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Motivation

Physics community needs the computer 

readable RPP data files of metrological 

quality to be consistently included into:

»MC-generators 

»Physics analyses systems 

»Software  for models testing



Historically it turns out that traditional chain to assure

the quality of the published scientific data:

Authors → Journal peer reviewers → Editorial boards

and evolved publishing standards does not enough to

represent multidimensional correlated data with the

metrological quality

This presentation is to show that even the more powerful chain:

Authors → Journal peer reviewers → Journal editors → 

→ RPP article finders → RPP encoders → RPP overseers → 

→ Verifiers(Authors) → RPP peer reviewers → RPP editors →

→ Journal peer reviewers → Journal editors

used by PDG collaboration does not enough to represent RPP data

with metrological quality needed for different applications



Problems Overview

1. RPP reference data adopted from other data centers

2. RPP reference data extracted from original papers

3. RPP evaluated data from reviews and mini-reviews

4. RPP evaluated data from fits and averages



1.  RPP reference data 

adopted from other data centers

CODATA Internationally recommended values of the

http://physics.nist.gov/cuu/Constants/


CODATA: 1986 (1987) Symbol Unit Value(Uncertainty)xScale Correlations

Elementary charge e C 1.602 177 33(49) x 10^(-19) e             h me

Planck constant h J s 6.626 075 5(40) x 10^(-34) 0.997

Electron mass me kg 9.109 389 7(54) x 10^(-31) 0.975 0.989

1/(Fine struct. const.) 1/α(0) 137.035 989 5(61) −0.226 −0.154 −0.005

CODATA: 1998 (2000)

Elementary charge e C 1.602 176 462(63) x 10^(-19) e             h me

Planck constant h J s 6.626 068 76(52) x 10^(-34) 0.999

Electron mass me kg 9.109 381 88(72) x 10^(-31) 0.990        0.996

1/(Fine struct. const.) 1/ α(0) 137.035 999 76(50) −0.049      −0.002      0.092

CODATA: 2002 (2005)

Elementary charge e C 1.602 176 53(14) x 10^(-19) e             h me

Planck constant h J s 6.626 0693(11)    x 10^(-34) 1.000

Electron mass me kg 9.109 3826(16) x 10^(-31) 0.998      0.999

1/(Fine struct. const.) 1/ α(0) 137.035 999 11(46) −0.029    −0.010      0.029

CODATA: 2006 (2008)

Elementary charge e C 1.602 176 487(40) x 10^(-19) e             h me

Planck constant h J s 6.626 068 96(33)   x 10^(-34) 0.9999

Electron mass me kg 9.109 382 15(45) x 10^(-31) 0.9992      0.9996

1/(Fine struct. const.) 1/ α(0) 137.035 999 679(94) −0.0142    −0.0005    0.0269

Reviews of Modern Physics
Over-rounding and improper incertanty propagation

for derived quantities {me,  e,  1/ α(0), h}



Correlator eigenvalues of the selected constants in CI units

1986: { 2.99891, 1.00084,   0.000420779,  -0.000172106}

1998: { 2.99029, 1.01003,  -0.000441572, 0.00012358 }

2002: { 2.99802, 1.00173,    0.000434393, -0.000183906 }

2006: { 2.99942, 1.00006,   0.000719993, -0.000202165} 

Correlation matrix(e,  h, me, 1/α(0) ) of uncertainties in “Energy” units 

CODATA : 2006(8) Symbol [units] Value (uncertainty)  scale Correlations

Elementary charge e [C] 1.602 176 487(40)10 -19 e h me

Planck constant h [eVs] 4.135 667 33(10)10 -15 0.9996

Electron mass me [MeV] 0.510 998 910(13) 0.9966 0.9985

1/α(0) α(0)-1 137.035 989 5 (61) -0.0142 0.0132 0.0679

Eigenvalues { 2.99721,  1.00275,  0.0000341718,  1.40788  10
-6 }

Origine:  Linear Uncertainties Propagation  &  Over-rounding
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The main sources of the corrupted data are:
• Over-rounding;

• Usage of improper uncertainty propagation laws;

• Absence of the in/out data quality assurance programs in 

traditional and electronic publishing processes. 

As a rule, published multivariate data are damaged by over-rounding !!! 

What is the over-rounding of multidimensional data?

Let us transform the “Greek” random vector with its scatter region

by 45 degrees rotation to the “Latin” vector
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Let us recall how data could be corrupted after this 

simplest data transformation

1. True calculations, qualitatively true picture

x = 1.845(100)

y = 1.155(100) 0.9998     1.000

1.000       0.9998

mean(uncertainty) correlator
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All variants of correlated data corruption are copiously 

presented in scientific, educational, and technical resources  

3. Correlator

over-rounded



To escape corruption the  safe rounding or directed rounding

procedures are unavoidable!

Inputs from matrix theory for safe rounding:



On the basis of  Weil, Gershgorin, and Schur

spectral theorems  we propose the following 

safe rounding thresholds for:
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Correlator ‹δ Fm , δ Fn›  is  positive  definite  if  ‹δ Ca , δ Cb› 

is  positive  definite  and  integers  I, D, T obey inequality:



In May 2005 the accurate data on basic FPC-2002 appeared 

for the first time.  This  gave  us  possibility for  the  further 

investigation of the derived FPC-2002  {me, e, 1/α(0), h} :

Linear Differential UPL (default machine precision)

2002: { 2.99825, 1.00175, 9.95751E-10,  9.23757E-17 }

Linear Differential UPL  (SetPrecision[expr,30])

2002: { 2.99825, 1.00175, 9.95751E-10,  -6.95096E-35 }

Non-Linear Differential UPL (second order Taylor polynomial) 

(SetPrecision[expr,100])

2002: { 2.99825, 1.00175, 9.95751E-10, 2.86119E-15 }



2.  Biases were calculated supposing the multi-normal distribution for        

basic FPC. They are much less than corresponding standard deviations 

1. Insert values of the basic constants from LSA files into formulae

me =             = 9.109382551053865E-31

e = =  1.6021765328551825E-19


2

2






c

hR

c

h





0

2





me e 1/a(0)
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sigma

Comparison with CODATA recommended 

values of derived FPC-2002  {me, e, 1/α(0), h}



Where is the end of the rounded vector 

of the basic FPC-2002?

c


iii

c /

1
1

,

2

][ 


 
n

ji
jiji

cor 

We have 22 constants for which 

NIST give both allascii (rounded) and LSA “non-

rounded” data for this test:

The end of the rounded vector should belong to 

the non-rounded scatter region.
To characterize the deviation we use the quadratic form 

= c(allascii) –c(LSA)
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But where is the end of the rounded vector 

for derived FPC-2002 ?

FPC Our calculations with DifUPL(2,4,2)

me 9.109382551053865E-31 9.1093826 E-31

e 1.6021765328551828E-19 1.60217653 E-19

1/α(0) 137.035999105576373 137.03599911

h 6.626069310828000E-34 (LSA) 6.6260693 E-34

Allascii (NIST-2002)


2

 2.18E+10

Thus, we see that the values of the derived vector components  

{me,e, 1/α(0)} presented on the NIST site in allascii.txt file are

improbable!!!

The vector is out of the scatter region for the 1010 standard deviations

due to  improper uncertainty propagation and over-rounding
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http://physics.nist.gov/cuu/Constants/Table/allascii.txt


Unfortunately there is no possibility to assess 

the quality of the derived FPC-2006 because of 

absence of the corresponding 

LSA-2006  data files.
http://physics.nist.gov/cuu/LSAData/index.html

Moreover, the recently published data on the correlation matrix of the

inputs to evaluate Rydberg constant by LSA method has two negative

eigenvalues (see Rev. Mod. Phys. 80 (2008) 633, TABLE XXIX.) .

Most probably this is due to the over-rounding of the matrix elements

when preparing data for traditional publication.

Having the LSA-2006 files and standardized

formulae for the derived FPC (that could be

obtained from the NIST-FCDC), COMPAS group can

produce the fpcLive of metrological quality to be

inserted into pdgLive

http://physics.nist.gov/cuu/LSAData/index.html


2. RPP reference data 

extracted from original papers



• Physics Letters B288 (1992) 373,     

CERN-LEP-OPAL Experiment

• Guide to the Expression of Uncertainty in Measurement

(ISO GUM,1995)

• Physical Review D55 (1997) 2259; D58 (1998) 119904E,

CESR-CLEO Experiment

• Reviews of Modern Physics 72 (2000) 351,

CODATA recommended values of the FPC: 1998

• Physics Letters B519 (2001) 191,     

CERN-LEP-L3 Experiment

• European Physical Journal C20 (2001) 617,     

CERN-LEP-DELPHI Experiment

Some examples of “current doubtful 

practice” to express and  publish 

measured data and how correlated data 

are reflected in RPP database 





• Nuclear Physics A729 (2003) 337,                                                                        

The AME2003 atomic mass evaluation (II)
• Reviews of Modern Physics 77 (2005) 1,

CODATA recommended values of the FPC: 2002

• Physics Reports 421 (2005) 191,  

CERN-LEP-ALEPH Experiment

• Physical Review D73 (2006) 012005,

SLAC-PEP2-BABAR Experiment

• Journal of Physics G33 (2006) 1

Review of Particle Physics

• European Physical Journal C46 (2006) 1,  

CERN-LEP-DELPHI Experiment

• Physical Review C73 (2006) 044603,

R-matrix analysis of Cl neutron cross sections up to 1.2 MeV

• Physical Review D74 (2006) 014016,

BINP-VEPP-2M-SND Experiment

• Reviews of Modern Physics 80 (2008) 633,

CODATA recommended values of the FPC: 2006



Physics Letters B288 (1992) 373
Experiment CERN-LEP-OPAL

Measurement of the τ topological branching ratios at LEP

“5. Summary and discussion

The inclusive branching ratios of the τ lepton to one, three and five charged 

particle final states are measured to be 

B1 = 84.48 +- 0.27 (stat) +- 0.23 (sys) %,

B3 = 15.26 +- 0.26 +- 0.22 % and 

B5 = 0.26 +- 0.06 +- 0.05 % respectively.

These measurements have been obtained from a fit where B1 + B3 + B5 is 

constrained to equal one.

The correlations between the fitted branching ratios are given by the matrix
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Eigenvalues of this matrix are

{ 1.9677, 1.0118, 0.0205 }

Rounding Threshould = 2

If ρ = ρ(stat),  it should be degenerate, but it is positive definite!

http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHLTA,B288,373
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHLTA,B288,373
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHLTA,B288,373
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHLTA,B288,373
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHLTA,B288,373


It is possible to restore the “true” statistical correlator from data on

statistical errors, if they were obtained by the constrained fit :

( B1 + B3 + B5 = 1 ).   

Indeed, in this case 

ρ(stat)
mn = ( σk

2 – σm
2 - σn

2 ) / ( 2 σm σn ) , (k≠m≠n) = (1,3,5).

Inserting data on the statistical errors we will obtain a “true” correlator
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with eigenvalues 2.02838, 0.97617, 3.46132E-17, where the minimal

eigenvalue should be treated as zero (it is close to “default precision”

which is 16 “significant digits”).

Thus, the obtained matrix is degenerate and differs strongly out of the

OPAL matrix.



From the systematic errors budget,  taken from Table 7 of the paper

we can calculate the covariance matrix of systematic uncertainties

Adding it to the “true” statistical covariance matrix we will obtain 

the covariance matrix for the combined stat. and syst. errors 

Observables

Sources

0.14 0.13 0.35

0.12 0.12 0.12

0.10 0.10 0.027

0.10 0.10 0.00

Covariance matrix

0.054 0.0526 0.00904

0.0526 0.0513 0.00869

0.00904 0.00869 0.002098



Eigenvalues of the total correlator are as follows 

{ 1.36933, 1.09429, 0.536376 } 

Now, it seems, we have complete presentation of OPAL result:
• estimates of mean values,

• estimates of statistical and systematic covariances with true properties;

• estimates of the total covariances and correlations with quoting the data

quality parameters (precision of calculations and rounding thresholds).

Total  covariance  matrix

0.1269 -0.01585 0.00459

-0.01585 0.1189 0.00954

0.00459 0.00954 0.005698

Total  correlation  matrix

1. -0.129035 0.170695

-0.129035 1. 0.366519

0.00459 0.366519 1.



Eigenvalues of this matrix are as follows:

So, the Erratum to the Erratum is needed

Physical Review D55 (1997) 2559
Experiment CESR-CLEO

Erratum: Experimental tests of lepton universality in τ decay.

Phys. Rev. D58 (1998) 119904

http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHRVA,D55,2559
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHRVA,D55,2559
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHRVA,D55,2559


European Physical Journal C20 (2001) 617
Experiment CERN-LEP-DELPHI

A Measurement of the τ Topological Branching Ratios

Published correlator is incorrect and over-rounded.

Our calculations, based on data presented in the 

paper give the “correct” safely rounded correlator:

It seems that an Erratum to the paper is

needed, because of the over-rounding

and improper uncertainty propagation

http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C20,617
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C20,617
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C20,617
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C20,617
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C20,617


European Physical Journal C46 (2006) 1
Experiment CERN-LEP-DELPHI

A measurement of the tau hadronic branching ratios

Table10. Measured branching ratios in percent.The

uncertainties are statistical followed by systematic

Decay mode BranchingRatio(%)

− → h− ≥0K0  12.780 ± 0.120 ± 0.103

− → h− o ≥0K0  26.291 ± 0.201 ± 0.130

− → h− 2o ≥0K0  9.524 ± 0.320 ± 0.274

− → h− ≥1o ≥0K0  37.218 ± 0.155 ± 0.116

− → h− ≥2o ≥0K0  10.927 ± 0.173 ± 0.116

− → h− ≥3o ≥0K0  1.403 ± 0.214 ± 0.224

− → 3h± ≥0K0  9.340 ± 0.090 ± 0.079

− → 3h± o ≥0K0  4.545 ± 0.106 ± 0.103

− → 3h± ≥1o ≥0K0  5.106 ± 0.083 ± 0.103

− → 3h± ≥2o ≥0K0  0.561 ± 0.068 ± 0.095

− → 5h± ≥0K0  0.097 ± 0.015 ± 0.005

− → 5h± ≥1o ≥0K0  0.016 ± 0.012 ± 0.006

http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1
http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=EPHJA,C46,1


Table 11.Correlation matrix of the combined statistical and systematic

uncertainties.The last three rows show the correlation with the topological

branching ratios presented in [16].
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Table 11.Correlation matrix of the combined statistical and systematic

uncertainties as it is reproduced in pdgLive-2007(8).

This matrix is assigned in the RPP data block to the observables of Table 12

not to the observables of Table 10 as it is in the original paper.

“Using the world averages [18] for the channels involving K0 and neglecting this

contribution for channels with more than three charged pions or kaons, we can

derive the branching ratios shown in Table 12. In this subtraction, the total error

on the world average was added in quadrature to the systematic error of these

measurements.”

-0.05 

In original 

text

http://pdglive.lbl.gov/popupblockdata.brl?nodein=S035B73&inscript=Y&fsizein=1&dclumpin0=B
http://pdg.lbl.gov/pdg_2002.html
http://pdg.lbl.gov/pdg_2002.html


Table 12. Measured branching ratios in percent after subtraction 

of the contributions of channels including K0. The uncertainties 

are statistical followed by systematic

Decay mode Branching Ratio (%)

− → h−  11.571 ± 0.120 ± 0.114

− → h− o  25.740 ± 0.201 ± 0.138

− → h− 2o  9.498 ± 0.320 ± 0.275

− → h− ≥1o  36.641 ± 0.155 ± 0.127

− → h− ≥2o  10.901 ± 0.173 ± 0.118

− → h− ≥3o  1.403 ± 0.214 ± 0.224

− → 3h±  9.317 ± 0.090 ± 0.082

− → 3h± o  4.545 ± 0.106 ± 0.103

− → 3h± ≥1o  5.106 ± 0.083 ± 0.103

− → 3h± ≥2o  0.561 ± 0.068 ± 0.095

− → 5h±  0.097 ± 0.015 ± 0.005

− → 5h± ≥1o  0.016 ± 0.012 ± 0.006



But it is impossible to do this evaluation reliably simply

because there are no proper correlator of the

corresponding “world averaged” tau branchings.

As a rule, PDG shows correlators in % for the pure

informational purposes – to show highly correlated

observables under study. The PDG correlators for

branchings, are badly over-rounded.

There is another problem with DELPHI correlators – both 

“correlation” matrices, original and presented in RPP,

have two negative  eigenvalues.

Such papers should be returned by referees to the senders for corrections. 

Such “data” should not pass to the RPP repository 

without comments on the data corruption 

in spite of being published in journals with high impact factor.



Physics Letters B519 (2001) 191
Experiment CERN-LEP-L3

Measurement of the topological branching fractions of the τ lepton at LEP

B(τ →(1-prong)) = 85.274 ± 0.105 ± 0.073%,

B(τ →(3-prong)) = 14.556 ± 0.105 ± 0.076%,

B(τ →(5-prong)) = 0.170 ± 0.022 ± 0.026%,

“After combination of the systematic uncertainties the results for the branching fractions 

of the τ lepton decays into one, three and five charged particle final states are:

where the first uncertainty is statistical and the second is systematic.”

Unfrortunately, there are no comments on the properties of the stat., or syst., or 

combined uncertainty matrices in the section describing the final results. 

But in pdgLive(2008) we have some indication that there might 

be further comments from “L3-verifier” 



From the footnotes to the measurements in the corresponding 

data blocks it is possible to form the correlation matrix

Source B(1-prong) B(3-prong) B(5-prong)

B(1-prong) 1.0 −0.978 −0.082

B(3-prong) 1.0 −0.19

B(5-prong) 1.0

that  is named as “correlations  between measurements” there, and can 

be interpreted as the correlations of the total uncertainties. It does not 

coinside with the statistical correlator presented in the paper (Table 4).

“Table 4

The correlation coefficients obtained from a fit of the topological

branching fractions

Source B(1-prong) B(3-prong) B(5-prong)

B(1-prong) 1.0 −0.978 −0.082

B(3-prong) 1.0 −0.127

B(5-prong) 1.0 ”

“In the fit the constraint B(1) + B(3) + B(5) = 1 is applied and the sum of Ni
exp is 

constrained to the number of observed τ decays. The following results are 

obtained:…..”

http://pdglive.lbl.gov/REFERENCE_info1.brl?slacrpp=PHLTA,B519,189
























10.104762-0.104762-

0.104762-10.97805-

0.104762-0.97805-1

)( stat



With eigenvalues: 1.97805, 1.02195, -1.01856E-17 

Our calculations, analogous to OPAL case based on the

statistical errors from constrained fit presented in the

paper give the “correct” safely rounded statistical

correlator:



Adding it to the “true” statistical covariance matrix we will obtain

the covariance matrix for the combined stat. and syst. errors 

From the systematic errors budget,  

taken from Table 5 of the paper

With systematic errors as in the paper

0.0728492,  0.0755447,  0.0255734

Systematic covariance matrix

0.005307 0.005499 0.001592

0.005499 0.005707 0.001688

0.001592 0.001688 0.000654

Observables

0.048 0.052 0.024

0.01 0.01 0.001

0.01 0.01 0.001

Sources 0.011 0.011 0.001

0.035 0.035 0.003

0.012 0.012 0.001

0.017 0.017 0.004

0.032 0.032 0.007



Eigenvalues of the total correlator are as follows 

{ 1.33208, 1.31076,  0.357163}

Now we have complete presentation of L3 result:
• estimates of mean values;

• statistical and systematic covariances with true properties;

• estimates of the total covariances and correlations with quoting the

data quality parameters (precision of calculations and rounding

thresholds).

Total  covariance  matrix

0.016332 -0.005284 0.001350

-0.005284 0.016732 0.001446

0.001350 0.001446 0.001138

Total  correlation  matrix

1. -0.319646 0.313143

-0.319646 1. 0.331378

0.00459 0.331378 1.



The  module  to  test  intrinsic consistency of the 

correlated  input  and  output  RPP data is urgently 

needed. 

COMPAS group can workout  the mockups of such 

module in Mathematica

Section summary



3.  RPP evaluated data 

from reviews and min-ireviews

In majority of the reviews and mini-reviews the

evaluated particle physics parameters (the best

current values) did not supported by the

properly organized computer readable data

files with input data and results of evaluations



4.  RPP evaluated data 

from fits and averages

A proposal to improve presentation 

the results of constrained fits  in 

computer readable forms 

(on a few simplest examples)



CONSTRAINED FIT INFORMATION π0 DECAY MODES

An overall fit to 2 branching ratios uses 4 measurements and 

one constraint to determine 3 parameters. 

The overall fit has a χ2 = 1.9 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation 

coefficients <δxi δxj> / (δxi
.δxj), in percent, from the fit to xi, 

including the branching fractions, xi =Γi / Γtotal. 

The fit constrains the xi whose labels appear in this array to sum to one.

x1 100

x2 –100 100

x4   –1 –0 100

x1 x2 x4

x1 x2 x4

x1 1.00

x2 -0.999958 1.00

x4 -0.005585791 -0.003579367 1.00

The Review of Particle Physics

C. Amsler et al., Physics Letters B667 (2008) 1

Eigenvalues

of the rounded correlator

{2.00005, 1., -0.00005}

Eigenvalues

of the “URL-rounded correlator”

{1.99996, 1.00004, -1.02849×10-10}

http://pdglive.lbl.gov/relation.brl?nodein=S009&fsizein=1
http://pdglive.lbl.gov/relation.brl?nodein=S009&fsizein=1
http://pdglive.lbl.gov/relation.brl?nodein=S009&fsizein=1
http://pdglive.lbl.gov/relation.brl?nodein=S009&fsizein=1
http://pdglive.lbl.gov/relation.brl?nodein=S009&fsizein=1
http://pdglive.lbl.gov/relation.brl?nodein=S009&fsizein=1


“5.2.3. Constrained fits:

… In the Particle Listings, we give the

complete correlation matrix; we also calculate the fitted

value of each ratio, for comparison with the input data,

and list it above the relevant input, along with a simple

unconstrained average of the same input. ….”
Excerpt from page 17 of the RPP-2008

We see that there are no “complete correlation matrix” neither in the book

nor on the pdgLive pages. We have over-rounded correlators instead, and

can extract (a crazy job) non-rounded ones by using corresponding URLs

from the CONSTRAINED FIT INFORMATION pages.

Moreover, it seems, that both correlation matrices have another problem. It turns out

that if we have three random quantities x1, x2, x4 such that they obey the relation

x1 + x2 + x4  = 1, 

then their covariance matrix is degenerate 3×3 matrix and its non-diagonal matrix

elements completely determined by the diagonal ones σmn = 2 ρmn∙σm∙σn , where

ρmn = ( σk
2 – σm

2 - σn
2 ) ∕ ( 2 σm σn ) , (k≠m≠n) = (1,2,4)

are the correlations. Inserting corresponding σm data from pdgLive we obtain: 



x1

Rounded Correlator

x1 1 -0.999956 -0.0046875

x2 -0.999956 1 -0.0046875

x4 -0.0046875 -0.0046875 1

Eigenvalues. Rounded correlator:          {1.99996, 1.00004, 5.46851×10-8}

Eigenvalues. Non-rounded correlator:   {1.99996, 1.00004, -1.21385×10-16}

We have no explanations why the obtained

estimates of the correlator differs from that of

presented in the RPP and propose slightly

modified procedure for the constrained fit



Ratio (R) R-Value R-Uncertainty Formula  (F)

Γ(e+ e− γ)/Γ(2γ) 0.0125 0.0004 x2/x1

Γ(e+ e− γ)/Γ(2γ) 0.01166 0.00047 x2/x1

Γ(e+ e− γ)/Γ(2γ) 0.0117 0.0015 x2/x1

Γ(γ Atom(e+e− )/Γ(2γ) 1.84×10-9 0.29×10-9 x3/x1

Γ(2e+ 2e−)/Γ(2γ) 0.0000318 3.0 ×10-6 x4/x1

Γ(e+ e− )/Γ(total) 6.46×10-8 0.33×10-8 x5

Γ(undetected)/Γ(total) 0.0 6.0×10-4 1-x1-x2-x3-x4-x5

The Review of Particle Physics

C. Amsler et al., Physics Letters B667 (2008) 1

7 measurements,  5 parameters



Proposal for “new” forms of constrained fits 

χ 2 = Σ (R –F)i Wi j (R –F)j            + (108/36)∙UnitStep[x1+x2+x3+x4+x5-1]∙(1-x1-x2-x3-x4-x5)2

Value

x1 0.98798

x2 0.01198

x3 1.82×10-9

x4 31.4×10-6

x5 6.46×10-8

Error

0.00066

0.00029

0.29×10-9

3.0×10-6

0.33×10-8

±

Rounded correlator

1.00 -0.42 0.00 0.00 0.00

-0.42 1.00 -0.00 -0.00 0.00

0.00 -0.00 1.00 0.00 0.00

0.00 -0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 1.00

Minimum( χ2 ) = 1.94 for 7- 5 = 2 degrees of freedom

In addition we can obtain the estimate for the fraction of the 

sum  of possible undetected decays xU = 1-x1-x2-x3-x4-x5. 

Our calculations give:

;

Eigenvalues.     Rounded correlator:               {1.42, 1.00, 1.00, 1.00, 0.58}

Eigenvalues. Non rounded correlator: {1.41895,1.00000,0.99999,0.99993,0.58113}



Value

x1 0.98798

x2 0.01198

x3 1.82×10-9

x4 31.4×10-6

x5 6.46×10-8

xU 4.92×10-6

±

Error 

0.00066

0.00029

0.29×10-9

3.0×10-6

0.33×10-8

600.0×10-6

;

Rounded correlator

1.00 -0.42 0.00 0.00 0.00 -0.90

-0.42 1.00 -0.00 -0.00 0.00 -0.02

0.00 -0.00 1.00 0.00 0.00 -0.00

0.00 -0.00 0.00 1.00 0.00 -0.00

0.00 0.00 0.00 0.00 1.00 0.00

-0.90 -0.02 -0.00 -0.00 0.00 1.00

Eigenvalues.  Non rounded correlator:     {1.98, 1.02, 1.00, 1.00, 1.00, 7.08×10-17}

Eigenvalues.  Rounded correlator:   {1.98563, 1.01533, 1.00, 1.00, 1.00, -0.00095}

Now we have complete information to formulate the result: 

1. For the vector {x1,x2,x3,x4,x5} we have correct estimates for the adjusted values 

of components, their standard deviations and positive definite  correlation matrix 

which may be uniformly rounded to be presented in integers % ;

2.  For the extended vector {x1,x2,x3,x4,x5,xU}  we have correct estimates for the 

adjusted values of components, their standard deviations and positive semi-definite  

correlation matrix  expressed with 16 digits to the right of decimal point.

To express results in a more compact forms the directed rounding procedures 

should be designed and implemented to preserve the properties of the correlator.



Summary
We have problems with numerical expression and

presentation of correlated multidimensional data in publications

and in computer readable files.

These problems are common in the whole scientific

community and originated in the absence of the widely accepted

standard to express numerically the multidimensional correlated

data.

As metrologists moves too slow, we propose PDG to workout

the needed standard and implement it in PDG activity and in

PDG publications: traditional and electronic. The physics

community will follow PDG. Physics authors will produce data of

high metrological quality.

COMPAS group will participate in this activity if it will be

accepted by PDG collaboration.

We, PDG, will not stay alone! The movement to

standardize the quality of e-data has started already



Why Should Companies Support Standards Development?

Written by Suriya Ahmad for Nuclear Standards News

(Vol. 33, No. 6; Nov-Dec, 2002).

As professionals working in the nuclear energy industry, we are committed to the 

benefits that nuclear technology provides humankind.

The future of nuclear energy depends on maintaining a strong safety record, 

economics, and effective waste management.

So, how does the industry gather and maintain the information needed 

to meet these goals? It is done, in a large part, through the use of 

voluntary consensus standards.

Voluntary  consensus  standards  represent the best knowledge of the field.

They are written by groups of volunteers who are regarded as the technical 

experts in the nuclear energy industry.



Shuichi Iwata, SCIENTIFIC "AGENDA" OF DATA SCIENCE 

CODATA DSJ 7 (2008) 54-56

David R. Lide, Data quality - more important than ever in the Internet age

CODATA DSJ 6 (2007) 154-155

Special Issue "Thousand Words"

Vladimir V. Ezhela,  Multimeasurand ISO GUM Supplement is Urgent 

CODATA DSJ 6 (2007) S676-S689, Errata, DSJ 7 (2008) E2-E2

SHARING  PUBLICATION-RELATED  DATA  AND  MATERIALS:

RESPONSIBILITIES  OF  AUTHORSHIP  IN  THE LIFE  SCIENCES

Washington, D.C.  2003 www.nap.edu

Ray P. Norris, How to Make the Dream Come True: The Astronomers' Data 

Manifesto

CODATA DSJ 6 (2007) S116-S124

http://www.nap.edu/


Scientific measured data to prove the discovery of a phenomenon and data 

needed to use the phenomenon in practice are the data of different quality.

Current practice to select scientific papers for publication is not enough to assure 

the  scientific data to be of metrological quality. 

Current practice of selecting measured data from publications to assess them as 

the  reference data for scientific and industrial applications is too soft to prevent 

proliferation of incomplete or corrupted data. 

Necessity of the special standardized procedures and means to “sieve and seal” 

the measured scientific data to be qualified as data of metrological quality and 

recommended for publication is argued. 

It is time to think on the extended form of the scientific publication, namely: any 

paper, reporting measured (or evaluated) data, should be accompanied by data  

files where data are completely presented in computer readable form of sufficient 

numeric precision to preserve the results obtained.

Conclusion



Metrology in Fundamental Science is Urgent

Publication of data in refereed scientific journals does not assure the quality of 

the  reported data:

• Absence of the in/out data quality assurance programs in traditional 

and electronic publishing processes; 

• Incomplete presentation of measured data;

• Data corruption caused by publication space constraints (over-rounding); 

• Lack in duality: human/computer usability;

• Multivariate data presented in  publications often are corrupted

Presentation  of  data  collected   from  publications  and    assessed  by  experts  

does  not  assure  the  quality  of  the  integrated and assessed data:

• Absence of the in/out data quality assurance programs in loading/extracting data

into/from databases;

• Incomplete presentation of measured data;

• Data corruption caused by too tight formats to store numbers (over-rounding);

• Lack in duality: human/computer usability;

Existing  International and  National  Guides  to express  and  report   measured 

data  are  formulated  for  one  measured  quantity  only.


