLS        | <i>pp</i> , 7, 8 TeV                        | OCCON=2     |
| $0.97\ \pm0.09\ \pm0.05{}^{+0.08}_{-0.07}$                                         | <sup>4</sup> AAD        | 16AN CMS         | pp, 7, 8 TeV                                | OCCUR=3     |
| $1.18 \ \pm 0.10 \ \pm 0.07 {}^{+ 0.08}_{- 0.07}$                                  | <sup>9</sup> AAD        | 16K ATLS         | pp, 7, 8 TeV                                |             |
| $\begin{array}{ccc} 0.75 & +0.28 & +0.13 +0.08 \\ -0.26 & -0.11 -0.05 \end{array}$ | <sup>9</sup> AAD        | 16K ATLS         | <i>pp</i> , 7 TeV                           | OCCUR=2     |
| $1.28 \ \pm 0.11 \ ^{+0.08}_{-0.07} + ^{0.10}_{-0.08}$                             | <sup>9</sup> AAD        | 16K ATLS         | <i>pp</i> , 8 TeV                           | OCCUR=3     |
|                                                                                    | <sup>10</sup> AAD       | 15P ATLS         | pp, 8 TeV, cross section                    |             |
| $1.00\ \pm0.09\ \pm0.07{}^{+0.08}_{-0.07}$                                         | <sup>11</sup> KHACHATRY | 15AM CMS         | pp, 7, 8 TeV                                |             |

 $<sup>^{1}</sup>$ AAD 24BH search for H decaying to an invisible final state plus a  $\gamma$  in the VBF and HZproduction using 139 fb<sup>-1</sup> data at  $E_{\rm cm}=13$  TeV. The invisible state is called a dark photon. The quoted limit on the branching ratio is given for  $m_H=125$  GeV assuming the Standard Model rates. The 95% CL upper limits on the branching ratio for the VBF and HZ production are 1.8% and 2.3%, respectively. See their Fig. 3(a).

|                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                            | 11/11/2025 13:16   | Pag   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|
| $1.33 \ ^{+0.14}_{-0.10} \ \pm 0.15$                                                                                                                                                                                                                                                                          | 12 AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13AK ATLS                                                                                                                                       | <i>pp</i> , 7 and 8 TeV                                                                                                                                                                    |                    |       |
| $1.54 \begin{array}{l} +0.77 \\ -0.73 \end{array}$                                                                                                                                                                                                                                                            | <sup>13</sup> AALTONEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13L CDF                                                                                                                                         | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                                                                                                                                |                    |       |
| $1.40 \begin{array}{l} +0.92 \\ -0.88 \end{array}$                                                                                                                                                                                                                                                            | <sup>14</sup> ABAZOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13L D0                                                                                                                                          | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                                                                                                                                |                    |       |
| $\begin{array}{ccc} 1.4 & \pm 0.3 \\ 1.2 & \pm 0.4 \\ 1.5 & \pm 0.4 \end{array}$                                                                                                                                                                                                                              | <sup>15</sup> AAD<br>15 AAD<br>15 AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12AI ATLS                                                                                                                                       | pp ightarrow                                                                                                                                                                               | OCCUR=2<br>OCCUR=3 |       |
| $\begin{array}{cc} 1.5 & \pm 0.4 \\ 0.87 & \pm 0.23 \end{array}$                                                                                                                                                                                                                                              | <sup>16</sup> CHATRCHYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | $pp \rightarrow HX$ , 8 TeV $pp \rightarrow HX$ , 7, 8 TeV                                                                                                                                 | OCCOR=5            |       |
| $^{1}$ ATLAS 22 report combined fb $^{-1}$ of data at $E_{\rm cm} = 0$ cross-sections, branching $^{2}$ CMS 22 report combined                                                                                                                                                                                | 13 TeV, assuming $m_F$ fractions and several r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $_{H}=125.09$ GeV atios are found i                                                                                                             | '. The Higgs production n their Figs. 2 and 3.                                                                                                                                             | NODE=S126SA;LINKAC |       |
| data at $E_{\rm cm}=13$ TeV, modes and decay channe                                                                                                                                                                                                                                                           | assuming $m_{H}=125.3$ Is are found in their Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 GeV. Signal :<br>g. 2.                                                                                                                       | strengths for production                                                                                                                                                                   | NODE=S126SA;LINKAG | 3E=I  |
| <sup>3</sup> AAD 16AN perform fits to<br>strengths for individual p                                                                                                                                                                                                                                           | the ATLAS and CMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | data at $E_{cm} = 1.03 + 0.16$ for $6$                                                                                                          | $l$ and 8 TeV. The signal square fusion $1.18 \pm 0.25$                                                                                                                                    | NODE=S126SA;LINKAC | GE=F  |
| for vector boson fusion, $0$<br>and $2.3^{+0.7}_{-0.6}$ for $t\bar{t}H$ pro                                                                                                                                                                                                                                   | $.89^{+0.40}_{-0.38}$ for <i>WH</i> pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | duction, 0.79 + 0                                                                                                                               | 0.38 for $ZH$ production,                                                                                                                                                                  |                    |       |
| <sup>4</sup> AAD 16AN: The uncertain quadrature theory syssignal strengths are given relative production cross                                                                                                                                                                                                | nties represent statistic tematics on the backg for $m_H=125.09~{ m GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ground and on $t'$ . In the fit, relat                                                                                                          | the signal. The quoted ive branching ratios and                                                                                                                                            | NODE=S126SA;LINKAC | GE=G  |
| <sup>5</sup> AALTONEN 13M combir<br>up to 10.0 fb <sup>-1</sup> and 9.7<br>quoted signal strength is                                                                                                                                                                                                          | e all Tevatron data fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m the CDF and                                                                                                                                   | D0 Collaborations with                                                                                                                                                                     | NODE=S126SA;LINKAC | GE=AT |
| $^6$ AAD 20 combine results = 125.09 GeV: $\gamma \gamma$ , $ZZ^*$ Table I). The signal streng fusion, $1.21^{+0.24}_{-0.22}$ for ve for $ZH$ production, and Table IV). Several results are presented: see their template cross sections, the second sections of the second sections of the second sections. | , $WW^*$ , $\tau\tau$ , $b\overline{b}$ , $\mu\mu$ , gths for individual productor boson fusion, 1.30 $1.21^{+0.26}_{-0.24}$ for $t\overline{t}HH$ s with the simplified to Figs. 9–11, Figs 20, 2 their Figs. 12–17 and $\overline{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | invisible, and offuction processes<br>+0.40 for WH<br>-0.38 for WH<br>-tH production<br>emplate cross se<br>21 and Table VI<br>Tables X–XII for | -shell analyses (see their are $1.04\pm0.09$ for gluon production, $1.05 {+} 0.31$ (see their Fig. 2 and ction and $\kappa$ -frameworks II for stage-1 simplified the $\kappa$ -framework. | NODE=S126SA;LINKA0 | SE≕H  |
| $^{7}$ SIRUNYAN 19AT combin = 125.09 GeV. The sign for gluon fusion, $0.73^{+0}_{-0.42}$ for $ZH$ produthe simplified template cand Table 5 for stage-0.9 7-11 for the $\kappa$ -framework                                                                                                                    | al strengths for individual $0.30$ for vector boson for the cities $0.27$ for $0.27$ cities $0.27$ ross section and $0.27$ ross section and $0.27$ cross section and $0.27$ | ual production production, $2.18 {+0.1} \atop -0.1$ for $t  \overline{t}  H$ productneworks are presented.                                      | rocesses are $1.22^{+0.14}_{-0.12}$<br>$^{58}_{55}$ for $WH$ production,<br>ion. Several results with<br>sented: see their Fig. 8                                                          | NODE=S126SA;LINKAC | GE=D  |
| $^8$ SIRUNYAN 19BA measur mentum, the number of j tum of the leading jet us $ZZ^*$ , and $H \rightarrow b\overline{b}$ . T to be $61.1 \pm 6.0 \pm 3.7$ p measurements in the $\kappa$ -fr                                                                                                                    | ets, the rapidity of the $\log 35.9~{ m fb}^{-1}$ of data the total cross section the using $H 	o \gamma \gamma$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Higgs boson and at $E_{ m cm}=13~{ m Te}$ for Higgs boson $H	o ZZ^*$ cha                                                                        | If the transverse momenty with $H \to \gamma \gamma$ , $H \to \gamma \gamma$ production is measured                                                                                        | NODE=S126SA;LINKAC | GE=E  |
| $^9$ AAD 16K use up to 4.7 at $E_{\rm cm}=8$ TeV. The The signal strengths for gluon fusion, $1.23^{+0.28}_{-0.27}$ for $W/ZH$ production, signal strengths are given                                                                                                                                         | fb <sup>-1</sup> of $pp$ collisions third uncertainty in t individual production $p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at $E_{\rm cm}=7$ Te he measurement modes are 1.23 $^{\circ}$ boson fusion. 0                                                                   | $\pm 0.14 ^{+0.09}_{-0.08} ^{+0.16}_{-0.12}$ for $80 ^{+0.31}_{-0.08} ^{+0.17}_{-0.10}$                                                                                                    | NODE=S126SA;LINKAC | GE=B  |
| $E_{\rm cm} = 8$ TeV with 20.3 $33.0 \pm 5.3 \pm 1.6$ pb is                                                                                                                                                                                                                                                   | and differential cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sections of the                                                                                                                                 | process $pp \rightarrow HX$ at                                                                                                                                                             | NODE=S126SA;LINKAC | GE=C  |
| sections.<br><sup>11</sup> KHACHATRYAN 15AM to 19.7 fb <sup>-1</sup> at $F =$                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                            | NODE=S126SA;LINKAG | GE=A  |

sections. 

11 KHACHATRYAN 15AM use up to 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and up to 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The third uncertainty in the measurement is theory systematics. Fits to each production mode give the value of  $0.85^{+0.19}_{-0.16}$  for gluon fusion,  $1.16^{+0.37}_{-0.34}$  for vector boson fusion,  $0.92^{+0.38}_{-0.36}$  for WH, ZH production, and  $2.90^{+1.08}_{-0.94}$  for  $t\bar{t}H$  production.

12 AAD 13AK use 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 20.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The combined signal strength is based on the  $\gamma\gamma$ ,  $ZZ^* \to 4\ell$ , and  $WW^* \to \ell\nu\ell\nu$  channels. The quoted signal strength is given for  $m_H=125.5$  GeV. Reported statistical error value modified following private communication with the experiment.

statistical error value modified following private communication with the experiment.

NODE=S126SA;LINKAGE=LH

 $^{13}$  AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm cm}=1.96$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.  $^{14}$  ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm cm}=1.96$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.  $^{15}$  AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and

 $5.8-5.9~{\rm fb^{-1}}$  at  $E_{\rm cm}=8~{\rm TeV}$ . An excess of events over background with a local significance of  $5.9~\sigma$  is observed at  $m_H=126~{\rm GeV}$ . The quoted signal strengths are given for  $m_H=126~{\rm GeV}$ . See also AAD 12DA.

 $^{16}$  CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$ TeV and 5.1–5.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. An excess of events over background with a local significance of 5.0  $\sigma$  is observed at about  $m_H=125$  GeV. The combined signal strength is based on the  $\gamma\gamma$ ,  $ZZ^*$ ,  $WW^*$ ,  $\tau^+\tau^-$ , and  $b\overline{b}$  channels. The quoted signal strength is given for  $m_H=125.5$  GeV. See also CHATRCHYAN 13Y. NODE=S126SA;LINKAGE=LL

NODE=S126SA;LINKAGE=AB

NODE=S126SA;LINKAGE=AA

NODE=S126SA;LINKAGE=CA

W W\* final state

| W W* final state                                              | DOCUMENT ID                                        | TECN                   | COMMENT                                                                                     | NODE=S126SWW<br>NODE=S126SWW |
|---------------------------------------------------------------|----------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------|------------------------------|
| 1.00±0.08 OUR AVERA                                           | AGE                                                | 12011                  | <u>comment</u>                                                                              |                              |
| $0.97 \pm 0.09$                                               | <sup>1</sup> CMS                                   | 22 CMS                 | pp, 13 TeV                                                                                  |                              |
| $1.09^{+0.18}_{-0.16}$                                        | <sup>2,3</sup> AAD                                 | 16AN LHC               | <i>pp</i> , 7, 8 TeV                                                                        |                              |
| $0.94^{igoplus 0.85}_{igoplus 0.83}$                          | <sup>4</sup> AALTONEN                              | 13M TEVA               | $p\overline{p}  ightarrow  HX$ , 1.96 TeV                                                   |                              |
|                                                               | e following data for avera                         | ages, fits, limit      | ts, etc. • • •                                                                              |                              |
| $0.92^{igoplus 0.25}_{igoplus 0.23}$                          | <sup>5</sup> AAD                                   | 25AG CMS               | $pp \rightarrow WH/ZH$ , 13 TeV                                                             | l                            |
| $1.20 \pm 0.50 \pm 0.11$                                      | <sup>6</sup> HAYRAPETY.<br><sup>7</sup> HAYRAPETY. |                        | pp  ightarrow ZH, 13 TeV<br>$pp$ , $H  ightarrow WW^*$ ( $ ightarrow e  u \mu  u$ ), 13 TeV |                              |
|                                                               | <sup>8</sup> AAD<br><sup>9</sup> AAD               | 23AP ATLS<br>23BV ATLS | pp, 13 TeV, cross sections pp, 13 TeV, cross sections                                       |                              |
| $0.95 ^{igoplus 0.10}_{-0.09}$                                | $^{10,11}$ TUMASYAN                                | 23W CMS                | <i>pp</i> , 13 TeV                                                                          |                              |
| $0.92 ^{+ 0.11}_{- 0.10}$                                     | 10,12,13 TUMASYAN                                  | 23W CMS                | pp, 13 TeV                                                                                  | OCCUR=2                      |
| $0.71^{+0.28}_{-0.25}$                                        | 10,12,14 TUMASYAN                                  | 23W CMS                | pp, 13 TeV                                                                                  | OCCUR=3                      |
| $2.2 \pm 0.6$                                                 | 10,12,15 TUMASYAN                                  | 23W CMS                | pp, 13 TeV                                                                                  | OCCUR=4                      |
| $2.0 \pm 0.7$                                                 | 10,12,16 TUMASYAN<br>10,17 TUMASYAN                | 23W CMS<br>23W CMS     | рр, 13 TeV<br>рр, 13 TeV                                                                    | OCCUR=5<br>OCCUR=6           |
| $0.5 \ \pm 0.4 \ ^{+0.7}_{-0.6}$                              | <sup>18</sup> AAD                                  | 22V ATLS               | pp, $WW^* (\rightarrow e\nu\mu\nu)$<br>+2j, 13 TeV                                          |                              |
|                                                               | <sup>19</sup> AAD                                  | 22V ATLS               | $pp, WW^* (\rightarrow e \nu \mu \nu) +2j, 13 \text{ TeV}$                                  | OCCUR=2                      |
|                                                               | <sup>20</sup> AABOUD                               | 19F ATLS               | pp, 13 TeV, cross sections                                                                  |                              |
| $2.5 \begin{array}{c} +0.9 \\ -0.8 \end{array}$               | <sup>21</sup> AAD                                  | 19A ATLS               | $pp \rightarrow HW/HZ, H \rightarrow WW^*, 13 \text{ TeV}$                                  |                              |
| $1.28^{igoplus 0.17}_{igoplus 0.16}$                          | <sup>22</sup> SIRUNYAN                             | 19AT CMS               | <i>pp</i> , 13 TeV                                                                          |                              |
| $1.28^{igoplus 0.18}_{-0.17}$                                 | <sup>23</sup> SIRUNYAN                             | 19AX CMS               | pp, 13 TeV                                                                                  |                              |
| $1.22^{+0.23}_{-0.21}$                                        | <sup>3</sup> AAD                                   | 16AN ATLS              | pp, 7, 8 TeV                                                                                | OCCUR=2                      |
| $0.90^{+0.23}_{-0.21}$                                        | <sup>3</sup> AAD                                   | 16AN CMS               | pp, 7, 8 TeV                                                                                | OCCUR=3                      |
|                                                               | <sup>24</sup> AAD                                  | 16AO ATLS              | pp, 8 TeV, cross sections                                                                   |                              |
| $1.18\!\pm\!0.16^{+0.17}_{-0.14}$                             | <sup>25</sup> AAD                                  | 16K ATLS               | pp, 7, 8 TeV                                                                                |                              |
| $1.09 {+0.16 +0.17\atop -0.15 -0.14}$                         | <sup>26</sup> AAD                                  | 15AA ATLS              | <i>pp</i> , 7, 8 TeV                                                                        |                              |
| $3.0 \begin{array}{c} +1.3 & +1.0 \\ -1.1 & -0.7 \end{array}$ | <sup>27</sup> AAD                                  | 15AQ ATLS              | $pp \rightarrow HW/ZX$ , 7, 8                                                               |                              |
| $1.16 {}^{+ 0.16 + 0.18}_{- 0.15 - 0.15}$                     | <sup>28</sup> AAD                                  | 15AQ ATLS              | pp, 7, 8 TeV                                                                                | OCCUR=2                      |
| $0.72 \pm 0.12 \pm 0.10 ^{+0.12}_{-0.10}$                     | <sup>29</sup> CHATRCHYAN                           | N14G CMS               | <i>pp</i> , 7, 8 TeV                                                                        |                              |
| $0.99^{igoplus 0.31}_{igoplus 0.28}$                          | <sup>30</sup> AAD                                  | 13AK ATLS              | pp, 7 and 8 TeV                                                                             |                              |
| $0.00^{+1.78}_{-0.00}$                                        | 31 AALTONEN                                        | 13L CDF                | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                                 |                              |
| $1.90^{igoplus 1.63}_{-1.52}$                                 | <sup>32</sup> ABAZOV                               | 13L D0                 | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                                 |                              |
| $1.3 \pm 0.5$                                                 | 33 AAD                                             |                        | $pp \rightarrow HX$ , 7, 8 TeV                                                              |                              |
| $0.5 \pm 0.6$                                                 | <sup>33</sup> AAD<br><sup>33</sup> AAD             |                        | pp  ightarrow HX, 7 TeV<br>pp  ightarrow HX, 8 TeV                                          | OCCUR=2                      |
| $1.9 \pm 0.7$                                                 |                                                    |                        | • •                                                                                         | OCCUR=3                      |
| $0.60^{+0.42}_{-0.37}$                                        | - CHATRCHYAI                                       | NIZN CIVIS             | $pp \rightarrow HX$ , 7, 8 TeV                                                              |                              |

 $^1$  CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV, assuming  $m_H=$  125.38 GeV. See their Fig. 2 right.

<sup>2</sup> AAD 16AN perform fits to the ATLAS and CMS data at  $E_{\rm cm}=7$  and 8 TeV. The signal strengths for individual production processes are 0.84  $\pm$  0.17 for gluon fusion,  $1.2\pm0.4$  for vector boson fusion,  $1.6^{+1.2}_{-1.0}$  for WH production,  $5.9^{+2.6}_{-2.2}$  for ZH production, and  $5.0^{+1.8}_{-1.7}$  for  $t\bar{t}H$  production.

 $^3$  AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for  $m_H=125.09$  GeV.

 $^4$  AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb $^{-1}$  and 9.7 fb $^{-1}$ , respectively, of  $p\overline{p}$  collisions at  $E_{\rm cm}=1.96$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.

<sup>5</sup> AAD 25AG measure the signal strengths using  $H \to WW^* \to \ell\nu\ell\nu$  and  $H \to WW^* \to \ell\nu jj$  ( $\ell=e, \mu$ ) with 140 fb<sup>-1</sup> data at  $E_{\rm cm}=13$  TeV. The signal strengths are summarized in their Table 9 and Fig. 12. The sum of WH and ZH cross sections times the  $H \to WW^*$  branching ratio is measured to be  $0.44^{+}_{-0.09}^{+0.10}^{+0.06}$  pb and these two-dimensional likelihood scans are shown in their Fig. 14. Cross sections times the  $H \to WW^*$  branching ratio and ratios to the SM values are given in their Tables 12, 13, 14 and Figs. 15 and 16, which are based on the simplified template cross section framework (reduced stage-1.2).

<sup>6</sup> HAYRAPETYAN 25AC measure the ZH production cross section to the SM prediction using  $H \to WW^*$  decay channel with 138 fb $^{-1}$  and 62 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV and 13.6 TeV, respectively. Events with  $4\ell$  ( $\ell=e,~\mu$ ) are used. The cross section times the  $H \to WW^*$  branching fraction and the signal strength for each center of mass energy are shown in their Table I. The corresponding significances are given in their Table II.

 $^7$  HAYRAPETYAN 24AG search for the anomalous couplings of the Higgs boson to vector bosons, including  $\mathit{CP}$  violation effects using  $H\to WW^*\to e\nu\mu\nu$  decay channel ( $\ell=e,~\mu$ ) with 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The anomalous HVV and Hgg coupling parameters are given in their Table 7. The data constrain the SMEFT Higgs and Warsaw bases coupling parameters as shown in their Tables 8, 9 and Fig. 12.

<sup>8</sup> AAD 23AP measure cross-sections times the  $H \to WW^*$  branching fraction in the  $H \to WW^* \to e \nu \mu \nu$  channel using 139 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV:  $\sigma_{ggF} \times {\rm B}(H \to WW^*)=12.0\pm1.4$  pb,  $\sigma_{VBF} \times {\rm B}(H \to WW^*)=0.75^{+0.19}_{-0.16}$  pb, and  $\sigma_{ggF} + V_{BF} \times {\rm B}(H \to WW^*)=12.3\pm1.3$  pb. The results are given for  $m_H=125.09$  GeV. Measured cross sections and ratios to the SM predictions in the reduced stage-1.2 (see their Fig. 5) simplified template cross section framework are shown in their Table VII and Fig. 15.

<sup>9</sup> AAD 23BV measure fiducial total and differential cross sections of VBF process at  $E_{\rm cm}=13$  TeV with 139 fb $^{-1}$  using  $H\to WW^*\to e\nu\mu\nu$ . The measured total fiducial cross section is  $1.68\pm0.33({\rm stat})\pm0.23({\rm syst})$  fb in their fiducial region (Table II and Section V). See their Fig. 9 for the comparison with theory predictions. The fiducial differential cross sections are shown in their Figs. 11, 12, and 13. Wilson coefficients in the Warsaw basis at 95% confidence interval are measured; see their Table V and Fig. 16.

 $^{10}$  TUMASYAN 23W measure Higgs production rates with  $H \to WW^*$  at  $E_{\rm cm} = 13$  TeV with 138 fb $^{-1}$  data. The quoted results are given for  $m_H = 125.38$  GeV.

 $^{11}$ The quoted global signal strength is obtained assuming the relative ratios of different Higgs production modes fixed to the SM values.

<sup>12</sup> The 4 signal strengths for gluon-fusion (ggF), VBF, WH and ZH modes are fit assuming  $t\bar{t}H$  and  $b\bar{b}H$  fixed to the SM values.

 $^{13}$  The quoted result is for ggF production mode.

 $^{14}\,\mathrm{The}$  quoted result is for VBF production mode.

 $^{15}$  The quoted result is for WH production mode.

 $^{16}$  The quoted result is for ZH production mode.

17 Measured cross sections and ratios to the SM predictions in the reduced stage-1.2 (see their Fig. 17) simplified template cross section framework (6 ggF, 4 VBF, and 4 VH) are shown in their Table 18 and Fig. 26.

 $^{18}$  AAD 22V measure the signal strength for ggF+2jets with 36.1 fb $^{-1}$  data at 13 TeV.

<sup>19</sup> AAD 22V probe the Higgs couplings to longitudinally and transversely polarized W and Z using VBF ( $H \to WW^* \to e\nu\mu\nu$  plus two jets) with 36.1 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The ratios of the polarization-dependent couplings  $g_H V_L V_L$  and  $g_H V_T V_T$  to the Higgs-V coupling predicted by the SM,  $a_L = g_H V_L V_L / g_{HVV}^{SM}$  and  $a_T = g_H V_T V_T / g_{HVV}^{SM}$  are measured to be  $0.91^{+0.10}_{-0.18} - 0.17$  and  $1.2 \pm 0.4^{+0.2}_{-0.3}$ , respectively, assuming the standard Hgg coupling. These measurements are translated into pseudo-observables of  $\kappa_{VV}$  and  $\epsilon_{VV}$ :  $\kappa_{VV} = 0.91^{+0.10}_{-0.18} - 0.17$  and  $\epsilon_{VV} = 0.13^{+0.28}_{-0.20} + 0.08_{-0.10}$ , where  $\kappa_{VV} = 1$  and  $\epsilon_{VV} = 0$  for the SM. See their Tables 9 and 10.

<sup>20</sup>AABOUD 19F measure cross-sections times the  $H \to WW^*$  branching fraction in the  $H \to WW^* \to e \nu \mu \nu$  channel using 36.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$ 

NODE=S126SWW;LINKAGE=O

NODE=S126SWW;LINKAGE=I

NODE=S126SWW;LINKAGE=J

NODE=S126SWW;LINKAGE=AT

NODE=S126SWW;LINKAGE=DA

NODE=S126SWW;LINKAGE=EA

NODE=S126SWW;LINKAGE=BA

NODE=S126SWW:LINKAGE=P

NODE=S126SWW;LINKAGE=Z

NODE=S126SWW;LINKAGE=Q

NODE=S126SWW;LINKAGE=R

NODE=S126SWW;LINKAGE=T

NODE=S126SWW;LINKAGE=V NODE=S126SWW;LINKAGE=U NODE=S126SWW;LINKAGE=W NODE=S126SWW;LINKAGE=X NODE=S126SWW;LINKAGE=Y

NODE=S126SWW;LINKAGE=M NODE=S126SWW;LINKAGE=N

NODE=S126SWW;LINKAGE=F

TeV:  $\sigma_{ggF} \times \mathsf{B}(H \to WW^*) = 11.4^{+1.2}_{-1.1}^{+1.2}_{-1.7}^{+1.8} \text{ pb and } \sigma_{VBF} \times \mathsf{B}(H \to WW^*) = 11.4^{+1.2}_{-1.1}^{+1.2}_{-1.7}^{+1.8}$  $0.50^{+0.24}_{-0.22}\pm0.17$  pb.

 $^{-0.22}$  AAD 19A use  $36.1~\rm fb^{-1}$  data at 13 TeV. The cross section times branching fraction values are measured to be  $0.67^{+0.31}_{-0.27}^{+0.18}_{-0.14}$  pb for  $W\,H,\,H\to~W\,W^*$  and  $0.54^{+0.31}_{-0.24}^{+0.31}_{-0.07}^{+0.15}_{-0.24}^{+0.07}_{-0.07}$ pb for ZH,  $H \rightarrow WW^*$ .

 $^{22} \rm SIRUNYAN~19AT~perform~a~combine~fit~to~35.9~fb^{-1}~of~data~at~E_{\rm cm}=13~TeV.$ 

 $^{23} \text{SIRUNYAN}$  19AX measure the signal strengths, cross sections and so on using gluon fusion, VBF and VH production processes with 35.9 fb<sup>-1</sup> of data. The quoted signal strength is given for  $m_H=125.09$  GeV. Signal strengths for each production process is found in their Fig. 9. Measured cross sections and ratios to the SM predictions in the stage-0 simplified template cross section framework are shown in their Fig. 10.  $\kappa_{F}=$  $1.52^{+0.48}_{-0.41}$  and  $\kappa_{\mbox{\it V}}=1.10\pm0.08$  are obtained (see their Fig. 11 (right)).

 $^{24}\,\mathrm{AAD}$   $^{16\mathrm{AO}}$  measure fiducial total and differential cross sections of gluon fusion process at  $E_{\rm cm}=8$  TeV with 20.3 fb<sup>-1</sup> using  $H\to WW^*\to e\nu\mu\nu$ . The measured fiducial total cross section is  $36.0\pm9.7$  fb in their fiducial region (Table 7). See their Fig. 6 for fiducial differential cross sections. The results are given for  $m_H=125~{
m GeV}.$ 

 $^{25}$  AAD 16K use up to 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and up to 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.36$  GeV.

26 AAD 15AA use 4.5 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The signal strength for the gluon fusion and vector boson fusion mode is  $1.02\pm0.19^{+0.22}_{-0.18}$  and  $1.27^{+0.44}_{-0.40}+0.30$ , respectively. The quoted signal strengths are given for  $m_H=125.36$  GeV.

<sup>27</sup> AAD 15AQ use 4.5 fb<sup>-1</sup> of *pp* collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.36$  GeV.

 $^{28}$  AAD 15AQ combine their result on W/ZH production with the results of AAD 15AA (gluon fusion and vector boson fusion, slightly updated). The quoted signal strength is given for  $m_H = 125.36$  GeV.

 $^{29}\mathrm{CHATRCHYAN}~14\mathrm{G}$  use 4.9  $\mathrm{fb}^{-1}$  of pp collisions at  $E_\mathrm{cm}=7~\mathrm{TeV}$  and 19.4  $\mathrm{fb}^{-1}$  at  $E_{\rm cm}=8$  TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for  $m_H=125.6$  GeV.

 $^{30}$  AAD 13AK use 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 20.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.5$  GeV. Superseded by AAD 15AA.

 $^{31}$  AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for  $m_{H}=$  125 GeV.

 $^{32}$  ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm cm}=$ 1.96 TeV. The quoted signal strength is given for  $m_H=125$  GeV.

 $^{33}$  AAD 12AI obtain results based on 4.7 fb $^{-1}$  of  $\it pp$  collisions at  $\it E_{\rm cm}=$  7 TeV and 5.8  ${\rm fb^{-1}}$  at  $E_{\rm cm}=$  8 TeV. The quoted signal strengths are given for  $m_H=$  126 GeV. See also AAD 12DA.

<sup>34</sup>CHATRCHYAN 12N obtain results based on 4.9 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 5.1 fb  $^{-1}$  at  $E_{\rm cm}=$  8 TeV. The quoted signal strength is given for  $m_H=$  125.5 GeV. See also CHATRCHYAN 13Y.

18AJ ATLS *pp*, 13 TeV

17AV CMS *pp*, 13 TeV

18BP ATLS pp, 13 TeV, off-shell

## ZZ\* final state

 $1.05 ^{\,+\, 0.15 \,+\, 0.11}_{\,-\, 0.14 \,-\, 0.09}$ 

| VALUE                               | CL%       | DOCUMENT ID                             |              | TECN_        | COMMENT                               |
|-------------------------------------|-----------|-----------------------------------------|--------------|--------------|---------------------------------------|
| 1.02±0.08 OUR AVER                  | AGE       |                                         |              |              |                                       |
| $0.97 {+0.12 \atop -0.11}$          |           | $^{1}$ CMS                              | 22           | CMS          | <i>pp</i> , 13 TeV                    |
| $1.01 \pm 0.11$                     | ;         | <sup>2,3</sup> AAD                      | 20AQ         | ATLS         | pp, 13 TeV                            |
| $1.29 {+0.26 \atop -0.23}$          |           | <sup>4,5</sup> AAD                      | 16AN         | LHC          | pp, 7, 8 TeV                          |
| • • • We do not use the             | following | data for averages,                      | fits, I      | imits, et    | :c. • • •                             |
| $1.06^{+0.61}_{-0.45}$              |           | <sup>6</sup> AAD                        | 25AQ         | ATLS         | pp, 13 TeV, off-shell                 |
| 00                                  |           | <sup>7</sup> CHEKHOVSKY                 | <b>′25</b> B | CMS          | pp, 13.6 TeV, cross                   |
|                                     |           | <sup>8</sup> AAD                        | 24AQ         | ATLS         | sections pp, 13.6 TeV, cross sections |
|                                     |           | <sup>9</sup> HAYRAPETY                  | .23          | CMS          | pp, 13 TeV cross sec-                 |
|                                     |           | <sup>10</sup> SIRUNYAN                  | 21AE         | CMS          | tions pp, 13 TeV, couplings           |
| $0.94 \pm 0.07 {+0.09 \atop -0.08}$ |           | <sup>11</sup> SIRUNYAN                  | <b>21</b> S  | CMS          | pp, 13 TeV                            |
| 0.00                                |           | <sup>,12</sup> AAD<br>13 <sub>AAD</sub> |              | ATLS<br>ATLS | pp, 13 TeV<br>pp, 13 TeV cross sec-   |
| <6.5                                | 95        | <sup>14</sup> AABOUD                    |              | ATLS         | tions<br>pp, 13 TeV, off-shell        |
| $1.06 ^{igoplus 0.19}_{-0.17}$      |           | <sup>15</sup> SIRUNYAN                  | 19AT         | CMS          | pp, 13 TeV                            |

<sup>16</sup> AABOUD

<sup>17</sup> AABOUD

<sup>18</sup> SIRUNYAN

95

NODE=S126SWW:LINKAGE=L

NODE=S126SWW;LINKAGE=G NODE=S126SWW;LINKAGE=K

NODE=\$126SWW·LINKAGE=H

NODE=S126SWW;LINKAGE=E

NODE=S126SWW:LINKAGE=B

NODE=S126SWW;LINKAGE=C

NODE=S126SWW;LINKAGE=D

NODE=\$126\$WW;LINKAGE=A

NODE=S126SWW;LINKAGE=LH

NODE=S126SWW;LINKAGE=LL

NODE=S126SWW;LINKAGE=AB

NODE=S126SWW;LINKAGE=AA

NODE=S126SWW;LINKAGE=CA

NODE=S126SZZ NODE=S126SZZ

OCCUR=3

OCCUR=2

| $1.52 {+0.40 \atop -0.34}$                                                                                               | <sup>5</sup> AAD                                             | 16AN ATLS                            | pp, 7, 8 TeV                                                             | OCCUR=2                  |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|--------------------------|
| $1.04 ^{+0.32}_{-0.26}$                                                                                                  | <sup>5</sup> AAD                                             | 16AN CMS                             | pp, 7, 8 TeV                                                             | OCCUR=3                  |
| $1.46 + 0.35 + 0.19 \\ -0.31 - 0.13$                                                                                     | <sup>19</sup> AAD                                            | 16K ATLS                             | pp, 7, 8 TeV                                                             |                          |
| 0.01 0.13                                                                                                                | <sup>20</sup> KHACHATI                                       | RY16AR CMS                           | pp, 7, 8 TeV cross sections                                              |                          |
| $1.44 + 0.34 + 0.21 \\ -0.31 - 0.11$                                                                                     | <sup>21</sup> AAD                                            | 15F ATLS                             | $pp \rightarrow HX$ , 7, 8 TeV                                           |                          |
| 0.51 0.11                                                                                                                | <sup>22</sup> AAD                                            | 14AR ATLS                            | pp, 8 TeV, cross sections                                                |                          |
| $0.93^{igoplus 0.26}_{igoplus 0.23}^{igoplus 0.13}_{igoplus 0.09}$                                                       | <sup>23</sup> CHATRCH                                        | YAN 14AA CMS                         | pp, 7, 8 TeV                                                             |                          |
| $1.43 + 0.40 \\ -0.35$                                                                                                   | <sup>24</sup> AAD                                            | 13AK ATLS                            | <i>pp</i> , 7 and 8 TeV                                                  |                          |
| $0.80^{+0.35}_{-0.28}$                                                                                                   | <sup>25</sup> CHATRCH                                        | YAN 13J CMS                          | $pp \rightarrow HX$ , 7, 8 TeV                                           |                          |
| $1.2 \pm 0.6$                                                                                                            | <sup>26</sup> AAD                                            | 12AI ATLS                            | pp  ightarrow HX, 7, 8 TeV                                               |                          |
| $1.4 \pm 1.1$                                                                                                            | <sup>26</sup> <sub>AAD</sub><br><sup>26</sup> <sub>AAD</sub> |                                      | $pp \rightarrow HX$ , 7 TeV                                              | OCCUR=2                  |
| 1.1 $\pm 0.8$                                                                                                            |                                                              |                                      | $pp \rightarrow HX$ , 8 TeV                                              | OCCUR=3                  |
| $0.73^{+0.45}_{-0.33}$                                                                                                   |                                                              | YAN 12N CMS                          | $pp \rightarrow HX$ , 7, 8 TeV                                           |                          |
| $^{1}$ CMS 22 report combined report of data at $E_{cm} = 13$ TeV,                                                       | sults (see their Ext assuming $m_H=1$                        | ended Data Tabl<br>125.38 GeV. See   | e 2) using up to 138 fb <sup>-1</sup> their Fig. 2 right.                | NODE=S126SZZ;LINKAGE=S   |
| $^2$ AAD 20AQ perform analyses at $E_{cm} = 13$ TeV. Results                                                             | s using $H 	o ZZ^*$                                          | $^{c}  ightarrow 4\ell \ (\ell=e,$   |                                                                          | NODE=S126SZZ;LINKAGE=P   |
| <sup>3</sup> AAD 20AQ measured the ir decay ( $ y(H) $ < 2.5) to be                                                      | clusive cross sect                                           | ion times branch                     | sing ratio for $H \rightarrow ZZ^*$ B pb expected in the SM).            | NODE=S126SZZ;LINKAGE=Q   |
| <sup>4</sup> AAD 16AN perform fits to                                                                                    | the ATLAS and                                                | CMS data at $E_0$                    | cm = 7 and 8 TeV. The                                                    | NODE=S126SZZ;LINKAGE=G   |
| signal strengths for individu $0.1^{+1.1}_{-0.6}$ for vector boson for                                                   |                                                              | cesses are 1.13 <u></u>              | 0.31 for gluon fusion and                                                |                          |
| $^{5}$ AAD 16AN: In the fit, relative                                                                                    |                                                              | sections are fixe                    | d to those in the Standard                                               | NODE=S126SZZ;LINKAGE=H   |
| Model. The quoted signal s                                                                                               | trength is given fo                                          | or $m_H = 125.09$                    | GeV.                                                                     | NODE_3120322,EINNAGE_II  |
| <sup>6</sup> AAD 25AQ measure the off                                                                                    |                                                              |                                      |                                                                          | NODE=\$126\$ZZ;LINKAGE=W |
| $ZZ  ightarrow 4\ell \ (\ell=e,\ \mu)$ with with $ZZ  ightarrow 2\ell 2\nu$ decay c _3.7 $\sigma$ . The quoted errors ar | e values at 68%CI                                            | L.                                   |                                                                          |                          |
| <sup>7</sup> CHEKHOVSKY 25B measurement $= e, \mu$ ) with data of 34.                                                    |                                                              |                                      |                                                                          | NODE=\$126\$ZZ;LINKAGE=V |
| section is $2.89 + 0.53 + 0.29$<br>-0.49 - 0.23                                                                          |                                                              |                                      |                                                                          |                          |
| where $3.09^{+0.27}_{-0.24}$ fb is expe                                                                                  | cted in the SM. D                                            | ifferential fiducia                  | Il cross sections are shown                                              |                          |
| in their Fig. 5. The quoted                                                                                              | results are given f                                          | for $m_{	extsf{	extit{H}}}=125.38$   | 3 GeV.                                                                   | 1                        |
| <sup>8</sup> AAD 24AQ measure fiducial data. The quoted results a                                                        | re given for $m_{H}$ =                                       | = 125.09 GeV. T                      | he inclusive fiducial cross                                              | NODE=S126SZZ;LINKAGE=U   |
| section is 2.80 $\pm$ 0.74 fb v 3.67 $\pm$ 0.19 fb is expected                                                           |                                                              | '                                    | ,                                                                        |                          |
| branching fraction, the total in the SM.                                                                                 |                                                              | •                                    | •                                                                        |                          |
| <sup>9</sup> HAYRAPETYAN 23 measu                                                                                        | re the cross section                                         | ons for $pp \rightarrow H$           | $J \rightarrow ZZ^* \rightarrow 4\ell \ (\ell = e,$                      | NODE=S126SZZ;LINKAGE=T   |
| $\mu$ ) using 138 fb <sup>-1</sup> at $E_{\rm cm}$ in their fiducial region (see the in the Standard Model for           | heir Section5 and                                            | Table 2), where                      | $2.86 \pm 0.15$ fb is expected                                           |                          |
| cross sections are given; see                                                                                            | their Figs. 6-23 a                                           | and 24-25.                           |                                                                          |                          |
| <sup>10</sup> SIRUNYAN 21AE obtains co<br>and gluon) and top quark u                                                     |                                                              |                                      |                                                                          | NODE=S126SZZ;LINKAGE=N   |
| at $E_{cm} = 13$ TeV. Their and top with combining glu                                                                   | Table 5 and Figs 1                                           | 14–17 show (effe                     | ective) couplings to gluon                                               |                          |
| of $t \bar{t} H$ , $H 	o \gamma \gamma$ (SIRUN)                                                                          | 'AN 20AS). Their                                             | Tables 6–9 and F                     | Figs 18–22 show couplings                                                |                          |
| to $W$ and $Z$ for different as <sup>11</sup> SIRUNYAN 21S measure cross-                                                |                                                              | ,                                    | •                                                                        | NODE CIOCCETALINICACE D  |
| using 137 fb <sup>-1</sup> data at $E_{\rm Cl}$                                                                          |                                                              |                                      |                                                                          | NODE=S126SZZ;LINKAGE=R   |
| signal strengths for individu<br>given in their Table 6 and                                                              | al production pro                                            | cesses in their Ta                   | able 4. Cross sections are                                               |                          |
| section framework (reduced                                                                                               | stage-1.2).                                                  |                                      |                                                                          |                          |
| <sup>12</sup> AAD 20AQ present several re<br>simplified template cross see                                               | esults for the chan ction with $\kappa$ -frame               | nel $H	o ZZ^*$ -<br>works and the ef | $ ightarrow 4\ell \ (\ell=e,\ \mu)$ with the ffective field theory (EFT) | NODE=\$126\$ZZ;LINKAGE=O |
| approach; see their Table 8                                                                                              | and Fig. 10 for                                              | simplified templa                    | ate cross sections. $\kappa_V =$                                         |                          |
| $1.02 \pm 0.06$ and $\kappa_{	extbf{	iny F}} = 0.88$<br>See their Tables 9 and 10 a                                      | nd Figs. 16–18 for                                           | r the EFT-frame                      | work.                                                                    |                          |
| $^{13}$ AAD 20BA measure the cro                                                                                         |                                                              |                                      |                                                                          | NODE=S126SZZ;LINKAGE=M   |
| 139 fb $^{-1}$ at $E_{\rm cm} = 13$ Te                                                                                   | v. They give $\sigma \cdot \mathcal{B}$                      | o = 3.∠ŏ ± 0.30                      | ± 0.11 ID IN THEIR FIGUCIAL                                              |                          |

region, where 3.41  $\pm$  0.18 fb is expected in the Standard Model for  $m_{\mbox{\it H}}=125$  GeV. Various differential cross sections are also given; see their Figs. 19-39. Constraints on Yukawa couplings for bottom and charm quarks are given in their Table 9 and Fig. 41.

 $^{14}$  AABOUD 19N measure the spectrum of the four-lepton invariant mass  $\rm m_{4\ell}$  ( $\ell=e$  or  $\mu$ ) using 36.1 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The quoted signal strength upper limit is obtained from 180 GeV  $< \rm m_{4\ell} < 1200$  GeV.

 $^{15}\,\rm SIRUNYAN~19AT$  perform a combine fit to 35.9 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV.

 $^{16}$  AABOUD 18AJ perform analyses using  $H\to ZZ^*\to 4\ell$  ( $\ell=e,~\mu$ ) with data of  $36.1~{\rm fb^{-1}}$  at  $E_{\rm cm}=13$  TeV. Results are given for  $m_H=125.09$  GeV. The inclusive cross section times branching ratio for  $H\to ZZ^*$  decay ( $|\eta(H)|~<2.5$ ) is measured to be  $1.73^{+0.26}_{-0.24}$  pb (with  $1.34^{+0.09}_{-0.09}$  pb expected in the SM).

 $^{17}$  AABOUD 18BP measure an off-shell Higgs boson production using  $ZZ \to 4\ell$  and  $ZZ \to 2\ell 2\nu$  ( $\ell=e,~\mu$ ) decay channels with 36.1 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The quoted signal strength upper limit is obtained from a combination of these two channels, where 220 GeV <  $\rm m_{4\ell}^{}$  < 2000 GeV for  $ZZ \to 4\ell$  and 250 GeV <  $\rm m_{T}^{}ZZ$  < 2000 GeV for  $ZZ \to 2\ell 2\nu$  (m $_{T}^{}ZZ$  is defined in their Section 5). See their Table 2 for each measurement.

<sup>18</sup> SIRUNYAN 17AV use 35.9 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV. The quoted signal strength, obtained from the analysis of  $H\to ZZ^*\to 4\ell$  ( $\ell=e,\ \mu$ ) decays, is given for  $m_H=125.09$  GeV. The signal strengths for different production modes are given in their Table 3. The fiducial and differential cross sections are shown in their Fig. 10.

 $^{19}$  AAD 16K use up to 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$  7 TeV and up to 20.3 fb $^{-1}$  at  $E_{\rm cm}=$  8 TeV. The quoted signal strength is given for  $m_H=$  125.36 GeV.

KHACHATRYAN 16AR use data of 5.1 fb<sup>-1</sup> at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at 8 TeV. The fiducial cross sections for the production of 4 leptons via  $H\to 4\ell$  decays are measured to be  $0.56 {+} 0.67 {+} 0.21$  fb at 7 TeV and  $1.11 {+} 0.41 {+} 0.14$  fb at 8 TeV in their fiducial region (Table 2). The differential cross sections at  $E_{\rm cm}=8$  TeV are also shown in Figs. 4 and 5. The results are given for  $m_H=125$  GeV.

21 AAD 15F use 4.5 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.36$  GeV. The signal strength for the gluon fusion production mode is  $1.66^{+0.45}_{-0.41} + 0.25_{-0.41}$ , while the signal strength for the vector boson fusion production mode is  $0.26^{+1.60}_{-0.91} + 0.36_{-0.91}$ .

<sup>22</sup> AAD 14AR measure the cross section for  $pp \to H \to ZZ^* \to 4\ell$  ( $\ell=e, \mu$ ) using 20.3fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. They give  $\sigma \cdot B=2.11^{+0.53}_{-0.47}\pm0.08$  fbin their fiducial region, where 1.30  $\pm$  0.13 fb is expected in the Standard Model for  $m_H=125.4$  GeV. Various differential cross sections are also given; see their Fig. 2.

<sup>23</sup> CHATRCHYAN 14AA use 5.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.6$  GeV. The signal strength for the gluon fusion and  $t\bar{t}H$  production mode is  $0.80^{+0.46}_{-0.36}$ , while the signal strength for the vector boson fusion and WH, ZH production mode is  $1.7^{+2.2}_{-2.1}$ .

 $^{24}$  AAD 13AK use 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm Cm}=7$  TeV and 20.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.5$  GeV.

<sup>25</sup> CHATRCHYAN 13J obtain results based on  $ZZ \rightarrow 4\ell$  final states in 5.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 12.2 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.8$  GeV. Superseded by CHATRCHYAN 14AA.

 $^{26}$  AAD 12AI obtain results based on 4.7–4.8 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$  7 TeV and  $^{5.8}$  fb $^{-1}$  at  $E_{\rm cm}=$  8 TeV. The quoted signal strengths are given for  $m_{H}=$  126 GeV. See also AAD 12DA.

 $^{27}$  CHATRCHYAN  $^{12}$ N obtain results based on 4.9–5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 5.1–5.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. An excess of events over background with a local significance of 5.0  $\sigma$  is observed at about  $m_H=125$  GeV. The quoted signal strengths are given for  $m_H=125.5$  GeV. See also CHATRCHYAN  $^{12}$ BY and CHATRCHYAN  $^{13}$ Y.

### NODE=S126SZZ;LINKAGE=K

NODE=S126SZZ;LINKAGE=J NODE=S126SZZ;LINKAGE=F

NODE=S126SZZ;LINKAGE=L

NODE=S126SZZ;LINKAGE=E

NODE=S126SZZ;LINKAGE=D

NODE=S126SZZ;LINKAGE=I

NODE=S126SZZ;LINKAGE=B

NODE=S126SZZ:LINKAGE=C

NODE=S126SZZ;LINKAGE=A

NODE=S126SZZ;LINKAGE=LH

NODE=S126SZZ;LINKAGE=CA

 ${\sf NODE}{=}{\sf S126SZZ;LINKAGE}{=}{\sf AA}$ 

NODE=S126SZZ;LINKAGE=CH

### $\gamma\gamma$ final state

| , ,a. state                    |                       |      |       |                                             |
|--------------------------------|-----------------------|------|-------|---------------------------------------------|
| VALUE                          | DOCUMENT ID           |      | TECN  | COMMENT                                     |
| $1.10\pm0.06$ OUR AVERAG       | E                     |      |       |                                             |
| $1.04 ^{+ 0.10}_{- 0.09}$      | <sup>1</sup> AAD      | 23Y  | ATLS  | <i>pp</i> , 13 TeV                          |
| $1.13 \pm 0.09$                | <sup>2</sup> CMS      | 22   | CMS   | pp, 13 TeV                                  |
| $1.14 ^{igoplus 0.19}_{-0.18}$ | 3,4 AAD               | 16AN | l LHC | <i>pp</i> , 7, 8 TeV                        |
| $5.97^{+3.39}_{-3.12}$         | <sup>5</sup> AALTONEN | 13M  | TEVA  | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV |

NODE=S126SGG NODE=S126SGG

|                                                                                              |                                                                                               |                                                 |                                                                                                                                                                                                             | 11/11/2025 13:16 Page   |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| • • • We do not use the                                                                      |                                                                                               | erages, fits, lin                               | mits, etc. • • •                                                                                                                                                                                            |                         |
| 1.12±0.09                                                                                    | <sup>6</sup> AAD<br><sup>7</sup> TUMASYAN<br><sup>8</sup> AAD<br><sup>9</sup> SIRUNYAN        | 24AQ ATLS<br>23Q CMS<br>22N ATLS<br>210 CMS     | pp, 13.6 TeV, cross sections<br>pp, 13 TeV, cross sections<br>pp, 13 TeV, diff. x-sections<br>pp, 13 TeV                                                                                                    |                         |
| $1.20^{+0.18}_{-0.14}$                                                                       | <sup>10</sup> SIRUNYAN                                                                        | 19AT CMS                                        | pp, 13 TeV                                                                                                                                                                                                  |                         |
| 0.14                                                                                         | <sup>11</sup> SIRUNYAN                                                                        | 19L CMS                                         | pp, 13 TeV, diff. x-section                                                                                                                                                                                 |                         |
| $0.99^{igoplus 0.15}_{-0.14}$                                                                | <sup>12</sup> AABOUD                                                                          | 18BO ATLS                                       | pp, 13 TeV                                                                                                                                                                                                  |                         |
| $1.18 ^{+0.17}_{-0.14}$                                                                      | <sup>13</sup> SIRUNYAN                                                                        | 18DS CMS                                        | pp, $H  ightarrow \ \gamma \gamma$ , 13 TeV, floated $m_H$                                                                                                                                                  |                         |
| $1.14^{+0.27}_{-0.25}$                                                                       | <sup>4</sup> AAD                                                                              | 16AN ATLS                                       | pp, 7, 8 TeV                                                                                                                                                                                                | OCCUR=2                 |
| -0.25 $1.11 + 0.25$ $-0.23$                                                                  | <sup>4</sup> AAD                                                                              | 16AN CMS                                        | pp, 7, 8 TeV                                                                                                                                                                                                | OCCUR=3                 |
|                                                                                              | <sup>14</sup> KHACHATRY                                                                       |                                                 | pp, 8 TeV, diff. x-section                                                                                                                                                                                  |                         |
| $1.17 \pm 0.23 ^{+0.10}_{-0.08} + 0.12$                                                      | 15 AAD                                                                                        | 14BC ATLS                                       | $pp \rightarrow HX, 7, 8 \text{ TeV}$                                                                                                                                                                       |                         |
| -0.08 - 0.08                                                                                 | 16 AAD                                                                                        | 14BJ ATLS                                       | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                     |                         |
| $1.14 \pm 0.21 + 0.09 + 0.13 \\ -0.05 - 0.09$                                                | 17 KHACHATRY                                                                                  |                                                 | <i>pp</i> , 7, 8 TeV                                                                                                                                                                                        |                         |
| $0.03  0.03$ $1.55^{+0.33}_{-0.28}$                                                          | <sup>18</sup> AAD                                                                             | 13AK ATLS                                       | <i>pp</i> , 7 and 8 TeV                                                                                                                                                                                     |                         |
| $7.81 + 4.61 \\ -4.42$                                                                       | <sup>19</sup> AALTONEN                                                                        | 13L CDF                                         | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                                                                                                                                                 |                         |
| $4.20^{+4.60}_{-4.20}$                                                                       | <sup>20</sup> ABAZOV                                                                          | 13L D0                                          | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                                                                                                                                                 |                         |
| 1.8 ±0.5                                                                                     | <sup>21</sup> AAD                                                                             | 12AI ATLS                                       | $pp  ightarrow \; HX$ , 7, 8 TeV                                                                                                                                                                            |                         |
| $2.2 \pm 0.7$                                                                                | <sup>21</sup> AAD                                                                             |                                                 | $pp \rightarrow HX$ , 7 TeV                                                                                                                                                                                 | OCCUR=2                 |
| .5 ±0.6                                                                                      | <sup>21</sup> AAD                                                                             |                                                 | $pp \rightarrow HX$ , 8 TeV                                                                                                                                                                                 | OCCUR=3                 |
| $1.54 ^{igoplus 0.46}_{-0.42}$                                                               | <sup>22</sup> CHATRCHYA                                                                       | N12N CMS                                        | $pp \rightarrow HX$ , 7, 8 TeV                                                                                                                                                                              |                         |
| predictions for the diff<br>Measured cross section<br>their Fig. 11) simplifie               | ferent production me<br>ns and ratios to the<br>ed template cross se<br>pefficients in the Wa | odes are show<br>SM prediction<br>ction framewo | 3 TeV. The quoted results are sured $\sigma \cdot B$ and ratios to the SM in in their Table 9 and Fig. 9. Is in the reduced stage-1.2 (see ork are shown in their Table 10 at their Table 11) at 95% CL are | NODE=S126SGG;LINKAGE=P  |
| of data at $E_{\sf cm}=13$                                                                   | TeV, assuming $m_H$                                                                           | = 125.38 GeV                                    | a Table 2) using up to 138 fb $^{-1}$ $^{\prime}$ . See their Fig. 2 right.                                                                                                                                 | NODE=S126SGG;LINKAGE=N  |
| <sup>3</sup> AAD 16AN perform fits                                                           | s to the ATLAS and                                                                            | CMS data at I                                   | $E_{\rm cm} = 7$ and 8 TeV. The signal                                                                                                                                                                      | NODE=S126SGG;LINKAGE=H  |
| strengths for individua                                                                      | l production process                                                                          | es are $1.10^{+0}_{-0}$                         | $0.23$ for gluon fusion, $1.3 \pm 0.5$                                                                                                                                                                      |                         |
| for vector boson fusion $2.2^{+1.6}_{-1.3}$ for $t\bar{t}H$ prod                             | ±. <u>~</u>                                                                                   | production, 0.                                  | $5^{+3.0}_{-2.5}$ for $ZH$ production, and                                                                                                                                                                  |                         |
|                                                                                              | elative production cr                                                                         |                                                 | re fixed to those in the Standard<br>25.09 GeV.                                                                                                                                                             | NODE=S126SGG;LINKAGE=I  |
| <sup>5</sup> AALTONEN 13M com<br>up to 10.0 fb <sup>-1</sup> and 9<br>quoted signal strength | bine all Tevatron da<br>9.7 fb <sup>—1</sup> , respective                                     | ta from the C ly, of $p\bar{p}$ collis          | DF and D0 Collaborations with sions at $E_{\rm cm}=1.96$ TeV. The                                                                                                                                           | NODE=S126SGG;LINKAGE=AT |
| <sup>6</sup> AAD 24AQ measure f                                                              | iducial and total cro                                                                         | oss sections a                                  | t $E_{cm} = 13.6$ TeV with $31.4$                                                                                                                                                                           | NODE=S126SGG;LINKAGE=Q  |
|                                                                                              |                                                                                               |                                                 | 5.09 GeV. The inclusive fiducial                                                                                                                                                                            |                         |
| cross section is $76^{+1}_{-1}$                                                              | f fb with their defin                                                                         | ed fiducial re                                  | gion (see their Table 2), where                                                                                                                                                                             |                         |
| $0/.0 \pm 3./$ tb is expect                                                                  | ted in the SM. Assi                                                                           | ımıng SM val                                    | ues for the acceptance and the                                                                                                                                                                              |                         |
| $67.6 \pm 3.7$ fb is expector. the                                                           | ted in the SM. Assi<br>total cross section i                                                  | uming SM val ${ m s}~67^{+}_{-11}$ pb. v        | where $59.9 \pm 2.6$ pb is expected                                                                                                                                                                         |                         |

branching fraction, the total cross section is  $67^{+12}_{-11}$  pb, where  $59.9\pm2.6$  pb is expected

in the SM. 7 TUMASYAN 23Q measure fiducial and differential cross sections at  $E_{\rm cm}=13$  TeV with  $\frac{1}{1000}$  Tumasyan for  $m_{\rm H}=125.38$  GeV. The inclusive 137 fb<sup>-1</sup> data. The quoted results are given for  $m_H=125.38$  GeV. The inclusive fiducial  $\sigma \cdot B$  is  $73.4^{+5.4}_{-5.3}(\text{stat})^{+2.4}_{-2.2}(\text{syst})$  fb with their defined fiducial region (see their Section 7 and Table 2), where  $75.4\pm4.1$  fb is expected in the Standard Model. See their Fig. 8 including other fiducial  $\sigma \cdot B$  defined in their Table 3. Differential  $\sigma \cdot B$  are shown in their Figs. 10–15. Double-differential  $\sigma \cdot B$  are in their Figs. 16 and 17. 8 AAD 22N measure fiducial and differential cross sections of  $pp \rightarrow H \rightarrow \gamma \gamma$  at  $E_{\rm cm} = 1$ 

13 TeV with 139 fb<sup>-1</sup> data. The quoted results are given for  $m_H = 125.09$  GeV. The inclusive fiducial  $\sigma \cdot B$  is  $67 \pm 5 \pm 4$  fb with their defined fiducial region. Other fiducial  $\sigma \cdot B$  are in their Table 3. Differential  $\sigma \cdot B$  are shown in their Figs. 8–13, 15, 25–32, 35, 36. Double-differential  $\sigma \cdot B$  are in their Figs. 14, 33, 34. Modifications of the  $\emph{b}\text{-}$  and c-quark Yukawa couplings to H,  $\kappa_b$  and  $\kappa_c$  at 95% CL are in their Table 6 and Fig. 18. Wilson coefficients at 95% CL are in their Table 7 and Fig. 21.

NODE=S126SGG;LINKAGE=O

NODE=S126SGG;LINKAGE=M

 $^{9}$ SIRUNYAN 210 measures cross sections and couplings with the  $extit{H} 
ightarrow ~\gamma \gamma$  channel using 137 fb $^{-1}$  data at  $E_{\rm cm}=13$  TeV. Results are given for  $m_H=125.38$  GeV. The signal strengths for individual production processes are given in their Fig. 16. Cross sections are given in their Tables 12 and 13 and Figs. 18 and 20, which are based on the simplified template cross section framework (reduced stage-1.2). Results in the  $\kappa$ -framework are given in their Fig. 22.

 $^{10}$  SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV.

 $^{11}$ SIRUNYAN 19L measure fiducial and differential cross sections of the process pp ightarrow $H \rightarrow \gamma \gamma$  at  $E_{\rm cm} = 13$  TeV with 35.9 fb<sup>-1</sup>. See their Figs. 4–11.

 $^{12}$  AABOUD 18BO use 36.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=13$  TeV. The signal strengths for the individual production modes are:  $0.81^{+0.19}_{-0.18}$  for gluon fusion,  $2.0^{+0.6}_{-0.5}$  for vector boson fusion,  $0.7^{+0.9}_{-0.8}$  for VH production (V=W,~Z), and  $0.5\pm0.6$  for  $t\bar{t}H$  and tH production. Other measurements of cross sections and couplings are summarized in their Section 10. The quoted values are given for  $m_H=125.09~{\rm GeV}.$ 

<sup>13</sup> SIRUNYAN 18DS use 35.9 fb<sup>-1</sup> of  $pp \to H$  collisions with  $H \to \gamma \gamma$  at  $E_{\rm cm} = 13$  TeV. The Higgs mass is floated in the measurement of a signal strength. The result is  $1.18 + 0.12 ({\rm stat.}) + 0.09 ({\rm syst.}) + 0.07 ({\rm theory})$ , which is largely insensitive to the Higgs mass around 125 GeV.

 $^{14}$  KHACHATRYAN 16G measure fiducial and differential cross sections of the process pp oHX,  $H \rightarrow \gamma \gamma$  at  $E_{\rm cm} = 8$  TeV with 19.7 fb $^{-1}$ . See their Figs. 4–6 and Table 1 for

 $^{15}$  AAD 14BC use 4.5 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for  $m_H=125.4$  GeV. The signal strengths for the individual production modes are:  $1.32\pm0.38$  for gluon fusion,  $0.8\pm0.7$  for vector boson fusion,  $1.0\pm1.6$  for WH production,  $0.1^{+3.7}_{-0.1}$  for ZH production, and  $1.6^{+2.7}_{-1.8}$  for  $t\bar{t}H$  production.  $1.6 \pm 0.7 \pm$ 

<sup>17</sup> KHACHATRYAN <sup>14P</sup> use 5.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for  $m_H=124.7$  GeV. The signal strength for the gluon fusion and  $t\bar{t}H$  production mode is  $1.13^{+0.37}_{-0.31}$ , while the signal strength for the vector boson fusion and  $W\,H$ ,  $Z\,H$  production mode is  $1.16 {+0.63 \atop -0.58}$ 

 $^{18}$  AAD 13AK use 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 20.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.5$  GeV.

 $^{19}\,\mathrm{AALTONEN}$  13L combine all CDF results with 9.45–10.0 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_\mathrm{cm}$ = 1.96 TeV. The quoted signal strength is given for  $m_H = 125$  GeV.

 $^{20}$  ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$  of  $p\bar{p}$  collisions at  $E_{\rm cm}=1.96$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.

 $^{21}$  AAD 12AI obtain results based on 4.8 fb $^{-1}$  of  $\it pp$  collisions at  $\it E_{\rm cm}=$  7 TeV and 5.9  ${\rm fb^{-1}}$  at  $E_{\rm cm}=$  8 TeV. The quoted signal strengths are given for  $m_H=$  126 GeV. See also AAD 12DA.

 $^{22}$ CHATRCHYAN 12N obtain results based on 5.1 fb $^{-1}$  of pp collisions at  $E_{
m cm}$ =7 TeV and 5.3 fb $^{-1}$  at  $E_{\rm cm}=$ 8 TeV. The quoted signal strength is given for  $m_H=$ 125.5 GeV. See also CHATRCHYAN 13Y. NODE=S126SGG;LINKAGE=L

NODE=S126SGG;LINKAGE=K NODE=S126SGG;LINKAGE=J

NODE=S126SGG;LINKAGE=F

NODE=\$126SGG:LINKAGE=G

NODE=S126SGG;LINKAGE=E

NODE=S126SGG;LINKAGE=B

NODE=S126SGG;LINKAGE=D

NODE=S126SGG:LINKAGE=A

NODE=S126SGG;LINKAGE=LH

NODE=S126SGG;LINKAGE=LL

NODE=S126SGG:LINKAGE=AB

NODE=S126SGG;LINKAGE=AA

NODE=S126SGG;LINKAGE=CA

# $c\overline{c}$ final state

| VALU | JE                                                      | CL%           | DOCUMENT ID           | TECN              | COMMENT                                 |   |
|------|---------------------------------------------------------|---------------|-----------------------|-------------------|-----------------------------------------|---|
| <    | 11.5 (CL = 95%                                          | ) [<14 (      | CL = 95%) OUR         | 2025 BEST I       | LIMIT]                                  |   |
| <    | 11.5                                                    | 95            | <sup>1</sup> AAD      | 25Y ATLS          | $pp \rightarrow WH/ZH$ , 13 TeV         |   |
| • •  | • We do not use                                         | the following | ng data for averag    | ges, fits, limits | s, etc. • • •                           |   |
|      | $1.0^{+}_{-}$ $\begin{array}{c} 5.4 \\ 5.2 \end{array}$ |               | <sup>1</sup> AAD      | 25Y ATLS          | $pp \rightarrow WH/ZH$ , 13 TeV         | I |
|      | $9.4^{\displaystyle +20.3}_{\displaystyle -19.9}$       |               | <sup>2</sup> TUMASYAN | 23AD CMS          | $pp \rightarrow WH/ZH$ (boosted) 13 TeV |   |

|   | 1.0 - 5.2                                          |     | <sup>+</sup> AAD      | 25Y ATLS | $pp \rightarrow WH/ZH$ , 13 TeV          |
|---|----------------------------------------------------|-----|-----------------------|----------|------------------------------------------|
|   | $9.4^{+20.3}_{-19.9}$                              |     | <sup>2</sup> TUMASYAN | 23AD CMS | $pp \rightarrow WH/ZH$                   |
|   | 47                                                 | 0.5 | <sup>2</sup> TUMASYAN | 22 6146  | (boosted), 13 TeV                        |
| < | 47                                                 | 95  | - TUMASYAN            | 23AD CMS | $pp \rightarrow WH/ZH$ (boosted), 13 TeV |
| < | 14                                                 | 95  | <sup>3</sup> TUMASYAN | 23AH CMS | $pp \rightarrow WH/ZH$ , 13 TeV          |
| _ | $9 \pm 10 \pm 11$                                  |     | <sup>4,5</sup> AAD    | 22W ATLS | $pp \rightarrow WH/ZH$ , 13 TeV          |
| _ | $-9 \pm 10 \pm 12$                                 |     | 4,6 AAD               | 22W ATLS | $pp \rightarrow WH/ZH$ , 13 TeV          |
| < | 26                                                 | 95  | <sup>4</sup> AAD      | 22W ATLS | $pp \rightarrow WH/ZH$ , 13 TeV          |
|   | 37 $\pm 17 \begin{array}{c} +11 \\ -9 \end{array}$ |     | <sup>7</sup> SIRUNYAN | 20AE CMS | pp, 13 TeV                               |
| < | 110                                                | 95  | <sup>8</sup> AABOUD   | 18M ATLS | pp, 13 TeV                               |

NODE=S126SCC NODE=S126SCC

OCCUR=2

OCCUR=3

OCCUR=2 OCCUR=3 OCCUR=2

| $^{1}$ AAD 25Y present measurements of $VH,~H  ightarrow~b\overline{b}$ and $H  ightarrow~c\overline{c}$ ( $V=W,~Z$ ) using |
|-----------------------------------------------------------------------------------------------------------------------------|
| 140 fb $^{-1}$ of $pp$ collision data at $E_{\rm cm}=$ 13 TeV. Two-dimensional likelihood scan of                           |
| $(\mu_{VH}^{bb},\mu_{VH}^{cc})$ is shown in their Fig. 11.                                                                  |

<sup>2</sup>TUMASYAN 23AD search for Higgs produced with transverse momenta greater than 450 GeV and decaying to  $c\overline{c}$  using 138 fb<sup>-1</sup> of pp collision data at  $E_{cm}=13$  TeV.

<sup>3</sup> TUMASYAN 23AH search for VH,  $H \to c\overline{c}$  (V = W, Z) using 138 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm} = 13$  TeV. The upper limit on  $\sigma(pp \to VH) \cdot {\rm B}(H \to c\overline{c})$  is 0.94 pb at 95% CL. See their Fig. 4. The quoted values are given for  $m_H=125.38$  GeV.

<sup>4</sup> AAD 22W search for VH,  $H \rightarrow c \overline{c}$  (V = W, Z) using 139 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm}=13$  TeV. The results are given for  $m_H=125$  GeV.

<sup>5</sup> The analysis of VH,  $H \rightarrow c\overline{c}$  is combined with VH,  $H \rightarrow b\overline{b}$  (AAD 21AB). The ratio  $|\kappa_{\it C}/\kappa_{\it b}|$  is constrained to be less than 4.5 at 95% CL. See their Fig. 7.

 $^6$  The constraint on the charm Yukawa coupling modifier  $\kappa_c$  is measured to be  $|\kappa_c|$  <8.5 at 95% CL. See their Fig. 4.

<sup>7</sup> SIRUNYAN 20AE use 35.9 fb<sup>-1</sup> at of pp collisions at  $E_{cm}=13$  TeV. The measured best fit value of  $\sigma(pp\to VH)\cdot B(H\to c\overline{c})$  is  $2.40^{+1.12}_{-1.11} - 0.61$  pb (equivalent to <4.5 pb at 95% CL upper limit, i.e. 70 times the standard model), where V is  $W \to \ell \nu$ ,  $Z 
ightarrow \ell \ell$ , or  $Z 
ightarrow 
u 
u 
u 
(\ell = e, \mu)$ . The quoted values are given for  $m_H = 125$  GeV.

<sup>8</sup> AABOUD 18M use 36.1 fb<sup>-1</sup> at of pp collisions at  $E_{\rm cm}=13$  TeV. The upper limit on  $\sigma(pp\to~ZH)\cdot {\rm B}(H\to~c\overline{c})$  is 2.7 pb at 95% CL. This corresponds to 110 times the standard model. The quoted values are given for  $m_H=125~{\rm GeV}.$ 

 $b\overline{b}$  final state VALUE DOCUMENT ID TECN COMMENT 0.94±0.11 OUR AVERAGE NFW  $[0.99 \pm 0.12 \; \mathsf{OUR} \; 2025 \; \mathsf{AVERAGE}]$  $0.92^{+0.16}_{-0.15}$ 1 AAD 25Y ATLS  $pp \rightarrow VH, H \rightarrow b\overline{b}, 13 \text{ TeV}$  $1.05^{+0.22}_{-0.21}$  $^{2}\,\mathrm{CMS}$ 22 CMS pp, 13 TeV  $0.95 \pm 0.32 ^{+0.20}_{-0.17}$ 3 AAD VBF,  $H \rightarrow b\overline{b}$ , pp, 13 TeV, 126 21AJ ATLS  $fb^{-1}$  $0.70^{+0.29}_{-0.27}$ 4,5 AAD 16AN LHC pp, 7, 8 TeV  $1.59^{+0.69}_{-0.72}$ <sup>6</sup> AALTONEN 13M TEVA  $p\overline{p} \rightarrow HX$ , 1.96 TeV • • We do not use the following data for averages, fits, limits, etc. <sup>7</sup> CHEKHOVSKY25A CMS VH,  $H \rightarrow b\overline{b}$ , pp, 13 TeV  $1.4 \begin{array}{c} +1.0 \\ -0.9 \end{array}$ 8 AAD 24F ATLS VH, boosted  $H \rightarrow b\overline{b}$ , pp, 13  $2.2 \begin{array}{c} +0.9 \\ -0.8 \end{array}$ <sup>9</sup> HAYRAPETY...24AMCMS  $pp \rightarrow ZH, Z/H \rightarrow b\overline{b}, 13 \text{ TeV}$  $4.9 \begin{array}{c} +1.9 \\ -1.6 \end{array}$ <sup>10</sup> HAYRAPETY...24AY CMS ggF, VBF, boosted  $H \rightarrow b\overline{b}$ , pp, 13 TeV  $1.6 \begin{array}{c} +1.7 \\ -1.5 \end{array}$ OCCUR=2 <sup>11</sup> HAYRAPETY...24AY CMS ggF, VBF, boosted  $H \rightarrow b\overline{b}$ , pp, 13 TeV  $1.01^{+0.55}_{-0.46}$ <sup>12</sup> HAYRAPETY...24∪ CMS VBF,  $H \rightarrow b\overline{b}$ , pp, 13 TeV, 90.8  $_{\mathsf{fb}}^{-1}$  $0.99^{+0.48}_{-0.41}$ OCCUR=2 13 HAYRAPETY...24U CMS ggF, VBF,  $H \rightarrow b\overline{b}$ , pp, 13 TeV,  $90.8 \; {\rm fb}^{-1}$  $-2.7 \begin{array}{c} +5.6 \\ -2.1 \end{array} \pm 3.5$ OCCUR=3 <sup>14</sup> HAYRAPETY...24U CMS ggF,  $H \rightarrow b\overline{b}$ , pp, 13 TeV, 90.8  $_{\mathrm{fb}}^{-1}$  $1.59^{+0.63}_{-0.72}\pm0.54$ OCCUR=4 <sup>14</sup> HAYRAPETY...24U CMS VBF,  $H \rightarrow b\overline{b}$ , pp, 13 TeV, 90.8  $fb^{-1}$  $1.15^{+0.22}_{-0.20}$ <sup>15</sup> TUMASYAN  $pp \rightarrow WH/ZH, H \rightarrow b\overline{b}, 13$ 24 CMS TeV,  $138 \; {\rm fb}^{-1}$ 16 AAD  $0.8 \pm 3.2$ 22X ATLS boosted  $H \rightarrow b\overline{b}$ , pp, 13 TeV  $1.02 ^{\,+\, 0.12 \,+\, 0.14}_{\,-\, 0.11 \,-\, 0.13}$  $pp 
ightarrow VH, H 
ightarrow b\overline{b}, 13 \ {\sf TeV}$ 17 AAD 21AB ATLS  $0.95 \pm 0.18 ^{+0.19}_{-0.18}$ OCCUR=2 17 AAD 21AB ATLS  $pp \rightarrow HW, H \rightarrow b\overline{b}, 13 \text{ TeV},$  $139 \text{ fb}^{-1}$  $1.08 \pm 0.17 ^{+0.18}_{-0.15}$ OCCUR=3 17 AAD 21AB ATLS  $pp \rightarrow HZ, H \rightarrow b\overline{b}, 13 \text{ TeV},$  $139 \; {\rm fb}^{-1}$  $0.72^{\color{red}+0.29}_{-0.28} {}^{\color{red}+0.26}_{-0.22}$  $^{18}$  AAD 21H ATLS  $pp \rightarrow HW/HZ, H \rightarrow b\overline{b},$ boosted W/Z, 13 TeV, 139  $^{19}AAD$  $1.3\ \pm1.0$ 21M ATLS VBF+ $\gamma$ ,  $H \rightarrow b\overline{b}$ , pp, 13 TeV,  $132 \; {\rm fb}^{-1}$  $3.7 \pm 1.2 \, ^{+0.11}_{-0.9}$ <sup>20</sup> SIRUNYAN 20BL CMS boosted  $H \rightarrow b\overline{b}$ , pp, 13 TeV <sup>21</sup> AABOUD 190 ATLS  $pp \rightarrow VH, H \rightarrow b\overline{b}, 13 \text{ TeV},$ cross sections

NODE=S126SCC;LINKAGE=I

NODE=S126SCC;LINKAGE=G

NODE=S126SCC;LINKAGE=H

NODE=S126SCC;LINKAGE=D

NODE=S126SCC;LINKAGE=E

NODE=S126SCC:LINKAGE=F

NODE=S126SCC;LINKAGE=C

NODE=S126SCC;LINKAGE=A

NODE=S126SBB NODE=S126SBB

| $1.12\!\pm\!0.29$                                             | <sup>22</sup> SIRUNYAN                      | 19AT CMS   | <i>pp</i> , 13 TeV                                                                                    |            |
|---------------------------------------------------------------|---------------------------------------------|------------|-------------------------------------------------------------------------------------------------------|------------|
| $1.16^{igoplus 0.27}_{-0.25}$                                 | <sup>23</sup> AABOUD                        | 18BN ATLS  | $pp  ightarrow \; HW/HZ,  H  ightarrow \; b \overline{b},  13$ TeV, 79.8 fb $^{-1}$                   |            |
| $0.98^{igoplus 0.22}_{igoplus 0.21}$                          | <sup>24</sup> AABOUD                        | 18BN ATLS  | $pp  ightarrow HW/HZ$ , $H  ightarrow b\overline{b}$ , 7, 8, 13 TeV                                   | OCCUR=2    |
| $1.01 \pm 0.20$                                               | <sup>25</sup> AABOUD                        | 18BN ATLS  | $pp \rightarrow HX$ , ggF, VBF, $VH$ , $t\bar{t}H$ 7, 8, 13 TeV                                       | OCCUR=3    |
| $2.5 \begin{array}{c} +1.4 \\ -1.3 \end{array}$               | <sup>26,27</sup> AABOUD                     | 18BQ ATLS  | $pp  ightarrow HX$ , VBF, ggF, $VH$ , $t \overline{t} H$ , 13 TeV                                     |            |
| $3.0 \begin{array}{c} +1.7 \\ -1.6 \end{array}$               | 26,28 AABOUD                                | 18BQ ATLS  | $pp  ightarrow \; HX$ , VBF, 13 TeV                                                                   | OCCUR=2    |
| 1.0                                                           | <sup>29</sup> AALTONEN                      | 18C CDF    | $p\overline{p}  ightarrow \ HX$ , 1.96 TeV                                                            |            |
| $1.19 ^{+ 0.40}_{- 0.38}$                                     | <sup>30</sup> SIRUNYAN                      | 18AE CMS   | $pp \rightarrow HW/HZ, H \rightarrow b\overline{b}, 13$ TeV                                           |            |
| $1.06^{+0.31}_{-0.29}$                                        | <sup>31</sup> SIRUNYAN                      | 18AE CMS   | $pp \rightarrow HW/HZ$ , $H \rightarrow b\overline{b}$ , 7, 8, 13 TeV                                 | OCCUR=2    |
| $1.06 \pm 0.26$                                               | <sup>32</sup> SIRUNYAN                      | 18DB CMS   | $pp \rightarrow HW/HZ, H \rightarrow b\overline{b}, 13$<br>TeV, 77.2 fb <sup>-1</sup>                 |            |
| $1.01\!\pm\!0.22$                                             | <sup>33</sup> SIRUNYAN                      | 18DB CMS   | $pp \rightarrow HW/HZ, H \rightarrow b\overline{b}, 7,$ 8, 13 TeV                                     | OCCUR=2    |
| $1.04 \pm 0.20$                                               | <sup>34</sup> SIRUNYAN                      | 18DB CMS   | $pp \rightarrow HX$ , ggF, VBF, $VH$ , $t\bar{t}H$<br>7, 8, 13 TeV                                    | OCCUR=3    |
| $2.3 \begin{array}{c} +1.8 \\ -1.6 \end{array}$               | <sup>35</sup> SIRUNYAN                      | 18E CMS    | $pp \rightarrow HX$ , boosted, 13 TeV                                                                 |            |
| $1.20^{+0.24+0.34}_{-0.23-0.28}$                              | <sup>36</sup> AABOUD                        | 17BA ATLS  | $pp ightarrow \;HW/ZX,H ightarrow \;b\overline{b},13$ TeV, $36.1~{ m fb}^{-1}$                        |            |
| $0.90\!\pm\!0.18^{\displaystyle +0.21}_{\displaystyle -0.19}$ | <sup>37</sup> AABOUD                        | 17BA ATLS  | $pp \rightarrow HW/ZX, H \rightarrow b\overline{b}, 7,$ 8, 13 TeV                                     | OCCUR=2    |
| $-0.8\ \pm 1.3\ ^{+1.8}_{-1.9}$                               | <sup>38</sup> AABOUD                        | 16X ATLS   | $pp  ightarrow \ HX$ , VBF, 8 TeV                                                                     |            |
| $0.62\!\pm\!0.37$                                             | <sup>5</sup> AAD                            | 16AN ATLS  | <i>pp</i> , 7, 8 TeV                                                                                  | OCCUR=2    |
| $0.81^{igoplus 0.45}_{-0.43}$                                 | <sup>5</sup> AAD                            | 16AN CMS   | pp, 7, 8 TeV                                                                                          | OCCUR=3    |
| $0.63^{+0.31}_{-0.30}^{+0.24}_{-0.23}$                        | <sup>39</sup> AAD                           | 16K ATLS   | pp, 7, 8 TeV                                                                                          |            |
| $0.52\!\pm\!0.32\!\pm\!0.24$                                  | <sup>40</sup> AAD                           | 15G ATLS   | pp  ightarrow HW/ZX, 7, 8 TeV                                                                         |            |
| $2.8 \begin{array}{l} +1.6 \\ -1.4 \end{array}$               | <sup>41</sup> KHACHATRY                     | 15z CMS    | $pp  ightarrow \ HX$ , VBF, 8 TeV                                                                     |            |
| $1.03^{igoplus 0.44}_{-0.42}$                                 | <sup>42</sup> KHACHATRY                     | 15z CMS    | pp, 8 TeV, combined                                                                                   | OCCUR=2    |
| $1.0\ \pm0.5$                                                 | <sup>43</sup> CHATRCHYA                     | N 14AI CMS | pp  ightarrow HW/ZX, 7, 8 TeV                                                                         |            |
| $1.72^{\begin{subarray}{c} +0.92 \\ -0.87 \end{subarray}}$    | <sup>44</sup> AALTONEN                      | 13L CDF    | $p\overline{p} \rightarrow HX$ , 1.96 TeV                                                             |            |
| $1.23 ^{+1.24}_{-1.17}$                                       | <sup>45</sup> ABAZOV                        | 13L D0     | $p\overline{p}  ightarrow \ HX$ , 1.96 TeV                                                            |            |
| $0.5 \pm 2.2$                                                 | <sup>46</sup> AAD<br><sup>47</sup> AALTONEN |            | $pp ightarrow \;HW/ZX$ , 7 TeV $p\overline{p} ightarrow \;HW/ZX$ , 1.96 TeV                           |            |
| $0.48 ^{\color{red}+0.81}_{-0.70}$                            | <sup>48</sup> CHATRCHYA                     |            | $pp \rightarrow HW/ZX$ , 7, 8 TeV                                                                     |            |
|                                                               |                                             |            | $\overline{b}$ ( $V = W$ , $Z$ ) using 140 fb <sup>-1</sup> of significance for $WH$ and $ZH$ are 5.3 | NODE=S126S |

 $^1$  AAD 25Y present measurements of  $VH,~H\to b\overline{b}~(V=W,~Z)$  using 140 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV. The observed significance for WH and ZH are 5.3 and 4.9  $\sigma$ , respectively. See their Fig. 12. Cross sections are given in their Table 8 and Figs. 15 and 16, which are based on the simplified template cross section framework (extended stage-1.2).

 $^2$  CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.38$  GeV. See their Fig. 2 right.

<sup>3</sup> AAD 21AJ present measurements of  $H \to b \overline{b}$  in the VBF production mode. The inclusive VBF cross sections with and without the branching ratio of  $H \to b \overline{b}$  are  $2.07 \pm 0.70^{+0.46}_{-0.37}$  fb and  $3.56 \pm 1.21^{+0.80}_{-0.64}$  fb, respectively. The latter is obtained assuming the SM value of B $(H \to b \overline{b}) = 0.5809$  and  $m_H = 125$  GeV.

<sup>4</sup> AAD 16AN perform fits to the ATLAS and CMS data at  $E_{\rm CM}=7$  and 8 TeV. The signal strengths for individual production processes are  $1.0\pm0.5$  for WH production,  $0.4\pm0.4$  for ZH production, and  $1.1\pm1.0$  for  $t\bar{t}H$  production.

 $^5$  AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for  $m_H=125.09~{\rm GeV}$ .

 $^6$  AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb $^{-1}$  and 9.7 fb $^{-1}$ , respectively, of  $p\overline{p}$  collisions at  $E_{\rm cm}=1.96$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.

 $^7$  CHEKHOVSKY 25A constrain six Wilson coefficients in the Warsaw basis using 138 fb $^{-1}$  of  $p\,p$  collision data at  $E_{\rm CM}=13$  TeV. The results are shown in their Figs. 7 (for linear and quadratic), 9–13 (two-dimensional likelihood scan). The limits on the energy scale for three different assumptions for each Wilson coefficient are shown in their Fig. 8.

<sup>8</sup> AAD 24F present studies of the VH production mode in the boosted  $V \to q \overline{q}$  and  $H \to b \overline{b} \ (p_T(H) > 250$  GeV) using 137 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm} = 13$  TeV. The

NODE=S126SBB;LINKAGE=RA

NODE=S126SBB;LINKAGE=HA

NODE=S126SBB;LINKAGE=DA

NODE=\$126\$BB;LINKAGE=H

NODE=S126SBB;LINKAGE=I

NODE=S126SBB;LINKAGE=AT

NODE=S126SBB;LINKAGE=QA

NODE=S126SBB;LINKAGE=LA

quoted signal strength is given for  $m_H=125.09$  GeV and corresponds to a significance of 1.7 standard deviations. The corresponding inclusive cross section is  $3.1\pm1.3^{+1.8}_{-1.4}$  pb. The signal strengths and cross sections are given in their Table I for three  $p_T(H)$  regions:  $250 < p_T(H) < 450$  GeV,  $450 < p_T(H) < 650$  GeV, 650 GeV  $< p_T(H)$  with |y(H)| < 2.

 $^9$  HAYRAPETYAN 24AM search for ZH, H  $\rightarrow \,$   $b\overline{b},$  Z  $\rightarrow \,$   $b\overline{b}$  using 133 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=$  13 TeV. The upper limit at 95% CL on the ZH production is 5.0 times the SM prediction.

<sup>10</sup> HAYRAPETYAN <sup>24AY</sup> present measurements of boosted  $H \to b \overline{b}$  ( $p_T >$  450 GeV) via VBF or gluon fusion productions using 138 fb<sup>-1</sup> of  $p_P$  collision data at  $E_{\rm cm} =$  13 TeV. The result is given for the VBF production. See their Table 3. The VH and  $t \overline{t} H$  production rates are fixed to the SM values. The VBF signal strengths and the fiducial cross sections for two different  $m_{jj}$  regions and STXS stage 1.2 bins are shown in their Figs. 9 and 10, respectively.

<sup>11</sup> HAYRAPETYAN 24AY present measurements of boosted  $H \to b \overline{b}$  ( $p_T >$  450 GeV) via VBF or gluon fusion productions using 138 fb $^{-1}$  of  $p_P$  collision data at  $E_{\rm CM} =$  13 TeV. The result is given for the gluon fusion production. See their Table 3. The VH and  $t \overline{t} H$  production rates are fixed to the SM values. The gluon fusion signal strengths and the fiducial cross sections for 6 different  $p_T$  regions and STXS stage 1.2 bins are shown in their Figs. 9 and 10, respectively.

 $^{12}$  HAYRAPETYAN 24U present measurements of  $H\to b\overline{b}$  in the VBF production mode using 90.8 fb $^{-1}$  of data at  $E_{\rm CM}=13$  TeV constraining the ggF production to be the SM expectation. The quoted signal strength corresponds to a significance of 2.4 standard deviations

<sup>13</sup> HAYRAPETYAN <sup>24U</sup> present measurements of  $H \to b \bar b$  in the inclusive (ggF+VBF) production mode using 90.8 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The quoted signal strength corresponds to a significance of 2.6 standard deviations.

 $^{14}$  HAYRAPETYAN 24U present measurements of  $H\to b\overline{b}$  in the ggF and VBF production modes using 90.8 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The signal strengths for the ggF and VBF production modes are independently obtained. See their Fig. 11.

 $^{15}$  TUMASYAN 24 report the measurement of  $VH,\,H\to\,b\overline{\,b}$  ( $V=W,\,Z$ ) using  $^{138}$  fb $^{-1}$  of pp collision data at  $E_{\rm CM}=13$  TeV. The quoted signal strength corresponds to a significance of 6.3 standard deviations. Signal strengths for WH and ZH are given in their Fig. 7. Signal strengths and  $\sigma\cdot B$  for 8 different bins defined based on the the simplified template cross section framework are given in their Figs. 8 and 9 and Table VII

<sup>16</sup> AAD 22X measure cross sections using a boosted  $H \to b \overline{b}$  with large-radius jets. The data is 136 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV. All the results are given for  $m_H=125$  GeV. The inclusive signal strength is given using data with a H candidate jet  $p_T>250$  GeV. The fiducial H production cross section ( $p_T(H)>450$  GeV and  $|y(H)|<2\rangle$  is <115 fb (95% CL) and the upper limits for other four different  $p_T$  regions are shown in their Fig 12. The measured fiducial H production cross section ( $p_T(H)>1$  TeV) is  $2.3\pm3.9{\rm (stat)}\pm1.3{\rm (syst)}\pm0.5{\rm (theory)}$  fb.

 $^{17}$  AAD 21AB search for V H, H  $\rightarrow\,$   $b\,\overline{b}$  (V = W, Z) using 139 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV. The results are given for  $m_H=125$  GeV. Cross sections are given in their Table 13 and Fig. 7, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 9.

 $^{18}$  AAD 21H present measurements of  $H\to b\overline{b}$  with a boosted vector boson ( $p_T>250$  GeV) using 139 fb $^{-1}$  of  $p_P$  collision data at  $E_{\rm cm}=13$  TeV. Cross sections are given in their Table 6 and Fig. 4, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 5.

 $^{19}$  AAD 21M search for VBF+ $\gamma$ ,  $H \rightarrow b \bar{b}$  using 132 fb $^{-1}$  of pp collision data at  $E_{\rm cm} =$  13 TeV

 $^{20}$  SIRUNYAN 20BL search for boosted  $H\to b\overline{b}$  (a H candidate jet  $p_T>$  450 GeV) using  $137~{\rm fb^{-1}}$  of pp collision data at  $E_{\rm cm}=13~{\rm TeV}$ . The quoted signal strength corresponds to a significance of 2.5 standard deviations and is given for  $m_H=125~{\rm GeV}$ . A differential fiducial cross section as a function of Higgs boson  $p_T$  for ggF is shown in their Fig. 7, assuming the other production modes occur at the expected SM rates. The reported value is  $3.7\pm1.2^{+0.8}_{-0.7}+0.8$  where the last uncertainty comes from theoretical modeling. We have combined the systematic uncertainties in quadrature.

<sup>21</sup> AABOUD 19U measure cross sections of  $pp \to VH$ ,  $H \to b\overline{b}$  production as a function of the gauge boson transverse momentum using data of 79.8 fb<sup>-1</sup>. The kinematic fiducial volumes used is based on the simplified template cross section framework (reduced stage-1). See their Table 3 and Fig. 3.

 $^{22}$  SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV.

<sup>23</sup> AABOUD 18BN search for VH,  $H \rightarrow b\overline{b}$  (V=W, Z) using 79.8 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm}=13$  TeV. The quoted signal strength corresponds to a significance of 4.9 standard deviations and is given for  $m_H=125$  GeV.

 $^{24}$  AABOUD 18BN combine results of 79.8 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV with results of  $\it VH$  at  $\it E_{\rm cm}=$  7 and 8 TeV.

NODE=S126SBB;LINKAGE=MA

NODE=S126SBB;LINKAGE=OA

NODE=S126SBB;LINKAGE=PA

NODE=S126SBB;LINKAGE=IA

NODE=S126SBB;LINKAGE=JA

NODE=S126SBB;LINKAGE=KA

NODE=S126SBB;LINKAGE=NA

NODE=S126SBB;LINKAGE=GA

NODE=S126SBB;LINKAGE=BA

NODE=S126SBB;LINKAGE=EA

NODE=S126SBB;LINKAGE=FA
NODE=S126SBB;LINKAGE=Z

NODE=S126SBB;LINKAGE=Y

NODE=S126SBB;LINKAGE=X NODE=S126SBB;LINKAGE=N

NODE=S126SBB;LINKAGE=O

<sup>25</sup> AABOUD 18BN combine results of VH at  $E_{\rm cm}=7$ , 8 and 13 TeV with results of VBF (+gluon fusion) and  $t\bar{t}H$  at  $E_{\rm cm}=7$ , 8, and 13 TeV to perform a search for the  $H \rightarrow b \overline{b}$  decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.4 standard deviations.

 $^{26}$  AABOUD 18BQ search for  $H 
ightarrow \ b \, \overline{b}$  produced through vector-boson fusion (VBF) and VBF+ $\gamma$  with 30.6 fb $^{-1}$  pp collision data at  $E_{\rm cm}=$  13 TeV. The quoted signal strength is given for  $m_H = 125 \text{ GeV}$ .

<sup>27</sup> The signal strength is measured including all production modes (VBF, ggF, VH,  $t\bar{t}H$ ).

<sup>28</sup> The signal strength is measured for VBF-only and others (ggF, VH,  $t\bar{t}H$ ) are constrained to Standard Model expectations with uncertainties described in their Section VIII B.

<sup>29</sup> AALTONEN 18C use 5.4 fb<sup>-1</sup> of  $p\bar{p}$  collisions at  $E_{\rm cm}=1.96$  TeV. The upper limit at 95% CL on  $p\bar{p} \to H \to b\bar{b}$  is 33 times the SM prediction, which corresponds to a cross section of 40.6 pb.

 $^{30}\,\mathrm{SIRUNYAN}$  18AE use 35.9 fb $^{-1}$  of pp collision data at  $E_\mathrm{cm}=13$  TeV. The quoted signal strength corresponds to 3.3 standard deviations and is given for  $m_H=125.09$ 

 $^{31}$  SIRUNYAN 18AE combine the result of 35.9 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV with the results obtained from data of up to 5.1 fb $^{-1}$  at  $E_{\rm cm}=$  7 TeV and up to 18.9 fb $^{-1}$  at  $E_{\rm cm}=$  8 TeV (CHATRCHYAN 14AI and KHACHATRYAN 15Z). The quoted signal strength corresponds to 3.8 standard deviations and is given for  $m_H=125.09$  GeV.

 $^{32}$  SIRUNYAN 18DB search for VH,  $H o b \overline{b}$  (V=W, Z) using 77.2 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV. The quoted signal strength corresponds to a significance of 4.4 standard deviations and is given for  $m_H=125.09$  GeV.

 $^{33}$ SIRUNYAN 18DB combine the result of 77.2 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV with the results obtained from data of up to 5.1 fb $^{-1}$  at  $E_{\rm cm}=7$  TeV and up to 18.9 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength corresponds to a significance of 4.8 standard deviations and is given for  $m_H=125.09$  GeV.

 $^{34}$  SIRUNYAN 18DB combine results of 77.2 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV with results of gluon fusion (ggF), VBF and  $t\bar{t}H$  at  $E_{\rm cm}=7$  TeV, 8 TeV and 13 TeV to perform a search for the  $H 
ightarrow \; b \, \overline{b}$  decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.6 standard deviations and is given for  $m_H = 125.09$ 

 $^{35}$  SIRUNYAN 18E use 35.9 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125$  GeV. They measure  $\sigma \cdot B$  for gluon fusion production of  $H \rightarrow b \overline{b}$  with  $p_T > 450$  GeV,  $|\eta| < 2.5$  to be 74  $\pm$  48 $^{+17}_{-10}$  fb.

 $^{36}$  AABOUD 17BA use  $36.1~{\rm fb^{-1}}$  at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125~{\rm GeV}.$  They give  $\sigma({\rm W~H})\cdot B(H\to b\overline{b})=1.08^{+0.54}_{-0.47}~{\rm pb}$  and  $\sigma({\rm Z~H})\cdot B(H\to b\overline{b})=1.08^{+0.54}_{-0.47}$  $b\overline{b}) = 0.57^{+0.26}_{-0.23} \text{ pb.}$ 

 $^{
m 37}$  AABOUD 17BA combine 7, 8 and 13 TeV analyses. The quoted signal strength is given for  $m_H = 125$  GeV.

 $^{38}$  AABOUD 16X search for vector-boson fusion production of H decaying to  $b\overline{b}$  in 20.2 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  8 TeV. The quoted signal strength is given for  $m_H=$ 

125 GeV. 39 AAD 16K use up to 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and up to 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.36$  GeV.

 $^{40}$  AAD 15G use 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.36$  GeV.

 $^{41}\,\mathrm{KHACHATRYAN}$  15Z search for vector-boson fusion production of H decaying to  $b\,\overline{b}$  in up to 19.8 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  8 TeV. The quoted signal strength is given for  $m_H = 125$  GeV.

 $^{42}$ KHACHATRYAN 15Z combined vector boson fusion, WH, ZH production, and  $t\bar{t}H$ production results. The quoted signal strength is given for  $m_H=125~{\rm GeV}.$ 

 $^{43}\mathrm{CHATRCHYAN}$  14AI use up to 5.1 fb $^{-1}$  of pp collisions at  $E_\mathrm{cm}=$  7 TeV and up to 18.9 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125$  GeV. See also CHATRCHYAN 14AJ.

<sup>44</sup> AALTONEN 13L combine all CDF results with 9.45–10.0 fb<sup>-1</sup> of  $p\bar{p}$  collisions at  $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for  $m_H$  = 125 GeV. <sup>45</sup> ABAZOV 13L combine all D0 results with up to 9.7 fb<sup>-1</sup> of  $p\bar{p}$  collisions at  $E_{\rm cm}$  =

1.96 TeV. The quoted signal strength is given for  $m_H=125$  GeV.

<sup>46</sup> AAD 12AI obtain results based on 4.6–4.8 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV. The quoted signal strengths are given in their Fig. 10 for  $m_H=126$  GeV. See also Fig. 13 of AAD 12DA.

47 AALTONEN 12T combine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S, ABAZOV 120, ABAZOV 12P, and ABAZOV 12K. An excess of events over background is observed which is most significant in the region  $m_H=120$ –135 GeV, with a local significance of up to 3.3  $\sigma$ . The local significance at  $m_H=125$  GeV is 2.8  $\sigma$ , which corresponds to  $(\sigma(HW) + \sigma(HZ)) \cdot \mathsf{B}(H \to b\overline{b}) = (0.23^{+0.09}_{-0.08})$  pb, compared to the Standard Model expectation at  $m_H = 125$  GeV of 0.12  $\pm$  0.01 pb. Superseded by AALTONEN 13M.

48 CHATRCHYAN 12N obtain results based on 5.0 fb $^{-1}$  of pp collisions at  $E_{\rm cm}$ =7 TeV and 5.1 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.5$  GeV. See also CHATRCHYAN 13Y. NODE=S126SBB;LINKAGE=P

NODE=S126SBB;LINKAGE=Q

NODE=S126SBB;LINKAGE=U NODE=S126SBB;LINKAGE=V

NODE=S126SBB;LINKAGE=W

NODE=\$126\$BB;LINKAGE=L

NODE=S126SBB;LINKAGE=M

NODE=S126SBB:LINKAGE=R

NODE=S126SBB;LINKAGE=S

NODE=S126SBB:LINKAGE=T

NODE=S126SBB;LINKAGE=K

NODE=S126SBB:LINKAGE=F

NODE=S126SBB;LINKAGE=G

NODE=S126SBB;LINKAGE=J

NODE=S126SBB:LINKAGE=E

NODE=\$126\$BB;LINKAGE=B

NODE=S126SBB;LINKAGE=C

NODE=S126SBB;LINKAGE=D

NODE=S126SBB;LINKAGE=A

NODE=S126SBB;LINKAGE=LL

NODE=S126SBB;LINKAGE=AB

NODE=S126SBB;LINKAGE=AA

NODE=S126SBB;LINKAGE=AL

NODE=S126SBB;LINKAGE=CA

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL% DOCUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NODE=S126SMU<br>NODE=S126SMU                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1.21±0.35 OUR AVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| $1.21 {+0.45 \atop -0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>1</sup> CMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S <i>pp</i> , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |
| 1.2 ±0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>2</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21 AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
| • • We do not use the fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ts, etc. • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |
| $1.19 + 0.40 + 0.15 \\ -0.39 - 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>3</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S <i>pp</i> , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |
| $0.68^{igoplus 1.25}_{-1.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>4</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S <i>pp</i> , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |
| $0.7 \pm 1.0   ^{+0.2}_{-0.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| $1.0 \pm 1.0 \pm 0.1$<br>$-0.1 \pm 1.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>5</sup> SIRUNYAN<br><sup>6</sup> AABOUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I 19E CM<br>17Y AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OCCUR=2                                                                                                     |
| $-0.1\ \pm1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>6</sup> AABOUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17Y AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OCCUR=2                                                                                                     |
| 0.1 ±2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>7</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16AN LH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OCCUP 2                                                                                                     |
| $-0.6 \pm 3.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16AN AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OCCUR=2<br>OCCUR=3                                                                                          |
| $0.9 \begin{array}{c} +3.6 \\ -3.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>7</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16AN CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95        ° KHACHAT<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RY15H CM<br>14AS AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| of data at $E_{\rm cm}=13$ T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TeV, assuming $m_H =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125.38 GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table 2) using up to 138 fb $^{-1}$<br>See their Fig. 2 right.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NODE=S126SMU;LINKAGE=I                                                                                      |
| <sup>2</sup> AAD 21 search for $H - $<br>The quoted signal strei<br>is given for $m_H = 125$<br>fraction is 2.2 times th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\rightarrow \mu^+\mu^-$ using 139 fb<br>ngth corresponds to a<br>5.09 GeV. The upper<br>e SM prediction at 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p^{-1}$ of $pp$ colsignificance of limit on the $p^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ision data at $E_{\rm cm}=13$ TeV. f 2.0 standard deviations and cross section times branching corresponds to the branching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NODE=S126SMU;LINKAGE=I                                                                                      |
| fraction upper limit of $^3$ SIRUNYAN 21 search for TeV. The quoted signal and is given for $m_H =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I strength corresponds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g SM producting $137~{ m fb}^{-1}$ of $\mu$ to a significal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on cross sections). $p$ collision data at $E_{\rm cm}=13$ acc of 3.0 standard deviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NODE=S126SMU;LINKAGE=.                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9 fb $^{-1}$ of d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ata at $E_{ m cm}=13$ TeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=S126SMU;LINKAGE=                                                                                       |
| $^{5}\mathrm{SIRUNYAN}$ 19E search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for $H  ightarrow \ \mu^+ \mu^-$ usin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng 35.9 fb $^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ata at $E_{ m cm}=13$ TeV. of $pp$ collisions at $E_{ m cm}=13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=S126SMU;LINKAGE=I                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| TeV and combine with limit at 95% CL on the branching fraction to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | signal strength is 2.9, muon pair of $6.4 \times 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , which corres <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TeV (19.7 fb $^{-1}$ ). The upper ponds to the SM Higgs boson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                             |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use 36.2 and 4.5 fb $^{-1}$ at 7 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | signal strength is 2.9,<br>muon pair of $6.4 \times 10^{-3}$<br>1 fb <sup>-1</sup> of $pp$ collision<br>7. The quoted signal st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , which corres<br>$0^{-4}$ .<br>as at $E_{\rm cm}=$<br>trength is give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | points to the SM Higgs boson 13 TeV, 20.3 fb $^{-1}$ at 8 TeV in for $m_H=125$ GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NODE=S126SMU;LINKAGE=I                                                                                      |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV <sup>7</sup> AAD 16AN: In the fit, re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | signal strength is 2.9,<br>muon pair of $6.4 \times 10$<br>1 fb <sup>-1</sup> of $pp$ collision<br>7. The quoted signal stellative production cros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which correst $0^{-4}$ .  Is at $E_{\rm cm} = 0$ .  It is given is sections are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ponds to the SM Higgs boson 13 TeV, 20.3 fb <sup>-1</sup> at 8 TeV n for $m_H=125$ GeV. fixed to those in the Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | signal strength is 2.9,<br>muon pair of $6.4 \times 10$<br>$1 \text{ fb}^{-1}$ of $pp$ collision.<br>The quoted signal strength is given for the signal strength is given for $pp$ course.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | which correst $0^{-4}$ .  It is at $E_{\rm cm} = 0$ It is given in the second in the se                                                                                                                                                                                                                                                                                 | points to the SM Higgs boson 13 TeV, 20.3 fb <sup>-1</sup> at 8 TeV in for $m_H = 125$ GeV. Fixed to those in the Standard .09 GeV. $m_H = 7$ TeV and $19.7$ fb <sup>-1</sup> at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NODE=S126SMU;LINKAGE=I                                                                                      |
| TeV and combine with limit at 95% CL on the branching fraction to a <sup>6</sup> AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV <sup>7</sup> AAD 16AN: In the fit, re Model. The quoted sig <sup>8</sup> KHACHATRYAN 15H at 8 TeV. The quoted sign <sup>9</sup> AAD 14AS search for F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal stellative production crossinal strength is given fouse $5.0~{\rm fb}^{-1}$ of $pp$ conal strength is given for $H \rightarrow \mu^+\mu^-$ in 4.5 fb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | which corresponds which corresponds which corresponds at $E_{\rm cm} = 125$ where $E_{\rm cm} = 125$ where $E_{\rm cm} = 125$ and $E_{\rm cm} $                                                                                    | points to the SM Higgs boson 13 TeV, 20.3 fb <sup>-1</sup> at 8 TeV in for $m_H = 125$ GeV. Fixed to those in the Standard .09 GeV. In a TeV and 19.7 fb <sup>-1</sup> at GeV. Ilsions at $E_{\rm cm} = 7$ TeV and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=S126SMU;LINKAGE=I                                                                                      |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use 36.3 and 4.5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H $^8$ TeV. The quoted sigu $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ cm $^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal stellative production crossinal strength is given fouse $5.0~{\rm fb}^{-1}$ of $pp$ conal strength is given for $H \rightarrow \mu^+\mu^-$ in 4.5 fb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | which corresponds which corresponds which corresponds at $E_{\rm cm} = 125$ where $E_{\rm cm} = 125$ where $E_{\rm cm} = 125$ and $E_{\rm cm} $                                                                                    | conds to the SM Higgs boson $^{13}$ TeV, $^{20.3}$ fb $^{-1}$ at $^{8}$ TeV in for $^{12}$ m for $^{12}$ Higgs GeV. Fixed to those in the Standard $^{12}$ GeV. $^{12}$ at $^{12}$ TeV and $^{12}$ TeV and $^{12}$ TeV and $^{12}$ Fixed $^{12}$ SeV. Hissions at $^{12}$ Eigen for $^{12}$ Hissions at $^{12}$ GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H 8 TeV. The quoted sign 9 AAD 14AS search for F 20.3 fb <sup>-1</sup> at E <sub>cm</sub> = 8 + <b>7</b> = <b>final state</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the following signal strength is given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | which corresponds which corresponds which corresponds at $E_{\rm cm} = 125$ where $E_{\rm cm} = 125$ where $E_{\rm cm} = 125$ and $E_{\rm cm} $                                                                                    | conds to the SM Higgs boson $^{13}$ TeV, $^{20.3}$ fb $^{-1}$ at $^{8}$ TeV in for $^{12}$ m for $^{12}$ Higgs GeV. Fixed to those in the Standard $^{12}$ GeV. $^{12}$ at $^{12}$ TeV and $^{12}$ TeV and $^{12}$ TeV and $^{12}$ Fixed $^{12}$ SeV. Hissions at $^{12}$ Eigen for $^{12}$ Hissions at $^{12}$ GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=S126SMU;LINKAGE=I<br>NODE=S126SMU;LINKAGE=I<br>NODE=S126SMU;LINKAGE=I                                  |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use $^3$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H $^8$ 8 TeV. The quoted sig $^9$ AAD 14AS search for $^4$ 20.3 fb $^{-1}$ at $^2$ cm $^{-1}$ 8 the $^4$ $\tau$ final state MUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the following signal strength is given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | which corresponds which corresponds at $E_{\rm cm}=1$ trength is given as sections are for $m_H=125$ for $m_H=125$ or $m_H=$                                                                                                                                                                                                                                                                                | conds to the SM Higgs boson $^{13}$ TeV, $^{20.3}$ fb $^{-1}$ at $^{8}$ TeV in for $^{12}$ m for $^{12}$ Higgs GeV. Fixed to those in the Standard $^{12}$ GeV. $^{12}$ and $^{12}$ TeV and $^{12}$ TeV and $^{12}$ TeV and $^{12}$ GeV. Hisions at $^{12}$ Equation $^{12}$ GeV. $^{12}$ Given for $^{12}$ Higgs $^{12}$ GeV. $^{12}$ COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use $^3$ 6 and $^4$ .5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H $^8$ 8 TeV. The quoted sign $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ cm $^{-1}$ 8 $^6$ $^6$ $^6$ $^6$ $^6$ $^6$ $^6$ $^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collisions. The quoted signal strength is given formula strength in the strength is given formula strength in the strength is given for $\mu$ and $\mu$ are strength in the strength in the strength in the strength is given for $\mu$ and $\mu$ are strength in the stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | which corres $0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  It is sections are for $m_H = 125$ .  It is sections at $E_{\rm cr} = 0^{-1}$ .  It is is sections at $E_{\rm cr} = 0^{-1}$ .  It is is in a section of $E_{\rm cr} = 0^{-1}$ .  It is in a section of $E_{\rm cr} = 0^{-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | conds to the SM Higgs boson $^{13}$ TeV, $^{20.3}$ fb $^{-1}$ at $^{8}$ TeV in for $^{12}$ m for $^{12}$ Higgs GeV. Fixed to those in the Standard $^{12}$ GeV. $^{12}$ at $^{12}$ TeV and $^{12}$ TeV and $^{12}$ TeV and $^{12}$ Fixed $^{12}$ SeV. Hissions at $^{12}$ Eigen for $^{12}$ Hissions at $^{12}$ GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=S126SMU;LINKAGE=NODE=S126SMU;LINKAGE=NODE=S126SMU;LINKAGE=NODE=S126STT                                 |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use 36.3 and 4.5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H $^8$ TeV. The quoted sig $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ $^6$ = $^8$ + $^7$ final state $^{1}$ = $^{1}$ 1 to $^{1}$ = $^{1}$ 1 to $^{1}$ 2 to $^{1}$ 2 to $^{1}$ 2 to $^{1}$ 2 to $^{1}$ 3 to $^{1}$ 2 to $^{1}$ 3 to $^{1}$ 4 to $^{1}$ 3 to $^{1}$ 4 to $^{1}$ 3 to $^{1}$ 4 to $^{1}$ 5 to $^{1}$ 6 to $^{1}$ 4 to $^{1}$ 6 to $^{1}$ 7 to $^{1}$ 8 to $^{1}$ 6 to $^{1}$ 8 to $^{1}$ 6 to $^{1}$ 7 to $^{1}$ 7 to $^{1}$ 9 to $^{1}$ 8 to $^{1}$ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the following signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | which corres $0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  It is given as sections are for $m_H = 125$ .  It is in a section at $E_{\rm cm} = 0^{-1}$ .  It is in a section at $E_{\rm cm} = 0^{-1}$ .  It is in a section at $E_{\rm cm} = 0^{-1}$ .  It is in a section at $E_{\rm cm} = 0^{-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | conds to the SM Higgs boson 13 TeV, $20.3 \text{ fb}^{-1}$ at 8 TeV in for $m_H = 125 \text{ GeV}$ . Fixed to those in the Standard $0.09 \text{ GeV}$ . Fixed to those in the Standard $0.09 \text{ GeV}$ . Fixed to those in the Standard $0.09 \text{ GeV}$ . Fixed to those in the Standard $0.09 \text{ GeV}$ . It is a specific to $0.09 \text{ GeV}$ . Fixed $0.09 \text{ GeV}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H 18 TeV. The quoted sig 9 AAD 14AS search for F 20.3 fb <sup>-1</sup> at F <sub>cm</sub> = 8 transfer of the search for F 19 to 10 fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | which corres $0^{-4}$ .  In sat $E_{\rm cm} = 0^{-4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ponds to the SM Higgs boson 13 TeV, $20.3 \text{ fb}^{-1}$ at 8 TeV in for $m_H = 125 \text{ GeV}$ . Fixed to those in the Standard $0.09 \text{ GeV}$ . Fixed to those in the Standard $0.09 \text{ GeV}$ . For $m_H = 7 \text{ TeV}$ and $19.7 \text{ fb}^{-1}$ at GeV. Hisions at $E_{\text{Cm}} = 7 \text{ TeV}$ and $E_$               | NODE=S126SMU;LINKAGE=NODE=S126SMU;LINKAGE=NODE=S126SMU;LINKAGE=NODE=S126STT                                 |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use 36.3 and 4.5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H at 8 TeV. The quoted sign $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ cm = $^8$ + $^{-1}$ final state $^{1}$ AUE 91±0.09 OUR AVERAGI 85±0.10 $^{1}$ 09 $^{+0.18}$ +0.26 $^{+0.16}$ -0.17 $^{-0.22}$ -0.11 $^{11}$ +0.24 $^{+0.24}$ -0.22 $^{-0.85}$ -1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given forms $6.00 \times 10^{-1}$ of $6.00 \times 1$ | which corres $0^{-4}$ .  In sat $E_{\rm cm} = 0^{-4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | conds to the SM Higgs boson 13 TeV, $20.3~{\rm fb^{-1}}$ at $8~{\rm TeV}$ in for $m_H=125~{\rm GeV}$ . Fixed to those in the Standard .09 GeV. $_{\rm m}=7~{\rm TeV}$ and $19.7~{\rm fb^{-1}}$ at GeV. Ilisions at $E_{\rm cm}=7~{\rm TeV}$ and $19.5~{\rm GeV}$ . $\frac{COMMENT}{pp}$ , $13~{\rm TeV}$ $\frac{pp}{p}$ , $13~{\rm TeV}$ $\frac{pp}{p}$ , $7$ , $8~{\rm TeV}$ $\frac{pp}{p} \rightarrow HX$ , $1.96~{\rm TeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NODE=S126SMU;LINKAGE=NODE=S126SMU;LINKAGE=NODE=S126SMU;LINKAGE=NODE=S126STT                                 |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use 36.3 and 4.5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H $^8$ TeV. The quoted sign $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ cm $^{-1}$ 8 $^{-1}$ at $^6$ cm $^{-1}$ 8 $^{-1}$ 1 at $^6$ cm $^{-1}$ 1 at $^6$ cm $^{-1}$ 1 at $^6$ cm $^{-1}$ 1 at $^6$ 20.10 $^{-1}$ 109 OUR AVERAGI $^{-1}$ 109 $^{-1}$ 18 + 0.26 + 0.16 $^{-1}$ 109 $^{-1}$ 17 - 0.22 $^{-1}$ 11 $^{-1}$ 11 $^{-1}$ 12 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 2 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 2 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1 $^{-1}$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength in the signal strength in the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength is given for the signal strength in the signal strength in the signal strength is given for the signal strength in the signal strength i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  It is at $E_{\rm cm} = 0^{-4}$ .  It is at $E_{\rm cm} = 0^{-4}$ .  It is a sections are for $m_H = 125$ .  It is a section at $E_{\rm cl}$ or $m_H = 125$ .  It is a section at $E_{\rm cl}$ or $E_{\rm cl}$ or $E_{\rm cl}$ of $E_{\rm cl}$ or $E_{\rm cl}$ of $E$ | ponds to the SM Higgs boson 13 TeV, $20.3~{\rm fb}^{-1}$ at $8~{\rm TeV}$ in for $m_H=125~{\rm GeV}$ . Fixed to those in the Standard $.09~{\rm GeV}$ . Fixed to those in the Standard $.09~{\rm GeV}$ . Fixed to those in the Standard $.09~{\rm GeV}$ . Fixed to those in the Standard $.09~{\rm GeV}$ . It is in the Standard $.09~{\rm GeV}$ . It is in the Standard $.09~{\rm GeV}$ . Fixed $.09~{\rm GeV}$ . Fixed $.09~{\rm GeV}$ is $.09~{\rm GeV}$ . Fixed $.09~{\rm GeV}$ in the SM $.09~{\rm GeV}$ is $.09~{\rm GeV}$ . Fixed $.09~{\rm GeV}$ in the SM $.09~{\rm GeV}$ is $.09~{\rm GeV}$ . Fixed $.09~{\rm GeV}$ in the SM $.09~{\rm GeV}$ is $.09~{\rm GeV}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use 36.3 and 4.5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H is 8 TeV. The quoted sigi $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ $^6$ = 8 $^6$ $^6$ $^6$ $^6$ $^6$ $^6$ $^6$ $^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given forms $6.00 \times 10^{-1}$ of $6.00 \times 1$ | which corres $0^{-4}$ .  In sat $E_{\rm cm} = 0^{-4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | points to the SM Higgs boson 13 TeV, $20.3~{\rm fb}^{-1}$ at 8 TeV in for $m_H=125~{\rm GeV}$ . If fixed to those in the Standard $0.9~{\rm GeV}$ . If $m_H=7~{\rm TeV}$ and $19.7~{\rm fb}^{-1}$ at GeV. It is in the Standard $0.9~{\rm GeV}$ . It is                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use $^3$ 6 and $^4$ .5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sign $^8$ KHACHATRYAN 15H is 8 TeV. The quoted sign $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ cm $^6$ 8 teV. The quoted sign $^9$ AAD 14AS search for $^6$ 20.3 fb $^{-1}$ at $^6$ cm $^6$ 8 teV. $^6$ 16 final state $^6$ 17 final state $^6$ 18 teV. $^6$ 10 09 OUR AVERAGI 85 ± 0.10 $^6$ 10 17 -0.22 -0.11 $^6$ 11 11 $^6$ 12 24 $^6$ 16 8 $^6$ We do not use the form $^6$ 28 $^6$ 10 We do not use the form $^6$ 28 $^6$ 10 10 17 17 18 $^6$ 10 18 $^6$ 10 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ . In a at $E_{\rm cm}=1$ trength is given as sections are for $m_H=125$ for $m_H=125$ or                                                                                                                                                                                                                                                                                 | ponds to the SM Higgs boson 13 TeV, $20.3~{\rm fb}^{-1}$ at $8~{\rm TeV}$ in for $m_H=125~{\rm GeV}$ . Fixed to those in the Standard .09 GeV. If $m=7~{\rm TeV}$ and $19.7~{\rm fb}^{-1}$ at GeV. It is since the standard $m=7~{\rm TeV}$ and                                                                                                                                                                                                                                                                                                                                                     | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I                                        |
| TeV and combine with limit at 95% CL on the branching fraction to a $^6$ AABOUD 17Y use $^3$ 6.3 and $^4$ .5 fb $^{-1}$ at 7 TeV $^7$ AAD 16AN: In the fit, re Model. The quoted sig $^8$ KHACHATRYAN 15H is 8 TeV. The quoted sigi $^9$ AAD 14AS search for $^7$ 20.3 fb $^{-1}$ at $^8$ at $^8$ = $^8$ t $^8$ = $^8$ final state $^8$ = $^8$ 15 ± 0.10 $^9$ = $^9$ 1.18 + 0.26 + 0.16 $^9$ = 0.17 - 0.22 - 0.11 $^9$ = 0.18 + 0.26 + 0.16 $^9$ = 0.17 - 0.22 68 + 2.28 $^9$ = 1.68 $^9$ • We do not use the form $^9$ 28 + 0.30 + 0.25 $^9$ = 0.29 - 0.21 $^9$ = 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  It is at $E_{\rm cm} = 0^{-4}$ .  It is at $E_{\rm cm} = 0^{-4}$ .  It is a sections are for $m_H = 125$ .  It is a sections at $E_{\rm ci}$ or $m_H = 125$ .  It is a section of $E_{\rm ci}$ or $E_{\rm ci}$ or $E_{\rm ci}$ or $E_{\rm ci}$ or $E_{\rm ci}$ of $E_{\rm ci}$ or $E_{\rm ci}$ of $E_{\rm ci}$ or $E_{\rm ci}$ of    | ponds to the SM Higgs boson 13 TeV, $20.3~{\rm fb}^{-1}$ at 8 TeV in for $m_H=125~{\rm GeV}$ . Gived to those in the Standard $0.09~{\rm GeV}$ . TeV and $19.7~{\rm fb}^{-1}$ at GeV. Hisions at $E_{\rm cm}=7~{\rm TeV}$ and $19.7~{\rm fb}^{-1}$ at Given for $m_H=125.5~{\rm GeV}$ . Find $m_H=125.5~$                                                                                                                                                                                                                                                                                                                                           | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H at 8 TeV. The quoted sign 9 AAD 14AS search for 16 ADD 14AS search for 17 ED 18 ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ .  In sat $E_{\rm cm} = 0^{-4}$ .  In satisfactor $E_{\rm cm} = 0^{-4}$ .  In sat $E_{\rm cm} = 0^{-4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ponds to the SM Higgs boson 13 TeV, $20.3~{\rm fb}^{-1}$ at $8~{\rm TeV}$ in for $m_H=125~{\rm GeV}$ . Fixed to those in the Standard .09 GeV. If the second of the standard .09 GeV. If the second of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT                           |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H to 8 TeV. The quoted sign 9 AAD 14AS search for F 20.3 fb <sup>-1</sup> at E <sub>cm</sub> = 8 + <b>7</b> final state 41.0E 91±0.09 OUR AVERAGI 85±0.10 09 +0.18 +0.26 +0.16 -0.17 -0.22 -0.11 11 +0.24 -0.22 68 +2.28 -1.68 • We do not use the form 28 +0.30 +0.25 -0.29 -0.21 64 +0.68 -0.54 82 +0.11 -0.10 67 +0.20 -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ . The state $E_{\rm cm} = 125$ which is given as sections are for $m_H = 125$ when $m_H = 125$ and $m_H = $                                                                                                                                                                                                                                                                               | ponds to the SM Higgs boson 13 TeV, 20.3 fb $^{-1}$ at 8 TeV in for $m_H = 125$ GeV. fixed to those in the Standard .09 GeV. $_{\rm m} = 7$ TeV and 19.7 fb $^{-1}$ at GeV. Ilisions at $E_{\rm cm} = 7$ TeV and given for $m_H = 125.5$ GeV. $\frac{COMMENT}{pp, 13}$ TeV $pp, 13$ TeV $pp, 7, 8$ TeV $pp, 7, 8$ TeV $pp, 13$ TeV, boosted $H \rightarrow \tau\tau$ 13 TeV, boosted $TeV$ 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=S126SMU;LINKAGE=I<br>NODE=S126SMU;LINKAGE=I<br>NODE=S126SMU;LINKAGE=I<br>NODE=S126STT<br>NODE=S126STT  |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H to 8 TeV. The quoted sig 9 AAD 14AS search for 1/20.3 fb <sup>-1</sup> at | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ponds to the SM Higgs boson 13 TeV, 20.3 fb $^{-1}$ at 8 TeV in for $m_H = 125$ GeV. Fixed to those in the Standard 1.09 GeV. If $m_H = 7$ TeV and 19.7 fb $^{-1}$ at GeV. It is in the Standard 1.09 GeV. If $m_H = 7$ TeV and 19.7 fb $^{-1}$ at GeV. It is given for $m_H = 125.5$ GeV. $\frac{COMMENT}{pp, 13}$ TeV $\frac{pp}{p} \rightarrow \frac{m_H}{pp} + \frac{m_H}{pp} +$ | NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126SMU;LINKAGE=I NODE=S126STT NODE=S126STT NODE=S126STT |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H to 8 TeV. The quoted sig 9 AAD 14AS search for 1/20.3 fb <sup>-1</sup> at | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ .  In sat $E_{\rm cm} = 0^{-4}$ .  In sat $E_{\rm cm} = 0$                                                                | ponds to the SM Higgs boson 13 TeV, 20.3 fb $^{-1}$ at 8 TeV in for $m_H = 125$ GeV. Fixed to those in the Standard 1.09 GeV.  In = 7 TeV and 19.7 fb $^{-1}$ at GeV. Illisions at $E_{\rm cm} = 7$ TeV and 19 given for $m_H = 125.5$ GeV.  COMMENT $pp$ , 13 TeV $pp$ , 7, 8 TeV $pp$ , 7, 8 TeV $pp$ , 13 TeV, boosted $pp$ , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NODE=S126SMU;LINKAGE=ENODE=S126SMU;LINKAGE=ENODE=S126SMU;LINKAGE=ENODE=S126STT NODE=S126STT NODE=S126STT    |
| TeV and combine with limit at 95% CL on the branching fraction to a 6 AABOUD 17Y use 36.3 and 4.5 fb <sup>-1</sup> at 7 TeV 7 AAD 16AN: In the fit, re Model. The quoted sig 8 KHACHATRYAN 15H & TeV. The quoted sigu 9 AAD 14AS search for F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e signal strength is 2.9, muon pair of $6.4 \times 10^{-1}$ of $pp$ collision. The quoted signal strength is given for the signal streng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | which corres $0^{-4}$ .  In a at $E_{\rm cm} = 0^{-4}$ .  In a at $E_$                                                                        | ponds to the SM Higgs boson at 3 TeV, 20.3 fb $^{-1}$ at 8 TeV in for $m_H = 125$ GeV. Fixed to those in the Standard and 2.09 GeV. The second of the standard at GeV. The second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NODE=S126STT  OCCUR=2 OCCUR=3                                                                               |

| $1.24 ^{igoplus 0.29}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>17</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19AF CMS                                 | рр, 13 TeV                                                                        | OCCUR=2                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| $1.02^{+0.26}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>18</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19AT CMS                                 | pp, 13 TeV                                                                        |                         |  |  |  |  |
| $1.09^{+0.27}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>19</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18Y CMS                                  | pp, 13 TeV                                                                        |                         |  |  |  |  |
| $0.98 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>20</sup> SIRUNYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18Y CMS                                  | pp, 7, 8, 13 TeV                                                                  | OCCUR=2                 |  |  |  |  |
| 2.3 ±1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>21</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16AC ATLS                                | ,                                                                                 | OCCUR=2                 |  |  |  |  |
| $1.41^{+0.40}_{-0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>4</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16AN ATLS                                | <i>pp</i> , 7, 8 TeV                                                              |                         |  |  |  |  |
| $0.88^{igoplus 0.30}_{igoplus 0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>4</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16AN CMS                                 | <i>pp</i> , 7, 8 TeV                                                              | OCCUR=3                 |  |  |  |  |
| $1.44 ^{+ 0.30 + 0.29}_{- 0.29 - 0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>22</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16K ATLS                                 | <i>pp</i> , 7, 8 TeV                                                              |                         |  |  |  |  |
| $1.43^{+0.27+0.32}_{-0.26-0.25}\!\pm\!0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>23</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15AH ATLS                                | pp  ightarrow HX, 7, 8 TeV                                                        |                         |  |  |  |  |
| $0.78 \pm 0.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>24</sup> CHATRCHYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N14K CMS                                 | $pp  ightarrow \ HX$ , 7, 8 TeV                                                   |                         |  |  |  |  |
| $0.00^{+8.44}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>25</sup> AALTONEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13L CDF                                  | $p\overline{p} \rightarrow HX$ , 1.96 TeV                                         |                         |  |  |  |  |
| $3.96^{igoplus 4.11}_{-3.38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>26</sup> ABAZOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13L D0                                   | $p\overline{p}  ightarrow \; HX$ , 1.96 TeV                                       |                         |  |  |  |  |
| $0.4 \ ^{+1.6}_{-2.0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>27</sup> AAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12AI ATLS                                | pp  ightarrow HX, 7 TeV                                                           |                         |  |  |  |  |
| $0.09 ^{igoplus 0.76}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>28</sup> CHATRCHYA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N12N CMS                                 | $pp \rightarrow HX$ , 7, 8 TeV                                                    |                         |  |  |  |  |
| $^{1}$ CMS 22 report combined of data at $E_{cm} = 13$ Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | results (see their ExV, assuming $m_H =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tended Data<br>125.38 GeV.               | Table 2) using up to 138 fb $^{-1}$ See their Fig. 2 right.                       | NODE=S126STT;LINKAGE=N  |  |  |  |  |
| $^2$ AABOUD 19AQ use 36.1 tistical, experimental system quoted signal strength is deviations. Combining with nificance is 6.4 standard ( $m_H=125~{\rm GeV}$ ) are n sive, $0.28\pm0.09^{+0.11}_{-0.09}~{\rm KeV}$ See their Table XI for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. See their Fig. 2 right. $^2$ AABOUD 19AQ use 36.1 fb $^{-1}$ of data. The first, second and third quoted errors are statistical, experimental systematic and theory systematic uncertainties, respectively. The quoted signal strength is given for $m_H=125$ GeV and corresponds to 4.4 standard deviations. Combining with 7 TeV and 8 TeV results (AAD 15AH), the observed significance is 6.4 standard deviations. The cross sections in the $H \to \tau \tau$ decay channel ( $m_H=125$ GeV) are measured to $3.77^{+0.60}_{-0.59}$ (stat) $^{+0.87}_{-0.74}$ (syst) pb for the inclusive, $0.28 \pm 0.09^{+0.11}_{-0.09}$ pb for VBF, and $3.1 \pm 1.0^{+1.6}_{-1.3}$ pb for gluon-fusion production. See their Table XI for the cross sections in the framework of simplified template cross |                                          |                                                                                   |                         |  |  |  |  |
| <sup>3</sup> AAD 16AN perform fits to<br>strengths for individual p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sections.<br><sup>3</sup> AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.0\pm0.6$ for gluon fusion, $1.3\pm0.4$ for vector boson fusion, $-1.4\pm1.4$ for $WH$ production, $2.2^{+2.2}_{-1.8}$ for $ZH$ production, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                                                   |                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tive production cros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ss sections are                          | e fixed to those in the Standard                                                  | NODE=S126STT;LINKAGE=H  |  |  |  |  |
| <sup>5</sup> AALTONEN 13M combir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne all Tevatron data $^{-1}$ , respectively,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | from the CD of $p\overline{p}$ collision | F and D0 Collaborations with ons at $E_{ m cm}=1.96$ TeV. The                     | NODE=S126STT;LINKAGE=AT |  |  |  |  |
| <sup>6</sup> AAD 25W measure differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ent types of cross s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sections with                            | $pp \rightarrow H \rightarrow \tau \tau$ at $E_{cm} =$                            | NODE=S126STT;LINKAGE=X  |  |  |  |  |
| 13 TeV with 140 fb $^{-1}$ data. Their Fig. 5 show $\sigma \cdot B$ relative to the SM expectations for the total and per-production-mode, and their Figs. 6 and 8 show those in the simplified template cross section framework. Their Table 7 show the measurements of $\sigma \cdot B$ for per-production-mode. The differential fiducial cross sections defined in their Table 8 are given in their Fig. 10. Six Wilson coefficients in the Warsaw basis are in their Figs. 12 and 13 at 95% CL. The constraints on the Wilson coefficients $c_{HW}$ and $c_{H\widetilde{W}}$ are obtained to be $[-1.90, +0.51]$ and $[-0.31, +0.88]$ at 95% CL, respectively, for the interference term alone (the linear term) assuming only one of the Wilson coefficients is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                   |                         |  |  |  |  |
| non-zero. 7 AAD 24BE measure the $^{13}$ TeV with 140 fb $^{-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VH Higgs production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on $(V = W,$                             | Z) with $H \rightarrow \tau \tau$ at $E_{\rm cm} =$ h corresponds to 4.2 standard | NODE=S126STT;LINKAGE=V  |  |  |  |  |
| deviations. The signal str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | engths for individua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ol $WH$ and $Z$                          | $^{\prime}H$ productions are 1.48 $^{+0.56}_{-0.50}$                              |                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | H = 125 GeV. See their Fig. 4.                                                    |                         |  |  |  |  |
| <sup>8</sup> HAYRAPETYAN 24AT present measurements of the boosted $H \to \tau\tau$ ( $p_T > 250$ NODE=S126STT;LINKAGE=W GeV) using 138 fb <sup>-1</sup> of $p_P$ collision data at $E_{\rm cm} = 13$ TeV. The quoted signal strength corresponds to a significance of 3.5 standard deviations. The fiducial inclusive production cross section is measured to be $3.88^{+1.69}_{-1.35}$ fb. The differential fiducial cross sections as a function of Higgs boson and leading jet $p_T$ are given in their Fig. 3.                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                   |                         |  |  |  |  |
| $^9$ TUMASYAN 23Y measu<br>with 138 fb $^{-1}$ data. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re Higgs production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with $pp  ightarrow$                     | $H  ightarrow ~	au	au$ at $E_{ m cm}=13~{ m TeV}$                                 | NODE=S126STT;LINKAGE=P  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0^{+356}_{-335}$ fb (see their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figs. 10 and                             | 14). See their Fig. 15 for the                                                    | NODE=S126STT;LINKAGE=Q  |  |  |  |  |
| $^{11}$ The quoted result is for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the stage-0 simplifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed template                              | cross section (STXS) and the                                                      | NODE=\$126STT;LINKAGE=R |  |  |  |  |
| $\sigma_{ggF} \cdot B$ is $2030 - 555$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tb (see their Figs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 and 14).                              | Measured cross sections and                                                       |                         |  |  |  |  |

ratios to the SM predictions in the reduced stage-1.2 STXS (see their Fig. 1) are shown in their Table 9 and Figs. 12 and 14.

 $^{12}$  The quoted result is for the stage-0 STXS and the  $\sigma_{VBF} \cdot \textit{B}$  is  $267 ^{+53.9}_{-52.6}$  fb (see their Figs. 10 and 14). Measured cross sections and ratios to the SM predictions in the reduced stage-1.2 STXS (see their Fig. 2) are shown in their Table 9 and Figs. 12, 14.

 $^{13}$  The quoted result is for the stage-0 STXS and the  $\sigma_{VH}\cdot B$  is  $79.0^{+20.5}_{-18.6}$  fb (see their Figs. 10 and 14). Measured cross sections and ratios to the SM predictions in the reduced stage-1.2 STXS (see their Fig. 3) are shown in their Table 9 and Figs. 12, 14.

 $^{14}$  AAD 22Q measure cross sections of pp  $\rightarrow~H\rightarrow~\tau\tau$  at  $E_{\rm cm}=$  13 TeV with 139 fb  $^{-1}$ data. The quoted results are given for  $m_H = 125.09$  GeV and |y(H)| < 2.5 is required. The inclusive fiducial  $\sigma \cdot B$  is  $2.94 \pm 0.21^{+0.37}_{-0.32}$  pb. The fiducial  $\sigma \cdot B$  for the four dominant production modes are  $2.65 \pm 0.41^{+0.91}_{-0.67}$  pb for ggF,  $0.197 \pm 0.028^{+0.032}_{-0.026}$  pb for VBF,  $0.115 \pm 0.058^{+0.042}_{-0.040}$  pb for VH,  $0.033 \pm 0.031^{+0.022}_{-0.017}$  pb for  $t\bar{t}H$ . The cross sections using simplified template cross section framework (STXS) are given in their Fig. 14(a) and Table 15. The STXS bins (a reduced stage 1.2) are defined in their Fig. 1.

 $^{15}$  TUMASYAN 22AJ measure cross sections with pp 
ightarrow H 
ightarrow au au at  $E_{
m cm} = 13$  TeV with 138 fb $^{-1}$  data. The fiducial inclusive  $\sigma \cdot B$  is 426  $\pm$  102 fb while 408  $\pm$  27 fb is expected in the Standard Mode for  $m_H=$  125.38 GeV. Three differential cross sections are given; see their Fig. 1.

 $^{16}$  SIRUNYAN 19AF use 35.9 fb $^{-1}$  of data. The quoted signal strength is given for  $\it m_H =$ 125 GeV and corresponds to 2.3 standard deviations.

 $^{17}$  SIRUNYAN 19AF use 35.9 fb $^{-1}$  of data. HW/Z channels are added with a few updates on gluon fusion and vector boson fusion with respect to SIRUNYAN 18Y. The quoted signal strength is given for  $m_H=125~{\rm GeV}$  and corresponds to 5.5 standard deviations. The signal strengths for the individual production modes are:  $1.12^{+0.53}_{-0.50}$  for gluon fusion,  $1.13^{+0.45}_{-0.42}$  for vector boson fusion,  $3.39^{+1.68}_{-1.54}$  for WH and  $1.23^{+1.62}_{-1.35}$  for ZH. See their Fig. 7 for other couplings (w. w.) their Fig. 7 for other couplings  $(\kappa_V, \kappa_f)$ .

 $^{18}$  SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$  of data at  $E_{
m cm}=$  13 TeV. This

combination is based on SIRUNYAN 18Y. SIRUNYAN 18Y use 35.9 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125.09$  GeV and corresponds to 4.9 standard deviations.

 $^{20}$  SIRUNYAN 18Y combine the result of 35.9 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV with the results obtained from data of 4.9 fb $^{-1}$  at  $E_{\rm cm}=7$  TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV (KHACHATRYAN 15AM). The quoted signal strength is given for  $m_H=125.09$  GeV and corresponds to 5.9 standard deviations.

 $^{21}$  AAD 16AC measure the signal strength with  $pp 
ightarrow \; HW/ZX$  processes using 20.3 fb $^{-1}$ of  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.

<sup>22</sup> AAD 16K use up to 4.7 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and up to 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.36$  GeV.

<sup>23</sup> AAD 15AH use 4.5 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The third uncertainty in the measurement is theory systematics. The signal strength for the gluon fusion mode is  $2.0 \pm 0.8^{+1.2}_{-0.8} \pm 0.3$  and that for vector boson fusion and W/ZH production modes is  $1.24^{+0.49}_{-0.45} + 0.31_{-0.29} \pm 0.08$ . The quoted signal strength is given for  $m_H=125.36~{
m GeV}.$ 

<sup>24</sup> CHATRCHYAN 14K use 4.9 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125$  GeV. See also CHATRCHYAN 14AJ.

<sup>25</sup> AALTONEN 13L combine all CDF results with 9.45–10.0 fb<sup>-1</sup> of  $p\bar{p}$  collisions at  $E_{\rm cm}$ 

= 1.96 TeV. The quoted signal strength is given for  $m_H$  = 125 GeV. <sup>26</sup> ABAZOV 13L combine all D0 results with up to 9.7 fb<sup>-1</sup> of  $p\bar{p}$  collisions at  $E_{\rm cm}$  = 1.96 TeV. The quoted signal strength is given for  $m_{\mbox{\scriptsize H}}=125$  GeV.

<sup>27</sup> AAD 12AI obtain results based on 4.7 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV. The quoted signal strengths are given in their Fig. 10 for  $m_H=126$  GeV. See also Fig. 13 of AAD 12DA.

 $^{28}$  CHATRCHYAN 12N obtain results based on 4.9 fb $^{-1}$  of pp collisions at  $E_{\rm cm}$ =7 TeV and 5.1 fb $^{-1}$  at  $E_{\rm cm}=$ 8 TeV. The quoted signal strength is given for  $m_H=$ 125.5 GeV. See also CHATRCHYAN 13Y .

# $Z\gamma$ final state

| L / Illiai State               |                  |                        |                 |                      |  |
|--------------------------------|------------------|------------------------|-----------------|----------------------|--|
| VALUE                          | <u>CL%</u>       | DOCUMENT ID            | TECN            | COMMENT              |  |
| $2.2 \pm 0.7$                  |                  | $^{ m 1}$ AAD          | 24D LHC         | pp, 13 TeV           |  |
| • • We do not us               | se the following | ng data for average    | s, fits, limits | , etc. • • •         |  |
| $2.4 \pm 0.9$                  |                  | <sup>2</sup> TUMASYAN  | 23F CMS         | pp, 13 TeV           |  |
| $2.59 ^{igoplus 1.07}_{-0.96}$ |                  | <sup>3</sup> CMS       | 22 CMS          | <i>pp</i> , 13 TeV   |  |
| < 3.6                          | 95               | <sup>4</sup> AAD       | 20AG ATLS       | 5 <i>pp</i> , 13 TeV |  |
| < 7.4                          | 95               | <sup>5</sup> SIRUNYAN  | 18DQ CMS        | pp, 13 TeV           |  |
| < 6.6                          | 95               | <sup>6</sup> AABOUD    | 17AW ATLS       | 5 <i>pp</i> , 13 TeV |  |
| <11                            | 95               | <sup>7</sup> AAD       | 14J ATLS        |                      |  |
| < 9.5                          | 95               | <sup>8</sup> CHATRCHYA | N 13BK CMS      | рр, 7, 8 TeV         |  |

NODE=S126STT:LINKAGE=S

NODE=S126STT·LINKAGE=T

NODE=S126STT;LINKAGE=M

NODE=S126STT;LINKAGE=U

NODE=S126STT;LINKAGE=I

NODE=S126STT:LINKAGE=J

NODE=S126STT;LINKAGE=L

NODE=S126STT:LINKAGE=D

NODE=S126STT;LINKAGE=E

NODE=S126STT;LINKAGE=F

NODE=S126STT;LINKAGE=C

NODE=S126STT;LINKAGE=B

NODE=S126STT;LINKAGE=A

NODE=S126STT;LINKAGE=LL

NODE=S126STT;LINKAGE=AB

NODE=S126STT;LINKAGE=AA

NODE=S126STT;LINKAGE=CA

NODE=S126SZG NODE=S126SZG

|                                                                       | abined results of ATLAS (AAD 20AG) and CMS (TUMASYAN 23F).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NODE=S126SZG;LINKAGE=G       |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $^2$ TUMASYAN 23F sea $E_{ m cm}=13$ TeV, assito be 0.21 $\pm$ 0.08 p | strength corresponds to a significance of 3.4 $\sigma$ . arch for $H \to Z\gamma$ , $Z \to ee$ , $\mu\mu$ in 138 fb <sup>-1</sup> of $pp$ collisions at uming $m_H = 125.38$ GeV. $\sigma(pp \to H) \cdot B(H \to Z\gamma)$ is measured b. The ratio of branching fractions $B(H \to Z\gamma)/B(H \to \gamma\gamma)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NODE=S126SZG;LINKAGE=F       |
| measured to be $1.5^{+}$                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| of data at $E_{\rm cm}=13$                                            | ined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ 3 TeV, assuming $m_H=125.38$ GeV. See their Fig. 2 right.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NODE=S126SZG;LINKAGE=E       |
| <sup>4</sup> AAD 20AG search for                                      | $rH \rightarrow Z\gamma, Z \rightarrow ee, \mu\mu \text{ in 139 fb}^{-1} \text{ of } pp \text{ collisions at } E_{cm} = \frac{10.4}{10.0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NODE=S126SZG;LINKAGE=D       |
| 13 TeV. The signal s                                                  | trength is $2.0 \pm 0.9^{+0.4}_{-0.3}$ at $m_H = 125.09$ GeV, which corresponds $2.2 \ \sigma$ . The upper limit of $\sigma(pp \to H) \cdot B(H \to Z\gamma)$ is 305 fb at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| 95% CL.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| $E_{ m cm} = 13$ TeV. The                                             | arch for $H	o Z\gamma$ , $Z	o$ ee, $\mu\mu$ in 35.9 fb $^{-1}$ of $pp$ collisions at equoted signal strength (see their Figs. 6 and 7) is given for $m_H=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NODE=S126SZG;LINKAGE=C       |
| $E_{\rm cm}=13$ TeV. The limit on the branchin boson production.      | In the second of the second o  | NODE=S126SZG;LINKAGE=B       |
| 20.3 fb <sup>-1</sup> at $E_{cm}$ =                                   | $H 	o Z\gamma 	o \ell\ell\gamma$ in 4.5 fb $^{-1}$ of $pp$ collisions at $E_{ m cm}=$ 7 TeV and $H=$ 8 TeV. The quoted signal strength is given for $H=$ 125.5 GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NODE=S126SZG;LINKAGE=A       |
| = 7 TeV and 19.6 fb which corresponds to                              | k search for $H \to Z\gamma \to \ell\ell\gamma$ in 5.0 fb <sup>-1</sup> of $pp$ collisions at $E_{\rm cm}$ at $E_{\rm cm}=8$ TeV. A limit on cross section times branching ratio to (4–25) times the expected Standard Model cross section is given 120–160 GeV at 95% CL. The quoted limit is given for $m_H=125$ spected for no signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=S126SZG;LINKAGE=TH      |
| $\gamma^*\gamma$ final state                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NODE_C126 A 01               |
| <u>VALUE</u>                                                          | _ <u>CL%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NODE=S126A01<br>NODE=S126A01 |
| $1.5\pm0.5^{+0.2}_{-0.1}$                                             | $^{1}$ AAD $^{2}$ 11 ATLS $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ ATLS $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ $^{}$ |                              |
|                                                                       | e following data for averages, fits, limits, etc. • • • $95$ SIRUNYAN 18DQ CMS $pp \rightarrow HX$ , 13 TeV,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| <4.0                                                                  | $H ightarrow \ \gamma^* \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| <6.7                                                                  | 95 $^3$ KHACHATRY16B CMS $pp$ , 8 TeV, $ee\gamma$ , $\mu\mu\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
| AAD 211 search for <i>H</i> The mass of dilepton                      | $H 	o \ell\ell\gamma~(\ell=e,~\mu)$ in 139 fb $^{-1}$ of $pp$ collisions at $E_{\rm cm}=13$ TeV. $m_{\ell\ell}$ is smaller than 30 GeV. This region is dominated by the decay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NODE=S126A01;LINKAGE=C       |
| through $\gamma^*$ . The questions and is given                       | noted signal strength corresponds to a significance of 3.2 standard ten for $m_H=125.09$ GeV. The cross section times the branching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| ratio of $H 	o \ell\ell\gamma$ for                                    | or $m_{\ell\ell} < 30$ GeV is measured to be $8.7 \pm 2.7^{+0.7}_{-0.6}$ fb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| = 13 TeV. The mass                                                    | arch for $H \to \gamma^* \gamma$ , $\gamma^* \to \mu \mu$ in 35.9 fb <sup>-1</sup> of $p p$ collisions at $E_{\rm cm}$ s of $\gamma^*$ is smaller than 50 GeV except in $J/\psi$ and $\Upsilon$ mass regions. rength (see their Figs. 6 and 7) is given for $m_H = 125$ GeV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NODE=S126A01;LINKAGE=A       |
| <sup>3</sup> KHACHATRYAN 16                                           | B search for $H  ightarrow \ \gamma^* \gamma  ightarrow \ e^+  e^-  \gamma$ and $\mu^+  \mu^-  \gamma$ (with m( $e^+  e^-$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NODE=S126A01;LINKAGE=B       |
| $<$ 3.5 GeV and m( $\mu$ See their Fig. 6 for I                       | $^+\mu^-) <$ 20 GeV) in 19.7 fb $^{-1}$ of $pp$ collisions at $E_{\rm cm}=$ 8 TeV. imits on individual channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
|                                                                       | HIGGS COUPLINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NODE=S126250                 |
| Fermion coupling ( $\kappa_I$                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=\$126KFC                |
| 0.94 ±0.05 OUR AVER                                                   | AGE  DOCUMENT ID  TECN COMMENT  COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NODE=S126KFC                 |
| $0.86 \begin{array}{l} +0.14 \\ -0.11 \end{array}$                    | $^{1}$ TUMASYAN 23W CMS $_{pp}$ , 13 TeV, $	extit{H}  ightarrow 	extit{W} 	extit{W}^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| $0.95 \pm 0.05$                                                       | $^2$ ATLAS 22 ATLS $pp$ , 13 TeV e following data for averages, fits, limits, etc. • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| $1.00 \begin{array}{c} +0.16 \\ -0.13 \end{array}$                    | <sup>3</sup> AAD 23Y ATLS $pp$ , 13 TeV, $H \rightarrow \gamma \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| 0.906                                                                 | <sup>4</sup> CMS 22 CMS <i>pp</i> , 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| with 138 fb $^{-1}$ data, 95% CL contours in                          | easure Higgs production rates with $H 	o WW^*$ at $E_{\rm cm}=13$ TeV assuming $m_H=125.38$ GeV. See their Fig. 25 for the 68% and the $\kappa_V-\kappa_f$ plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=S126KFC;LINKAGE=C       |
| fb <sup>-1</sup> of data at $E_{cn}$<br>0 ( $B_{inv} = B_{undete}$    | mbined results (see their Extended Data Table 1) using up to 139 n = 13 TeV, assuming $m_H=125.09$ GeV, $\kappa_V\geq 0$ , and $\kappa_F\geq cted=0$ ). See their Fig. 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=S126KFC;LINKAGE=A       |
| $^{3}$ AAD 23Y measure H fb $^{-1}$ data, assuming                    | liggs production rates with $H \to \gamma \gamma$ at $E_{\rm cm} = 13$ TeV with 139 g $m_H = 125.09$ GeV. See their Fig. 23 for the 68% and 95% CL $-\kappa_F$ plane, where $\kappa_F > 0$ is assumed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=S126KFC;LINKAGE=D       |
| $^4$ CMS 22 report comb of data at $E_{cm} = 1$                       | ined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ 3 TeV, assuming $m_H=125.38$ GeV. No uncertainty is given while vs 68% and 95% CL contours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NODE=S126KFC;LINKAGE=B       |

### Gauge boson coupling $(\kappa_V)$ CL% DOCUMENT ID $1.023\pm0.026$ OUR AVERAGE

 $^{
m 1}$  TUMASYAN

NODE=S126KVC NODE=S126KVC

|   | 1.03 | $5 \pm 0.031$ | L        | <sup>2</sup> ATL | AS       | 22      | ATLS     | рp,     | 13 Te | eV  |   |
|---|------|---------------|----------|------------------|----------|---------|----------|---------|-------|-----|---|
| • | • •  | We do n       | ot use t | he following     | data for | average | s, fits, | limits, | etc.  | • • | • |

|                                                    |    | •                       | •        |                                                             |
|----------------------------------------------------|----|-------------------------|----------|-------------------------------------------------------------|
| -3.7 to 3.8                                        | 95 | <sup>3</sup> HAYRAPETY. | 24AW CMS | 13 TeV, $VHH$ , $HH \rightarrow b\overline{b}b\overline{b}$ |
| $1.02 \begin{array}{l} +0.06 \\ -0.05 \end{array}$ |    | <sup>4</sup> AAD        | 23Y ATLS | 13 TeV, $H  ightarrow \gamma \gamma$                        |
| 1.014                                              |    | <sup>5</sup> CMS        | 22 CMS   | pp, 13 TeV                                                  |

 $^1$  TUMASYAN 23W measure Higgs production rates with  $H 
ightarrow ~W \, W^*$  at  $E_{
m cm} =$  13 TeV with 138 fb $^{-1}$  data, assuming  $m_H = 125.38$  GeV. See their Fig. 25 for the 68% and 95% CL contours in the  $\kappa_V - \kappa_f$  plane.

 $^2$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV, assuming  $m_H=$  125.09 GeV,  $\kappa_V\geq$  0, and  $\kappa_F\geq$  0 ( $B_{inv}=B_{undetected}=$  0). See their Fig. 4.

 $^3$ HAYRAPETYAN 24AW search for non-resonant HH production in association with a vector boson using  $HH \to b \overline{b} b \overline{b}$  with data of 138 fb $^{-1}$  at  $E_{\rm cm} = 13$  TeV. The vector boson decays both leptonically  $(W \to \ell \nu, Z \to \ell \ell, \nu \nu, \ell = e, \mu)$  and hadronically. See their Fig. 19. All other Higgs couplings are fixed to the SM values.

 $^4\,\mathrm{AAD}$  23Y measure Higgs production rates with  $H\to~\gamma\gamma$  at  $E_\mathrm{cm}=13$  TeV with 139 fb $^{-1}$  data, assuming  $m_H=125.09$  GeV. See their Fig. 23 for the 68% and 95% CL contours in the  $\kappa_V - \kappa_F$  plane, where  $\kappa_F > 0$  is assumed.

 $^{5}$  CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at  $E_{\rm cm}=$  13 TeV, assuming  $m_{H}=$  125.38 GeV. See their Fig. 3 left.

### NODE=\$126KVC;LINKAGE=C

NODE=\$126KVC;LINKAGE=A

NODE=\$126KVC;LINKAGE=E

NODE=S126KVC;LINKAGE=D

NODE=S126KVC;LINKAGE=B

### W boson coupling $(\kappa_W)$

 $0.99 \pm 0.05$ 

| VALUE           | DOCUMENT ID                | TECN       | COMMENT         | NODE=\$126KWC |
|-----------------|----------------------------|------------|-----------------|---------------|
| • • • We do not | use the following data for | or avorago | fits limits atc |               |

23W CMS 13 TeV,  $H \rightarrow WW^*$ 

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

|                        | <sup>1</sup> HAYRAPETY | 25B         | CMS   | pp, 13 TeV, VBF WH, coupling sign |
|------------------------|------------------------|-------------|-------|-----------------------------------|
|                        | <sup>2</sup> AAD       | <b>24</b> B | мATLS | pp, 13 TeV, VBF WH, coupling sign |
| $1.02 \pm 0.05$        | <sup>3,4</sup> ATLAS   | 22          | ATLS  | pp, 13 TeV                        |
| $1.05 \!\pm\! 0.06$    | <sup>3,5</sup> ATLAS   | 22          | ATLS  | <i>pp</i> , 13 TeV                |
| $1.00^{+0.00}_{-0.02}$ | <sup>3,6</sup> ATLAS   | 22          | ATLS  | pp, 13 TeV                        |
| $1.06 \pm 0.07$        | <sup>7,8</sup> cms     | 22          | CMS   | pp, 13 TeV                        |
| $1.02 \pm 0.08$        | <sup>7,9</sup> CMS     | 22          | CMS   | pp. 13 TeV                        |

 $^1$ HAYRAPETYAN 25B present the determination of the relative sign of  $\kappa_W$  and  $\kappa_Z$  with VBF WH,  $H \rightarrow b\overline{b}$  using 138 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The opposite-sign coupling hypothesis is excluded with a significance beyond  $5\sigma$ .

 $^2\,\mathrm{AAD}$  24BM present the determination of the relative sign of  $\kappa_W$  and  $\kappa_Z$  with VBF WH,  $H \rightarrow b\overline{b}$  using 140 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The opposite-sign coupling hypothesis is excluded with a significance beyond  $5\sigma$ .

<sup>3</sup> ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.09$  GeV.

<sup>4</sup> All modifiers( $\kappa$ ) > 0, and  $\kappa_c=\kappa_t$  ( $B_{inv}=B_{undetected}=0$ ) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both  $\kappa_c=\kappa_t$  and  $\kappa_c$  floating.

 $^5B_{inv}=B_{undetected}=0$  is assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^6B_{inv}$  floating,  $B_{undetected} \geq$  0, and  $\kappa_V \leq$  1 are assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^7$  CMS 22 report combined results (see their Extended Data Table 2) using up to  $^{138}$  fb $^{-1}$ of data at  $E_{\rm cm}=$  13 TeV, assuming  $m_{H}=$  125.38 GeV.

 $^8$  Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3

 $^9$  Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 4 left.

# NODE=S126KWC

OCCUR=2 OCCUR=3

OCCUR=2

NODE=\$126KWC;LINKAGE=I

NODE=\$126KWC;LINKAGE=H

NODE=S126KWC;LINKAGE=A

NODE=S126KWC;LINKAGE=F

NODE=S126KWC;LINKAGE=B

NODE=S126KWC;LINKAGE=E

NODE=S126KWC;LINKAGE=C

NODE=S126KWC;LINKAGE=G

NODE=S126KWC:LINKAGE=D

### Z boson coupling $(\kappa_{z})$

| Z DOSON COUP                                        | Jiiig ( <i>™Z )</i>   |             |             |                                      | NODE=\$126KZC |
|-----------------------------------------------------|-----------------------|-------------|-------------|--------------------------------------|---------------|
| VALUE                                               | DOCUMENT              | ID          | <u>TECN</u> | COMMENT                              | NODE=\$126KZC |
| • • • We do no                                      | ot use the following  | data for    | average     | s, fits, limits, etc. • • •          |               |
|                                                     | <sup>1</sup> НАҮКАРЕТ | Y25B        | CMS         | pp, 13 TeV, VBF WH, coupling sign    |               |
|                                                     | <sup>2</sup> AAD      | <b>24</b> B | мATLS       | pp, 13 TeV, VBF $WH$ , coupling sign |               |
| $0.99 ^{+ 0.06}_{- 0.05}$                           | 3,4 ATLAS             | 22          | ATLS        | <i>pp</i> , 13 TeV                   |               |
| $0.99 \!\pm\! 0.06$                                 | <sup>3,5</sup> ATLAS  | 22          | ATLS        | pp, 13 TeV                           | OCCUR=2       |
| $0.98 ^{\displaystyle +0.02}_{\displaystyle -0.05}$ | <sup>3,6</sup> ATLAS  | 22          | ATLS        | pp, 13 TeV                           | OCCUR=3       |
| $1.04 \pm 0.07$                                     | <sup>7,8</sup> CMS    | 22          | CMS         | pp, 13 TeV                           |               |
| $1.04 \pm 0.07$                                     | <sup>7,9</sup> CMS    | 22          | CMS         | pp, 13 TeV                           | OCCUR=2       |

 $^1$ HAYRAPETYAN 25B present the determination of the relative sign of  $\kappa_W$  and  $\kappa_Z$  with VBF WH,  $H \rightarrow b\overline{b}$  using 138 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV. The opposite-sign coupling hypothesis is excluded with a significance beyond  $5\sigma$ .

 $^2$ AAD 24BM present the determination of the relative sign of  $\kappa_W$  and  $\kappa_Z$  with VBF WH,  $H \rightarrow b\overline{b}$  using 140 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The opposite-sign coupling hypothesis is excluded with a significance beyond  $5\sigma$ .

<sup>3</sup> ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV, assuming  $m_{H}=125.09$  GeV.

 $^4\,\mathrm{AII}\ \mathrm{modifiers}(\kappa) > 0,$  and  $\kappa_c = \kappa_t\ (B_{inv} = \!B_{undetected} = 0)$  are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both  $\kappa_c = \kappa_t \text{ and} \kappa_c$  floating.

 $^5B_{inv}=B_{undetected}=0$  is assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^6B_{inv}$  floating,  $B_{undetected} \geq 0$ , and  $\kappa_V \leq 1$  are assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^7$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at  $E_{\rm cm}=13$  TeV, assuming  $m_{\mbox{\scriptsize $H$}}=125.38$  GeV.

 $^{8}$  Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3

 $^9\,\mathrm{Coupling}$  strength modifiers including effective photon,  $\mathit{Z}\,\gamma$  and gluon are measured. See their Fig. 4 left.

DOCUMENT ID

TECN COMMENT

# top Yukawa coupling $(\kappa_t)$

< 1.7

< 1.67

< 2.1

| ullet $ullet$ $ullet$ We do not use the fo            | llowin | g data for averages, fi | ts, lim     | its, etc. | • • •                                         |   |     |
|-------------------------------------------------------|--------|-------------------------|-------------|-----------|-----------------------------------------------|---|-----|
|                                                       |        | <sup>1</sup> HAYRAPETY. | <b>25</b> R | CMS       | $t\overline{t}H,tH,H	ob\overline{b}$ , 13 TeV | I |     |
| $0.84 ^{+ 0.30}_{- 0.46}$                             |        | <sup>2</sup> AAD        | 24J         | ATLS      | $t\overline{t}H,tH,H	ob\overline{b}$ , 13 TeV |   |     |
| <1.9                                                  | 95     | <sup>3</sup> AAD        | 23BC        | ATLS      | pp, 13 TeV                                    |   |     |
| 0.87-1.20                                             | 95     | <sup>4</sup> AAD        | 23Y         | ATLS      | <i>p p</i> , 13 TeV                           |   |     |
| 0.65-1.25                                             | 95     | <sup>5</sup> AAD        | 23Y         | ATLS      | <i>p p</i> , 13 TeV                           |   | OCC |
| -1.09 0.74 or 0.77-1.3                                | 95     | <sup>6</sup> TUMASYAN   | <b>23</b> P | CMS       | <i>p p</i> , 13 TeV                           |   |     |
| 0.86-1.26                                             |        | <sup>6,7</sup> TUMASYAN | 23P         | CMS       | <i>p p</i> , 13 TeV                           |   | OCC |
| $0.95 \pm 0.07$                                       |        | <sup>8,9</sup> ATLAS    | 22          | ATLS      | <i>p p</i> , 13 TeV                           |   |     |
| $0.94 \pm 0.11$                                       |        | 8,10 ATLAS              | 22          | ATLS      | <i>p p</i> , 13 TeV                           |   | OCC |
| $0.94 \pm 0.11$                                       |        | $^{8,11}$ ATLAS         | 22          | ATLS      | <i>р р</i> , 13 TeV                           |   | OCC |
| $0.95 \! \begin{array}{l} +0.07 \\ -0.08 \end{array}$ |        | $^{12,13}\mathrm{CMS}$  | 22          | CMS       | <i>pp</i> , 13 TeV                            |   |     |
| $1.01 {+0.11 \atop -0.10}$                            |        | $^{12,14}\mathrm{CMS}$  | 22          | CMS       | <i>pp</i> , 13 TeV                            |   | OCC |
| -0.9 $0.7$ or $0.7$ -1.1                              | 95     | <sup>15</sup> SIRUNYAN  | <b>21</b> R | CMS       | <i>p p</i> , 13 TeV                           |   |     |

20c CMS

19BY CMS

18BU CMS

pp, 13 TeV

 $^1$  HAYRAPETYAN 25R measure the  $t\,\overline{t}\,H$  and  $t\,H$  productions with  $H o \,b\,\overline{b}$  decay channel using 138 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. Two-dimensional likelihood scan of  $(\kappa_t,\kappa_V)$  is shown in their Fig. 15. Assuming  $\kappa_V=1,\,\kappa_t$  is measured to be  $[-0.55,\,-0.24]$  and

<sup>16</sup> SIRUNYAN

<sup>17</sup> SIRUNYAN

<sup>18</sup> SIRUNYAN

95

95

 $^2$ AAD 24J measure the  $\it CP$  structure of the top Yukawa coupling using 139 fb $^{-1}$  of data at  $E_{
m cm}=$  13 TeV. The top Yukawa coupling strength modifier  $\kappa_t$  is measured with the *CP*-mixing angle  $\alpha$ . See their Fig. 3.

 $^{3}\hspace{-0.05cm}\mathsf{AAD}$  23BC measure the production of four top quarks with same-sign and multilepton final states with 140 fb $^{-1}$  pp collision data at  $E_{\rm cm}=13$  TeV. The results constraint the ratio of the top quark Yukawa coupling  $y_t$  to its Standard Model value, yielding  $|y_t/y_t^{SM}| < 1.9$  (see their erratum) at 95% CL. See their Fig. 8 as a function of  $\kappa_t$ and *CP*-mixing angle.

<sup>4</sup> AAD 23Y constrain  $\kappa_t$  from Higgs production rates with  $H \to \gamma \gamma$  with 139 fb<sup>-1</sup> ppcollision data at  $E_{\rm cm}=13$  TeV. The quoted result is obtained assuming the SM loop structure in gg o H and  $H o \gamma \gamma$ . See their Fig. 14.

<sup>5</sup> AAD 23Y constrain  $\kappa_t$  from Higgs production rates with  $H \to \gamma \gamma$  with 139 fb<sup>-1</sup> pp collision data at  $E_{\rm cm} = 13$  TeV. The quoted result is obtained assuming effective couplings  $\kappa_{gluon}$  and  $\kappa_{\gamma}$  for  $gg \to H$  and  $H \to \gamma \gamma$ , respectively. See their Fig. 14.

 $^6$  TUMASYAN 23P constrain  $\kappa_t$  from  $t \bar t H$  and t H decaying  $H o WW^*$  and H o au au(multilepton decay mode) with 138 fb $^{-1}$  pp collision data at  $E_{\rm cm}=13$  TeV. The  $\kappa_t$  is obtained by fixing  $\widetilde{\kappa}_t=0$  and other couplings ( $\kappa_V$  etc.) to the SM values. See their Fig. 9 for 2-dim contours and Table 6.

 $^7$  The quoted result is obtained by combining with other  $t \, \overline{t} \, H$  decaying  $H o \ \gamma \gamma$  (SIRUN-YAN 20AS) and  $H \to 4\ell$  (SIRUNYAN 21AE) and  $\widetilde{\kappa}_t = 0$ . See their Fig. 12 for 2-dim contours and Table 7.

8 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139

 ${\rm fb^{-1}}$  of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.09$  GeV.

NODE=S126KZC;LINKAGE=I

NODE=S126KZC;LINKAGE=H

NODE=S126KZC;LINKAGE=A

NODE=S126KZC:LINKAGE=F

NODE=S126KZC;LINKAGE=B

NODE=S126KZC;LINKAGE=E

NODE=S126KZC;LINKAGE=C

NODE = S126KZC; LINKAGE = G

NODE=S126KZC;LINKAGE=D

NODE=S126YTC NODE=S126YTC

CUR=2

CUR=2

CUR=2 CUR=3

CUR=2

NODE=S126YTC;LINKAGE=R

NODE=S126YTC;LINKAGE=S

NODE=S126YTC;LINKAGE=Q

NODE=S126YTC;LINKAGE=O

NODE=S126YTC;LINKAGE=P

NODE=S126YTC;LINKAGE=M

NODE=S126YTC;LINKAGE=N

NODE=S126YTC;LINKAGE=E

 $^9$  All modifiers( $\kappa)>0$ , and  $\kappa_c=\kappa_t~(B_{inv}=B_{undetected}=0)$  are assumed. Only SM particles assume to contribute to the loop-induced processes.See their Fig. 5, which shows both  $\kappa_c=\kappa_t$  and  $\kappa_c$  floating.

 $^{10}B_{inv}=B_{undetected}=0$  is assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^{11}B_{inv}$  floating,  $B_{undetected} \geq$  0, and  $\kappa_V \leq$  1 are assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^{12}$  CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.38$  GeV.

 $^{13}$  Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.

 $^{14}$  Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 4 left.

 $^{15}$  SIRUNYAN 21R constrain the ratio of the top quark Yukawa coupling  $y_t$  to its Standard Model value from  $t\overline{t}H$  and tH production rates using 137 fb $^{-1}$  pp collision data at  $E_{\rm cm}=13$  TeV. Assuming a SM Higgs couplings to  $\tau$ 's, the joint interval  $-0.9<\kappa_t(=\!y_t/y_t^{SM})<-0.7$  and  $0.7<\kappa_t<1.1$  is obtained at 95% CL (see their Fig. 17).

 $^{16}$  SIRUNYAN 20C search for the production of four top quarks with same-sign and multilepton final states with 137 fb $^{-1}$   $p\,p$  collision data at  $E_{\rm cm}=13$  TeV. The results constraint the ratio of the top quark Yukawa coupling  $y_t$  to its Standard Model value by comparing to the central value of a theoretical prediction (see their Refs. [1-2]), yielding  $|y_t/y_t^{SM}|<1.7$  at 95% CL. See their Fig. 5.

<sup>17</sup> SIRUNYAN 19BY measure the top quark Yukawa coupling from  $t\bar{t}$  kinematic distributions, the invariant mass of the top quark pair and the rapidity difference between t and  $\bar{t}$ , in the  $\ell$ +jets final state with 35.8 fb<sup>-1</sup> pp collision data at  $E_{\rm cm}=13$  TeV. The results constraint the ratio of the top quark Yukawa coupling to its the Standard Model to be  $1.07 {}^{+0.34}_{-0.43}$  with an upper limit of 1.67 at 95% CL (see their Table III).

 $^{18}$  SIRUNYAN  $^{18}$ BU search for the production of four top quarks with same-sign and multilepton final states with  $^{35.9}$  fb $^{-1}$  pp collision data at  $E_{\rm cm}=13$  TeV. The results constraint the ratio of the top quark Yukawa coupling  $y_t$  to its the Standard Model by comparing to the central value of a theoretical prediction (see their Ref. [16]), yielding  $\left|y_t/y_t^{SM}\right| < 2.1$  at 95% CL.

# bottom quark Yukawa coupling $(\kappa_b)$

| Doctom quark rui                                            |        | .oupg (/* <i>b)</i>    |       |            |                                                                 |
|-------------------------------------------------------------|--------|------------------------|-------|------------|-----------------------------------------------------------------|
| VALUE                                                       | CL%    | DOCUMENT ID            |       | TECN       | COMMENT                                                         |
| • • • We do not use                                         | the fo | llowing data for avera | ages, | fits, limi | ts, etc. • • •                                                  |
| $0.65 <  \kappa_{b}  < 1.37$                                | 95     | <sup>1</sup> AAD       | 25Y   | ATLS       | $pp \rightarrow VH, H \rightarrow b\overline{b}, 13$ TeV        |
| -1.09 to -0.86 OR                                           | 95     | <sup>2</sup> AAD       | 23C   | ATLS       | pp, 13 TeV, $\gamma\gamma$ , $ZZ^* 	o$                          |
| 0.81 to 1.09                                                |        | <sup>3</sup> AAD       |       |            | $4\ell$ cross sections $pp$ , 13 TeV, $H 	o \Upsilon(nS)\gamma$ |
| -1.1 to 1.1                                                 | 95     | <sup>4</sup> HAYRAPETY | .23   | CMS        | pp, 13 TeV, $ZZ^*  ightarrow 4\ell$                             |
|                                                             |        |                        |       |            | cross sections                                                  |
| $0.90 \pm 0.11$                                             |        | <sup>5,6</sup> ATLAS   | 22    | ATLS       | pp, 13 TeV                                                      |
| $0.89 \pm 0.11$                                             |        | <sup>5,7</sup> ATLAS   | 22    | ATLS       | pp, 13 TeV                                                      |
| $0.82 {+0.09 \atop -0.08}$                                  |        | <sup>5,8</sup> ATLAS   | 22    | ATLS       | <i>pp</i> , 13 TeV                                              |
| $1.02 ^{+ 0.15}_{- 0.17}$                                   |        | $^{9,10}\mathrm{CMS}$  | 22    | CMS        | pp, 13 TeV                                                      |
| $0.99 \! \begin{array}{l} + \ 0.17 \\ - \ 0.16 \end{array}$ |        | $^{9,11}\mathrm{CMS}$  | 22    | CMS        | pp, 13 TeV                                                      |

 $^1$  AAD 25Y present measurements of  $V\,H,\,H\to\,b\,\overline{b}$  and  $H\to\,c\,\overline{c}$  ( $V=W,\,Z$ ) using 140 fb $^{-1}$  of  $p\,p$  collision data at  $E_{\rm cm}=13$  TeV. The quoted value is obtained assuming  $\kappa_{\it C}=1$ , all other couplings to their SM predictions, and only SM decays.

 $^2$  AAD 23C combine results of  $H\to\gamma\gamma$  and  $H\to ZZ^*\to 4\ell~(\ell=e,~\mu)$  using 139 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The Higgs boson transverse momentum  $(p_T^H)$  distribution constrains  $\kappa_b$  and  $\kappa_c$ , assuming other couplings fixed to the SM values. The  $\kappa_b$  is obtained using the  $p_T^H$  shape and normalisation. Other cases are given in their Tables 6 and 7.

<sup>3</sup> AAD <sup>23CD</sup> search for  $H \to \Upsilon(\text{nS})\gamma$ ,  $\Upsilon(\text{nS}) \to \mu^+\mu^-$  (n=1,2,3) with 138 fb<sup>-1</sup> of pp collision data at  $E_{\text{Cm}}=13$  TeV. They interpret the  $H \to \Upsilon(\text{nS})\gamma$  search to constraint the bottom Yukawa coupling by comparing to  $H \to \gamma\gamma$ . An observed 95% CL interval of (-37, 40) is obtained for  $\kappa_b/\kappa_\gamma$ .

<sup>4</sup> HAYRAPETYAN 23 measure the cross sections for  $pp \to H \to ZZ^* \to 4\ell$  ( $\ell=e,\mu$ ) using 138 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The  $\kappa_b$  is obtained from the  $p_T$  differential cross section of the ggF production employing the dependence of the branching fraction on  $\kappa_b$  and  $\kappa_c$ .

 $^5$  ATLAS 22 report combined results (see their Extended Data Table 1) using up to  $139 {\rm fb}^{-1}$  of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.09$  GeV.

<sup>6</sup> All modifiers  $(\kappa)>0$ , and  $\kappa_c=\kappa_t$  ( $B_{inv}=B_{undetected}=0$ ) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both  $\kappa_c=\kappa_t$  and  $\kappa_c$  floating.

NODE=S126YTC;LINKAGE=J

NODE=S126YTC;LINKAGE=F

NODE=\$126YTC;LINKAGE=I

NODE=S126YTC;LINKAGE=G

NODE=S126YTC;LINKAGE=K

NODE=S126YTC;LINKAGE=H

NODE=\$126YTC;LINKAGE=D

NODE=S126YTC;LINKAGE=A

NODE=S126YTC;LINKAGE=B

NODE=S126YTC;LINKAGE=C

NODE=S126KBC NODE=S126KBC

OCCUR=2 OCCUR=3

OCCUR=2

NODE=\$126KBC;LINKAGE=K

NODE=S126KBC;LINKAGE=I

NODE=S126KBC;LINKAGE=J

NODE=S126KBC;LINKAGE=H

NODE=S126KBC;LINKAGE=A

NODE=S126KBC;LINKAGE=G

|                                                                                 |                                    |                                                              |                                                                |                                       |                                                                                                                                        |   | 11/11/2025               | 13:16      | Page |
|---------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|------------|------|
| $^{7}B_{inv} = B_{undete}$                                                      | cted = 0                           | is assumed. Coup                                             | ling str                                                       | ength                                 | modifiers including effective                                                                                                          |   | NODE=S126K               | BC;LINKAG  | GE=B |
| $^{8}B_{ini}$ , floating, $B_{ini}$                                             | juon are i<br>undetecte            | heasured. See their $_d~\geq~0$ , and $\kappa_V$             | $\leq 1$                                                       | o.<br>Lare a:                         | ssumed. Coupling strength sured. See their Fig. 6.                                                                                     |   | NODE=S126K               | BC·LINKAG  | F=F  |
| modifiers including                                                             | g effective                        | photon, $Z\gamma$ and $z$                                    | gluon ar                                                       | re meas                               | sured. See their Fig. 6. Uslie 2) using up to 138 fb <sup>-1</sup>                                                                     |   |                          |            |      |
|                                                                                 |                                    | assuming $m_H = 1$                                           |                                                                |                                       | ible 2) using up to 138 fb =                                                                                                           |   | NODE=S126K               | BC;LINKAG  | iE=C |
|                                                                                 |                                    |                                                              |                                                                |                                       | processes. See their Fig. 3                                                                                                            |   | NODE=S126K               | BC;LINKAG  | E=F  |
| <sup>11</sup> Coupling strength<br>their Fig. 4 left.                           | modifiers                          | including effective                                          | photon                                                         | n, $Z\gamma$ a                        | nd gluon are measured. See                                                                                                             |   | NODE=S126K               | BC;LINKAG  | E=D  |
| charm quark Yuka                                                                | wa coupl                           | ing (κ)                                                      |                                                                |                                       |                                                                                                                                        |   | NODE C100K               | 66         |      |
| VALUE                                                                           | <u>CL%</u>                         | DOCUMENT ID                                                  | -                                                              | TECN                                  | COMMENT                                                                                                                                |   | NODE=S126K<br>NODE=S126K |            |      |
| • • • We do not use                                                             | the follow                         | ing data for averag                                          | ges, fits                                                      | , limits                              | s, etc. • • •                                                                                                                          |   |                          |            |      |
| $ \kappa_{c}  < 4.2$                                                            | 95                                 | <sup>1</sup> AAD                                             | 25Y A                                                          | ATLS                                  | pp  ightarrow VH, 13 TeV                                                                                                               |   |                          |            |      |
| -166 to 208                                                                     | 95                                 | <sup>2</sup> HAYRAPETY.                                      | 25н (                                                          | CMS                                   |                                                                                                                                        | Ī |                          |            |      |
| $\left \kappa_{\it C}\right <190$                                               | 95                                 | <sup>3</sup> HAYRAPETY.                                      | 24D (                                                          | CMS                                   | pp, 13 TeV, $H\gamma$ , $H ightarrow$<br>$WW^* ightarrow e u\mu u$                                                                     |   |                          |            |      |
| $\left \kappa_{\it C}\right  < 2.27$                                            | 95                                 | <sup>4</sup> AAD                                             | 23C /                                                          | ATLS                                  | pp, 13 TeV, $\gamma\gamma$ , $ZZ^* \rightarrow 4\ell$ cross sections                                                                   |   |                          |            |      |
|                                                                                 |                                    | <sup>5</sup> AAD                                             | 23CD /                                                         | ATLS                                  | pp, 13 TeV, $H \rightarrow J/\psi \gamma$                                                                                              |   |                          |            |      |
| - 5.3 to 5.2                                                                    | 95                                 | <sup>6</sup> HAYRAPETY.                                      | 23                                                             | CMS                                   | $pp$ , 13 TeV, $ZZ^* \rightarrow 4\ell$                                                                                                |   |                          |            |      |
| $1.1 < \left \kappa_{\it c} ight  < 5.5$                                        | 95                                 | <sup>7</sup> TUMASYAN                                        | 23ан (                                                         | CMS                                   | cross sections $pp \rightarrow WH/ZH$ , 13 TeV                                                                                         |   |                          |            |      |
| $0.03^{+3.02}_{-0.03}$                                                          |                                    | <sup>8</sup> ATLAS                                           | 22                                                             | ATLS                                  | pp, 13 TeV                                                                                                                             |   |                          |            |      |
| $140~{ m fb}^{-1}$ of $pp$ co $\kappa_{m b}=1$ , all other                      | ollision dat<br>couplings          | ta at $E_{ m cm}=13$ Te                                      | V. The ctions,                                                 | quoted<br>and on                      | $ ightarrow c \overline{c} \ (V=W,\ Z)$ using d value is obtained assuming by SM decays. The ratio of                                  |   | NODE=S126K               | CC;LINKAG  | E=H  |
| <sup>2</sup> HAYRAPETYAN<br>collision data at <i>E</i><br>charm Yukawa co       | $25$ H search $_{ m cm}=13$        | h for $H 	o J/\psi$ ? TeV. They interpred comparing to $H$ - | $\gamma,\; J/\psi \ 	ext{et the } F_0 \ 	o \; \gamma  \gamma.$ | $ ightarrow \mu^ H  ightarrow J$ An o | $^+\mu^-$ with 123 fb $^{-1}$ of $pp/\psi\gamma$ search to constrain the bserved 95% CL interval of ained assuming $\kappa_\gamma=1$ . |   | NODE=\$126K              | CC;LINKAG  | E=G  |
| <sup>3</sup> HAYRAPETYAN                                                        | 24D searc                          | h for the $H\gamma$ produ                                    | uction u                                                       | ısing H                               | $J  ightarrow WW^*  ightarrow e^{ u} \mu  u$ with                                                                                      | • | NODE=S126K               | CC;LINKAG  | E=F  |
| constraint the cha                                                              | arm Yukav                          | va coupling assum                                            | ing tha                                                        | it the o                              | interpret the $H\gamma$ search to charm quark and the Higgs                                                                            |   |                          |            |      |
|                                                                                 |                                    |                                                              |                                                                |                                       | er. See their Table II. $\ell \ (\ell = e, \ \mu)$ using 139 fb $^{-1}$                                                                |   | NODE CLOCK               | CC.LINIZAC | ·    |
| at $E_{ m cm}=13~{ m TeV}$                                                      | . The Hig                          | gs boson transvers                                           | e mome                                                         | entum (                               | $( ho_T^H)$ distribution constrains                                                                                                    |   | NODE=S126K               | CC;LINKAG  | E=D  |
| 7.7                                                                             |                                    |                                                              |                                                                |                                       | s. The $\kappa_c$ is obtained using                                                                                                    |   |                          |            |      |
| the $p_{\widetilde{T}}^{*}$ snape an their Table 8 for r                        |                                    |                                                              |                                                                |                                       | their Tables 6 and 7. See                                                                                                              |   |                          |            |      |
| <sup>5</sup> AAD 23CD search                                                    | for $H \rightarrow$                | $J/\psi \gamma$ , $J/\psi \rightarrow \mu^{\dagger}$         | $\mu^-$ with                                                   | th 138                                | $fb^{-1}$ of $pp$ collision data at                                                                                                    |   | NODE=S126K               | CC:LINKAG  | F=F  |
| $E_{ m cm} = 13~{ m TeV}$ . To coupling by compobtained for $\kappa_c/\kappa_c$ | They interparing to $I_{\gamma}$ . | pret the $H 	o J/\psi$ $H 	o \gamma \gamma$ . An ob          | $\gamma$ search served $\Omega$                                | ch to co<br>95% C                     | onstraint the charm Yukawa<br>L interval of (-133, 175) is                                                                             |   |                          | 00,2       |      |
|                                                                                 | ,                                  | re the cross sectio                                          | ns for p                                                       | $p \rightarrow$                       | $H \rightarrow ZZ^* \rightarrow 4\ell \ (\ell = e,$                                                                                    |   | NODE=S126K               | CC:LINKAG  | E=C  |
|                                                                                 |                                    |                                                              |                                                                |                                       | om the $p_T$ differential cross the branching fraction of $\kappa_h$                                                                   |   | 222010                   |            | . •  |

section of the ggF production employing the dependence of the branching fraction of  $\kappa_b$ 

<sup>7</sup> TUMASYAN 23AH search for VH,  $H \to c\bar{c}$  (V = W, Z) using 138 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm} = 13$  TeV. The quoted values are obtained from the measured signal strength in the  $\kappa$ -framework, where only the Higgs decay width for  $H \to c\bar{c}$  is changed while assuming all the other decay widths an 13F 30 CeV/Cbe SM ones. The quoted values are given for  $m_{\mbox{\scriptsize H}}=125.38$  GeV.

 $^{8}\hspace{0.05cm}\mathsf{ATLAS}$  22 report combined results (see their Extended Data Table 1) using up to 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.09$  GeV, and all modifiers  $(\kappa)>0$  ( $B_{inv}=B_{undetected}=0$ ). Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both  $\kappa_c=\kappa_t$  and  $\kappa_c$  floating.

# strange quark Yukawa coupling $(\kappa_s)$

| VALUE                       | <u>CL%_</u> | DOCUMENT ID               | TECN      | COMMENT                               |
|-----------------------------|-------------|---------------------------|-----------|---------------------------------------|
| • • • We do not use t       | he followin | g data for averages, fits | , limits, | etc. • • •                            |
| $ \kappa_{_{m{S}}}  < 1700$ | 95          | <sup>1</sup> HAYRAPETY24D | CMS       | pp, 13 TeV, $H\gamma$ , $H ightarrow$ |
|                             |             |                           |           | $WW^* \rightarrow e \nu \mu \nu$      |

 $<sup>^1</sup>$ HAYRAPETYAN 24D search for the  $H\gamma$  production using  $H o WW^* o e
u\mu
u$  with 138 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV. They interpret the  $H\gamma$  search to constraint the strange quark Yukawa coupling assuming that the strange quark and the Higgs interaction vertex shown in their Fig. 1 is the only parameter. See their Table II.

NODE=S126KCC;LINKAGE=B

NODE=S126KCC;LINKAGE=A

NODE=S126KSC NODE=S126KSC

NODE=S126KSC;LINKAGE=A

## down quark Yukawa coupling $(\kappa_d)$

| VALUE                 | CL%_         | DOCUMENT ID               | TECN    | COMMENT                               |
|-----------------------|--------------|---------------------------|---------|---------------------------------------|
| • • • We do not use t | he following | data for averages, fits,  | limits, | etc. • • •                            |
| $ \kappa_d  < 17000$  | 95           | <sup>1</sup> HAYRAPETY24D | CMS     | pp, 13 TeV, $H\gamma$ , $H ightarrow$ |
|                       |              |                           |         | $WW^*	o e u \mu u$                    |

 $^1$ HAYRAPETYAN 24D search for the  $H\gamma$  production using  $H o WW^* o e
u\mu
u$ with 138 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm}=13$  TeV. They interpret the  $H\gamma$  search to constraint the down quark Yukawa coupling assuming that the down quark and the Higgs interaction vertex shown in their Fig. 1 is the only parameter. See their Table II.

# up quark Yukawa coupling $(\kappa_{ii})$

| VALUE                    | <u>CL%</u> | DOCUMENT ID               | TECN    | COMMENT                                  |
|--------------------------|------------|---------------------------|---------|------------------------------------------|
| • • • We do not use the  | following  | data for averages, fits,  | limits, | etc. • • •                               |
| $ \kappa_{\mu}  < 16000$ | 95         | <sup>1</sup> HAYRAPETY24D | CMS     | $pp$ , 13 TeV, $H\gamma$ , $H ightarrow$ |
|                          |            |                           |         | $WW^* \rightarrow e \nu \mu \nu$         |

 $^1$ HAYRAPETYAN 24D search for the  $H\gamma$  production using  $H o WW^* o e
u\mu
u$  with 138 fb $^{-1}$  of pp collision data at  $E_{\rm cm}=13$  TeV. They interpret the  $H\gamma$  search to constraint the up quark Yukawa coupling assuming that the up quark and the Higgs interaction vertex shown in their Fig. 1 is the only parameter. See their Table II.

#### tau Yukawa coupling $(\kappa_{\tau})$

| VALUE                         | <u>DOCUMENT I</u>    | D          | TECN      | COMMENT            |
|-------------------------------|----------------------|------------|-----------|--------------------|
| • • • We do not use the follo | wing data for avera  | ges, fits, | limits, e | etc. • • •         |
| $0.94 \pm 0.07$               | $^{1,2}$ ATLAS       | 22         | ATLS      | pp, 13 TeV         |
| $0.93 \pm 0.07$               | $^{1,3}$ ATLAS       | 22         | ATLS      | pp, 13 TeV         |
| $0.91^{+0.07}_{-0.06}$        | <sup>1,4</sup> ATLAS | 22         | ATLS      | <i>pp</i> , 13 TeV |
| $0.93\!\pm\!0.08$             | <sup>5,6</sup> CMS   | 22         | CMS       | pp, 13 TeV         |
| $0.92 \pm 0.08$               | <sup>5,7</sup> CMS   | 22         | CMS       | pp, 13 TeV         |

<sup>1</sup>ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.09$  GeV.

 $^2$  All modifiers( $\kappa)>0$ , and  $\kappa_c=\kappa_t$  ( $B_{inv}=B_{undetected}=0)$  are assumed. Only SM particles assume to contribute to the loop-induced processes.See their Fig. 5, which shows both  $\kappa_c = \kappa_t$  and  $\kappa_c$  floating.

 $^3B_{inv}=B_{undetected}=0$  is assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.  $^4B_{inv}$  floating,  $B_{undetected}\geq 0$ , and  $\kappa_V\leq 1$  are assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^{5}$  CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.38$  GeV.

 $^6\mathrm{Only}$  SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.

 $^7$  Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 4 left.

## muon Yukawa couping $(\kappa_{\mu})$

| VALUE                                   | DOCUMENT ID          |          | TECN        | COMMENT            | NODE=S12 |
|-----------------------------------------|----------------------|----------|-------------|--------------------|----------|
| ullet $ullet$ We do not use the followi | ng data for averages | s, fits, | , limits, o | etc. • • •         |          |
| $1.07^{+0.25}_{-0.31}$                  | <sup>1,2</sup> ATLAS | 22       | ATLS        | pp, 13 TeV         |          |
| $1.06^{+0.25}_{-0.30}$                  | <sup>1,3</sup> ATLAS | 22       | ATLS        | pp, 13 TeV         | OCCUR=2  |
| $1.04^{+0.23}_{-0.30}$                  | <sup>1,4</sup> ATLAS | 22       | ATLS        | <i>pp</i> , 13 TeV | OCCUR=3  |
| $1.12 \pm 0.20$                         | <sup>5,6</sup> CMS   | 22       | CMS         | <i>pp</i> , 13 TeV |          |
| $1.12^{+0.21}_{-0.22}$                  | <sup>5,7</sup> CMS   | 22       | CMS         | pp, 13 TeV         | OCCUR=2  |

 $^1$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV, assuming  $m_H=125.09$  GeV.

 $^2$  All modifiers( $\kappa$ ) > 0, and  $\kappa_c=\kappa_t$  ( $B_{inv}$  =  $B_{undetected}$  = 0) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both  $\kappa_c=\kappa_t$  and  $\kappa_c$  floating.

 $^3B_{inv}=B_{undetected}=0$  is assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^4B_{inv}$  floating,  $B_{undetected} \geq 0$ , and  $\kappa_V \leq 1$  are assumed. Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 6.

 $^{5}$  CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at  $E_{\rm cm}=$  13 TeV, assuming  $m_{H}=$  125.38 GeV.

 $^6$  Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3

 $^{7}$  Coupling strength modifiers including effective photon,  $Z\gamma$  and gluon are measured. See their Fig. 4 left.

NODE=S126KDC NODE=S126KDC

NODE=S126KDC;LINKAGE=A

NODE=S126KUC NODE=S126KUC

NODE=S126KUC;LINKAGE=A

NODE=S126KTA NODE=S126KTA

OCCUR=2 OCCUR=3

OCCUR=2

NODE=S126KTA;LINKAGE=A

NODE=S126KTA;LINKAGE=F

NODE=S126KTA;LINKAGE=B

NODE=\$126KTA;LINKAGE=E

NODE=S126KTA;LINKAGE=C

NODE=S126KTA:LINKAGE=G

NODE=\$126KTA;LINKAGE=D

NODE=S126KMU NODE=S126KMU

NODE=\$126KMU;LINKAGE=A

NODE=S126KMU;LINKAGE=F

NODE=S126KMU;LINKAGE=B

NODE=S126KMU;LINKAGE=E

NODE=S126KMU;LINKAGE=C

NODE=S126KMU;LINKAGE=G

NODE=S126KMU;LINKAGE=D

# photon effective coupling (r. )

| photon effective coupling (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\iota_{\gamma})$                                                            |                                                                                                                                                     | NODE=S126KGC                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOCUMENT ID                                                                  | TECN COMMENT                                                                                                                                        | NODE=S126KGC                                     |  |  |  |
| • • We do not use the following to a contract the following to a contract the following traction of the following tra |                                                                              | ts, limits, etc. • • •                                                                                                                              |                                                  |  |  |  |
| $1.02^{+0.08}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              | BY ATLS pp, 13 TeV                                                                                                                                  |                                                  |  |  |  |
| $1.01 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,3 ATLAS 22                                                                 | - Pro-                                                                                                                                              |                                                  |  |  |  |
| $0.98 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>2,4</sup> ATLAS 22 5 CMS 22                                             | - Pri                                                                                                                                               | OCCUR=2                                          |  |  |  |
| $1.10\pm0.08$ $1.40 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              | 2 CMS $pp$ , 13 TeV tes with $H 	o \gamma \gamma$ with 139 fb $^{-1}$                                                                               |                                                  |  |  |  |
| $pp$ collision data at $E_{ m cm}'=$ couplings $\kappa_{gluon}$ and $\kappa_{\gamma}$ for fixed to the SM values. See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13 TeV. The quoted r $gg \rightarrow H$ and $H \rightarrow r$ their Fig. 15. | result is obtained assuming effective $\gamma\gamma$ , respectively and other couplings                                                             | NODE=S126KGC;LINKAGE=E                           |  |  |  |
| ${ m fb}^{-1}$ of data at ${ m 	extit{E}_{cm}}=1$ modifiers including effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 TeV, assuming $m_H$ photon, $Z\gamma$ and gluon                            | nded Data Table 1) using up to 139 = 125.09 GeV. Coupling strength are measured. See their Fig. 6.                                                  | NODE=S126KGC;LINKAGE=A                           |  |  |  |
| ${}^{3}B_{inv} = B_{undetected} = 0$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | assumed.                                                                     |                                                                                                                                                     | NODE=S126KGC;LINKAGE=D                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ults (see their Extended assuming $m_H = 125.3$                              | Data Table 2) using up to 138 fb <sup>-1</sup><br>8 GeV. Coupling strength modifiers                                                                | NODE=S126KGC;LINKAGE=C<br>NODE=S126KGC;LINKAGE=B |  |  |  |
| gluon effective coupling ( $\kappa_g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | luon)                                                                        |                                                                                                                                                     | NODE=S126KGL                                     |  |  |  |
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOCUMENT ID                                                                  | TECN COMMENT                                                                                                                                        | NODE=\$126KGL<br>NODE=\$126KGL                   |  |  |  |
| • • • We do not use the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng data for averages, fi                                                     | ts, limits, etc. • • •                                                                                                                              |                                                  |  |  |  |
| $1.01^{igoplus 0.11}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>1</sup> AAD 23                                                          | BY ATLS <i>pp</i> , 13 TeV                                                                                                                          |                                                  |  |  |  |
| $0.95 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>2,3</sup> ATLAS 22                                                      | 2 ATLS <i>pp</i> , 13 TeV                                                                                                                           |                                                  |  |  |  |
| $0.94^{igoplus 0.07}_{-0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>2,4</sup> ATLAS 22                                                      | 2 ATLS <i>pp</i> , 13 TeV                                                                                                                           | OCCUR=2                                          |  |  |  |
| $0.92\!\pm\!0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> CMS 22                                                          | 2 CMS <i>pp</i> , 13 TeV                                                                                                                            |                                                  |  |  |  |
| $pp$ collision data at $	ilde{E}_{ m cm}=$ couplings $\kappa_{gluon}$ and $\kappa_{\gamma}$ for fixed to the SM values. See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 TeV. The quoted r $gg \rightarrow H$ and $H \rightarrow G$ their Fig. 15. | rates with $H \to \gamma \gamma$ with 139 fb <sup>-1</sup> result is obtained assuming effective $\gamma \gamma$ , respectively and other couplings | NODE=S126KGL;LINKAGE=D                           |  |  |  |
| $139 { m fb}^{-1}$ of data at $E_{ m cm} =$ modifiers including effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $13$ TeV, assuming $m_{F_1}$                                                 | tended Data Table 1) using up to $H=125.09$ GeV. Coupling strength are measured. See their Fig. 6.                                                  | NODE=S126KGL;LINKAGE=A                           |  |  |  |
| ${}^{3}B_{inv} = B_{undetected} = 0$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | assumed.                                                                     |                                                                                                                                                     | NODE=S126KGL;LINKAGE=E                           |  |  |  |
| <sup>4</sup> B <sub>inv</sub> floating, B <sub>undetected</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                     | NODE=S126KGL;LINKAGE=C                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | assuming $m_H = 125.3$                                                       | Data Table 2) using up to 138 fb <sup>-1</sup><br>8 GeV. Coupling strength modifiers<br>ared. See their Fig. 4 left.                                | NODE=S126KGL;LINKAGE=B                           |  |  |  |
| $Z\gamma$ effective coupling $(\kappa_{Z\gamma})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                                                                                     | NODE=S126KZG                                     |  |  |  |
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOCUMENT ID                                                                  | TECN COMMENT                                                                                                                                        | NODE=S126KZG                                     |  |  |  |
| • • We do not use the followi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                            | ts, limits, etc. • • •                                                                                                                              |                                                  |  |  |  |
| $1.38^{+0.31}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2 ATLAS 22                                                                 |                                                                                                                                                     | OCCUP-2                                          |  |  |  |
| $1.35 + 0.29 \\ -0.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>1,3</sup> ATLAS 22                                                      | 2 ATLS <i>pp</i> , 13 TeV                                                                                                                           | OCCUR=2                                          |  |  |  |
| $1.65^{+0.34}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>4</sup> CMS 22                                                          | 2 CMS <i>pp</i> , 13 TeV                                                                                                                            |                                                  |  |  |  |
| ${ m fb}^{-1}$ of data at ${ m 	extit{E}_{cm}}=1$ modifiers including effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 TeV, assuming $m_H$ photon, $Z\gamma$ and gluon                            | nded Data Table 1) using up to 139 = 125.09 GeV. Coupling strength are measured. See their Fig. 6.                                                  | NODE=S126KZG;LINKAGE=A                           |  |  |  |
| ${}^{2}B_{inv} = B_{undetected} = 0$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $> 0$ and $\kappa_{rr} < 1$ a                                                | re assumed                                                                                                                                          | NODE=S126KZG;LINKAGE=D                           |  |  |  |
| $^3B_{inv}$ floating, $B_{undetected} \geq 0$ , and $\kappa_V \leq 1$ are assumed. NODE=S126KZG;LINKAGE=C 4CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H}=125.38$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                                                                                                                                                     |                                                  |  |  |  |

#### $t\overline{t}H$ production

NODE=S126STH Signal strength relative to the Standard Model cross section. NODE=S126STH DOCUMENT ID TECN COMMENT NODE=S126STH  $0.91^{+0.20}_{-0.18}$  OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below. NEW  $[1.10 \pm 0.18 \; \mathsf{OUR} \; 2025 \; \mathsf{AVERAGE}]$  $0.81 \substack{+0.22 \\ -0.19}$ <sup>1</sup> AAD 25AJ ATLS pp, 13 TeV,  $H \rightarrow b\overline{b}$ <sup>2</sup> HAYRAPETY...25R CMS  $0.33 \!\pm\! 0.26$ pp, 13 TeV,  $H \rightarrow b\overline{b}$  $0.92 \pm 0.19 ^{+0.17}_{-0.13}$ <sup>3</sup> SIRUNYAN 21R CMS pp, 13 TeV,  $H \rightarrow \tau \tau$ ,  $WW^*, ZZ^*$  $1.43 ^{\,+\, 0.33 \,+\, 0.21}_{\,-\, 0.31 \,-\, 0.15}$ 4 AAD 20Z ATLS pp, 13 TeV,  $H \rightarrow \gamma \gamma$  $1.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$ <sup>5</sup> AABOUD 18AC ATLS  $\,$  pp, 13 TeV,  $H 
ightarrow \, au au$ ,  $WW^*, ZZ^*$  $1.9 \begin{array}{c} +0.8 \\ -0.7 \end{array}$ OCCUR=2 6 AAD 16AN ATLS pp, 7, 8 TeV ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $-0.27^{+0.86}_{-0.83}$ <sup>7</sup> TUMASYAN 23AI ATLS pp, 13 TeV, boosted  $H \rightarrow$ Ьb  $0.35^{+0.36}_{-0.34}$ 8 AAD 22M ATLS pp, 13 TeV,  $H \rightarrow b\overline{b}$  $1.38^{+0.36}_{-0.29}$ <sup>9</sup> SIRUNYAN 20AS CMS pp, 13 TeV,  $H \rightarrow \gamma \gamma$ <sup>10</sup> SIRUNYAN  $0.72 \pm 0.24 \pm 0.38$ 19R CMS pp, 13 TeV,  $H \rightarrow b\overline{b}$ <sup>11</sup> AABOUD  $1.2\ \pm0.3$ 18AC ATLS pp, 13 TeV,  $H \rightarrow b\overline{b} \tau \tau$ , OCCUR=2  $\gamma \gamma$ ,  $WW^*$ ,  $ZZ^*$ <sup>12</sup> AABOUD pp, 13 TeV,  $H 
ightarrow b \, \overline{b} \, au au$ , 18BK ATLS  $\gamma \gamma$ ,  $WW^*$ ,  $ZZ^*$  $0.84^{+0.64}_{-0.61}$ <sup>13</sup> AABOUD pp, 13 TeV,  $H \rightarrow b\overline{b}$ 18T ATLS <sup>14</sup> SIRUNYAN  $0.9 \pm 1.5$ 18BD CMS pp, 13 TeV,  $H \rightarrow b\overline{b}$  $1.23^{+0.45}_{-0.43}$ <sup>15</sup> SIRUNYAN 18BQ CMS pp, 13 TeV,  $H \rightarrow \tau \tau$ ,  $WW^*$ ,  $ZZ^*$  $1.26^{+0.31}_{-0.26}$ <sup>16</sup> SIRUNYAN pp, 7, 8, 13 TeV,  $H \rightarrow$ 18L CMS  $b\overline{b}$ ,  $\tau\tau$ ,  $\gamma\gamma$ ,  $WW^*$ ,  $ZZ^*$ <sup>17</sup> AAD pp, 7, 8 TeV,  $H \rightarrow b\overline{b}$ ,  $1.7 \pm 0.8$ 16AL ATLS  $\tau \tau$ ,  $\gamma \gamma$ ,  $WW^*$ , and  $ZZ^*$  $2.3 \begin{array}{l} +0.7 \\ -0.6 \end{array}$ 6,18 AAD 16AN LHC pp, 7, 8 TeV OCCUR=3  $2.9 \begin{array}{c} +1.0 \\ -0.9 \end{array}$ 6 AAD 16AN CMS pp, 7, 8 TeV  $1.81 \!+\! 0.52 \!+\! 0.58 \!+\! 0.31 \\ -0.50 \!-\! 0.55 \!-\! 0.12$  $^{19}AAD$ 16K ATLS pp, 7, 8 TeV  $1.4 \begin{array}{c} +2.1 & +0.6 \\ -1.4 & -0.3 \end{array}$ <sup>20</sup> AAD 15 ATLS pp, 7, 8 TeV <sup>21</sup> AAD  $1.5\ \pm1.1$ 15BC ATLS pp, 8 TeV  $2.1 \begin{array}{c} +1.4 \\ -1.2 \end{array}$  $^{22}$  AAD 15⊤ ATLS pp, 8 TeV  $1.2 \begin{array}{c} +1.6 \\ -1.5 \end{array}$ <sup>23</sup> KHACHATRY...15AN CMS pp, 8 TeV  $2.8 \begin{array}{c} +1.0 \\ -0.9 \end{array}$ <sup>24</sup> KHACHATRY...14H CMS pp, 7, 8 TeV  $9.49^{+6.60}_{-6.28}$ OCCUR=2 <sup>25</sup> AALTONEN 13L CDF p \( \overline{p} \), 1.96 TeV < 5.8 at 95% CL <sup>26</sup> CHATRCHYAN 13X CMS pp. 7, 8 TeV,  $H \rightarrow b\overline{b}$  $^1$ AAD 25AJ measure the  $t \overline{t} H$  production with  $H o b \overline{b}$  decay channel using 140 fb $^{-1}$ NODE=S126STH;LINKAGE=AA of data at  $E_{\rm cm}=13$  TeV. The  $t\bar{t}H$  cross section is measured to be  $411^{+101}_{-92}$  fb for a Higgs boson mass of 125.09 GeV. The signal strengths with simplified template cross section bins are given in their Fig. 3.  $^2$  HAYRAPETYAN 25R measure the  $t\,\overline{t}\,H$  and  $t\,H$  productions with  $H o \,b\,\overline{b}$  decay channel NODE=S126STH;LINKAGE=BA using 138 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV. The quoted value is obtained assuming the tH contribution predicted in the SM. The signal strengths with simplified template cross section bins are given in their Fig. 12. Two-dimensional likelihood scan of  $(\mu_{tH}, \mu_{t\bar{t}H})$ is shown in their Fig. 14.  $^3$ SIRUNYAN 21R search for  $t \bar{t} H$  in final states with electrons, muons and hadronically NODE=S126STH;LINKAGE=W decaying  $\tau$  leptons  $(H \to WW^*, ZZ^*, \tau\tau)$  with 137 fb<sup>-1</sup> of pp collision data at

deviations and is given for  $m_H = 125$  GeV. <sup>4</sup> AAD 20Z measure  $\sigma_{t \overline{t} H} \cdot {\rm B}(H o \ \gamma \gamma)$  to be  $1.64^{+0.38}_{-0.36} + 0.17_{-0.14}$  fb in 139 fb $^{-1}$  of data at  $E_{
m cm}=$  13 TeV.

 $E_{
m cm}=13$  TeV. The quoted signal strength corresponds to a significance of 4.7 standard

NODE=S126STH;LINKAGE=V

- <sup>5</sup> AABOUD 18AC search for  $t \overline{t} H$  production with H decaying to  $\tau \tau$ ,  $WW^*(\to \ell \nu \ell \nu, \ell \nu q \overline{q})$ ,  $ZZ^*(\to \ell \ell \nu \nu, \ell \ell q \overline{q})$  in 36.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125$  GeV. See their Table 13 and Fig. 13.
- $^6$  AAD 16AN: In the fit, relative branching ratios are fixed to those in the Standard Model. The quoted signal strength is given for  $m_H=125.09$  GeV.
- $^7$  TUMASYAN 23AI measure boosted  $H\to b\overline{b}~(p_T>200~{\rm GeV})$  in  $t\overline{t}~H$  production using 138 fb $^{-1}$  of data at  $E_{\rm cm}=13~{\rm TeV}.$  The differential cross section for the Higgs  $p_T$  is shown in their Fig. 8 and Table V. Limits on eight Wilson coefficients at 68% and 95% CL are shown in their Fig. 10 and Table VI.
- <sup>8</sup> AAD 22M measure  $H \to b\overline{b}$  in  $t\overline{t}H$  production using 139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. See their Fig. 14. The signal strengths and 95% CL cross section upper limits with simplified template cross section bins are given in their Figs. 18 and 19, respectively.
- simplified template cross section bins are given in their Figs. 18 and 19, respectively.  $^9$  SIRUNYAN 20AS measure  $\sigma_{t\overline{t}\,H}\cdot {\rm B}(H\to~\gamma\gamma)$  to be  $1.56^{+0.34}_{-0.32}$  fb in 137 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV.
- $^{10}$  SIRUNYAN 19R search for  $t\bar{t}H$  production with H decaying to  $b\bar{b}$  in 35.9 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.
- <sup>11</sup> AABOUD 18AC combine results of  $t\overline{t}H$ ,  $H\to \tau\tau$ ,  $WW^*(\to \ell\nu\ell\nu,\ell\nu q\overline{q})$ ,  $ZZ^*(\to \ell\ell\nu\nu,\ell\ell q\overline{q})$  with results of  $t\overline{t}H$ ,  $H\to b\overline{b}$  (AABOUD 18T),  $\gamma\gamma$  (AABOUD 18BO),  $ZZ^*(\to 4\ell)$  (AABOUD 18AJ) in 36.1 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125$  GeV. See their Table 14.
- $^{12}$  AABOUD 18BK use  $79.8~{\rm fb^{-1}}$  data for  $t\overline{t}H$  production with  $H\to\gamma\gamma$  and  $ZZ^*\to 4\ell$  ( $\ell=e,\,\mu$ ) and  $36.1~{\rm fb^{-1}}$  for other decay channels at  $E_{\rm Cm}=13$  TeV. A significance of 5.8 standard deviations is observed for  $m_H=125.09~{\rm GeV}$  and its signal strength without the uncertainty of the  $t\overline{t}H$  cross section is  $1.32^{+0.28}_{-0.26}$ . Combining with results of 7 and 8 TeV (AAD 16K), the significance is 6.3 standard deviations. Assuming Standard Model branching fractions, the total  $t\overline{t}H$  production cross section at 13 TeV is measured to be  $670\pm90^{+110}_{-100}$  fb.
- $^{13}$  AABOUD 18T search for  $t\overline{t}H$  production with H decaying to  $b\overline{b}$  in 36.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.
- <sup>14</sup> SIRUNYAN 18BD search for  $t\bar{t}H, H \to b\bar{b}$  in the all-jet final state with 35.9 fb<sup>-1</sup> pp collision data at  $E_{\rm cm}=13$  TeV. The quoted signal strength is given for  $m_H=125$  GeV.
- <sup>15</sup> SIRUNYAN 18BQ search for  $t\bar{t}H$  in final states with electrons, muons and hadronically decaying  $\tau$  leptons ( $H \to WW^*$ ,  $ZZ^*$ ,  $\tau\tau$ ) with 35.9 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm}=13$  TeV. The quoted signal strength corresponds to a significance of 3.2 standard deviations and is given for  $m_H=125$  GeV.
- <sup>16</sup> SIRUNYAN 18L use up to 5.1, 19.7 and 35.9 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$ , 8, and 13 TeV, respectively. The quoted signal strength corresponds to a significance of 5.2 standard deviations and is given for  $m_H=125.09$  GeV. H decay channels of  $WW^*$ ,  $ZZ^*$ ,  $\gamma\gamma$ ,  $\tau\tau$ , and  $b\bar{b}$  are used. See their Table 1 and Fig. 2 for results on individual channels.
- 17 AAD 16AL search for  $t \bar{t} H$  production with H decaying to  $\gamma \gamma$  in 4.5 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and  $b \bar{b}, \, \tau \tau, \, \gamma \gamma, \, WW^*$ , and  $ZZ^*$  in 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125$  GeV. This paper combines the results of previous papers, and the new result of this paper only is:  $\mu=1.6\pm2.6$ .
- $^{18}\,\mathrm{AAD}$  16AN perform fits to the ATLAS and CMS data at  $E_\mathrm{cm}=7$  and 8 TeV.
- $^{19}$  AAD 16K use up to 4.7 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=7$  TeV and up to 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The third uncertainty in the measurement is theory systematics. The quoted signal strength is given for  $m_H=125.36$  GeV.
- <sup>20</sup> AAD 15 search for  $t\overline{t}H$  production with H decaying to  $\gamma\gamma$  in 4.5 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=7$  TeV and 20.3 fb<sup>-1</sup> at  $E_{\rm cm}=8$  TeV. The quoted result on the signal strength is equivalent to an upper limit of 6.7 at 95% CL and is given for  $m_H=125.4$  GeV.
- 21 AAD 15BC search for  $t \, \overline{t} \, H$  production with H decaying to  $b \, \overline{b}$  in 20.3 fb<sup>-1</sup> of  $p \, p$  collisions at  $E_{\rm cm} = 8$  TeV. The corresponding upper limit is 3.4 at 95% CL. The quoted signal strength is given for  $m_H = 125$  GeV.
- <sup>22</sup> AAD 15T search for  $t\bar{t}H$  production with H resulting in multilepton final states (mainly from  $WW^*$ ,  $\tau\tau$ ,  $ZZ^*$ ) in 20.3 fb<sup>-1</sup> of pp collisions at  $E_{\rm CM}=8$  TeV. The quoted result on the signal strength is given for  $m_H=125$  GeV and corresponds to an upper limit of 4.7 at 95% CL. The data sample is independent from AAD 15 and AAD 15BC.
- $^{23}$  KHACHATRYAN 15AN search for  $t\bar{t}H$  production with H decaying to  $b\bar{b}$  in 19.5 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=8$  TeV. The quoted result on the signal strength is equivalent to an upper limit of 4.2 at 95% CL and is given for  $m_H=125$  GeV.
- $^{24}$  KHACHATRYAN 14H search for  $t\,\overline{t}\,H$  production with H decaying to  $b\,\overline{b},\,\tau\,\tau,\,\gamma\gamma,\,W\,W^*,$  and  $Z\,Z^*,$  in 5.1 fb $^{-1}$  of  $p\,p$  collisions at  $E_{\rm cm}=7$  TeV and 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The quoted signal strength is given for  $m_H=125.6$  GeV.
- $^{25}$  AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$  of  $p\overline{p}$  collisions at  $E_{\rm cm}$  = 1.96 TeV. The quoted signal strength is given for  $m_H=125$  GeV.
- $^{26}$  CHATRCHYAN 13X search for  $t\overline{t}H$  production followed by  $H\to b\overline{b}$ , one top decaying to  $\ell\nu$  and the other to either  $\ell\nu$  or  $q\overline{q}$  in 5.0 fb $^{-1}$  and 5.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=$  7 and 8 TeV. A limit on cross section times branching ratio which corresponds to (4.0–8.6) times the expected Standard Model cross section is given for  $m_H=110$ –140

- NODE=S126STH;LINKAGE=M
- NODE=S126STH;LINKAGE=K
- NODE=S126STH;LINKAGE=Z
- NODE=S126STH;LINKAGE=Y
- NODE=S126STH;LINKAGE=U
- NODE=S126STH;LINKAGE=S
- NODE=S126STH;LINKAGE=N
- NODE=S126STH;LINKAGE=O
- NODE=S126STH:LINKAGE=H
- NODE=S126STH;LINKAGE=Q
- NODE=S126STH;LINKAGE=P
- NODE=S126STH;LINKAGE=G
- NODE=S126STH;LINKAGE=I
- NODE=S126STH;LINKAGE=J NODE=S126STH;LINKAGE=F
- NODE=S126STH;LINKAGE=B
- NODE=S126STH;LINKAGE=C
- NODE=S126STH;LINKAGE=D
- NODE=S126STH;LINKAGE=E
- NODE=S126STH;LINKAGE=A
- NODE=S126STH;LINKAGE=LL
- NODE=S126STH;LINKAGE=TY

GeV at 95% CL. The quoted limit is given for  $m_H=125$  GeV, where 5.2 is expected for no signal.



 $t \overline{t} H$  production

#### $b\overline{b}H$ production

| VALUE | CL% | DOCUMENT ID              | TECN | COMMENT                                                |
|-------|-----|--------------------------|------|--------------------------------------------------------|
| <3.7  | 95  | <sup>1</sup> HAYRAPETY25 | CMS  | <i>pp</i> , 13 TeV, $H \rightarrow \tau \tau$ , $WW^*$ |

 $^1$  HAYRAPETYAN 25 search for  $b\overline{b}H$  and bH in final states with leptons using  $138~{\rm fb}^{-1}$  of data at  $E_{\rm CM}=13~{\rm TeV}.~H\to~\tau\tau$  or  $H\to~WW^*\to~\ell\nu\ell\nu$  are considered. Upper limits at 95% CL on the signal strength for each final state are found in their Fig. 3. Combing with TUMASYAN 23Y, two-dimensional exclusion regions as a function of the  $\kappa_b$  and  $\kappa_t$  parameters are shown in their Fig. 4. The best fit value is  $(\kappa_t,\kappa_b)=(\text{-}0.73,1.58).$  All other Higgs couplings are fixed to the SM values.

#### tH production

| tir production        |                |                           |           |                    |   |
|-----------------------|----------------|---------------------------|-----------|--------------------|---|
| VALUE                 | CL%_           | DOCUMENT ID               | TECN      | COMMENT            |   |
| $5.7 \pm 2.7 \pm 3.0$ |                | <sup>1</sup> SIRUNYAN 21R | CMS       | <i>pp</i> , 13 TeV |   |
| • • • We do not us    | e the followin | g data for averages, fits | , limits, | etc. • • •         |   |
| <14.6                 | 95             | <sup>2</sup> HAYRAPETY25R | CMS       | pp, 13 TeV         | I |
| <12                   | 95             |                           |           | <i>рр</i> , 13 TeV |   |
|                       |                | <sup>4</sup> SIRUNYAN 19B |           |                    |   |
|                       |                | <sup>5</sup> KHACHATRY16A | U CMS     | рр. 8 TeV          |   |

<sup>1</sup> SIRUNYAN 21R search for tH in final states with electrons, muons and hadronically decaying  $\tau$  leptons ( $H \to WW^*$ ,  $ZZ^*$ ,  $\tau\tau$ ) with 137 fb<sup>-1</sup> of pp collision data at  $E_{\rm cm}=13$  TeV. The quoted signal strength corresponds to a significance of 1.4 standard deviations and is given for  $m_H=125$  GeV.

 $^2$  HAYRAPETYAN 25R measure the  $t\bar{t}H$  and tH productions with  $H\to b\bar{b}$  decay channel using 138 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV. The quoted value is obtained assuming the  $t\bar{t}H$  contribution predicted in the SM. Two-dimensional likelihood scan of  $(\mu_{tH},\mu_{t\bar{t}H})$  is shown in their Fig. 14.

 $^3$  AAD 20Z search for the tH associated production using  $H\to ~\gamma\gamma$  in 139 fb $^{-1}$  of data at  $E_{\rm CM}=13$  TeV. An upper limit on its rate is set to be 12 times the Standard Model at 95% CL ( $m_H=125.09$  GeV).

<sup>4</sup> SIRUNYAN 19BK search for the tH associated production using multilepton signatures  $(H \to WW^*, H \to \tau\tau, H \to ZZ^*)$  and signatures with a single lepton and a  $b\overline{b}$  pair  $(H \to b\overline{b})$  using 35.9 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. Results are combined with  $H \to \gamma\gamma$  (SIRUNYAN 18DS). The observed 95% CL upper limit on the tH production cross section times  $H \to WW^* + \tau\tau + ZZ^* + b\overline{b} + \gamma\gamma$  branching fraction is 1.94 pb (assuming SM  $t\overline{t}H$  production cross section). See their Table X and Fig. 14. The values outside the ranges of [-0.9, -0.5] and [1.0, 2.1] times the standard model top quark Yukawa coupling are excluded at 95% CL.

 $^5$  KHACHATRYAN  $^16$ AU search for the tH associated production in  $19.7~{\rm fb}^{-1}$  at  $E_{\rm cm}=8~{\rm TeV}$ . The 95% CL upper limits on the tH associated production cross section is measured to be  $600-1000~{\rm fb}$  depending on the assumed  $\gamma\gamma$  branching ratios of the Higgs boson. The  $\gamma\gamma$  branching ratio is varied to be by a factor of 0.5-3.0 of the Standard Model Higgs boson ( $m_H=125~{\rm GeV}$ ). The results of the signal strengths for a negative Higgs-boson trilinear coupling are given. The results are given for  $m_H=125~{\rm GeV}$ .

NODE=S126SBH NODE=S126SBH

NODE=S126SBH;LINKAGE=A

NODE=S126PTH NODE=S126PTH

NODE=S126PTH;LINKAGE=D

NODE=S126PTH;LINKAGE=E

NODE=S126PTH;LINKAGE=C

NODE=S126PTH;LINKAGE=B

NODE=S126PTH;LINKAGE=A

#### cH production

NODE=S126SCH NODE=S126SCH DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $^{1}\,\mathrm{AAD}$ 25R ATLS pp, 13 TeV

<sup>1</sup>AAD 25R search for the production of a Higgs boson and one or more charm quarks (H+c) with  $H\to \gamma\gamma$  using 140 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The observed H+c cross section is  $5.3\pm3.2$  pb. The observed upper limit on the H+c cross section at 95% CL is 10.6 pb.

NODE=S126SCH;LINKAGE=A

#### VBS/VBF WH production

WH production through vector boson scattering (VBS) or vector boson fusion (VBF). The VBS/VBF WH production cross section related to the SM prediction.

TECN COMMENT DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • •  $^{1}$  HAYRAPETY...25B CMS pp, 13 TeV, VBF WH, coupling sign <14.3 24BMATLS pp, 13 TeV, VBF WH, coupling sign < 9.0

 $^1$ HAYRAPETYAN 25B present the determination of the relative sign of  $\kappa_W$  and  $\kappa_Z$  with VBF WH,  $H \rightarrow b\overline{b}$  using 148 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The upper limit at 95% CL on the cross section for VBF WH production is obtained. The signal strength is measured to be  $2.2^{+6.1}_{-5.8}$ 

 $^2$  AAD 24BM present the determination of the relative sign of  $\kappa_W$  and  $\kappa_Z$  with VBF WH $H \to b \overline{b}$  using 140 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV. The upper limit at 95% CL on the cross section for VBF WH production is obtained. The signal strength is measured to be  $0.9^{+4.0}_{-4.3}$ 

NODE=S126SVB NODE=S126SVB NODE=S126SVB

NODE=S126SVB;LINKAGE=B

NODE=S126SVB;LINKAGE=A

#### HH production

The HH production cross section relative to the SM prediction.

| VAL |            | <u>CL%</u>      | DOCUMENT ID               |              |            | -                                                                                                                                |
|-----|------------|-----------------|---------------------------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------|
| <   | 2.4        | 95              | $^{ m 1}$ AAD             | 23AT         | ATLS       | 13 TeV, $b\overline{b}b\overline{b}$ , $b\overline{b}\tau\tau$ , $b\overline{b}\gamma\gamma$                                     |
| • • | • We do no | t use th        | ne following data for     | avera        | ges, fits, | limits, etc. • • •                                                                                                               |
| <   | 5.9        | 95              | <sup>2</sup> AAD          | 24AZ         | ATLS       | 13 TeV, $b\overline{b}\tau\tau$                                                                                                  |
| <   | 17         | 95              | <sup>3</sup> AAD          | <b>24</b> BG | ATLS       | 13 TeV, <i>bbZZ</i> *, <i>VVVV</i> ,                                                                                             |
|     |            |                 |                           |              |            | $VV	au	au$ , $	au	au	au$ , $\gamma\gamma VV$ , $\gamma\gamma	au	au$                                                              |
| <   | 2.9        | 95              | <sup>4</sup> AAD          | 24BL         | ATLS       | 13 TeV, $b\overline{b}b\overline{b}$ , $b\overline{b}\tau\tau$ , $b\overline{b}\gamma\gamma$ ,                                   |
|     |            |                 | E                         |              |            | multile ${f p}$ ton , ${f b} ar{\ell} \ell$                                                                                      |
| <   | 4.0        | 95              | <sup>5</sup> AAD          |              | ATLS       | 13 TeV, $b\overline{b}\gamma\gamma$                                                                                              |
| <   | 9.7        | 95              | <sup>6</sup> AAD          | 24Y          | ATLS       | 13 TeV, $b\overline{b}WW^*$ , $b\overline{b}ZZ^*$ , $b\overline{b}\tau\tau$ , multilepton                                        |
| <   | 14         | 95              | <sup>7</sup> HAYRAPETY    | .24AE        | CMS        | 13 TeV, <i>b</i> <del>b</del> W W*                                                                                               |
| <2  | 94         | 95              | <sup>8</sup> HAYRAPETY    |              |            | 13 TeV, $VHH$ , $HH \rightarrow b\overline{b}b\overline{b}$                                                                      |
| <1  | 83         | 95              | <sup>9</sup> AAD          | <b>23</b> AD | ATLS       | 13 TeV, $VHH$ , $HH \rightarrow b\overline{b}b\overline{b}$                                                                      |
| <   | 5.4        | 95              | <sup>10</sup> AAD         | 23BK         | ATLS       | 13 TeV, $b\overline{b}b\overline{b}$                                                                                             |
| <   | 4.7        | 95              | <sup>11</sup> AAD         | 23Z          | ATLS       | 13 TeV, $b\overline{b}\tau\tau$                                                                                                  |
| <   | 9.9        | 95              | <sup>12</sup> TUMASYAN    | 23AE         | CMS        | 13 TeV, $b\overline{b}b\overline{b}$                                                                                             |
| <   | 3.3        | 95 <sup>1</sup> | <sup>l3,14</sup> TUMASYAN | <b>23</b> D  | CMS        | 13 TeV, $b\overline{b}\tau\tau$                                                                                                  |
| <1  | 24         | 95 <sup>1</sup> | <sup>13,15</sup> TUMASYAN | <b>23</b> D  | CMS        | 13 TeV, $b\overline{b}\tau\tau$                                                                                                  |
| <   | 32.4       | 95              | <sup>16</sup> TUMASYAN    | 231          | CMS        | 13 TeV, $b\overline{b}ZZ^*$ ( $ZZ^* \rightarrow 4\ell$ )                                                                         |
| <   | 21.3       | 95              | <sup>17</sup> TUMASYAN    | 230          | CMS        | 13 TeV, <i>WW*WW*</i> ,                                                                                                          |
|     |            |                 | 10                        |              |            | $WW^*\tau\tau, \tau\tau\tau$                                                                                                     |
| <   | 4.2        | 95              | 18 AAD                    | 22Y          | ATLS       | 13 TeV, $\gamma \gamma bb$                                                                                                       |
| <   | 3.4        | 95              | <sup>19</sup> CMS         | 22           | CMS        | 13 TeV, $b\overline{b}ZZ^*$ , $b\overline{b}\gamma\gamma$ , $b\overline{b}\tau\tau$ , $b\overline{b}b\overline{b}$ , multilepton |
| <   | 3.9        | 95              | <sup>20</sup> TUMASYAN    | 22AN         | CMS        | 13 TeV, $b\overline{b}b\overline{b}$                                                                                             |
| <   | 7.7        | 95              | <sup>21</sup> SIRUNYAN    |              | CMS        | 13 TeV, $\gamma \gamma b \overline{b}$                                                                                           |
| <   | 6.9        | 95              | <sup>22</sup> AAD         |              | ATLS       | 13 TeV, $b\overline{b}\gamma\gamma$ , $b\overline{b}\tau\tau$ , $b\overline{b}b\overline{b}$ ,                                   |
|     |            |                 |                           |              |            | $b\overline{b}WW^*, WW^*\gamma\gamma$                                                                                            |
|     |            |                 | •                         |              |            | W W* W W*                                                                                                                        |
| <   |            | 95              | <sup>23</sup> AAD         |              | ATLS       | 13 TeV, $HH  ightarrow b \overline{b} \ell \nu \ell \nu$                                                                         |
| <8  | 40         | 95              | <sup>24</sup> AAD         |              | ATLS       | 13 TeV, VBF, $b\overline{b}b\overline{b}$                                                                                        |
| <   | 12.9       | 95              | <sup>25</sup> AABOUD      | 19A          | ATLS       | 13 TeV, $b\overline{b}b\overline{b}$                                                                                             |
| <3  | 00         | 95              | <sup>26</sup> AABOUD      | 190          | ATLS       | 13 TeV, <i>bbWW</i> *                                                                                                            |
| <1  | 60         | 95              | <sup>27</sup> AABOUD      | 19T          | ATLS       | 13 TeV, <i>WW*WW*</i>                                                                                                            |
| <   | 24         | 95              | <sup>28</sup> SIRUNYAN    | 19           | CMS        | 13 TeV, $\gamma \gamma b \overline{b}$                                                                                           |
| <   | 75         | 95              | <sup>29</sup> SIRUNYAN    | <b>19</b> AB | CMS        | 13 TeV, $b\overline{b}b\overline{b}$                                                                                             |
| <   | 22.2       | 95              | <sup>30</sup> SIRUNYAN    | <b>19</b> BE | CMS        | 13 TeV, $b\overline{b}\gamma\gamma$ $b\overline{b}\tau\tau$ , $b\overline{b}b\overline{b}$ ,                                     |
|     |            |                 | 21                        |              |            | <i>b</i> <del>b</del> W W*,_b <del>b</del> Z Z*                                                                                  |
| <1  | 79         | 95              | <sup>31</sup> SIRUNYAN    | 19H          | CMS        | 13 TeV, $b\overline{b}b\overline{b}$                                                                                             |

NODE=S126SHH NODE=S126SHH NODE=S126SHH

OCCUR=2

| <230   | 95 | <sup>32</sup> AABOUD     | 18BU ATLS | 13 TeV, $\gamma \gamma W W^*$                                                                  |
|--------|----|--------------------------|-----------|------------------------------------------------------------------------------------------------|
| < 12.7 | 95 | <sup>33</sup> AABOUD     | 18cq ATLS | 13 TeV, $b\overline{b}\tau\tau$                                                                |
| < 22   | 95 | <sup>34</sup> AABOUD     | 18cwATLS  | 13 TeV, $\gamma \gamma b \overline{b}$                                                         |
| < 30   | 95 | <sup>35</sup> SIRUNYAN   | 18A CMS   | 13 TeV, $b\overline{b}\tau\tau$                                                                |
| < 79   | 95 | <sup>36</sup> SIRUNYAN   | 18F CMS   | 13 TeV, $b\overline{b}\ell\nu\ell\nu$                                                          |
| < 43   | 95 | <sup>37</sup> SIRUNYAN   | 17CN CMS  | 8 TeV, $b\overline{b}\tau\tau$ , $\gamma\gamma b\overline{b}$ , $b\overline{b}b\overline{b}$   |
| <108   | 95 | <sup>38</sup> AABOUD     | 16ı ATLS  | 13 TeV, <i>bbbb</i>                                                                            |
| < 74   | 95 | <sup>39</sup> KHACHATRY. | 16BQ CMS  | 8 TeV, $\gamma \gamma b \overline{b}$                                                          |
| < 70   | 95 | <sup>40</sup> AAD        | 15CE ATLS | 8 TeV, $b\overline{b}b\overline{b}$ , $b\overline{b}\tau\tau$ , $\gamma\gamma b\overline{b}$ , |
|        |    |                          |           | $\gamma \gamma W W$                                                                            |

 $^1$  AAD 23AT combine results from 126–139 fb $^{-1}$  of data at  $E_{\rm cm}=$  13 TeV for  $p\,p\to B\,B\,b\,\bar{b}$  (AAD 23BK),  $b\,\bar{b}\,\tau\,\tau$  (AAD 23Z), and  $b\,\bar{b}\,\gamma\,\gamma$  (AAD 22Y).

 $^2$  AAD 24AZ search for non-resonant HH production using  $HH 
ightarrow b \overline{b} au au$  with data of 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The result is interpreted: limits on Wilson coefficients of the Higgs effective field theory (HEFT) and the SM effective field theory (SMEFT) are shown in their Table IV and Figs. 11 and 12; the ggF HH production cross sections (7 benchmark points) of HEFT are shown in their Fig. 10. In those interpretations the VBF HH production is neglected.

 $^3$  AAD 24BG search for non-resonant HH production targeting the  $b\overline{b}ZZ^*$ , VVVV,

 $VV\tau\tau$ ,  $\tau\tau\tau\tau$ ,  $\gamma\gamma VV$ ,  $\gamma\gamma\tau\tau$  decay channels with data of 140 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. Signal strengths for the 11 different signal regions are given in their Fig. 8. <sup>4</sup> AAD 24BL combine results from 126–140 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV for  $pp\to HH\to b\bar{b}b\bar{b}$  (AAD 23BK, AAD 24BV),  $b\bar{b}\tau\tau$  (AAD 24AZ),  $b\bar{b}\gamma\gamma$  (AAD 24X), multilepton (AAD 24BG), and  $b\bar{b}\ell\ell$  (AAD 24Y). See their Fig. 2. The signal strength is measured to be 0.5 $^{+1.2}_{-1.0}$ . Constraints for three interaction parameters (c $_{tthh}$ , c $_{gghh}$ ,  $\mathbf{c}_{hhh})$  in the Higgs effective field theory are set. See their Fig. 4.

 $^{5}$  AAD 24X search for non-resonant HH production using  $HH 
ightarrow \ b \, \overline{b} \gamma \gamma$  with data of 140  ${\rm fb^{-1}}$  at  $E_{\rm cm}=13$  TeV. The result is interpreted: limits on three Wilson coefficients and the ggF HH production cross sections (7 benchmark points shown in their Table 5) of the Higgs effective field theory are shown in their Table 4 and Fig. 8, respectively; limits on two Wilson coefficients of the SM effective field theory are shown in their Table 6 and Fig. 9. In those interpretations only the ggF HH production is considered instead of both ggF and VBF.

 $^6$  AAD 24Y search for non-resonant HH production in  $2b+~2\ell+~
u$ s final state ( $\ell=e$ ,  $\mu$ ) targeting  $b\overline{b}WW^*$ ,  $b\overline{b}ZZ^*$ , and  $b\overline{b}\tau\tau$  decay channels with data of 140 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The signal strength is measured to be  $-8.5^{+7.7}_{-8.4}$ . See their Fig. 6.

 $^7$ HAYRAPETYAN 24AE search for non-resonant HH production using  $HH 
ightarrow \ b \, \overline{b} \, W \, W^*$ with data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The result is interpreted: the ggF HH production cross sections (20 benchmark points) of the Higgs effective field theory are shown in their Fig. 16; the coupling between two top quarks and two Higgs bosons is constrained between [-0.8, 1.3] at 95%CL (see their Fig. 17) with all other Higgs couplings fixed to the SM values.

 $^8$ HAYRAPETYAN 24AW search for non-resonant HH production in association with a vector boson using  $HH \to b \overline{b} b \overline{b}$  with data of 138 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The vector boson decays both leptonically ( $W \rightarrow \ell \nu$ ,  $Z \rightarrow \ell \ell$ ,  $\nu \nu$ ,  $\ell = e$ ,  $\mu$ ) and hadronically. The quoted value is the upper limit of the VHH cross section. See their Figs. 13 and 16 (left) for the best fit and the upper limit of the VHH cross section, respectively. In addition, upper limits at 95% CL on VHH and HH cross sections are shown as a function of  $\kappa_{\lambda}$ ,  $\kappa_{2V}$ , and  $\kappa_{V}$  in their Figs. 17, 18, and 19.

 $^{9}$  AAD 23AD search for non-resonant HH production in association with a vector boson using  $HH \to b \bar{b} b \bar{b}$  with data of 139 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The vector boson decays leptonically ( $W \to \ell \nu$ ,  $Z \to \ell \ell$ ,  $\nu \nu$ ,  $\ell = e, \; \mu$ ).

 $^{10}$  AAD 23BK search for non-resonant HH production using  $HH \to b \overline{b} b \overline{b}$  with data of 126 fb<sup>-1</sup> at  $E_{\rm cm} = 13$  TeV.

 $^{11}$  AAD 23Z search for non-resonant HH production using  $HH 
ightarrow \, b \, \overline{b} au au$  with data of 139 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp \to HH$  production cross section at 95% CL is measured to be 140 fb, which corresponds to 4.7 times the SM prediction (see their Table 6).

<sup>12</sup>TUMASYAN 23AE search for HH production using  $HH \rightarrow b\overline{b}b\overline{b}$ , where both  $b\overline{b}$  pairs are highly boosted, with data of 138 fb<sup>-1</sup> at  $E_{\rm cm}=$  13 TeV.

<sup>13</sup> TUMASYAN <sup>23D</sup> search for non-resonant HH production using  $HH \to b \overline{b} \tau \tau$  with data of 138 fb<sup>-1</sup> at  $E_{\rm cm} = 13$  TeV.

 $^{14}$  The upper limit on the pp o HH production cross section (gluon fusion and VBF) at 95% CL is measured to be 102 fb, which corresponds to 3.3 times the SM prediction (see their Table 2).

 $^{15}$  The upper limit on the VBF  $p\,p 
ightarrow \,H\,H$  production cross section at 95% CL is measured to be 212 fb, which corresponds to 124 times the SM prediction (see their Table 3).

 $^{16}$  TUMASYAN 23I search for non-resonant HH production using  $HH 
ightarrow \; b \, \overline{b} \, Z \, Z^* \; (Z \, Z^* 
ightarrow$  $4\ell$ ,  $\ell=e$ ,  $\mu$ ) with data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV.

NODE=S126SHH;LINKAGE=GA

NODE=S126SHH;LINKAGE=KA

NODE=S126SHH;LINKAGE=IA

NODE=S126SHH;LINKAGE=NA

NODE=S126SHH;LINKAGE=JA

NODE=S126SHH;LINKAGE=HA

NODE=S126SHH;LINKAGE=LA

NODE=S126SHH;LINKAGE=MA

NODE=S126SHH;LINKAGE=Z

NODE=\$126\$HH;LINKAGE=FA

NODE=S126SHH:LINKAGE=X

NODE=S126SHH;LINKAGE=AA

NODE=S126SHH;LINKAGE=BA

NODE=S126SHH;LINKAGE=DA

NODE=S126SHH;LINKAGE=CA

NODE=S126SHH;LINKAGE=Y

- 17 TUMASYAN 230 search for non-resonant HH production using  $HH\to WW^*WW^*,$   $WW^*\tau\tau,$  and  $\tau\tau\tau\tau$  (multilepton) with data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. See their Fig. 9 for different final states and these combination.
- $^{18}$  AAD 22Y search for non-resonant HH production using  $HH\to \gamma\gamma\,b\,\overline{b}$  with data of 139 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. The upper limit on the  $p\,p\to HH$  production cross section at 95% CL is measured to be 130 fb, which corresponds to 4.2 times the SM prediction.
- $^{19}\,\rm CMS$  22 report combined results (see their Extended Data Table 2) using  $138~\rm fb^{-1}$  of data at  $E_{\rm cm}=13~\rm TeV.$  See their Fig. 5 (left) for different final states and these combination.
- <sup>20</sup> TUMASYAN 22AN search for non-resonant HH production using  $HH \rightarrow b \overline{b} b \overline{b}$  with data of 138 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp \rightarrow HH$  production cross section at 95% CL is measured to be 120 fb, which corresponds to 3.9 times the SM prediction.
- $^{21}$  SIRUNYAN 21K search for non-resonant HH production using  $HH\to \gamma\gamma b\overline{b}$  with data of 137 fb $^{-1}$  at  $E_{\rm CIM}=13$  TeV. The upper limit on the  $pp\to HH\to \gamma\gamma b\overline{b}$  production cross section at 95% CL is measured to be 0.67 fb, which corresponds to about 7.7 times the SM prediction.
- <sup>22</sup>AAD 20C combine results of up to 36.1 fb<sup>-1</sup> data at  $E_{\rm cm}=13$  TeV for  $pp\to HH\to b\overline{b}\gamma\gamma$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}b\overline{b}$ ,  $b\overline{b}WW^*$ ,  $WW^*\gamma\gamma$ ,  $WW^*WW^*$  (AABOUD 18CW, AABOUD 18CQ, AABOUD 19A, AABOUD 19O, AABOUD 18BU, and AABOUD 19T).
- <sup>23</sup> AAD 20E search non-resonant for HH production using  $HH \to b \overline{b} \ell \nu \ell \nu$ , where one of the Higgs bosons decays to  $b \overline{b}$  and the other decays to either  $WW^*$ ,  $ZZ^*$ , or  $\tau \tau$ , with data of 139 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp \to HH$  production cross section at 95% CL is measured to be 1.2 pb, which corresponds to about 40 times the SM prediction.
- <sup>24</sup> AAD 20X search for  $HH \rightarrow b\bar{b}b\bar{b}$  process via VBF with data of 126 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the SM non-resonant HH production cross section is 1460 fb at 95% CL, which corresponds to 840 times the SM prediction.
- <sup>25</sup> AABOUD 19A search for HH production using  $HH \rightarrow b\overline{b}b\overline{b}$  with data of 36.1 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp \rightarrow HH \rightarrow b\overline{b}b\overline{b}$  production cross section at 95% is measured to be 147 fb, which corresponds to about 12.9 times the SM prediction.
- $^{26}$  AABOUD 190 search for HH production using  $HH\to b\, \overline{b}\, W\, W^*$  with data of 36.1 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH$  production cross section at 95% CL is calculated to be 10 pb from the observed upper limit on the  $pp\to HH\to b\, \overline{b}\, W\, W^*$  production cross section of 2.5 pb assuming the SM branching fractions. The former corresponds to about 300 times the SM prediction.
- 27 AABOUD 19T search for HH production using  $HH \to WW^*WW^*$  with data of 36.1 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH$  production cross section at 95% is measured to be 5.3 pb, which corresponds to about 160 times the SM prediction.
- $^{28}$  SIRUNYAN 19 search for HH production using  $HH\to\gamma\gamma b\overline{b}$  with data of 35.9 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH\to\gamma\gamma b\overline{b}$  production cross section at 95% CL is measured to be 2.0 fb, which corresponds to about 24 times the SM prediction.
- <sup>29</sup> SIRUNYAN 19AB search for HH production using  $HH \to b\overline{b}b\overline{b}$ , where 4 heavy flavor jets from two Higgs bosons are resolved, with data of 35.9 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp \to HH \to b\overline{b}b\overline{b}$  production cross section at 95% is measured to be 847 fb, which corresponds to about 75 times the SM prediction.
- $^{30}$  SIRUNYAN 19BE combine results of 13 TeV 35.9 fb $^{-1}$  data: SIRUNYAN 19, SIRUNYAN 18A, SIRUNYAN 19AB, SIRUNYAN 19H, and SIRUNYAN 18F.
- $^{31}$  SIRUNYAN 19H search for HH production using  $HH \to b \bar{b} b \bar{b}$ , where one of  $b \bar{b}$  pairs is highly boosted and the other one is resolved, with data of 35.9 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH\to b \bar{b} b \bar{b}$  production cross section at 95% is measured to be 1980 fb, which corresponds to about 179 times the SM prediction.
- <sup>32</sup> AABOUD 18BU search for HH production using  $\gamma\gamma WW^*$  with the final state of  $\gamma\gamma\ell\nu jj$  using data of 36.1 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH$  production cross section at 95% CL is measured to be 7.7 pb, which corresponds to about 230 times the SM prediction. The upper limit on the  $pp\to HH\to \gamma\gamma WW^*$  at 95% CL is measured to be 7.5 fb (see thier Table 6).
- $^{33}$  AABOUD 18CQ search for HH production using  $HH\to b\overline{b}\tau\tau$  with data of  $36.1~{\rm fb}^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH\to b\overline{b}\tau\tau$  production cross section at 95% is measured to be 30.9 fb, which corresponds to about 12.7 times the SM prediction.
- $^{34}$  AABOUD 18CW search for HH production using  $HH\to\gamma\gamma b\,\overline{b}$  with data of 36.1 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH$  production cross section at 95% is measured to be 0.73 pb, which corresponds to about 22 times the SM prediction.
- $^{35}$  SIRUNYAN 18A search for HH production using  $HH\to b\overline{b}\tau\tau$  with data of 35.9 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $gg\to HH\to b\overline{b}\tau\tau$  production cross section is measured to be 75.4 fb, which corresponds to about 30 times the SM prediction.

- NODE=\$126SHH;LINKAGE=EA
- NODE=S126SHH;LINKAGE=V
- NODE=S126SHH;LINKAGE=U
- NODE=S126SHH;LINKAGE=W
- NODE=S126SHH;LINKAGE=T
- NODE=S126SHH;LINKAGE=Q
- NODE=S126SHH;LINKAGE=R
- NODE=S126SHH;LINKAGE=S
- NODE=S126SHH;LINKAGE=J
- NODE=S126SHH;LINKAGE=N
- NODE=S126SHH;LINKAGE=O
- NODE=S126SHH;LINKAGE=H
- NODE=S126SHH;LINKAGE=M
- NODE=S126SHH;LINKAGE=P
- NODE=S126SHH;LINKAGE=L
- NODE=S126SHH;LINKAGE=G
- NODE=S126SHH;LINKAGE=K
- NODE=S126SHH;LINKAGE=I
- NODE=S126SHH;LINKAGE=B
- NODE=S126SHH;LINKAGE=F

production cross section at 95% CL is measured to be 72 fb, which corresponds to about 79 times the SM prediction.

 $^{37}$  SIRUNYAN 17cN search for HH production using  $HH\to b\overline{b}\tau\tau$  with data of 18.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. Results are then combined with the published results of the  $HH\to \gamma\gamma b\overline{b}$  and  $HH\to b\overline{b}b\overline{b}$ , which use data of up to 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The upper limit on the  $gg\to HH$  production cross section is measured to be 0.59 pb from  $b\overline{b}\tau\tau$ , which corresponds to about 59 times the SM prediction (gluon fusion). The combined upper limit is 0.43 pb, which is about 43 times the SM prediction. The quoted values are given for  $m_H=125$  GeV.

 $^{38}$  AABOUD 16I search for HH production using  $HH\to b\bar{b}b\bar{b}$  with data of 3.2 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH\to b\bar{b}b\bar{b}$  production cross section is measured to be 1.22 pb. This result corresponds to about 108 times the SM prediction (gluon fusion), which is  $11.3^{+0.9}_{-1.0}$  fb (NNLO+NNLL) including top quark mass effects. The quoted values are given for  $m_H=125$  GeV.

 $^{39}$  KHACHATRYAN 16BQ search for HH production using  $HH\to \gamma\gamma\,b\,\overline{b}$  with data of 19.7 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The upper limit on the  $g\,g\to HH\to \gamma\gamma\,b\,\overline{b}$  production is measured to be 1.85 fb, which corresponds to about 74 times the SM prediction and is translated into 0.71 pb for  $g\,g\to HH$  production cross section.

40 AAD 15CE search for HH production using  $HH \to b\overline{b}\tau\tau$  and  $HH \to \gamma\gamma WW$  with data of 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. These results are then combined with the published results of the  $HH \to \gamma\gamma b\overline{b}$  and  $HH \to b\overline{b}b\overline{b}$ , which use data of up to 20.3 fb $^{-1}$  at  $E_{\rm cm}=8$  TeV. The upper limits on the  $gg\to HH$  production cross section are measured to be 1.6 pb, 11.4 pb, 2.2 pb and 0.62 pb from  $b\overline{b}\tau\tau$ ,  $\gamma\gamma WW$ ,  $\gamma\gamma b\overline{b}$  and  $b\overline{b}b\overline{b}$ , respectively. The combined upper limit is 0.69 pb, which corresponds to about 70 times the SM prediction. The quoted results are given for  $m_H=125.4$  GeV. See their Table 4.

#### **HHH** production

The HHH production cross section relative to the SM prediction.

| <u>VALUE</u> | CL% | DOCUMENT ID      |     | TECN | COMMENT                                           |
|--------------|-----|------------------|-----|------|---------------------------------------------------|
| <760         | 95  | <sup>1</sup> AAD | 25J | ATLS | 13 TeV, $b\overline{b}b\overline{b}b\overline{b}$ |

 $^1$  AAD 25J search for non-resonant HHH production using  $HHH \to b \overline{b} b \overline{$ 

#### Higgs trilinear self coupling modifier $\kappa_{\lambda}$

Signal strength relative to the SM prediction,  $\kappa_{\lambda} = \kappa_{3} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ 

| VALUE                                           | <u>CL/0</u> _ | DOCUMENTID                | I LCIV     | COMMENT                                                                                                                              |
|-------------------------------------------------|---------------|---------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $3.8 \begin{array}{l} +2.1 \\ -3.6 \end{array}$ |               | <sup>1</sup> AAD 24       | BL ATLS    | 13 TeV, $b\overline{b}b\overline{b}$ , $b\overline{b}\tau\tau$ , $b\overline{b}\gamma\gamma$ , multilepton , $b\overline{b}\ell\ell$ |
| • • • We do not                                 | use the       | following data for avera  | ges, fits, | limits, etc. • • •                                                                                                                   |
| -11 to 17                                       | 95            |                           |            | 13 TeV, $b\overline{b}b\overline{b}b\overline{b}$                                                                                    |
| -1.2 to $7.5$                                   | 95            | <sup>3</sup> HAYRAPETY25i | CMS        | 13 TeV, single and double                                                                                                            |

Higgs production <sup>4</sup> AAD - 3.1 to 9.0 95 24AZ ATLS 13 TeV,  $b\overline{b}\tau\tau$ <sup>5</sup> AAD 13 TeV,  $b\overline{b}ZZ^*$ , VVVV, - 6.2 to 11.6 24BG ATLS  $VV\tau\tau$ ,  $\tau\tau\tau\tau$ ,  $\gamma\gamma VV$ , <sup>1</sup> AAD - 1.2 to 7.2 24BL ATLS 13 TeV,  $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}\gamma\gamma$ , multilepton ,  $b\overline{b}\ell\ell$ <sup>6</sup> AAD 24X ATLS - 1.4 to 6.9 13 TeV,  $b\overline{b}\gamma\gamma$ <sup>7</sup> AAD 13 TeV,  $b\overline{b}WW^*$ ,  $b\overline{b}ZZ^*$ , - 6.2 to 13.3 95 24Y ATLS  $bb\tau\tau$ , multilepton <sup>8</sup> HAYRAPETY...24AE CMS - 7.2 to 13.8 95 13 TeV, *bbW W*\* <sup>9</sup> HAYRAPETY...24AW CMS -37.7 to 37.213 TeV, VHH,  $HH \rightarrow b\overline{b}b\overline{b}$  $^{10}\,\mathrm{AAD}$ -34.4 to 33.3 95 23AD ATLS 13 TeV, VHH,  $HH \rightarrow b\overline{b}b\overline{b}$  $^{11}\,\mathrm{AAD}$  $-\ 0.6\ to\ 6.6$ 95 23AT ATLS 13 TeV,  $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}\gamma\gamma$  $^{12}$  AAD  $-\ 0.4\ to\ 6.3$ 95 23AT ATLS 13 TeV,  $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}\gamma\gamma$  $^{13}$  AAD 23BK ATLS - 3.5 to 11.3 95 13 TeV,  $b\overline{b}b\overline{b}$ <sup>14</sup> HAYRAPETY...23 13 TeV,  $ZZ^* \rightarrow 4\ell$  cross - 5.4 to 14.9 CMS sections\_ <sup>15</sup> TUMASYAN - 9.9 to 16.9 95 23AE CMS 13 TeV, *bbbb* <sup>16</sup> TUMASYAN 23D CMS -1.7 to 8.795 13 TeV,  $b\overline{b}\tau\tau$ <sup>17</sup> TUMASYAN - 8.8 to 13.4 95 231 CMS 13 TeV,  $b\overline{b}ZZ^*$  ( $ZZ^* \rightarrow$ **4**ℓ) <sup>18</sup> TUMASYAN - 6.9 to 11.1 230 CMS 13 TeV, WW\* WW\*,  $WW^*\tau\tau$ ,  $\tau\tau\tau\tau$  $^{19}\,\mathrm{AAD}$ - 1.5 to 6.7 95 22Y ATLS 13 TeV,  $\gamma \gamma b \overline{b}$  $^{20}\,\mathrm{CMS}$ - 1.24 to 6.49 95 22 CMS 13 TeV,  $b\overline{b}ZZ^*$ ,  $b\overline{b}\gamma\gamma$ ,

NODE=S126SHH;LINKAGE=E

NODE=S126SHH;LINKAGE=D

NODE=S126SHH;LINKAGE=A

NODE=S126SHH;LINKAGE=C

NODE=S126HHH NODE=S126HHH NODE=S126HHH

NODE=S126HHH;LINKAGE=A

NODE=S126KLA NODE=S126KLA NODE=S126KLA OCCUR=2

OCCUR=2

 $b\overline{b}\tau\tau$ ,  $b\overline{b}b\overline{b}$ , multilepton

| <ul><li>2.3</li><li>3.3</li><li>5.0</li></ul> |                  | 95<br>95<br>95 | 21 TUMASYAN<br>22 SIRUNYAN<br>23 AAD             | 21K CMS             | 13 TeV, $b\overline{b}b\overline{b}$<br>13 TeV, $\gamma\gamma b\overline{b}$<br>13 TeV, $b\overline{b}\gamma\gamma$ , $b\overline{b}\tau\tau$ , $b\overline{b}b\overline{b}$ , $b\overline{b}WW^*$ , $WW^*\gamma\gamma$ , |
|-----------------------------------------------|------------------|----------------|--------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-11 \\ -11.8$                                | to 17<br>to 18.8 | 95<br>95       | <sup>24</sup> SIRUNYAN<br><sup>25</sup> SIRUNYAN |                     | $\begin{array}{c} WW^*WW^*\\ \text{13 TeV, } \gamma\gammab\overline{b}\\ \text{13 TeV, } b\overline{b}\gamma\gammab\overline{b}\tau\tau,b\overline{b}b\overline{b}, \end{array}$                                          |
| - 8.2                                         | to 13.2          | 95             | <sup>26</sup> AABOUD<br><sup>27</sup> SIRUNYAN   | 18CWATLS<br>18A CMS | $b\overline{b}WW^*$ , $b\overline{b}ZZ^*$<br>13 TeV, $\gamma\gamma b\overline{b}$<br>13 TeV, $b\overline{b}\tau\tau$                                                                                                      |
| -17                                           | to 22.5          | 95             | <sup>28</sup> KHACHATRY.                         | 16BQ CMS            | 8 TeV, $\gamma \gamma b \overline{b}$                                                                                                                                                                                     |

 $^1$  AAD 24BL combine results from 126–140 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV for  $pp\to HH\to b\bar b b\bar b$  (AAD 23BK, AAD 24BV),  $b\bar b \tau \tau$  (AAD 24AZ),  $b\bar b \gamma \gamma$  (AAD 24X), multilepton (AAD 24BG), and  $b\bar b\ell\ell$  (AAD 24Y). See their Fig. 3. All other Higgs couplings are fixed to the SM values.

 $^3$  HAYRAPETYAN 25F constrain the Higgs trilinear self-coupling using single and double Higgs production with data at  $E_{\rm cm}=13$  TeV. The production modes and decay channels used are listed in their Tables 1 and 2 for single- and double-Higgs, respectively. Only single- and double-Higgs channels give  $-1.8 < \kappa_{\lambda} < 12.0$  and  $-1.7 < \kappa_{\lambda} < 7.0$ , respectively. All the other Higgs boson couplings are fixed to their SM values. Their Table 3 shows results with some of the couplings are loosened. Two-dimensional likelihood scan of  $(\kappa_{\lambda}, \, \kappa_{t})$  is shown in their Fig. 5.

 $^4$  AAD 24AZ search for non-resonant HH production using  $HH\to b\overline{b}\tau\tau$  with data of 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. Two-dimensional exclusion regions as a function of the  $\kappa_\lambda$  and  $\kappa_{2V}$  couplings are shown in their Fig. 9. All other Higgs couplings are fixed to the SM values.

 $^5$  AAD 24BG search for non-resonant HH production targeting the  $b\overline{b}ZZ^*,\ VVVV,\ VV\tau\tau,\ \tau\tau\tau\tau,\ \gamma\gamma VV,\ \gamma\gamma\tau\tau$  decay channels with data of 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The limits are obtained with the values of all other couplings fixed to their SM value.

 $^6$  AAD 24X search for non-resonant HH production using  $HH\to b\overline{b}\gamma\gamma$  with data of 140 fb $^{-1}$  at  $E_{\rm CM}=13$  TeV. Two-dimensional exclusion regions as a function of the  $\kappa_\lambda$  and  $\kappa_{2V}$  couplings are shown in their Fig. 6. All other Higgs couplings are fixed to the SM values

<sup>7</sup>AAD 24Y search for non-resonant HH production in  $2b+2\ell+\nu$ s final state ( $\ell=e$ ,  $\mu$ ) targeting  $b\overline{b}WW^*$ ,  $b\overline{b}ZZ^*$ , and  $b\overline{b}\tau\tau$  decay channels with data of 140 fb<sup>-1</sup> at  $E_{\rm Cm}=13$  TeV. All other coupling modifiers are set to their SM values.

 $^8$  HAYRAPETYAN 24AE search for non-resonant HH production using  $HH\to b\overline{b}WW^*$  with data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. Two-dimensional exclusion regions as a function of the  $(\kappa_\lambda,\,\kappa_{2V})$  and  $(\kappa_\lambda,\,\kappa_t)$  are shown in their Figs. 13 and 15. All other Higgs couplings are fixed to the SM values.

<sup>9</sup>HAYRAPETYAN 24AW search for non-resonant HH production in association with a vector boson using  $HH \to b \bar{b} b \bar{b}$  with data of 138 fb $^{-1}$  at  $E_{\rm cm} = 13$  TeV. The vector boson decays both leptonically ( $W \to \ell \nu$ ,  $Z \to \ell \ell$ ,  $\nu \nu$ ,  $\ell = e$ ,  $\mu$ ) and hadronically. All other Higgs couplings are fixed to the SM values. Two-dimensional exclusion regions as a function of the  $\kappa_{2V}$  and  $\kappa_{\lambda}$  parameters are shown in their Fig. 14, with other couplings fixed to the SM values. The best fit value is  $(\kappa_{\lambda}, \kappa_{2V}) = (-2.6, 10.1)$ .

 $^{10}$  AAD 23AD search for non-resonant HH production in association with a vector boson using  $HH\to b\overline{b}b\overline{b}$  with data of 139 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The vector boson decays leptonically (  $W\to \ell\nu,\,Z\to \ell\ell,\,\nu\nu,\,\ell=e,\,\,\mu$  ). The quoted  $\kappa_\lambda$  is measured assuming all other Higgs boson couplings are at their SM value.

11 AAD 23AT combine results from 126–139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV for  $pp \to HH \to b \bar{b} b \bar{b}$  (AAD 23BK),  $b \bar{b} \tau \tau$  (AAD 23Z), and  $b \bar{b} \gamma \gamma$  (AAD 22Y). The quoted values are obtained from the profile likelihood scan as a function of  $\kappa_{\lambda}$  as shown in their Fig. 5(a). All other coupling modifiers are assumed to have their SM values.

<sup>12</sup>AAD 23AT combine results from 126–139 fb<sup>-1</sup> of data at  $E_{\rm cm}=13$  TeV for  $pp \to HH \to b \bar{b} b \bar{b}$  (AAD 23BK),  $b \bar{b} \tau \tau$  (AAD 23Z), and  $b \bar{b} \gamma \gamma$  (AAD 22Y) with single-Higgs boson analyses ( $\gamma \gamma$ ,  $ZZ^*$ ,  $WW^*$ ,  $\tau \tau$ ,  $b \bar{b}$ , see their Table 1). The quoted values are obtained from the profile likelihood scan as a function of  $\kappa_{\lambda}$  as shown in their Fig. 5(a), assuming that all other Higgs boson couplings are at their SM values. Results with other assumptions are shown in their Table 2.

 $^{13}$  AAD  $^{23}$ BK search for non-resonant HH production using  $HH\to b\overline{b}b\overline{b}$  with data of  $^{126}$  fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The quoted values are obtained from the one-dimensional profile likelihood scan as a function of  $\kappa_\lambda$ . See their Fig. 12 (a). The  $\mu_{ggF+VBF}$  measurement for different values of  $\kappa_\lambda$  constrains -3.9  $<\kappa_\lambda<11.1$  at 95% CL as shown in their Fig. 10 (a).  $\kappa_{2V}=\kappa_V=1$  is assumed in both cases.

<sup>14</sup> HAYRAPETYAN 23 measure the cross sections for  $pp \to H \to ZZ^* \to 4\ell$  ( $\ell = e, \mu$ ) using 138 fb<sup>-1</sup> at  $E_{\rm cm} = 13$  TeV.

NODE=S126KLA;LINKAGE=BA

NODE=S126KLA;LINKAGE=CA

NODE=S126KLA;LINKAGE=DA

NODE=S126KLA;LINKAGE=Y

NODE=S126KLA;LINKAGE=S

NODE=S126KLA;LINKAGE=X

NODE=S126KLA;LINKAGE=R

NODE=S126KLA;LINKAGE=Z

NODE=S126KLA;LINKAGE=AA

NODE=S126KLA:LINKAGE=F

NODE=S126KLA;LINKAGE=M

NODE=S126KLA;LINKAGE=N

NODE=S126KLA;LINKAGE=L

NODE=S126KLA;LINKAGE=O

<sup>15</sup> TUMASYAN 23AE search for HH production using  $HH \rightarrow b \overline{b} b \overline{b}$ , where both  $b \overline{b}$  pairs NODE=S126KLA;LINKAGE=G are highly boosted, with data of 138 fb $^{-1}$  at  $E_{
m cm}=$  13 TeV. The quoted  $\kappa_{\lambda}$  is measured assuming all other Higgs boson couplings are at their SM values.  $^{16}$  TUMASYAN 23D search for non-resonant HH production using  $HH 
ightarrow \; b \, \overline{b} au au$  with data NODE=S126KLA:LINKAGE=J of 138 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. The quoted values are obtained from the upper limit on the HH production cross section times the  $b\overline{b}\tau\tau$  branching fraction for different values of  $\kappa_{\lambda}$ . See their Fig. 8 (left). All other coupling modifiers are assumed to be 1. In addition, two-dimensional exclusion regions as a function of the  $\kappa_{\lambda}$  and  $\kappa_{t}$  couplings, with  $\kappa_{2V}=\kappa_{V}=1$ , are shown in their Fig. 9 (left). The one-dimensional likelihood scan as a function of  $\kappa_{\lambda}$  is given in their Fig 10 (left), from which a 95% confidence interval of -1.77  $<\kappa_{\lambda}<8.73$  is extracted. 17 TUMASYAN 23AI search for non-resonant HH production using  $HH \rightarrow b \overline{b} Z Z^*$ NODE=S126KLA;LINKAGE=E  $(ZZ^* 
ightarrow 4\ell, \, \ell = e, \mu)$  with data of 138 fb $^{-1}$  at  $E_{
m cm} =$  13 TeV. See their Fig. 4. <sup>18</sup> TUMASYAN 230 search for non-resonant HH production using  $HH \rightarrow WW^*WW^*$ , NODE=S126KLA;LINKAGE=K  $WW^*\tau\tau$ , and  $\tau\tau\tau\tau$  (multilepton) with data of 138 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. See their Fig. 10 for different final states and these combination. Limits are set on a variety of new-physics models using an effective field theory approach. See their Figs. 11, 12, and 13.  $^{19}$ AAD 22Y search for non-resonant HH production using  $HH \rightarrow \gamma \gamma b \overline{b}$  with data of NODE=S126KLA:LINKAGE=V 139 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. The quoted  $\kappa_{\lambda}$  is obtained from their Fig. 12 where the theory uncertainties are not included while a negative log-likelihood scan vs.  $\kappa_\lambda$  is shown in their Fig. 13 with the theory uncertainties, which provides  $\kappa_{\lambda} = 2.8 ^{+2.0}_{-2.2}$  for the  $1\sigma$ confidence interval.  $^{20}$  CMS 22 report combined results (see their Extended Data Table 2) using 138 fb $^{-1}$  of NODE=S126KLA;LINKAGE=U data at  $E_{\rm cm}=13$  TeV. See their Fig. 6 (left). <sup>21</sup> TUMASYAN 22AN search for non-resonant HH production using  $HH \rightarrow b \overline{b} b \overline{b}$  with NODE=S126KLA;LINKAGE=W data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The upper limit on the  $pp\to HH$  production cross section at 95% CL is shown as a function of  $\kappa_\lambda$  in their Fig. 2 (top).  $^{22}$ SIRUNYAN 21K search for non-resonant HH production using  $HH 
ightarrow \gamma \gamma b \overline{b}$  with data NODE=S126KLA;LINKAGE=T of 137 fb<sup>-1</sup> at  $E_{\rm cm} = 13$  TeV.  $^{23}\,\mathrm{AAD}$  20C combine results of up to 36.1 fb $^{-1}$  data at  $E_\mathrm{cm}$  = 13 TeV for pp  $\rightarrow$ NODE=S126KLA;LINKAGE=Q  $HH \rightarrow b\overline{b}\gamma\gamma$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}b\overline{b}$ ,  $b\overline{b}WW^*$ ,  $WW^*\gamma\gamma$ ,  $WW^*WW^*$  (AABOUD 18cW, AABOUD 18cQ, AABOUD 19A, AABOUD 19O, AABOUD 18BU, and AABOUD 19T).  $^{24}$  SIRUNYAN 19 search for HH production using  $HH \to \gamma \gamma b \overline{b}$  with data of 35.9 fb $^{-1}$ NODE=\$126KLA;LINKAGE=H at  $E_{\rm cm}=$  13 TeV. The quoted  $\kappa_{\lambda}$  is measured assuming all other Higgs boson couplings are at their SM value.  $^{25}$  SIRUNYAN 19BE combine results of 13 TeV 35.9 fb $^{-1}$  data: SIRUNYAN 19, SIRUN-NODE=S126KLA;LINKAGE=P YAN 18A, SIRUNYAN 19AB, SIRUNYAN 19H, and SIRUNYAN 18F.  $^{26}$  AABOUD 18CW search for HH production using  $HH \to \gamma \gamma b \overline{b}$  with data of 36.1 fb $^{-1}$ NODE=S126KLA;LINKAGE=I at  $E_{
m cm}=$  13 TeV. The quoted  $\kappa_{\lambda}$  is measured assuming all other Higgs boson couplings are at their SM value. <sup>27</sup> SIRUNYAN 18A search for HH production using  $HH 
ightarrow b \overline{b} au au$  with data of 35.9 fb $^{-1}$ NODE=S126KLA;LINKAGE=C at  $E_{\mathrm{cm}}=$  13 TeV. The upper limit on production cross section times branching fraction at 95% CL is shown as a function of  $\kappa_{\lambda}/\kappa_{t}$  in their Fig. 6 (top) where  $\kappa_{t}={\it y_{t}}/{\it y_{t}}^{SM}$ (top Yukawa coupling  $y_t$ ).  $^{28}$  KHACHATRYAN 16BQ search for HH production using  $HH 
ightarrow \gamma \gamma \, b \, \overline{b}$  with data of 19.7 NODE=S126KLA;LINKAGE=D  ${\rm fb^{-1}}$  at  $E_{\rm cm}=8$  TeV. Higgs quartic self coupling modifier  $\kappa_4$ NODE=S126KH4 Signal strength relative to the SM prediction,  $\kappa_4 = \lambda_{HHHH}/\lambda_{HHHHH}^{\rm SIVI}$ NODE=S126KH4 NODE=S126KH4 DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <sup>1</sup> AAD -230 to 240 25J ATLS 13 TeV,  $b\overline{b}b\overline{b}b\overline{b}$ <sup>1</sup> AAD 25J search for non-resonant HHH production using  $HHH \rightarrow b\overline{b}b\overline{b}b\overline{b}$  with data NODE=\$126KH4;LINKAGE=A of 126 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. Two-dimensional likelihood scan of  $(\kappa_3~(=\kappa_\lambda),~\kappa_4)$  is shown in their Fig. 9. The quoted values are obtained by assuming  $\kappa_3=$  1. Note that the quoted values are calculated using the kappa framework, which outside the unitarity

#### Higgs-gauge boson quartic coupling modifier $\kappa_{2V}$

Signal strength relative to the SM prediction,  $\kappa_{2V}=\lambda_{VVHH}/\lambda_{VVHH}^{SM}$ , V=

VALUE DOCUMENT ID TECN COMMENT  $1.02^{+0.22}_{-0.23}$ <sup>1</sup> AAD

bounds requires additional modification to preserve unitarity for their results.

24BL ATLS 13 TeV,  $b\overline{b}b\overline{b}$ ,  $b\overline{b}\tau\tau$ ,  $b\overline{b}\gamma\gamma$ , multilepton ,  $b\overline{b}\ell\ell$ 

NODE=S126K2V

NODE=S126K2V NODE=S126K2V

OCCUR=2

| • | • | • | We do | not | use | the | following | data | for | averages. | fits | limits | etc | • | • | • |
|---|---|---|-------|-----|-----|-----|-----------|------|-----|-----------|------|--------|-----|---|---|---|
|   |   |   |       |     |     |     |           |      |     |           |      |        |     |   |   |   |

|                                  |          | <sup>2</sup> HAYRAPETY.  | 25F CMS               | 13 TeV, single and double<br>Higgs production                                                                                                                             |
|----------------------------------|----------|--------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-\ 0.5\ to\ 2.7$                | 95       | <sup>3</sup> AAD         | 24AZ ATLS             | 13 TeV, $b\overline{b}\tau\tau$                                                                                                                                           |
| - 2.5 to 4.6                     | 95       | <sup>4</sup> AAD         | 24BG ATLS             | 13 TeV, $b\overline{b}ZZ^*$ , $VVVV$ , $VV\tau\tau$ , $\tau\tau\tau\tau$ , $\gamma\gamma VV$ ,                                                                            |
| 0.6 to 1.5                       | 95       | <sup>1</sup> AAD         | 24BL ATLS             | $\gamma \gamma \tau \tau$ 13 TeV, $b \overline{b} b \overline{b}$ , $b \overline{b} \tau \tau$ , $b \overline{b} \gamma \gamma$ , multilepton, $b \overline{b} \ell \ell$ |
| 0.55 to 1.49                     | 95       | <sup>5</sup> AAD         | 24BV ATLS             | 13 TeV, $b\overline{b}b\overline{b}$                                                                                                                                      |
| 0.52 to 1.52                     | 95       | <sup>6</sup> AAD         | 24 <sub>BV</sub> ATLS | 13 TeV, $b\overline{b}b\overline{b}$                                                                                                                                      |
| $-\ 0.5\ to\ 2.7$                | 95       | <sup>7</sup> AAD         | 24X ATLS              | 13 TeV, $b\overline{b}\gamma\gamma$                                                                                                                                       |
| - 0.17 to 2.4                    | 95       | <sup>8</sup> AAD         | 24Y ATLS              | 13 TeV, $b\overline{b}WW^*$ , $b\overline{b}ZZ^*$ , $b\overline{b}\tau\tau$ , multilepton                                                                                 |
| - 1.1 to 3.2                     | 95       | <sup>9</sup> HAYRAPETY.  | 24AE CMS              | 13 TeV, <i>bbW W</i> *                                                                                                                                                    |
| -12.2 to $13.5$                  | 95       | <sup>10</sup> HAYRAPETY. | 24AW CMS              | 13 TeV, $VHH$ , $HH \rightarrow b\overline{b}b\overline{b}$                                                                                                               |
| $-\ 8.6\ to\ 10.0$               | 95       | <sup>11</sup> AAD        | 23AD ATLS             | 13 TeV, $VHH$ , $HH \rightarrow b\overline{b}b\overline{b}$                                                                                                               |
| 0.1 to 2.0                       | 95       | <sup>12</sup> AAD        | 23AT ATLS             | 13 TeV, $b\overline{b}b\overline{b}$ , $b\overline{b}\tau\tau$ , $b\overline{b}\gamma\gamma$                                                                              |
| 0.0 to 2.1                       | 95       | <sup>13</sup> AAD        | 23BK ATLS             | 13 TeV, <i>bbbb</i>                                                                                                                                                       |
| 0.62 to 1.41                     | 95       | <sup>14</sup> TUMASYAN   | 23AE CMS              | 13 TeV, <i>bb̄bb̄</i>                                                                                                                                                     |
| $-\ 0.4\ to\ 2.6$                | 95       | <sup>15</sup> TUMASYAN   | 23D CMS               | 13 TeV, $b\overline{b}\tau\tau$                                                                                                                                           |
| 0.67 to 1.38                     | 95       | <sup>16</sup> CMS        | 22 CMS                | 13 TeV, $b\overline{b}ZZ^*$ , $b\overline{b}\gamma\gamma$ ,                                                                                                               |
| 0.1 . 0.0                        | 0.5      | <sup>17</sup> TUMASYAN   | 2244 6146             | $bb\tau\tau$ , $bbbb$ , multilepton                                                                                                                                       |
| - 0.1 to 2.2                     | 95<br>05 |                          | 22AN CMS              | 13 TeV, <i>bbbb</i>                                                                                                                                                       |
| - 1.3 to 3.5                     | 95       | <sup>18</sup> SIRUNYAN   | 21K CMS               | 13 TeV, $\gamma \gamma b \overline{b}$                                                                                                                                    |
| <ul> <li>0.43 to 2.56</li> </ul> | 95       | <sup>19</sup> AAD        | 20x ATLS              | 13 TeV, VBF, $b\overline{b}b\overline{b}$                                                                                                                                 |

 $^1$  AAD 24BL combine results from 126–140 fb $^{-1}$  of data at  $E_{\rm cm}=13$  TeV for  $pp\to HH\to b\, \bar{b}\, b\bar{b}\, \bar{b}$  (AAD 23BK, AAD 24BV),  $b\, \bar{b}\, \tau\, \tau$  (AAD 24AZ),  $b\, \bar{b}\, \gamma\, \gamma$  (AAD 24X), multilepton (AAD 24BG), and  $b\, \bar{b}\, \ell\ell$  (AAD 24Y). See their Fig. 3. All other Higgs couplings are fixed to the SM values.

 $^2$  HAYRAPETYAN 25F constrain the Higgs trilinear self-coupling using single and double Higgs production with data at  $E_{\rm cm}=13$  TeV. The production modes and decay channels used are listed in their Tables 1 and 2 for single- and double-Higgs, respectively. Two-dimensional likelihood scan of  $(\kappa_V,\,\kappa_{2V})$  is shown in their Fig. 6.

 $^3$  AAD 24AZ search for non-resonant HH production using  $HH \to b \overline{b} \tau \tau$  with data of 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. Two-dimensional exclusion regions as a function of the  $\kappa_\lambda$  and  $\kappa_{2V}$  couplings are shown in their Fig. 9. All other Higgs couplings are fixed to the SM values.

 $^4$  AAD 24BG search for non-resonant HH production targeting the  $b\overline{b}ZZ^*,\ VVVV,\ VV\tau\tau,\ \tau\tau\tau\tau,\ \gamma\gamma VV,\ \gamma\gamma\tau\tau$  decay channels with data of 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The limits are obtained with the values of all other couplings fixed to their SM value

 $^5$  AAD 24BV search for non-resonant HH production via vector boson fusion in the  $b\overline{b}b\overline{b}$  final state using two boosted Higgs ( $p_T >$  250 GeV) with data of 140 fb $^{-1}$  at  $E_{\rm cm} =$  13 TeV. The result is obtained by combining with the resolved result (AAD 23BK). The value  $\kappa_{2V} = 0$  is excluded with a significance of 3.8  $\sigma$  with other Higgs couplings fixed to their SM values. Two-dimensional exclusion regions as a function of the  $\kappa_{\lambda}$  and  $\kappa_{2V}$  parameters are shown in their Fig. 6. All other Higgs couplings are fixed to the SM values.

 $^6$  AAD 24BV search for non-resonant HH production via vector boson fusion in the  $b\overline{b}b\overline{b}$  final state using two boosted Higgs ( $p_T>250$  GeV) with data of 140 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The value  $\kappa_{2V}=0$  is excluded with a significance of 3.4  $\sigma$  with other Higgs couplings fixed to their SM values.

<sup>7</sup> AAD 24X search for non-resonant HH production using  $HH \to b \overline{b} \gamma \gamma$  with data of 140 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. Two-dimensional exclusion regions as a function of the  $\kappa_{\lambda}$  and  $\kappa_{2V}$  couplings are shown in their Fig. 6. All other Higgs couplings are fixed to the SM values.

<sup>8</sup> AAD 24Y search for non-resonant HH production in  $2b+2\ell+\nu$ s final state ( $\ell=e$ ,  $\mu$ ) targeting  $b\bar{b}WW^*$ ,  $b\bar{b}ZZ^*$ , and  $b\bar{b}\tau\tau$  decay channels with data of 140 fb<sup>-1</sup> at  $E_{\rm cm}=13$  TeV. All other coupling modifiers are set to their SM values.

 $^9$  HAYRAPETYAN 24AE search for non-resonant HH production using  $HH\to b\overline{b}WW^*$  with data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. Two-dimensional exclusion regions as a function of the  $(\kappa_{\lambda},\,\kappa_{2V})$  and  $(\kappa_{V},\,\kappa_{2V})$  are shown in their Figs. 13 and 14. All other Higgs couplings are fixed to the SM values.

10 HAYRAPETYAN 24AW search for non-resonant HH production in association with a vector boson using  $HH \to b \overline{b} b \overline{b}$  with data of 138 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The vector boson decays both leptonically ( $W \to \ell \nu$ ,  $Z \to \ell \ell$ ,  $\nu \nu$ ,  $\ell = e$ ,  $\mu$ ) and hadronically. All other Higgs couplings are fixed to the SM values. Two-dimensional exclusion regions as a function of the  $\kappa_{2V}$  and  $\kappa_{\lambda}$  parameters are shown in their Fig. 14, with other couplings fixed to the SM values. The best fit value is ( $\kappa_{\lambda}$ ,  $\kappa_{2V}$ ) = (-2.6, 10.1). The constraints on  $\kappa_{2W}$  and  $\kappa_{2Z}$  are separately measured to be -14.0 <  $\kappa_{2W}$  < 15.4 and -17.4 <  $\kappa_{2Z}$  < 18.5 (95% CL). The quoted  $\kappa_{2V}$  (V = W, Z) is measured assuming all other Higgs boson couplings are at their SM value. See their Table 7.

OCCUR=2

NODE=S126K2V;LINKAGE=U

NODE=S126K2V:LINKAGE=V

NODE=S126K2V;LINKAGE=P

NODE=S126K2V;LINKAGE=N

NODE=S126K2V;LINKAGE=R

NODE=S126K2V;LINKAGE=S

NODE=S126K2V;LINKAGE=O

NODE=S126K2V;LINKAGE=M

NODE=S126K2V;LINKAGE=Q

NODE=S126K2V;LINKAGE=T

 $^{11}$ AAD 23AD search for non-resonant HH production in association with a vector boson using  $HH\to b\, \overline{b}\, b\, \overline{b}$  with data of 139 fb $^{-1}$  at  $E_{\rm cm}=13$  TeV. The vector boson decays leptonically ( $W\to \ell \nu$ ,  $Z\to \ell \ell$ ,  $\nu \nu$ ,  $\ell=e$ ,  $\mu$ ). The constraints on  $\kappa_{2W}$  and  $\kappa_{2Z}$  are separately measured to be -12.3 <  $\kappa_{2W}$  < 13.5 and -9.9 <  $\kappa_{2Z}$  < 11.3 (95% CL). The quoted  $\kappa_{2V}$  (V=W,~Z) is measured assuming all other Higgs boson couplings are at their SM value.

12 AAD 23AT combine results from 126–139 fb<sup>-1</sup> of data at  $E_{cm} = 13$  TeV for  $pp \rightarrow$  $HH o b \overline{b} b \overline{b}$  (AAD 23BK),  $b \overline{b} \tau \tau$  (AAD 23Z), and  $b \overline{b} \gamma \gamma$  (AAD 22Y). The quoted values are obtained from the 95% CL VBF HH cross-section upper limit as a function of  $\kappa_{2V}$  as shown in their Fig. 4(b). All other coupling modifiers are assumed to have their SM values.

13 AAD 23BK search for non-resonant HH production using  $HH \rightarrow b \overline{b} b \overline{b}$  with data of 126  ${
m fb}^{-1}$  at  $E_{
m cm}=13$  TeV. The quoted values are obtained from the one-dimensional profile likelihood scan as a function of  $\kappa_{2V}$ . See their Fig. 12 (b). The  $\mu_{VBF}$  measurement for different values of  $\kappa_{2V}$  constrains -0.03 <  $\kappa_{2V}$  < 2.11 at 95% CL as shown in their Fig. 10 (b).  $\kappa_{\lambda} = \tilde{\kappa}_{V}^{r} = 1$  is assumed in both cases.

<sup>14</sup> TUMASYAN 23AE search for HH production using  $HH \rightarrow b\overline{b}b\overline{b}$ , where both  $b\overline{b}$  pairs are highly boosted, with data of 138 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. The  $\kappa_{2V}=$  0 is excluded at 6.3  $\sigma$  assuming all other Higgs boson couplings are at their SM values.

 $^{15}$  TUMASYAN 23D search for non-resonant HH production using  $HH 
ightarrow \; b \, \overline{b} \, au \, au$  with data of 138 fb $^{-1}$  at  $E_{
m cm}=$  13 TeV. The quoted values are obtained from the upper limits on the HH production cross section times the  $b\overline{b} au$  branching fraction for different values of  $\kappa_{2V}$ . See their Fig. 8 (right). All other coupling modifiers are assumed to be 1. In addition, two-dimensional exclusion regions as a function of the  $\kappa_{2V}$  and  $\kappa_V$  couplings, with  $\kappa_{\lambda}=\kappa_{t}=1$ , are shown in their Fig. 9 (right). The one-dimensional likelihood scan as a function of  $\kappa_{2V}$  is given in their Fig. 10 (right), from which a 95% confidence interval of -0.34 <  $\kappa_{2V}$  < 2.49 is extracted.

 $^{16} \, {
m CMS}$  22 report combined results (see their Extended Data Table 2) using 138  ${
m fb}^{-1}$  of data at  $E_{\rm cm}=13$  TeV. See their Fig. 6 (right).

 $^{17}$  TUMASYAN 22AN search for non-resonant HH production using  $HH 
ightarrow \ b \, \overline{b} \, b \, \overline{b}$  with data of 138 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV. The upper limit on the  $pp\to HH$  production cross section at 95% CL is shown as a function of  $\kappa_{2V}$  in their Fig. 2 (bottom).

 $^{18}$  SIRUNYAN 21K search for non-resonant HH production using  $HH \to ~\gamma\gamma b\,\overline{b}$  with data of 137 fb $^{-1}$  at  $E_{\rm cm}=$  13 TeV.

 $^{19}$  AAD 20X search for  $HH \rightarrow b \bar{b} b \bar{b}$  process via VBF with data of 126 fb $^{-1}$  at  $E_{\rm cm} =$ 

# H production cross section in pp collisions at $\sqrt{s} = 13$ TeV

| <u>VALUE</u> (pb) <b>56.8</b> ± <b>3.4 OUR AVERAGE</b>                        | DOCUMENT ID           |        | TECN | COMMENT                                         |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------------|--------|------|-------------------------------------------------|--|--|--|--|
| 30.8 ± 3.4 OUR AVERAGE                                                        |                       |        |      |                                                 |  |  |  |  |
| 55.5 + 4.0                                                                    | <sup>1</sup> AAD      | 23C A  | ATLS | pp, 13 TeV, $\gamma\gamma$ , $ZZ^*  ightarrow$  |  |  |  |  |
| 5.5                                                                           | •                     |        |      | 4 $\ell$ ( $\ell$ = e, $\mu$ )                  |  |  |  |  |
| $61.1 \pm 6.0 \pm 3.7$                                                        | <sup>2</sup> SIRUNYAN | 19BA ( | CMS  | pp, 13 TeV, $\gamma\gamma$ , $ZZ^* \rightarrow$ |  |  |  |  |
|                                                                               |                       |        |      | $4\ell \ (\ell = e, \mu)$                       |  |  |  |  |
| • • • We do not use the following data for averages, fits, limits, etc. • • • |                       |        |      |                                                 |  |  |  |  |

|                                                                      | •                   | •         |                                                          |
|----------------------------------------------------------------------|---------------------|-----------|----------------------------------------------------------|
| 58 ± 4 ±4                                                            | <sup>3</sup> AAD    | 22N ATLS  | pp, 13 TeV, $\gamma\gamma$                               |
| $53.5 \pm 4.9 \pm 2.1$                                               | <sup>4</sup> AAD    | 20BA ATLS | $pp$ , 13 TeV, $ZZ^*  ightarrow 4\ell$ ( $\ell$          |
|                                                                      |                     |           | $=$ e, $\mu)$                                            |
| $57.0^{+}_{-}$ $\begin{array}{c} 6.0 + 4.0 \\ 5.9 - 3.3 \end{array}$ | <sup>5</sup> AABOUD | 18CG ATLS | $pp$ , 13 TeV, $\gamma\gamma$ , $ZZ^* \rightarrow$       |
|                                                                      |                     |           | 4 $\ell$ ( $\ell$ = e, $\mu$ )                           |
| $47.9^{+}_{-}$ $\begin{array}{c} 9.1 \\ 8.6 \end{array}$             | <sup>5</sup> AABOUD | 18CG ATLS | pp, 13 TeV, $\gamma\gamma$                               |
| $68 \begin{array}{c} +11 \\ -10 \end{array}$                         | <sup>5</sup> AABOUD | 18cc ATLS | nn 13 TeV $7.7^* \rightarrow 4\ell (\ell)$               |
| -10                                                                  | 71712002            | 100071125 | $pp$ , 13 TeV, $ZZ^* 	o 	ext{4}\ell \ (\ell = e, \ \mu)$ |
| 69 $^{+10}_{-9}$ $\pm 5$                                             | <sup>6</sup> AABOUD | 17co ATLS | pp, 13 TeV, $ZZ^* \rightarrow 4\ell$                     |
| - 9                                                                  |                     | _         |                                                          |

 $^{1}$  AAD 23C combine AAD 22N and AAD 20BA, where both use 139 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=13$  TeV. The Higgs production cross sections at  $E_{\rm cm}=7$  and 8 TeV are obtained to be  $34^{+11}_{-10}$  pb and  $33.3^{+5.8}_{-5.4}$  pb, respectively. The quoted value is given for  $m_H=125.09$  GeV. The differential cross sections are given in their Figs. 3 and 4.

 $^2 \, {\rm SIRUNYAN} \,\, 19 {\rm BA} \,\, {\rm use} \,\, 35.9 \,\, {\rm fb}^{-1} \,\, {\rm of} \,\, p \, p$  collisions at  $E_{\rm cm} = 13$  TeV. The quoted value is given for  $m_H = 125.09$  GeV.

 $^3$  AAD 22N use 139 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  13 TeV. The quoted value is given for  $m_{H} = 125.09$  GeV.

<sup>4</sup> AAD 20BA use 139 fb<sup>-1</sup> of pp collisions at  $E_{\rm cm}=13$  TeV with  $H\to ZZ^*\to 4\ell$  where  $\ell=e,~\mu.$  The quoted value is given for  $m_H=125$  GeV and assumes the Standard Model branching ratio.

 $^{5}$  AABOUD 18CG use 36.1 fb $^{-1}$  of pp collisions at  $E_{
m cm}=$  13 TeV. All the quoted values are given for  $m_H=125.09~{\rm GeV}.$ 

 $^6$  AABOUD 17CO use 36.1 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=13$  TeV with  $H\to~ZZ^*\to 4\ell$  where  $\ell=e,~\mu$  for  $m_H=125$  GeV. Differential cross sections for the Higgs boson transverse momentum, Higgs boson rapidity, and other related quantities are measured as shown in their Figs. 8 and 9.

NODE=S126K2V;LINKAGE=H

NODE=S126K2V;LINKAGE=L

NODE=S126K2V:LINKAGE=K

NODE=S126K2V;LINKAGE=I

NODE=S126K2V;LINKAGE=J

NODE=S126K2V;LINKAGE=G

NODE=S126K2V;LINKAGE=A

NODE=S126K2V;LINKAGE=E

NODE=S126K2V:LINKAGE=F

NODE=S126A02 NODE=S126A02

OCCUR=2

OCCUR=3

NODE=S126A02;LINKAGE=F

NODE=S126A02;LINKAGE=C

NODE=S126A02;LINKAGE=E

NODE=S126A02;LINKAGE=D

NODE=S126A02;LINKAGE=A

NODE=S126A02:LINKAGE=B

#### H production cross section in pp collisions at $\sqrt{s} = 13.6$ TeV

| VALUE (pb) | DOCUMENT ID      | TECN      | COMMENT                                                               |
|------------|------------------|-----------|-----------------------------------------------------------------------|
| 58.2±8.7   | <sup>1</sup> AAD | 24AQ ATLS | $p$ $p$ , 13.6 TeV, $\gamma\gamma$ , $ZZ^* 	o 4\ell$ $(\ell=e,\ \mu)$ |

 $^1$  AAD 24AQ measure the total cross section to be  $67^{+12}_{-11}$  pb and  $46\pm12$  pb using  $H\to\gamma\gamma$  and  $H\to ZZ^*\to 4\ell$ , respectively, with data of 31.4 fb $^{-1}$  and 29.0 fb $^{-1}$  of pp collisions at  $E_{\rm cm}=13.6$  TeV. The SM expected value is  $59.9\pm2.6$  pb. All the values are given for  $m_H=125.09$  GeV.

NODE=S126A03 NODE=S126A03

NODE=S126A03;LINKAGE=A

# **H** REFERENCES

|                        |            | H                                                  | <b>(</b> E | FERENCES                                         |                                    |
|------------------------|------------|----------------------------------------------------|------------|--------------------------------------------------|------------------------------------|
| AAD                    | 25AG       | JHEP 2508 034                                      | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    |            | EPJ C85 210                                        |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD<br>AAD             |            | PL B865 139449 (errat.)<br>RPP 88 057803           |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
| AAD                    | 25E        | PL B861 139277                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
|                        | 25J        | PR D111 032006                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    | 25R        | JHEP 2502 045                                      |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD<br>AAD             | 25W<br>25Y | JHEP 2503 010<br>JHEP 2504 075                     |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
| CHEKHOVSKY             | 25A        | JHEP 2503 114                                      |            | Chekhovsky et al.                                | (CMS Collab.)                      |
| CHEKHOVSKY             |            | JHEP 2505 079                                      |            | Chekhovsky et al.                                | (CMS Collab.)                      |
| HAYRAPETY<br>HAYRAPETY |            | PL B860 139173<br>PRL 135 091802                   |            | Hayrapetyan et al.<br>Hayrapetyan et al.         | (CMS Collab.)<br>(CMS Collab.)     |
| HAYRAPETY              | 25B        | PL B860 139202                                     | A.         | Hayrapetyan et al.                               | (CMS Collab.)                      |
| HAYRAPETY              |            | PL B861 139210                                     |            | Hayrapetyan et al.                               | (CMS Collab.)                      |
| HAYRAPETY<br>HAYRAPETY |            | PL B862 139296<br>PL B865 139462                   |            | Hayrapetyan et al.<br>Hayrapetyan et al.         | (CMS Collab.)<br>(CMS Collab.)     |
| HAYRAPETY              | 25L        | PR D111 092014                                     |            | Hayrapetyan et al.                               | (CMS Collab.)                      |
| HAYRAPETY<br>AAD       |            | JHEP 2502 097<br>JHEP 2405 105                     |            | Hayrapetyan et al.<br>Aad et al.                 | (CMS Collab.)<br>(ATLAS Collab.)   |
|                        |            | EPJ C84 78                                         |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    | 24AZ       | PR D110 032012                                     | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
|                        |            | PL B855 138817<br>JHEP 2408 164                    |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
|                        |            | JHEP 2408 153                                      |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    | 24BL       | PRL 133 101801                                     | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
|                        |            | PRL 133 141801<br>PL B858 139007                   |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
|                        | 24D V      | PRL 132 021803                                     |            | Aad et al.                                       | (ATLAS Collabs.)                   |
|                        | 24F        | PRL 132 131802                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
|                        | 24J<br>24R | PL B849 138469<br>PL B855 138762                   |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
| AAD                    | 24X        | JHEP 2401 066                                      |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    | 24Y_       | JHEP 2402 037                                      | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
| HAYRAPETY<br>HAYRAPETY |            | JHEP 2407 293                                      |            | Hayrapetyan et al.<br>Hayrapetyan et al.         | (CMS Collab.)<br>(CMS Collab.)     |
| HAYRAPETY              |            |                                                    |            | Hayrapetyan et al.                               | (CMS Collab.)                      |
|                        |            | PL B857 138964                                     |            | Hayrapetyan et al.                               | (CMS Collab.)                      |
|                        |            | JHEP 2410 061<br>JHEP 2412 035                     |            | Hayrapetyan et al.<br>Hayrapetyan et al.         | (CMS Collab.)<br>(CMS Collab.)     |
| HAYRAPETY              |            | PRL 132 121901                                     |            | Hayrapetyan et al.                               | (CMS Collab.)                      |
| HAYRAPETY              |            | JHEP 2401 173                                      |            | Hayrapetyan et al.                               | (CMS Collab.)                      |
| TUMASYAN<br>AABOUD     | 24<br>23A  | PR D109 092011<br>JHEP 2312 158 (errat.)           |            | Tumasyan <i>et al.</i><br>Aaboud <i>et al.</i>   | (CMS Collab.)<br>(ATLAS Collab.)   |
| AAD                    | 23A        | PL B842 137963                                     | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
|                        |            | EPJ C83 519<br>EPJ C83 503                         |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
|                        |            |                                                    |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    | 23AN       | PRL 131 061802                                     | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
|                        |            |                                                    |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
|                        |            |                                                    |            | Aad et al.                                       | (ATLAS Collab.)                    |
|                        | 23BC       | EPJ C83 496                                        | _          | Aad et al.                                       | (ATLAS Collab.)                    |
| Also<br>AAD            | 23BK       | EPJ C84 156 (errat.)<br>PR D108 052003             |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
|                        |            | PRL 131 251802                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
|                        | 23BR       | PL B846 138223                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
| Also<br>Also           |            | PL B854 138734 (errat.)<br>PL B865 139449 (errat.) |            |                                                  | (ATLAS Collab.)<br>(ATLAS Collab.) |
| AAD                    | 23BS       | PL B847 138292                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    |            | PL B847 138315                                     |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD<br>AAD             | 23BV       | PR D108 072003<br>JHEP 2305 028                    |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
| AAD                    |            | EPJ C83 781                                        | G.         | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD                    | 23Q        | JHEP 2307 166                                      |            | Aad et al.                                       | (ATLAS Collab.)                    |
| AAD<br>AAD             | 23Y<br>23Z | JHEP 2307 088<br>JHEP 2307 040                     |            | Aad et al.<br>Aad et al.                         | (ATLAS Collab.)<br>(ATLAS Collab.) |
| HAYRAPETY              | 23         | JHEP 2308 040                                      | Α.         | Hayrapetyan et al.                               | ` (CMS Collab.)                    |
| HAYRAPETY<br>TUMASYAN  |            | PR D108 072004<br>PRL 131 041801                   |            | Hayrapetyan et al.<br>Tumasyan et al.            | (CMS Collab.)<br>(CMS Collab.)     |
| TUMASYAN               |            | PRL 131 041803                                     |            | Tumasyan et al.                                  | (CMS Collab.)                      |
| TUMASYAN               | 23AH       | PRL 131 061801                                     | A.         | Tumasyan et al.                                  | (CMS Collab.)                      |
| TUMASYAN<br>TUMASYAN   |            | PR D108 032008<br>PR D108 032013                   |            | Tumasyan et al.                                  | (CMS Collab.)<br>(CMS Collab.)     |
| TUMASYAN               |            | PL B846 137783                                     |            | Tumasyan <i>et al.</i><br>Tumasyan <i>et al.</i> | (CMS Collab.)                      |
| TUMASYAN               |            | EPJ C83 933                                        | Α.         | Tumasyan et al.                                  | (CMS Collab.)                      |
| TUMASYAN<br>TUMASYAN   | 23C<br>23D | PL B842 137534<br>PL B842 137531                   |            | Tumasyan et al.<br>Tumasyan et al.               | (CMS Collab.)<br>(CMS Collab.)     |
| TUMASYAN               | 23F        | JHEP 2305 233                                      |            | Tumasyan et al.                                  | (CMS Collab.)                      |
| TUMASYAN               | 231        | JHEP 2306 130                                      |            | Tumasyan et al.                                  | (CMS Collab.)                      |
| TUMASYAN<br>TUMASYAN   | 23O<br>23P | JHEP 2307 095<br>JHEP 2307 092                     |            | Tumasyan et al.<br>Tumasyan et al.               | (CMS Collab.)<br>(CMS Collab.)     |
| TUMASYAN               | 23Q        | JHEP 2307 091                                      |            | Tumasyan et al.                                  | (CMS Collab.)                      |
|                        |            |                                                    |            |                                                  |                                    |

NODE=S126 REFID=63492 REFID=63502 REFID=63558 REFID=63599 REFID=63356 REFID=63374 REFID=63436 REFID=63449 REFID=63458 REFID=63452 REFID=63468 REFID=63167 REFID=63170 REFID=63170 REFID=63170 REFID=63355 REFID=63358 REFID=63402 REFID=62462 REFID=62853 REFID=62960 REFID=62960 REFID=62960 REFID=63041 REFID=63041 REFID=63052 REFID=63118 REFID=63052 REFID=63052 REFID=63052 REFID=63052 REFID=63052 REFID=62720 REFID=62745 REFID=62759 REFID=62759 REFID=62876 REFID=62882 REFID=62876 REFID=62898 REFID=63115 REFID=63115 REFID=63141 REFID=62717 REFID=62717 REFID=62830 REFID=62575 REFID=62575 REFID=62575 REFID=62107 REFID=62107 REFID=62171 REFID=62180 REFID=62321 REFID=62361 REFID=62363 REFID=62363 REFID=62408 REFID=62408 REFID=62471 REFID=62471 REFID=62471 REFID=62477 REFID=62757 REFID=63558 REFID=62479 REFID=62479 REFID=62481 REFID=62488 REFID=62115 REFID=62546 REFID=62138 REFID=62161 REFID=62378 REFID=62378 REFID=62389 REFID=62289 REFID=62238 REFID=62239 REFID=62320 REFID=62347 REFID=62351 REFID=62475 REFID=62475 REFID=62551 REFID=62104 REFID=62105 REFID=62125 REFID=62150 REFID=62151 REFID=62152

| TUMASYAN<br>TUMASYAN<br>AAD<br>AAD<br>AAD                | 23W<br>23Y<br>22D<br>22M<br>22N | EPJ C83 667<br>EPJ C83 562<br>PL B829 137066<br>JHEP 2206 097<br>JHEP 2208 027               | A. Tumasyan et al. A. Tumasyan et al. G. Aad et al. G. Aad et al. G. Aad et al.                                         | (CMS Collab.)<br>(CMS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)     | REFID=62174<br>REFID=62181<br>REFID=61705<br>REFID=61806<br>REFID=61815                         |
|----------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| AAD<br>AAD<br>AAD<br>AAD                                 | 22P<br>22Q<br>22S<br>22V<br>22W | JHEP 2208 104<br>JHEP 2208 175<br>EPJ C82 105<br>EPJ C82 622<br>EPJ C82 717                  | G. Aad et al.                                                   | (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)             | REFID=61818<br>REFID=61819<br>REFID=61823<br>REFID=61835<br>REFID=61837                         |
| AAD<br>AAD<br>ATLAS<br>Also<br>CMS                       | 22X<br>22Y<br>22<br>22          | PR D105 092003<br>PR D106 052001<br>NAT 607 52<br>NAT 612 E24 (errat.)<br>NAT 607 60         | G. Aad et al. G. Aad et al. ATLAS Collaboration ATLAS Collaboration CMS Collaboration                                   | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(CMS Collab.)   | REFID=61869<br>REFID=61938<br>REFID=61850;ERROR=1<br>REFID=61997;ERROR=2<br>REFID=61851;ERROR=3 |
| TUMASYAN<br>TUMASYAN<br>TUMASYAN<br>TUMASYAN             | 22AJ<br>22AM                    | PRL 128 081805<br>I NATP 18 1329<br>PRL 129 081802<br>PR D105 092007                         | A. Tumasyan et al.                          | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)           | REFID=61864<br>REFID=61979<br>REFID=61984<br>REFID=61742                                        |
| TUMASYAN<br>AAD<br>AAD                                   | 21AJ                            | JHEP 2206 012<br>PL B812 135980<br>EPJ C81 178<br>EPJ C81 537                                | A. Tumasyan et al. G. Aad et al. G. Aad et al. G. Aad et al.                                                            | (CMS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)                      | REFID=61803<br>REFID=60710<br>REFID=61324<br>REFID=61338                                        |
| AAD<br>AAD<br>AAD<br>AAD<br>SIRUNYAN                     | 21F<br>21H<br>21I<br>21M<br>21  | PR D103 112006<br>PL B816 136204<br>PL B819 136412<br>JHEP 2103 268<br>PL B812 135992        | G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. A.M. Sirunyan et al.                                            | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(CMS Collab.)   | REFID=61247<br>REFID=61268<br>REFID=61272<br>REFID=61284<br>REFID=60712                         |
| SIRUNYAN<br>Also<br>SIRUNYAN<br>SIRUNYAN                 | 21A                             | EPJ C81 13<br>EPJ C81 33<br>EPJ C81 333 (errat.)<br>PR D104 052004<br>EPJ C81 3              | A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.                            | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)           | REFID=60775<br>REFID=61322<br>REFID=61514<br>REFID=60776                                        |
| SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN | 21C<br>21K<br>21L<br>21O<br>21R | JHEP 2101 148<br>JHEP 2103 257<br>JHEP 2103 011<br>JHEP 2107 027<br>EPJ C81 378              | A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.    | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)           | REFID=61041<br>REFID=61285<br>REFID=61292<br>REFID=61320<br>REFID=61331                         |
| SIRUNYAN<br>SIRUNYAN<br>TUMASYAN<br>AAD                  | 21S<br>21Z<br>21D<br>20         | EPJ C81 488<br>PR D104 032013<br>JHEP 2111 153<br>PR D101 012002                             | A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A. Tumasyan et al.<br>G. Aad et al.                                     | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(ATLAS Collab.)         | REFID=61339<br>REFID=61390<br>REFID=61559<br>REFID=60046                                        |
| AAD<br>AAD<br>AAD<br>AIso                                | 20AG                            | PL B800 135069<br>PRL 125 221802<br>PL B809 135754<br>EPJ C80 957<br>EPJ C81 29 (errat.)     | G. Aad et al.                                                   | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.) | REFID=60143<br>REFID=60697<br>REFID=60706<br>REFID=60770<br>REFID=61321                         |
| Also<br>AAD<br>AAD<br>AAD                                | 20BA<br>20C<br>20E              | EPJ C81 398 (errat.)<br>EPJ C80 942<br>PL B800 135103<br>PL B801 135145                      | G. Aad et al.                                                   | (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)             | REFID=61336<br>REFID=60917<br>REFID=60147<br>REFID=60193                                        |
| AAD<br>AAD<br>AAD<br>Also                                | 20F<br>20N<br>20X               | PL B801 135148<br>PL B805 135426<br>JHEP 2007 108<br>JHEP 2101 145 (errat.)                  | G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al.                                                                 | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)                    | REFID=60194<br>REFID=60399<br>REFID=60511<br>REFID=61275                                        |
| Also<br>AAD<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN          | 20AH                            | JHEP 2105 207 (errat.)<br>PRL 125 061802<br>JHEP 2003 131<br>JHEP 2005 032<br>PRL 125 061801 | G. Aad et al. G. Aad et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.                              | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)       | REFID=61301<br>REFID=60576<br>REFID=60483<br>REFID=60491<br>REFID=60575                         |
| SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN             | 20BK                            | JHEP 2011 039<br>JHEP 2012 085<br>EPJ C80 75<br>PL B805 135425                               | A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.                            | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)           | REFID=60763<br>REFID=60766<br>REFID=60222<br>REFID=60398                                        |
| AABOUD<br>AABOUD<br>AABOUD<br>AABOUD<br>AABOUD           |                                 | JHEP 1901 030<br>PL B793 499<br>PRL 122 231801<br>PR D99 072001<br>PL B789 508               | M. Aaboud <i>et al.</i> | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.) | REFID=59370<br>REFID=59755<br>REFID=59792<br>REFID=59853<br>REFID=59431                         |
| AABOUD<br>AABOUD<br>AABOUD<br>AABOUD                     | 19N<br>19O<br>19T<br>19U        | JHEP 1904 048<br>JHEP 1904 092<br>JHEP 1905 124<br>JHEP 1905 141                             | M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>                         | (ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)<br>(ATLAS Collab.)                    | REFID=59669<br>REFID=59672<br>REFID=59684<br>REFID=59685                                        |
| AAD<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN      | 19AF                            | PL B798 134949<br>PL B788 7<br>JHEP 1904 112<br>JHEP 1906 093<br>EPJ C79 94                  | G. Aad et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.                       | (ATLAS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)         | REFID=59981<br>REFID=59412<br>REFID=59674<br>REFID=59691<br>REFID=59703                         |
| SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN             | 19AT<br>19AX<br>19BA<br>19BE    | EPJ C79 421<br>PL B791 96<br>PL B792 369<br>PRL 122 121803                                   | A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.                            | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)                            | REFID=59725<br>REFID=59745<br>REFID=59752<br>REFID=59758                                        |
| SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN | 19BL<br>19BO<br>19BR            | PR D99 092005<br>PR D99 112003<br>PL B793 520<br>PL B797 134811<br>PR D100 072007            | A.M. Sirunyan et al.                | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)           | REFID=59875<br>REFID=59886<br>REFID=59927<br>REFID=59934<br>REFID=60014                         |
| SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN |                                 | PR D100 112002<br>JHEP 1910 139<br>PRL 122 021801<br>JHEP 1901 040<br>JHEP 1901 183          | A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.<br>A.M. Sirunyan et al.    | (CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)<br>(CMS Collab.)           | REFID=60038<br>REFID=60087<br>REFID=59555<br>REFID=59630<br>REFID=59634                         |
| SIRUNYAN                                                 | 19R                             | JHEP 1903 026                                                                                | A.M. Sirunyan et al.                                                                                                    | (CMS Collab.)                                                                               | REFID=59655                                                                                     |

| AABOUD<br>AABOUD<br>AABOUD<br>AIso<br>AABOUD<br>AABOUD<br>AABOUD<br>AABOUD<br>AABOUD                   | 18AJ<br>18AU<br>18BK<br>18BL<br>18BM                               | PL B776 318<br>PR D97 072003<br>JHEP 1803 095<br>JHEP 1807 127<br>JHEP 2312 158 (errat.)<br>PL B784 173<br>PL B786 134<br>PL B784 345<br>PL B786 59                 | M. Aaboud et al.                                                           | (ATLAS Collab.)                          | REFID=58621<br>REFID=58991<br>REFID=59087<br>REFID=59128<br>REFID=59293<br>REFID=59294<br>REFID=59295<br>REFID=59295                               |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| AABOUD                    | 18BP<br>18BQ<br>18BU<br>18CA<br>18CG<br>18CQ<br>18CW               | PR D98 052005<br>PL B786 223<br>PR D98 052003<br>EPJ C78 1007<br>JHEP 1810 180<br>PL B786 114<br>PRL 121 191801<br>JHEP 1811 040<br>PRL 120 211802<br>PR D97 072016 | M. Aaboud et al.                         | (ATLAS Collab.)          | REFID=59291<br>REFID=59297<br>REFID=59298<br>REFID=59333<br>REFID=59356<br>REFID=59405<br>REFID=59529<br>REFID=59567<br>REFID=58831<br>REFID=58927 |
| AAIJ AALTONEN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN                           | 18AM<br>18C<br>18A<br>18AE<br>18BD<br>18BH<br>18BQ<br>18BU<br>18BV | EPJ C78 1008<br>PR D98 072002<br>PL B778 101<br>PL B780 501<br>JHEP 1806 101<br>JHEP 1806 001<br>JHEP 1808 066<br>EPJ C78 140<br>EPJ C78 291                        | R. Aaij et al. T. Aaltonen et al. A.M. Sirunyan et al.                                            | (LHCb Collab.) (CDF Collab.) (CMS Collab.)                               | REFID=59334<br>REFID=59454<br>REFID=59627<br>REFID=59010<br>REFID=59116<br>REFID=59124<br>REFID=59144<br>REFID=59154<br>REFID=59173                |
| SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>AABOUD | 18DQ<br>18DS<br>18E<br>18F<br>18L<br>18S<br>18Y<br>17AW            | PRL 121 121801 JHEP 1811 152 JHEP 1811 185 PRL 120 071802 JHEP 1801 054 PRL 120 231801 PR D97 092005 PL B779 283 JHEP 1710 112 JHEP 1712 024                        | A.M. Sirunyan et al. A.M. Aboud et al. M. Aaboud et al. | (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)                            | REFID=59308<br>REFID=59368<br>REFID=58729<br>REFID=58787<br>REFID=58837<br>REFID=58938<br>REFID=59001<br>REFID=58335<br>REFID=58355                |
| AABOUD<br>AABOUD<br>AABOUD<br>AAD<br>KHACHATRY<br>SIRUNYAN<br>SIRUNYAN<br>SIRUNYAN<br>AABOUD<br>AABOUD | 17CO<br>17Y<br>17<br>17F<br>17AM<br>17AV                           | EPJ C77 765 JHEP 1710 132 PRL 119 051802 EPJ C77 70 JHEP 1702 135 PL B775 1 JHEP 1711 047 PR D96 072004 PR D94 052002 PRL 117 111802                                | M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. V. Khachatryan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al.                                                                  | (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)                    | REFID=58360<br>REFID=59637<br>REFID=57947<br>REFID=57780<br>REFID=57781<br>REFID=58295<br>REFID=58545<br>REFID=57426<br>REFID=57426                |
| AABOUD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD                                         | 16X<br>16<br>16AC<br>16AF<br>16AL<br>16AN<br>16AO<br>16BL<br>16K   | JHEP 1611 112<br>PL B753 69<br>PR D93 092005<br>JHEP 1601 172<br>JHEP 1605 160<br>JHEP 1608 045<br>JHEP 1608 104<br>EPJ C76 658<br>EPJ C76 6                        | M. Aaboud et al. G. Aad et al.                                                                           | (ATLAS Collab.)          | REFID=57661<br>REFID=57004<br>REFID=57281<br>REFID=57316<br>REFID=57334<br>REFID=57346<br>REFID=57683<br>REFID=57029                               |
| KHACHATRY<br>KHACHATRY<br>KHACHATRY                                                                    | 16AR<br>16AU<br>16B<br>16BA<br>16BQ<br>16CD<br>16G<br>15           | JHEP 1604 005<br>JHEP 1606 177<br>PL B753 341<br>JHEP 1609 051<br>PR D94 052012                                                                                     | V. Khachatryan et al. G. Aad et al. G. Aad et al.                                          | (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)                            | REFID=57240<br>REFID=57325<br>REFID=57339<br>REFID=57005<br>REFID=57356<br>REFID=57433<br>REFID=57698<br>REFID=56266<br>REFID=56266<br>REFID=56593 |
| AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD<br>AAD                                            | 15AH<br>15AQ<br>15AX<br>15B<br>15BC<br>15BD<br>15BE<br>15CE        | JHEP 1504 117<br>JHEP 1508 137<br>EPJ C75 231<br>PRL 114 191803<br>EPJ C75 349<br>EPJ C75 337<br>EPJ C75 335<br>PR D92 092004<br>EPJ C75 476                        | G. Aad et al.                                                                              | (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS and CMS Collabs.) (ATLAS Collab.) | REFID=56619<br>REFID=56647<br>REFID=56665<br>REFID=56434<br>REFID=56670<br>REFID=56671<br>REFID=56972<br>REFID=56909<br>REFID=56936                |
| Also AAD AAD AAD AAD AAD AAD AAD AAD AALTONEN KHACHATRY                                                | 15F<br>15G<br>15I<br>15P<br>15T<br>15<br>15B                       | EPJ C76 152 (errat.) JHEP 1511 206 PR D91 012006 JHEP 1501 069 PRL 114 121801 PRL 115 091801 PL B749 519 PRL 114 151802 PRL 114 141802 EPJ C75 212                  | G. Aad et al. T. Aaltonen et al. T. Aaltonen et al. V. Khachatryan et al.                                                                                        | (ATLAS Collab.) (CDF and D0 Collabs.) (CDF COllab.) (CMS Collab.)        | REFID=57367<br>REFID=59980<br>REFID=56421<br>REFID=56424<br>REFID=56492<br>REFID=56546<br>REFID=56465<br>REFID=566657                              |
| KHACHATRY                                                                                              | 15AN<br>15BA<br>15H<br>15Q<br>15Y<br>15Z                           |                                                                                                                                                                     | V. Khachatryan et al. C. Aad et al.                                                                                                    | (CMS Collab.)                                                                          | REFID=56658<br>REFID=56895<br>REFID=56505<br>REFID=56530<br>REFID=56538<br>REFID=56539<br>REFID=56125                                              |

| AAD        | 14AS | PL B738 68           | G. Aad et al.          | (ATLAS Collab.)              |             |
|------------|------|----------------------|------------------------|------------------------------|-------------|
| AAD        | 14BC | PR D90 112015        | G. Aad et al.          | (ATLAS Collab.)              |             |
| AAD        | 14BJ | JHEP 1409 112        | G. Aad et al.          | (ATLAS Collab.)              |             |
| AAD        | 14J  | PL B732 8            | G. Aad et al.          | (ATLAS Collab.)              |             |
| AAD        | 140  | PRL 112 201802       | G. Aad et al.          | (ATLAS Collab.)              |             |
| AAD        | 14W  | PR D90 052004        | G. Aad et al.          | (ATLAS Collab.)              | REFID=55885 |
| ABAZOV     | 14F  | PRL 113 161802       | V.M. Abazov et al.     | (D0 Collab.)                 |             |
| CHATRCHYAN | 14AA | PR D89 092007        | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=56033 |
| CHATRCHYAN | 14AI | PR D89 012003        | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=56422 |
| CHATRCHYAN | 14AJ | NATP 10 557          | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=56423 |
| CHATRCHYAN | 14B  | EPJ C74 2980         | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=55703 |
| CHATRCHYAN | 14G  | JHEP 1401 096        | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=55713 |
| CHATRCHYAN | 14K  | JHEP 1405 104        | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=55733 |
| KHACHATRY  | 14D  | PL B736 64           | V. Khachatryan et al.  | (CMS Collab.)                | REFID=55758 |
| KHACHATRY  | 14H  | JHEP 1409 087        | V. Khachartryan et al. | (CMS Collab.)                | REFID=56014 |
| KHACHATRY  | 14P  | EPJ C74 3076         | V. Khachatryan et al.  | (CMS Collab.)                | REFID=56183 |
| AAD        | 13AJ | PL B726 120          | G. Aad et al.          | (ATLAS Collab.               | REFID=55095 |
| AAD        | 13AK | PL B726 88           | G. Aad et al.          | (ATLAS Collab.)              | REFID=55096 |
| Also       |      | PL B734 406 (errat.) | G. Aad et al.          | (ATLAS Collab.)              |             |
| AALTONEN   | 13L  | PR D88 052013        | T. Aaltonen et al.     | (CDF Collab.)                | REFID=55191 |
| AALTONEN   | 13M  | PR D88 052014        | T. Aaltonen et al.     | (CDF and D0 Collabs.)        | REFID=55192 |
| ABAZOV     | 13L  | PR D88 052011        | V.M. Abazov et al.     | ` (D0 Collab.)               | REFID=55189 |
| CHATRCHYAN | 13BK | PL B726 587          | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=55436 |
| CHATRCHYAN | 13J  | PRL 110 081803       | S. Chatrchyan et al.   | (CMS Collab.)                |             |
| CHATRCHYAN | 13X  | JHEP 1305 145        | S. Chatrchyan et al.   | (CMS Collab.)                |             |
| CHATRCHYAN | 13Y  | JHEP 1306 081        | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=55035 |
| HEINEMEYER |      | arXiv:1307.1347      | S. Heinemeyer et al.   | (LHC Higgs CS Working Group) |             |
| AAD        |      | PL B716 1            | G. Aad et al.          | (ATLAS Collab.)              |             |
|            | 12DA | SCI 338 1576         | G. Aad et al.          | (ATLAS Collab.)              |             |
| AALTONEN   | 12Q  | PRL 109 111803       | T. Aaltonen et al.     | (CDF Collab.)                |             |
| AALTONEN   | 12R  | PRL 109 111804       | T. Aaltonen et al.     | (CDF Collab.)                |             |
| AALTONEN   | 12S  | PRL 109 111805       | T. Aaltonen et al.     | (CDF Collab.)                |             |
| AALTONEN   | 12T  | PRL 109 071804       | T. Aaltonen et al.     | (CDF and D0 Collabs.)        | REFID=54249 |
| ABAZOV     | 12K  | PL B716 285          | V.M. Abazov et al.     | (D0 Collab.)                 |             |
| ABAZOV     | 120  | PRL 109 121803       | V.M. Abazov et al.     | (D0 Collab.)                 |             |
| ABAZOV     | 12P  | PRL 109 121804       | V.M. Abazov et al.     | (D0 Collab.)                 |             |
| CHATRCHYAN | 12BY |                      | S. Chatrchyan et al.   | (CMS Collab.)                |             |
| CHATRCHYAN |      | PL B716 30           | S. Chatrchyan et al.   | (CMS Collab.)                | REFID=54181 |
| DITTMAIER  | 12   | arXiv:1201.3084      | S. Dittmaier et al.    | (LHC Higgs CS Working Group) |             |
| DITTMAIER  | 11   | arXiv:1101.0593      | S. Dittmaier et al.    | (LHC Higgs CS Working Group) |             |
|            | _    |                      |                        | (                            |             |