
PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 1

PDG Java API

Chuck McParland
Computational Research Division

Lawrence Berkeley National Laboratory

Topics

• Java API architecture/role

• Database access methodology

• Java Persistence Architecture

• PDG macro processing

• Implementation Tools

• PDG database change tracking



PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 2

Problem Statement and Goals

Database and low-level access methods stable...but

Problem: application “stack” old and

brittle

-Impossible to integrate into modern

application environment

-Support for new display media 

problematic

Solution:  Invest design effort to bring 

PDG into compliance w/current 

technologies

-Leverage commercial “best practices”

-Insure future maintainability of PDG
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Why Create an API?

• Old implementation did not have an organized api

• Only DB access methods (i.e. programmatic SQL) are 
shared

• New DB “enforces” the schema, but every application had 
to “understand” the schema.

• Complexities of every operation elevated to application 
level – everywhere (encoder interface, editor, etc.) 

• E.g., At the DB level, adding a footnote to a measurement 
is a surprisingly complex operation !

Create FootnoteLinkage

Verify uniqueness
Create FootnoteBody(s)

Commit
Rollback on failure
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Relation of Java API to other 
components

PDG Java API

(database access, macro processing, ...)

Modernized PDG database

PDG Python

API
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•Move database access details into a 

single, common layer

•Logical place to create and protect 
lengthy DB sequences via transactions

•Accommodate new, more abstract 
PDG representation classes

•Hide details of macro processing
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Internal PDG API Architecture

Modernized PDG database

Encoder interface / Literature search

PDG API (Java packages: pdg.db. pdg.macro.*)

His

Macro Translation 
Framework

Ascii 
Engine

TeX Engine
HTML/TeX 

Engine

Java DB
Object

Mapping
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Object mapping: simplifying 
API implementation

• Java code deals best w/Objects -

Relational DBs deal w/Tables and Rows

• Methodlogy: simplify Java      database interface

• Make DB rows look like Java objects – simple

• Represent DB joins and relations as part of base objects –
harder

• Supporting cascaded DB actions (updates, deletes) 
performed behind the scene – much harder

• Solution: Object Relational Mapping (ORM)

• Widely used throughout web industry

• Many successful packages – Hibernate, Active Objects, 
etc.
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Selected Java Persistence 
Architecure 

• Industry support and acceptance – aligned with major 
Sun/Oracle-sponsored Java project – JPA (“Java Persistence 
Architecture”)

• Layered on successful and long-lived lower layers:

• Java Database Connectivity (JDBC) – lowest layer

• Hibernate – intermediate ORM layer

• Java Persistence Archtitecture (JPA) –record caching, transactions, 
etc.

• Widespread integration w/tools and development systems 
(Netbeans, Eclipse, Idea)

• Java code can be auto generated from DB schema

• Primary and foreign key relationships inserted into code

• “Cascaded” deletes of all related records – increased DB integrity
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Building JavaAPI from JPA

Auto-generated JPA classes
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Simple JPA table class

FootnoteBody.java – generated from DB schema

DB Table column to 

Java variable mapping

Postgres-specific

PK generation*

* PDG customization
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PDG table with compound PK

Authorizations.java

AuthorizationsPK.java
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Base and higher level classes

• Updated PDG database interface classes

• JPA table representation classes - ~122 (100 auto generated)

• PDG “helper” classes – 21

• Focus on what application 

needs (e.g. DataBlocks)

• Data access classes

• DataBlock()

• DataBlockMeasurement()

• DataBlockFootnote()

• Decay representations

• ParticleDecayMode()

• MeasuredDecay()

• MeasuredDecayParam()

• etc.

PDG DataBlock
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Internal PDG API Architecture

Modernized PDG database

Encoder interface /Literature search

PDG API (Java packages: pdg.db. pdg.macro.*)

His

Macro Translation 
Framework

Ascii 
Engine

TeX Engine
HTML/TeX

Engine

Java DB
Object

Mapping
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PDG Macro Processing

• Macro language developed to support a 
consistent publication format: 

• Ubiquitous throughout all facets of PDG 
authoring/publication (103 defined macros)

• Macro syntax documented in PDG Red Book –
but, exact behavior only found in Fortran codes

• Simple syntax.  e.g. #macro{macro text}, but 
nesting adds to implementation complexity

• “Dynamic” macros used in measurement 
displays

• Adjust measurement values based on other 
particle properties
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PDG Macro Processing

• Examples

“#abs2{x}” “|x|**2”   (ASCII translator)

“              “$\big\vert$x$\big\vert^2$”  

(TeX translator and 

TeX post procesing)

"#p{#compound{,Lambda,N}}“

(TeX)

"#p{#compound{,e+,e-}(1900-3600)}“

(TeX)
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• Simple formatting: no database interaction

• "#abs2diffavg{,mass,p,pbar}“    (TeX)

• Custom formatting based on database fields:

• "#node_ref{S013F+-}“     phi(+-) (Ascii)

• "#citation{SMITH 1970}“     (TeX)

• Measurement “dynamic” macros calculate values based 
particle properties found in database:

• E.g. display “adjusted value for measurement node: "M026R23"

Measurement depends on other node measurements as defined in 
following macro:

"br_adjust: 1.21 +-0.32 +-0.24; *, ADJUST, M070 85“

71+-23+-16 (displayed translation)

• “Best value” and rounding rule heuristics applied

PDG Macro DB interactions
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Macro Implementation Issues

• Important goal– replace legacy Fortran 
packages

• Support multiple media targets

• Macro    ASCII representation: reference 
purposes, simple editing, etc.

• Macro    TeX representation: paper publication of 
book, pamphlet and digest.

• Remove historical “cruft” – i.e. specialized PDG TeX 
macros

• Macro    TeX-like representation: HTML browser 
displays, Encoder web site, (new) PDG Editor 
interface, etc.

• MathML is the HTTP target environment – more on this 
from Sarah
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PDG Macro Processing

• Solution: multiple macro processors 

• Common front-end parsing (majority of Java classes ~59)

• Media specific subclasses for Ascii, TeX and MathML/TeX

• Example: (java code)

MacroProcessor proc = new AsciiMacroProcessor();

Translator trans = new Translator(proc, DBpointer);

String translatedText = 

trans.translate(“ #quantum{IG,JPC=0-,i+-} “);

System.out.println(“translatedText = “ + 
translatedText);

(console output)

>translatedText =  IG(JPC)=0-(1+-)

Substitute “TeXMacroProcessor()” in first line for TeX 
typesetting.
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Ancillary efforts

• Integrated Development Environment (IDE)

• JPA class generation from database schema

• Unit testing code (Junit)

• Code repository support (CVS, SVN)

• Automat e web deployment

• Jar* files for API library

• War** files for java server application image

• JavaDoc generation

*jar file – “java archive file”

**war file = “web archive file”
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NetBeans Java IDE

-Wide industry 
support

-Tracks Java
development
practices

-Automate
implementation
practices

-Improves
productivity and 
supportability
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Junit tests @ commit time and nightly

Test harness auto generated

Actual

Test code
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Java code documention
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DB activity tracking/logging

• Why log DB changes?
• Distributed PDG editing       multiple remote users, 24/7 activity

• Complete DB rollback impractical – need finer grain solution

• What do we want to track?
• Any updates and deletions to PDG DB tables- as a function of 

logical tasks

• Actions by any application that alters the PDG DB: existing PDG 
editor, new encoder interface, command line SQL interface, etc.

• Need to accommodate new and existing applications
• New apps:  can add detailed task and user info prior to logging

• Legacy apps: default values as best we can
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DB Logging Implementation

• Implementations considered:

• Logging code inside JavaAPI: 
• JavaAPI not common to all DB activities

• DB journaling: complete and thorough...but 
• completely opaque - analysis of individual changes 

very difficult

• Solution: DB logging implemented as DB 
trigger:  

• Trigger  function invoked on any table insert, 
update or delete operation

• Information logged to “logging” table within the 
PDG DB itself

• New apps can inject additional logging info

• Legacy apps accommodated
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Contents of Logging table

Record contents for any table – regardless of 
schema !

<row 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="footnote_body">

<id>43579</id>

<footnote_node>S013</footnote_node>

<linkage>B</linkage>

<sort>4</sort>

<text>Actual footnote text characters</text>

<change_month>6</change_month>

<change_year>2010</change_year>

<forms_query xsi:nil="true"/>

</row>

Enable historical or targeted searches on timestamp, 

user_name, table_name, etc.
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Conclusions

 Java API layer: “clean design”  to maximize PDG 
maintainability and future development

 Inside JavaAPI, JPA ORM selected to leverage 
industry and open source support

Macro processing re-implemented in Java: enables 
wider migration of PDG programs and displays to 
web

 All critical coding issues have been successfully 
addressed


