
Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 1

PDG Computing Review:

The Big Picture



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 2

Outline
● In this talk (mostly good news):

– Requirements for PDG computing

– A brief history of the computing upgrade

– Architecture of the upgraded system

– Upgrade plan and present status

– Current implementation

● In-depth discussion of different topics in subsequent presentations

● Summary of open issues, manpower situation, and future plans in my talk at 
the end of the review (mostly bad news)



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 3

An Integral View of PDG Computing
● Must support the following activities:

– Full process leading to the production
of the Review of Particle Physics

– Diary (every year)

– PDG product ordering system (for North/South America, Australia, Far East)

– High-volume, reliable web server (O(107) hits per year) with several mirrors

– Several different outreach activities (ATLAS, Particle Adventure, ...)

– Institutional address/contacts database

– Some support for US HEPFOLK (directory/census of US particle physicists)

– Reporting and statistics

– General computing (local computing resources, backups, monitoring, ...)

Will mainly discuss computing 
related to these core activities  
- but everything else must be 
addressed as well as part of 
the computing upgrade

}



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 4

PDG Glossary
● RPP: Review of Particle Physics (PDG book) – our main goal

● Listings: particle properties in RPP, including averages and fits

● Reviews: review articles in RPP (main Reviews; Mini-Reviews in Listings)

● Encoding: information from a given paper to be included into RPP system

● Literature searchers: scan the published HEP literature for new 
measurements

● Encoders (~35): experts who carefully read papers, decide exactly what 
information should be included into RPP, and produce the encodings

● Overseers: (~15): read papers and cross-check encoders, oversee fits & 
averages, produce summary tables, handle Reviews

● Coordinators: LBNL staff who make sure that things happen on time

● Editor: Piotr Zyla – handles all computing, editorial, etc. tasks



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 5

Simplified Steps for Producing RPP Listings

1) Literature searchers find published papers possibly containing data to be 
included into RPP; assigns each paper tentatively to one or more particles

2) Encoders receive list of new papers for “their” particles, read papers and 
suggest initial encoding

3) Overseers cross-check encodings, iterate until encoder and overseer agree

4) Encoding is entered into PDG database

5) Averages and fits are updated

6) Revised sections get checked by encoders/overseers

7) Excerpts from modified sections are sent to experiment contact persons for 
verification (verification based on “no news is good news”)

8) Editor assembles Listings and creates files for web edition



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 6

Simplified Steps for Producing RPP Reviews

1) Review authors submit initial draft in their preferred file format

2) Referees are chosen and asked to review draft

3) Under the guidance of coordinators, referees and authors iterate until all 
comments are addressed

4) Editor translates review into TeXsis, if needed

5) Editor produces Postscript and PDF files for web edition

6) Editor produces shortened versions of selected Reviews for inclusion into the 
booklet

Finally, the editor assembles Listings and Reviews into the complete RPP or 
booklet in the format needed by the publisher.



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 7

High-Level Requirements for PDG Computing
● Long-term maintainability – w/o PDG computing there will be no future RPPs!

● Management of responsibilities and interaction between encoders, overseers, 
coordinators, experiment contacts and the editor (“workflow management”)

● Data entry and update

– To prevent mistakes, need control over who is allowed to edit what and when

● Averages and fits (performed by running “auxiliary programs”)

● Reviews

● Production of (Postscript, PDF and TeX) files for web edition and publisher

● Reporting tools (“How many new papers?”, “Status of RPP production?”, ...)

● Web server

● Data storage, archival and distribution to mirror sites

● Exporting of data (MC programs, Palm Pilots, ...)



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 8

The Old PDG Computing System
● Designed/developed initially early 1980s

● Originally on VAX/VMS, later on Sun workstation

● Everything centered around editor (Betty Armstrong, Piotr Zyla since 2004)

● Problems (from today's point of view):

– Only editor can enter data through Oracle/FORMS interface (Betty -> Piotr)

– Old hardware without a readily available replacement system

– Obsolete software – our only data entry interface is built on the no longer 
supported Oracle/FORMS without easy upgrade path to latest Oracle tools

– Lack of automation for many tasks

– Only very basic online access to RPP (PDF and PostScript files)

– A number of recurring annoying problems



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 9

Very Brief History of PDG Computing Upgrade
● Work on computing upgrade started mid 1990s

● Different attempts at producing an upgraded system:

– by people at CERN, LBNL and SLAC

– by various sets of collaborators from IHEP Protvino, Russia

● Recent reviews:

– January 2001: LBNL review

– November 2002: review by PDG Advisory Committee

– February 2003: LBNL review

– November 2004: review by PDG Advisory Committee

● Particularly more recent review reports stress urgency of upgrade and 
concerns over timely completion and long-term maintainability



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 10

Status Early in 2004
● RPP 2004 still being produced with the old system

● Several prototypes in various stages of development
– No usable products

– Prototypes partly based on non-mainstream technologies

– Overall workflow management missing

– No complete, coherent and written design

– Code development decoupled from written (partial) requirements specification

● Increasingly worried of not being able to continue RPP production in a timely 
manner in case the existing aging system should fail

● 2003 LBNL review recommended completion of system called RPPs 1.5 asap

● Formulated a new upgrade plan, based on a pragmatic compromise between 
urgency of upgrade, available manpower, existing prototypes and modern 
software development practices

– What we are discussing today is the realization of this new plan



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 11

Goals in 2004
● Continue to produce the RPP, booklet and web editions with the highest 

quality in a timely fashion

– Upgrade work needs to be done in parallel to all regular tasks

– Transparent transition to new system

● Allow encoders to enter data directly through a sufficiently simple interface

● Improve web access to PDG data and provide cross-links e.g. to SPIRES

● Streamline the book production and automate as many tasks as possible

● Provide support for managing the workflow between encoders, overseers, 
coordinators, verifiers, review authors, review referees, and the editor

● Provide a reliable state-of-the-art computing infrastructure

● Longer-term: add additional features such as e.g. advanced searching of the 
RPP database, direct database access for external user applications (such as 
MC codes), ...



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 12

Strategy
● Downscale as needed in the interest of early deployment (target: RPP 2006)

● Carry over database schema into upgraded system

– Developed/refined over 10 years – still adequate for present scientific needs, 
even though there is no clear distinction between content and presentation

– Backwards compatibility w/old system – auxiliary programs continue to work

– Extend schema as needed (e.g. for workflow management)

– Proper redesign of database structure would be difficult, and would require 
amount of work clearly not compatible with current resources

● Develop new user interfaces for editor, encoders, and for public access to 
the RPP database

– The different interfaces should be viewed as separate components 
communicating via the database

– They can be developed, improved (or replaced) independently

● May use common code libraries



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 13

Interfaces (I)
● Editor interface:

– (Web based) application that mimics the current Oracle/FORMS interface

– Essentially a customized database editor

– Full functionality for producing the RPP in the “old style”

– Requires expert-level knowledge about RPP database structure

● Encoder interface:

– Web-based application that allows

● encoders to enter new measurements,

● overseers to check, correct and sign off on new entries, fits and averages

● editor to correct and sign off on new entries

– Task driven



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 14

Interfaces (II)
● Auxiliary programs and scripts:

– Implement fitting and averaging algorithms, etc.

– Process database contents in order to produce TeX file for book(let)

– Directly interfaced to the database

– Used primarily by editor and, indirectly, through encoder interface

● Database viewer (“public interface”):

– Web based application that allows browsing of the database contents

– Aimed primarily at giving public access to frozen RPP versions (e.g. 2005 
edition) at pdgLive.lbl.gov, but can run on any desired version of the database

– Content is generated dynamically from the database (as opposed to making 
PDF files available on the web)

– Provides direct links from RPP entries to SPIRES to the actual paper(s)

– Advanced features will be added later



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 15

High-Level Architecture – Old System    



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 16

High-Level Architecture – Upgraded System



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 17

Upgrade Plan and Status
● Phase 1: Switch to an upgraded system in time for the RPP 2006 edition

– As a bare minimum need
● New hardware and system management (backups, cron jobs, ...) ✔
● Reliable database ✔
● Auxiliary programs ✔
● Editor interface ✔

– Initial version of encoder interface, to be used initially
by a few select encoders (✔)

– Basic database viewer with full core functionality ✔

● Advanced features such as searching may be added later

– This corresponds roughly to what was called “RPPs 1.5” previously

– Phase 1 is essentially complete

Dep
loy

ed
 9/

13
/20

05

in beta testing

ready



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 18

Future Upgrade Plan
● Phase 2: Improve the upgraded system in an incremental fashion

– Details and priorities still to be worked out – we welcome your input!

– Areas to address include:

● Improve maintainability and documentation

● Streamline book production

● Add new tools to provide new functionality (e.g. handling of Reviews)

● Improve (or replace) existing interfaces as necessary

– Add new functionality such as generic searching in database viewer
● Try to formalize representation of data within existing database schema

● Phase 3: If necessary, revise data model (ie. redesign database structure)

– Significant changes to database schema will likely lead to a complete 
redesign/reimplementation of the whole system



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 19

● However, significant problems remain that must be addressed during 
phase 2 of the upgrade

– As will become clear during this review

– A summary of the outstanding issues will be in my presentation at the end of 
this review

● On the following slides, I will give you some more details on various aspects 
of the phase 1 upgrade that will not be covered later in separate talks

Completion of phase 1 of the upgrade in time
for the production of RPP 2006 is a major success!



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 20

Recent Contributors to PDG Computing Upgrade
● From COMPAS group, IHEP Protvino:

– Kirill Lugovsky (web interfaces)

– Slava Lugovsky (web interfaces)

– Vitaly Lugovsky (core libraries, database, left in 2004)

– Lyudmila Lugovskaya (documentation, left in 2004)

– Vladimir Ezhela (group leader, retired)

– Oleg Zenin (new group leader)

● From LBNL:

– Juerg Beringer (project leader, since March 2004)

– Orin Dahl (auxiliary programs, Oracle/FORMS related work, retired)

– Piotr Zyla (daily operation, production tasks, editors interface)

These are all part-
time contributors, 
mostly at the 10%
to 70% level



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 21

Organization
● Visits of the Protvino team to LBNL:

– Recent visits:

● August–October 2004 by Kirill, Lyudmila and Vitaly

● April – June 2005 by Kirill and Slava

● November – December 2005 by Kirill and Slava

● (Bi-)weekly PDG computing audio or video conference meetings

– Worked very well for some time

– But recently relatively unreliable

● Frequent communication via e-mail (>2000 messages over past 18 months!)



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 22

Technology Choices
● Linux (RedHat 9)

● PostgreSQL – mature relational database

– Interfaced through JDBC

– Could easily switch to MySQL or Oracle

● Kawa 1.7 – Java based Scheme (Lisp) system

● BRL 2.2.1 – system to embed dynamic content into web pages

– Similar in spirit to JSP, but uses the Scheme language instead of Java

● Apache Tomcat – servlet container

– used to run BRL / Kawa within the web server

● Apache web server

● HTML and JavaScript

● Mimetex – standalone tool to generate gif images from TeX snippets



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 23

Hardware
● Main server (pdg0.lbl.gov):

– Main “workhorse” for all PDG work

– Accessible only to PDG members

– Mirrors web server and could take over its
function immediately if needed

– RPP production, user accounts, backups, ...

– Dual-CPU 2.8 GHz Intel Xeon, 2GB RAM, 768GB RAID mirrored disk 

● Web server (pdg1.lbl.gov, will eventually become pdg.lbl.gov):

– Publicly visible machine handling all external requests

– Mailing lists and feedback system

– PDG and outreach web access, ordering system, ...

– Not necessary for book production

– Dual-CPU 3.0 GHz Intel Xeon, 2GB RAM, 256GB RAID mirrored disk 



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 24

System Management and Backups
● PDG specific maintenance tasks done by Piotr and myself

– Backups

– Web server configuration

– Monitoring scripts

● Backups:

– Daily sorted ASCII dump of master database and commit to CVS repository

– Daily mirroring of pdg0 and pdg1 onto backup disks

– Daily incremental backup to HPSS

– Weekly full backup to HPSS



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 25

System Monitoring
● Functionality to be

extended



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 26

Development Tools
● Usual Unix tools, no integrated software development environment

● CVS repository (with web access)

● YourKit Java Profiler (commercial)

● Some use of project management tools

● Several mailing lists based on mailman

● Simple feedback/bug reporting app:

– Web form where user can give
comments

– Automatically records URL of web
page user is commenting on, the
user's browser and OS, etc.

– Sends e-mail to appropriate mailing
list

– “Close reports” by replying via e-mail



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 27

Kawa and BRL
● Kawa (http://www.gnu.org/software/kawa/)

– Actively maintained by Per Bothner (author)

– Savannah lists 82 bug reports since 2003, 14 currently open

– Small user community with active discussion lists

● BRL (http://brl.sourceforge.net)

– Based on Kawa

– Sourceforge shows 1 developer, 1 tester, no significant development since 2003

● Scheme code in libraries is compiled into Java byte code by Kawa

● Scheme code in BRL web-pages is interpreted but may call code in libraries

● Alternative similar Scheme-based tools exist e.g. Bigloo, SISC and SISCweb

– None of them are widely used



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 28

Sample Code Snippets (I)
● Examples taken from current source code

● Typical code snippet from library (parsing.scm):

(declare-printer H "decay_ref"   'F 'T 'F 'T
                 (lambda (h s)
                   (let ((st (brl-hash-get h "DST"))
                         (node (substring (string-append (brl-hash-get h "NODE")"    ") 0 4))
                         (ll (brl-split " " s)))
                     (if (= (length ll) 1)
                         (bhtml h (string-append "#d{"(Decayp st node (car ll))"}"))
                         (bhtml h (string-append "#d{"(Decayp st (car ll) (cadr ll))"}"))
                         ))))



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 29

Sample Code Snippets (II)
● Snippets from a typical BRL-based web page (popupblockdata.brl):

...
]
<html><head>
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<LINK REL=STYLESHEET TYPE="text/css" HREF="features.css">-->
<title>PDG Data Block. [nodein].</title>
...

[
 (inputs nodein refidin occin prepars clin datein  rolein bodyin knopka inscript rollb group dateup exp)
;###################################################################################
 (define conn (db2 brl-context))
 (define sa (brl-sql-statement brl-context conn))
 (define ss (brl-sql-statement brl-context conn))
...



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 30

Sample Code Snippets (III)
● Part of code used to display footnotes in data blocks (popupblockdata.brl):

● Number of distinct BRL-based web pages:

– Database viewer: 9    (some need different versions for different browsers)

– Encoder interface: 45

– Editor interface: 15  (most forms configured through database)

(define (rpp-select-footnote-body ssc x linkage i)
  (let* ((qery (string-append "select TEXT from FOOTNOTE_BODY  where LINKAGE = "
                (brl-sql-string linkage) " and footnote_node = "(brl-sql-string x) " order by sort"))
         (rs (rpp-sql-rowset ssc qery)))
    (letrec ((compose (lambda () (let ((nxt (rpp-nextrow rs)))
                      (if (list? nxt)
                          (string-append
(html1 (PreparTEMP
(WMBred
(IfFLinks (NotNullTEXT (car nxt)))
)
 i x)) " " (compose))
       "")))))  (compose))))



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 31

Source Code
● As a simple (but far from perfect) measure of source code, look at number of 

lines of code:

– Libraries: 6k lines of Scheme

– Database viewer: 7k lines of BRL (w/embedded HTML and JavaScript)

– Encoder interface: 26k lines of BRL (w/embedded HTML and JavaScript)

– Editor interface: 24k lines of BRL (w/embedded HTML and JavaScript)

– JavaScript utility library used in viewer and encoder interface:   4k lines

– Auxiliary programs 55k (4k) lines of Fortran (C), excluding inline doc

● Observation:

– The Scheme libraries contain only a small fraction of the code base, ie the 
majority of the functionality resides currently in the individual web/BRL 
pages



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 32

Comments on Software Maintenance
● We are very concerned about the long-term maintenance of the new 

system from several points of view:

– Scheme is not the typical language of choice for developing a web application

● Difficult to find expert Scheme programmers

– Our current code would be difficult to maintain w/o Kirill and Slava

● We are not usually working with Scheme/Lisp and do not have the time to become 
expert Scheme programmers ourselves

● Most code is specific to a given web page, relatively little in common library

● Experienced difficulty in getting the code debugged

– Long-term availability of BRL and Kawa

● In principle we can maintain the system in the short term (installation, daily 
operation and minor bug fixes), even without help from Kirill and Slava

● Auxiliary programs: Orin (retired!) is currently the only person intimately 
familiar with them



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 33

Possibilities to Improve Maintainability
● Refactor and improve existing code

– Move towards a more layered architecture

– More emphasis on general libraries

– Better documentation

– Continue knowledge transfer to LBNL

● Reimplement existing algorithms/design in a more main-stream language

● Complete redesign

– Possibly including database structure

– Then rewrite interfaces in more main-stream language (Java?)

● ...

● All of these require substantial involvement of and manpower from 
PDG/LBNL personnel



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 34

Documentation
● Documentation of the old system:

– “Red Book” (230p) - database structure and procedures

– “Green Book” (30p) – same for diary and institution list

– “Forms Book” (100p) – constraints imposed by Oracle/FORMS interface

● Documentation of the upgraded system (in progress):

– [ “Data Handling Software Requirement Specification” (106p) – partly
    outdated requirements specification ]

– Partly updated version of RedBook; notes describing database changes

– Installation and developer's guide (19p) – technical information

– Encoding system description (37p) – technical information, to be updated

– Online help for all interfaces (under construction)

– Wiki intended to become the main portal to PDG computing documentation



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 35

PDG Computing Wiki



Juerg Beringer, Lawrence Berkeley National Laboratory The Big Picture, PDG Computing Review, Page 36

Summary       

18 months ago

Today
(note the slope – we

need to keep pushing)

The Goal

PDG Computing Upgrade

Phase 2


