
PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 1

PDG Java API

Chuck McParland
Computational Research Division

Lawrence Berkeley National Laboratory

Topics

• Java API architecture/role

• Database access methodology

• Java Persistence Architecture

• PDG macro processing

• Implementation Tools

• PDG database change tracking

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 2

Problem Statement and Goals

Database and low-level access methods stable...but

Problem: application “stack” old and

brittle

-Impossible to integrate into modern

application environment

-Support for new display media

problematic

Solution: Invest design effort to bring

PDG into compliance w/current

technologies

-Leverage commercial “best practices”

-Insure future maintainability of PDG

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 3

Why Create an API?

• Old implementation did not have an organized api

• Only DB access methods (i.e. programmatic SQL) are
shared

• New DB “enforces” the schema, but every application had
to “understand” the schema.

• Complexities of every operation elevated to application
level – everywhere (encoder interface, editor, etc.)

• E.g., At the DB level, adding a footnote to a measurement
is a surprisingly complex operation !

Create FootnoteLinkage

Verify uniqueness
Create FootnoteBody(s)

Commit
Rollback on failure

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 4

Relation of Java API to other
components

PDG Java API

(database access, macro processing, ...)

Modernized PDG database

PDG Python

API

L
eg

a
c
y

 ed
ito

r in
ter

fa
ce

L
eg

a
c
y

 v
ie

w
er (p

d
g
L

iv
e
)

L
eg

a
c
y

 F
o
r
tra

n
 p

ro
g
ra

m
s

E
n

co
d

er in
ter

fa
ce /

L
ite

ra
tu

re sea
rch

D
a
ta

b
a
se v

iew
er

(p
d

g
L

iv
e
)

R
ev

iew
 in

terfa
c
e

V
er

fie
r in

ter
fa

ce

E
d

ito
r in

ter
fa

ce

R
ep

o
rtin

g

In
stitu

tio
n

 d
a
ta

b
a
se

O
r
d

erin
g
 sy

stem

D
a
ta

 a
n

a
ly

sis

a
p

p
lica

tio
n

s

A
d

m
in

 to
o
ls

•Move database access details into a

single, common layer

•Logical place to create and protect
lengthy DB sequences via transactions

•Accommodate new, more abstract
PDG representation classes

•Hide details of macro processing

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 5

Internal PDG API Architecture

Modernized PDG database

Encoder interface / Literature search

PDG API (Java packages: pdg.db. pdg.macro.*)

His

Macro Translation
Framework

Ascii
Engine

TeX Engine
HTML/TeX

Engine

Java DB
Object

Mapping

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 6

Object mapping: simplifying
API implementation

• Java code deals best w/Objects -

Relational DBs deal w/Tables and Rows

• Methodlogy: simplify Java database interface

• Make DB rows look like Java objects – simple

• Represent DB joins and relations as part of base objects –
harder

• Supporting cascaded DB actions (updates, deletes)
performed behind the scene – much harder

• Solution: Object Relational Mapping (ORM)

• Widely used throughout web industry

• Many successful packages – Hibernate, Active Objects,
etc.

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 7

Selected Java Persistence
Architecure

• Industry support and acceptance – aligned with major
Sun/Oracle-sponsored Java project – JPA (“Java Persistence
Architecture”)

• Layered on successful and long-lived lower layers:

• Java Database Connectivity (JDBC) – lowest layer

• Hibernate – intermediate ORM layer

• Java Persistence Archtitecture (JPA) –record caching, transactions,
etc.

• Widespread integration w/tools and development systems
(Netbeans, Eclipse, Idea)

• Java code can be auto generated from DB schema

• Primary and foreign key relationships inserted into code

• “Cascaded” deletes of all related records – increased DB integrity

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 8

Building JavaAPI from JPA

Auto-generated JPA classes

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 9

Simple JPA table class

FootnoteBody.java – generated from DB schema

DB Table column to

Java variable mapping

Postgres-specific

PK generation*

* PDG customization

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 10

PDG table with compound PK

Authorizations.java

AuthorizationsPK.java

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 11

Base and higher level classes

• Updated PDG database interface classes

• JPA table representation classes - ~122 (100 auto generated)

• PDG “helper” classes – 21

• Focus on what application

needs (e.g. DataBlocks)

• Data access classes

• DataBlock()

• DataBlockMeasurement()

• DataBlockFootnote()

• Decay representations

• ParticleDecayMode()

• MeasuredDecay()

• MeasuredDecayParam()

• etc.

PDG DataBlock

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 12

Internal PDG API Architecture

Modernized PDG database

Encoder interface /Literature search

PDG API (Java packages: pdg.db. pdg.macro.*)

His

Macro Translation
Framework

Ascii
Engine

TeX Engine
HTML/TeX

Engine

Java DB
Object

Mapping

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 13

PDG Macro Processing

• Macro language developed to support a
consistent publication format:

• Ubiquitous throughout all facets of PDG
authoring/publication (103 defined macros)

• Macro syntax documented in PDG Red Book –
but, exact behavior only found in Fortran codes

• Simple syntax. e.g. #macro{macro text}, but
nesting adds to implementation complexity

• “Dynamic” macros used in measurement
displays

• Adjust measurement values based on other
particle properties

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 14

PDG Macro Processing

• Examples

“#abs2{x}” “|x|**2” (ASCII translator)

“ “$\big\vert$x$\big\vert^2$”

(TeX translator and

TeX post procesing)

"#p{#compound{,Lambda,N}}“

(TeX)

"#p{#compound{,e+,e-}(1900-3600)}“

(TeX)

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 15

• Simple formatting: no database interaction

• "#abs2diffavg{,mass,p,pbar}“ (TeX)

• Custom formatting based on database fields:

• "#node_ref{S013F+-}“ phi(+-) (Ascii)

• "#citation{SMITH 1970}“ (TeX)

• Measurement “dynamic” macros calculate values based
particle properties found in database:

• E.g. display “adjusted value for measurement node: "M026R23"

Measurement depends on other node measurements as defined in
following macro:

"br_adjust: 1.21 +-0.32 +-0.24; *, ADJUST, M070 85“

71+-23+-16 (displayed translation)

• “Best value” and rounding rule heuristics applied

PDG Macro DB interactions

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 16

Macro Implementation Issues

• Important goal– replace legacy Fortran
packages

• Support multiple media targets

• Macro ASCII representation: reference
purposes, simple editing, etc.

• Macro TeX representation: paper publication of
book, pamphlet and digest.

• Remove historical “cruft” – i.e. specialized PDG TeX
macros

• Macro TeX-like representation: HTML browser
displays, Encoder web site, (new) PDG Editor
interface, etc.

• MathML is the HTTP target environment – more on this
from Sarah

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 17

PDG Macro Processing

• Solution: multiple macro processors

• Common front-end parsing (majority of Java classes ~59)

• Media specific subclasses for Ascii, TeX and MathML/TeX

• Example: (java code)

MacroProcessor proc = new AsciiMacroProcessor();

Translator trans = new Translator(proc, DBpointer);

String translatedText =

trans.translate(“ #quantum{IG,JPC=0-,i+-} “);

System.out.println(“translatedText = “ +
translatedText);

(console output)

>translatedText = IG(JPC)=0-(1+-)

Substitute “TeXMacroProcessor()” in first line for TeX
typesetting.

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 18

Ancillary efforts

• Integrated Development Environment (IDE)

• JPA class generation from database schema

• Unit testing code (Junit)

• Code repository support (CVS, SVN)

• Automat e web deployment

• Jar* files for API library

• War** files for java server application image

• JavaDoc generation

*jar file – “java archive file”

**war file = “web archive file”

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 19

NetBeans Java IDE

-Wide industry
support

-Tracks Java
development
practices

-Automate
implementation
practices

-Improves
productivity and
supportability

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 20

Junit tests @ commit time and nightly

Test harness auto generated

Actual

Test code

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 21

Java code documention

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 22

DB activity tracking/logging

• Why log DB changes?
• Distributed PDG editing multiple remote users, 24/7 activity

• Complete DB rollback impractical – need finer grain solution

• What do we want to track?
• Any updates and deletions to PDG DB tables- as a function of

logical tasks

• Actions by any application that alters the PDG DB: existing PDG
editor, new encoder interface, command line SQL interface, etc.

• Need to accommodate new and existing applications
• New apps: can add detailed task and user info prior to logging

• Legacy apps: default values as best we can

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 23

DB Logging Implementation

• Implementations considered:

• Logging code inside JavaAPI:
• JavaAPI not common to all DB activities

• DB journaling: complete and thorough...but
• completely opaque - analysis of individual changes

very difficult

• Solution: DB logging implemented as DB
trigger:

• Trigger function invoked on any table insert,
update or delete operation

• Information logged to “logging” table within the
PDG DB itself

• New apps can inject additional logging info

• Legacy apps accommodated

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 24

Contents of Logging table

Record contents for any table – regardless of
schema !

<row
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="footnote_body">

<id>43579</id>

<footnote_node>S013</footnote_node>

<linkage>B</linkage>

<sort>4</sort>

<text>Actual footnote text characters</text>

<change_month>6</change_month>

<change_year>2010</change_year>

<forms_query xsi:nil="true"/>

</row>

Enable historical or targeted searches on timestamp,

user_name, table_name, etc.

PDG Computing Review, September 17, 2010 Chuck McParland (LBNL), Page 25

Conclusions

 Java API layer: “clean design” to maximize PDG
maintainability and future development

 Inside JavaAPI, JPA ORM selected to leverage
industry and open source support

Macro processing re-implemented in Java: enables
wider migration of PDG programs and displays to
web

 All critical coding issues have been successfully
addressed

