
1. CKM quark-mixing matrix 1

1. THE CKM QUARK-MIXING MATRIX

Revised February 2014 by A. Ceccucci (CERN), Z. Ligeti (LBNL),
and Y. Sakai (KEK).

1.1. Introduction

The masses and mixings of quarks have a common origin in the
Standard Model (SM). They arise from the Yukawa interactions with
the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ǫ φ∗uI

Rj + h.c., (1.1)

where Y u,d are 3 × 3 complex matrices, φ is the Higgs field, i, j
are generation labels, and ǫ is the 2 × 2 antisymmetric tensor. QI

L

are left-handed quark doublets, and dI
R and uI

R are right-handed
down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2),

Eq. (1.1) yields mass terms for the quarks. The physical states are

obtained by diagonalizing Y u,d by four unitary matrices, V
u,d
L,R, as

M
f
diag = V

f
L Y f V

f†
R (v/

√
2), f = u, d. As a result, the charged-current

W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2

(
uL, cL, tL

)
γµ W+

µ VCKM




dL
sL
bL



+h.c., VCKM ≡ V u
L V d

L
† =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



.

(1.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3
unitary matrix. It can be parameterized by three mixing angles and
the CP -violating KM phase [2]. Of the many possible conventions, a
standard choice has become [3]

VCKM =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13



 ,

(1.3)
where sij = sin θij , cij = cos θij , and δ is the phase responsible for all
CP -violating phenomena in flavor-changing processes in the SM. The
angles θij can be chosen to lie in the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and
it is convenient to exhibit this hierarchy using the Wolfenstein
parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3 (ρ + iη) =
Aλ3 (ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2 [1 − A2λ4 (ρ̄ + iη̄)]

. (1.4)

These relations ensure that ρ̄ + iη̄ = −(VudV ∗
ub)/(VcdV ∗

cb) is phase-
convention-independent, and the CKM matrix written in terms of
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2 1. CKM quark-mixing matrix

Figure 1.1: Sketch of the unitarity triangle.

λ, A, ρ̄, and η̄ is unitary to all orders in λ. The definitions of ρ̄, η̄
reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1−λ2/2+ . . .) and we can write VCKM to O(λ4) either in terms
of ρ̄, η̄ or, traditionally,

VCKM =




1 − λ2/2 λ Aλ3 (ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3 (1 − ρ − iη) −Aλ2 1



 + O
(
λ4

)
.

(1.5)

The CKM matrix elements are fundamental parameters of the
SM, so their precise determination is important. The unitarity of
the CKM matrix imposes

∑
i VijV

∗
ik = δjk and

∑
j VijV

∗
kj = δik.

The six vanishing combinations can be represented as triangles in a
complex plane, of which the ones obtained by taking scalar products
of neighboring rows or columns are nearly degenerate. The areas of
all triangles are the same, half of the Jarlskog invariant, J [7], which
is a phase-convention-independent measure of CP violation, defined
by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (1.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its

vertices are exactly (0, 0), (1, 0), and, due to the definition in Eq. (1.4),
(ρ̄, η̄). An important goal of flavor physics is to overconstrain the CKM
elements, and many measurements can be conveniently displayed and
compared in the ρ̄, η̄ plane.

Processes dominated by loop contributions in the SM are sensitive
to new physics, and can be used to extract CKM elements only if the
SM is assumed. We describe such measurements assuming the SM in
Sec. 1.2 and 1.3, give the global fit results for the CKM elements in
Sec. 1.4, and discuss implications for new physics in Sec. 1.5.
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1. CKM quark-mixing matrix 3

1.2. Magnitudes of CKM elements

1.2.1. |Vud|:

The most precise determination of |Vud| comes from the study
of superallowed 0+ → 0+ nuclear beta decays, which are pure
vector transitions. Taking the average of the twenty most precise
determinations [8] yields

|Vud| = 0.97425± 0.00022. (1.7)

The error is dominated by theoretical uncertainties stemming
from nuclear Coulomb distortions and radiative corrections. A precise
determination of |Vud| is also obtained from the measurement of the
neutron lifetime. The theoretical uncertainties are very small, but
the determination is limited by the knowledge of the ratio of the
axial-vector and vector couplings, gA = GA/GV [9]. The PIBETA
experiment [10] has improved the measurement of the π+ → π0e+ν
branching ratio to 0.6%, and quote |Vud| = 0.9728 ± 0.0030, in
agreement with the more precise result listed above. The interest in
this measurement is that the determination of |Vud| is very clean
theoretically, because it is a pure vector transition and is free from
nuclear-structure uncertainties.

1.2.2. |Vus|:

The product of |Vus| and the form factor at q2 = 0, |Vus| f+(0),
has been extracted traditionally from K0

L → πeν decays in order

to avoid isospin-breaking corrections (π0 − η mixing) that affect
K± semileptonic decay, and the complications induced by a second
(scalar) form factor present in the muonic decays. The last round of
measurements has lead to enough experimental constraints to justify
the comparison between different decay modes. Systematic errors
related to the experimental quantities, e.g., the lifetime of neutral or
charged kaons, and the form factor determinations for electron and
muonic decays, differ among decay modes, and the consistency between
different determinations enhances the confidence in the final result.
For this reason, we follow the prescription [11] to average K0

L → πeν,

K0
L → πµν, K± → π0e±ν, K± → π0µ±ν and K0

S → πeν. The
average of these five decay modes yields |Vus| f+(0) = 0.2163± 0.0005.
Results obtained from each decay mode, and exhaustive references to
the experimental data, are listed for instance in Ref. [9]. The form
factor value f+(0) = 0.960+0.005

−0.006 [12] from a three-flavor unquenched

lattice QCD calculation gives [9] |Vus| = 0.2253±0.0014.1 The broadly
used classic calculation of f+(0) [15] is in good agreement with this
value, while other calculations [16] differ by as much as 2%.

The calculation of the ratio of the kaon and pion decay constants
enables one to extract |Vus/Vud| from K → µν(γ) and π → µν(γ),
where (γ) indicates that radiative decays are included [17]. The KLOE
measurement of the K+ → µ+ν(γ) branching ratio [18], combined

1 For lattice QCD inputs, we use the averages from Ref. 13 whenever

possible, unless the minireviews [9,14] choose other values. Hereafter, the first

error is statistical and the second is systematic, unless mentioned otherwise.

September 19, 2014 12:55



4 1. CKM quark-mixing matrix

with the lattice QCD calculation, fK/fπ = 1.1947± 0.0045 [19], leads
to |Vus| = 0.2253 ± 0.0010, where the accuracy is limited by the
knowledge of the ratio of the decay constants. The average of these
two determinations is quoted by Ref. 9 as

|Vus| = 0.2253± 0.0008. (1.8)

The latest determination from hyperon decays can be found
in Ref. 21. The authors focus on the analysis of the vector form
factor, protected from first order SU(3) breaking effects by the
Ademollo-Gatto theorem [22], and treat the ratio between the axial
and vector form factors g1/f1 as experimental input, thus avoiding
first order SU(3) breaking effects in the axial-vector contribution.
They find |Vus| = 0.2250 ± 0.0027, although this does not include
an estimate of the theoretical uncertainty due to second-order SU(3)
breaking, contrary to Eq. (1.8). Concerning hadronic τ decays to
strange particles, the latest determinations based on LEP, BABAR,
and Belle data yield |Vus| = 0.2202 ± 0.0015 [23]. A measurement of
the ratio of branching fractions B(τ → Kν)/B(τ → πν) by BABAR [24]
combined with the above fK/fπ value gives |Vus| = 0.2244± 0.0024.

1.2.3. |Vcd|:

The magnitude of Vcd can be extracted from semileptonic
charm decays, using theoretical knowledge of the form factors. In
semileptonic D decays, unquenched lattice QCD calculations have
predicted the normalization of the D → πℓν and D → Kℓν form
factors [13]. The dependence on the invariant mass of the lepton
pair, q2, is determined from lattice QCD and theoretical constraints
from analyticity [14]. Using three-flavor unquenched lattice QCD
calculations for D → πℓν, fDπ

+ (0) = 0.666 ± 0.029 [13], and the
average of recent CLEO-c [25] and Belle [26] measurements of
D → πℓν decays, one obtains |Vcd| = 0.220 ± 0.006± 0.010, where the
first uncertainty is experimental, and the second is from the theoretical
uncertainty of the form factor.

Earlier determinations of |Vcd| came from neutrino scattering
data. The difference of the ratio of double-muon to single-muon
production by neutrino and antineutrino beams is proportional to
the charm cross section off valence d quarks, and therefore to
|Vcd|2 times the average semileptonic branching ratio of charm
mesons, Bµ. The method was used first by CDHS [27] and then
by CCFR [28,29] and CHARM II [30]. Averaging these results is
complicated, because it requires assumptions about the scale of the
QCD corrections, and because Bµ is an effective quantity, which
depends on the specific neutrino beam characteristics. Given that no
recent experimental input is available, we quote the average from a
past review, Bµ|Vcd|2 = (0.463 ± 0.034) × 10−2 [31]. Analysis cuts
make these experiments insensitive to neutrino energies smaller than
30GeV. Thus, Bµ should be computed using only neutrino interactions
with visible energy larger than 30GeV. An appraisal [32] based on
charm-production fractions measured in neutrino interactions [33,34]
gives Bµ = 0.088±0.006. Data from the CHORUS experiment [35] are
sufficiently precise to extract Bµ directly, by comparing the number of
charm decays with a muon to the total number of charmed hadrons
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1. CKM quark-mixing matrix 5

found in the nuclear emulsions. Requiring the visible energy to be
larger than 30GeV, CHORUS finds Bµ = 0.085±0.009±0.006. We use
the average of these two determinations, Bµ = 0.087±0.005, and obtain
|Vcd| = 0.230±0.011. Averaging the two determinations above, we find

|Vcd| = 0.225± 0.008. (1.9)

1.2.4. |Vcs|:

The direct determination of |Vcs| is possible from semileptonic D
or leptonic Ds decays, using unquenched lattice QCD calculations of
the semileptonic D form factor or the Ds decay constant. For muonic
decays, the average of Belle [36], CLEO-c [37] and BABAR [38] is
B(D+

s → µ+ν) = (5.56 ± 0.24) × 10−3 [39]. For decays to τ leptons,
the average of CLEO-c [37,40,41], BABAR [38] and Belle [36] gives
B(D+

s → τ+ν) = (5.56± 0.22)× 10−2 [39]. From each of these values,
determinations of |Vcs| can be obtained using the PDG values for
the mass and lifetime of the Ds, the masses of the leptons, and
fDs = (248.6 ± 2.7)MeV [13]. The average of these determinations
gives |Vcs| = 1.008± 0.021, where the error is dominated by the lattice
QCD determination of fDs . In semileptonic D decays, unquenched
lattice QCD calculations of the D → Kℓν form factor is available [13].
Using fDK

+ (0) = 0.747± 0.019 and the average of recent CLEO-c [25],
Belle [26] and BABAR [42] measurements of B → Kℓν decays,
one obtains |Vcs| = 0.953 ± 0.008 ± 0.024, where the first error is
experimental and the second, which is dominant, is from the theoretical
uncertainty of the form factor. Averaging the determinations from
leptonic and semileptonic decays, we find

|Vcs| = 0.986± 0.016. (1.10)

Measurements of on-shell W± decays sensitive to |Vcs| were
made by LEP-2. The W branching ratios depend on the six CKM
elements involving quarks lighter than mW . The W branching ratio
to each lepton flavor is 1/B(W → ℓν̄ℓ) = 3

[
1 +

∑
u,c,d,s,b |Vij |2 (1 +

αs(mW )/π) + . . .
]
. Assuming lepton universality, the measurement

B(W → ℓν̄ℓ) = (10.83 ± 0.07 ± 0.07)% [43] implies
∑

u,c,d,s,b |Vij |2 =
2.002 ± 0.027. This is a precise test of unitarity; however, only
flavor-tagged W -decays determine |Vcs| directly, such as DELPHI’s
tagged W+ → cs̄ analysis, yielding |Vcs| = 0.94+0.32

−0.26 ± 0.13 [44].

1.2.5. |Vcb|:

This matrix element can be determined from exclusive and
inclusive semileptonic decays of B mesons to charm. The inclusive
determinations use the semileptonic decay rate measurement, together
with the leptonic energy and the hadronic invariant-mass spectra.
The theoretical foundation of the calculation is the operator product
expansion [45,46]. It expresses the total rate and moments of
differential energy and invariant-mass spectra as expansions in αs,
and inverse powers of the heavy quark mass. The dependence on
mb, mc, and the parameters that occur at subleading order is
different for different moments, and a large number of measured
moments overconstrains all the parameters, and tests the consistency
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6 1. CKM quark-mixing matrix

of the determination. The precise extraction of |Vcb| requires using
a “threshold” quark mass definition [47,48]. Inclusive measurements
have been performed using B mesons from Z0 decays at LEP, and
at e+e− machines operated at the Υ (4S). At LEP, the large boost
of B mesons from the Z0 allows the determination of the moments
throughout phase space, which is not possible otherwise, but the
large statistics available at the B factories lead to more precise
determinations. An average of the measurements and a compilation of
the references are provided by Ref. [14]: |Vcb| = (42.2 ± 0.7) × 10−3.

Exclusive determinations are based on semileptonic B decays to D
and D∗. In the mb,c ≫ ΛQCD limit, all form factors are given by a
single Isgur-Wise function [49], which depends on the product of the

four-velocities of the B and D(∗) mesons, w = v · v′. Heavy quark
symmetry determines the normalization of the rate at w = 1, the
maximum momentum transfer to the leptons, and |Vcb| is obtained
from an extrapolation to w = 1. The exclusive determination,
|Vcb| = (39.5 ± 0.8) × 10−3 [14], has a comparable precision to the
inclusive one, and the main theoretical uncertainty in the form factor
and the experimental uncertainty in the rate near w = 1 are to a large
extent independent of the inclusive determination. The Vcb and Vub
minireview [14] quotes a combination with a scaled error as

|Vcb| = (41.1 ± 1.3)× 10−3. (1.11)

Determinations of |Vcb| with larger uncertainties, not included in

this average, can be obtained from B(B → D(∗)τ ν̄). The most precise
measurements involving the τ modes are those of the |Vcb|-independent

ratios B(B → D(∗)τ ν̄)/B(B → D(∗)ℓν̄) [50], which are 2–3σ above the
SM predictions.

1.2.6. |Vub|:

The determination of |Vub| from inclusive B → Xuℓν̄ decay is
complicated due to large B → Xcℓν̄ backgrounds. In most regions of
phase space where the charm background is kinematically forbidden,
the hadronic physics enters via unknown nonperturbative functions,
so-called shape functions. (In contrast, the nonperturbative physics
for |Vcb| is encoded in a few parameters.) At leading order in
ΛQCD/mb, there is only one shape function, which can be extracted
from the photon energy spectrum in B → Xsγ [51,52], and applied
to several spectra in B → Xuℓν̄. The subleading shape functions are
modeled in the current determinations. Phase space cuts for which
the rate has only subleading dependence on the shape function are
also possible [53]. The measurements of both the hadronic and the
leptonic systems are important for an optimal choice of phase space.
A different approach is to make the measurements more inclusive by
extending them deeper into the B → Xcℓν̄ region, and thus reduce
the theoretical uncertainties. Analyses of the electron-energy endpoint
from CLEO [54], BABAR [55], and Belle [56] quote B → Xueν̄ partial
rates for |~pe| ≥ 2.0GeV and 1.9GeV, which are well below the charm
endpoint. The large and pure BB samples at the B factories permit
the selection of B → Xuℓν̄ decays in events where the other B is
fully reconstructed [57]. With this full-reconstruction tag method, the
four-momenta of both the leptonic and the hadronic systems can be
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1. CKM quark-mixing matrix 7

measured. It also gives access to a wider kinematic region because
of improved signal purity. Ref. 14 quotes an inclusive average as
|Vub| = (4.41 ± 0.15 +0.15

−0.19) × 10−3.

To extract |Vub| from an exclusive channel, the form factors have
to be known. Experimentally, better signal-to-background ratios are
offset by smaller yields. The B → πℓν̄ branching ratio is now known
to 5%. Unquenched lattice QCD calculations of the B → πℓν̄ form
factor are available [58,59] for the high q2 region (q2 > 16 or 18 GeV2).
A fit to the experimental partial rates and lattice results versus q2

yields |Vub| = (3.23 ± 0.31) × 10−3 [59]. Light-cone QCD sum rules
are supposed to be applicable for q2 < 12 GeV2 [60]. The minireview
quotes a combination, |Vub| = (3.28 ± 0.29)× 10−3.

The uncertainties in extracting |Vub| from inclusive and exclusive
decays are different to a large extent. A combination of the
determinations is quoted by Ref. [14] as

|Vub| = (4.13 ± 0.49)× 10−3. (1.12)

A determination of |Vub| not included in this average can be
obtained from B(B → τ ν̄) = (1.14 ± 0.22) × 10−4 [65]. Using
fB = (190.5 ± 4.2)MeV [13] and τB± = (1.641 ± 0.008) ps [66], we
find |Vub| = (4.22± 0.42)× 10−3. This decay is sensitive, for example,
to tree-level charged Higgs contributions, and the measured rate is
somewhat higher than the SM fit value.

1.2.7. |Vtd| and |Vts|:

The CKM elements |Vtd| and |Vts| are not likely to be precisely
measurable in tree-level processes involving top quarks, so one has
to rely on determinations from B–B oscillations mediated by box
diagrams with top quarks, or loop-mediated rare K and B decays.
Theoretical uncertainties in hadronic effects limit the accuracy of
the current determinations. These can be reduced by taking ratios
of processes that are equal in the flavor SU(3) limit to determine
|Vtd/Vts|.

The mixing of the two B0 mesons was discovered by ARGUS [61],
and the mass difference is precisely measured by now, ∆md =
(0.510 ± 0.003)ps−1 [62]. In the B0

s system, ∆ms was first measured
significantly by CDF [63] and the world average, dominated by a
recent LHCb measurement [64], is ∆ms = (17.761 ± 0.022) ps−1 [62].
Assuming |Vtb| = 1, and using the unquenched lattice QCD calculations

fBd

√
B̂Bd

= (216 ± 15)MeV and fBs

√
B̂Bs = (266 ± 18)MeV [13],

|Vtd| = (8.4 ± 0.6) × 10−3, |Vts| = (40.0 ± 2.7) × 10−3. (1.13)

The uncertainties are dominated by lattice QCD. Several un-
certainties are reduced in the calculation of the ratio ξ =
(
fBs

√
B̂Bs

)
/
(
fBd

√
B̂Bd

)
= 1.268 ± 0.063 [13] and therefore the

constraint on |Vtd/Vts| from ∆md/∆ms is more reliable theoreti-
cally. These provide a theoretically clean and significantly improved
constraint ∣∣Vtd/Vts

∣∣ = 0.216± 0.001 ± 0.011. (1.14)
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8 1. CKM quark-mixing matrix

The inclusive branching ratio B(B → Xsγ) = (3.43 ± 0.22) × 10−4

extrapolated to Eγ > E0 = 1.6 GeV [67] is also sensitive to |VtbVts|.
In addition to t-quark penguins, a large part of the sensitivity
comes from charm contributions proportional to VcbV

∗
cs via the

application of 3 × 3 CKM unitarity (which is used here). With
the NNLO calculation of B(B → Xsγ)Eγ>E0

/B(B → Xceν̄) [68],

we obtain |Vts/Vcb| = 1.02 ± 0.05. The Bs → µ+µ− rate [69] is
also proportional to |VtbVts|2 in the SM, and the observed signal
B(Bs → µ+µ−) = (2.9 ± 0.7) × 10−9 is consistent with the SM, with
sizable uncertainties.

A complementary determination of |Vtd/Vts| is possible from
the ratio of B → ργ and K∗γ rates. The ratio of the neutral
modes is theoretically cleaner than that of the charged ones,
because the poorly known spectator-interaction contribution is
expected to be smaller (W -exchange vs. weak annihilation). For now,
because of low statistics we average the charged and neutral rates
assuming the isospin symmetry and heavy quark limit motivated
relation, |Vtd/Vts|2/ξ2

γ = [Γ(B+ → ρ+γ) + 2Γ(B0 → ρ0γ)]/[Γ(B+ →
K∗+γ) + Γ(B0 → K∗0γ)] = (3.19 ± 0.46)% [67]. Here ξγ contains
the poorly known hadronic physics. Using ξγ = 1.2 ± 0.2 [70], and
combining the experimental and theoretical errors in quadrature, gives
|Vtd/Vts| = 0.21 ± 0.04.

A theoretically clean determination of |VtdV ∗
ts| is possible from

K+ → π+νν̄ decay [71]. Experimentally, only seven events have
been observed [72] and the rate is consistent with the SM with
large uncertainties. Much more data are needed for a precision
measurement.

1.2.8. |Vtb|:

The determination of |Vtb| from top decays uses the ratio of branch-
ing fractions R = B(t → Wb)/B(t → Wq) = |Vtb|2/(

∑
q |Vtq |2) =

|Vtb|2, where q = b, s, d. The CDF and DØ measurements performed
on data collected during Run II of the Tevatron give |Vtb| > 0.78 [73]
and 0.99 > |Vtb| > 0.90 [74], respectively, at 95% CL. CMS recently
measured the same quantity at 7TeV and gives |Vtb| > 0.92 [75] at
95% CL.

The direct determination of |Vtb|, without assuming unitarity,
is possible from the single top-quark-production cross section. The
(3.51+0.40

−0.37) pb average cross section measured by DØ [76] and CDF [77]
implies |Vtb| = 1.03 ± 0.06. The average t-channel single-top cross
section at CMS [78] and ATLAS [79] at 7 TeV, (68.5± 5.8) pb, implies
|Vtb| = 1.03± 0.05; the average cross section at 8TeV from a subset of
the data, (85 ± 12) pb [80], implies |Vtb| = 0.99 ± 0.07. The average of
these gives

|Vtb| = 1.021 ± 0.032 . (1.15)

This does not include correlations between the 7 and 8TeV
measurements. The experimental uncertainties dominate, and a
dedicated combination would be welcome.

A weak constraint on |Vtb| can be obtained from precision
electroweak data, where top quarks enter in loops. The sensitivity is
best in Γ(Z → bb̄) and yields |Vtb| = 0.77+0.18

−0.24 [81].
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1.3. Phases of CKM elements

As can be seen from Fig. 1.1, the angles of the unitarity triangle are

β = φ1 = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
,

α = φ2 = arg

(
− VtdV ∗

tb

VudV
∗
ub

)
,

γ = φ3 = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (1.16)

Since CP violation involves phases of CKM elements, many
measurements of CP -violating observables can be used to constrain
these angles and the ρ̄, η̄ parameters.

1.3.1. ǫ and ǫ′:

The measurement of CP violation in K0–K0 mixing, |ǫ| =
(2.233± 0.015)× 10−3 [82], provides important information about the
CKM matrix. In the SM, in the basis where VudV ∗

us is real [83]

|ǫ| =
G2

F f2
KmKm2

W

12
√

2π2∆mK
B̂K

{
η1S (xc) Im

[
(VcsV

∗
cd)

2
]

+ η2S (xt) Im
[
(VtsV

∗
td)2

]
+ 2η3S (xc, xt) Im (VcsV

∗
cdVtsV

∗
td)

}
,(1.17)

where S is an Inami-Lim function [84], xq = m2
q/m2

W , and ηi are
perturbative QCD corrections. The constraint from ǫ in the ρ̄, η̄ plane
is bounded by approximate hyperbolas. The dominant uncertainties
are due to the bag parameter, for which we use B̂K = 0.766 ± 0.010
from lattice QCD [13], and the parametric uncertainty proportional to
σ(A4) from (VtsV

∗
td)2, which is approximately σ(|Vcb|4).

The measurement of 6 Re(ǫ′/ǫ) = 1 − |η00/η+−|2, where η00 and
η+− are the CP -violating amplitude ratios of K0

S and K0
L decays to

two pions, provides a qualitative test of the CKM mechanism. Its
nonzero experimental average, Re(ǫ′/ǫ) = (1.67 ± 0.23) × 10−3 [82],
demonstrates the existence of direct CP violation, a prediction of the
KM ansatz. While Re(ǫ′/ǫ) ∝ Im(VtdV ∗

ts), this quantity cannot easily
be used to extract CKM parameters, because the electromagnetic
penguin contributions tend to cancel the gluonic penguins for large
mt [85], thereby significantly increasing the hadronic uncertainties.
Most estimates [86–89] agree with the observed value, indicating that
η̄ is positive. Progress in lattice QCD, in particular finite-volume
calculations [90,91], may eventually provide a determination of the
K → ππ matrix elements.

1.3.2. β / φ1:
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10 1. CKM quark-mixing matrix

1.3.2.1. Charmonium modes:

CP -violation measurements in B-meson decays provide direct
information on the angles of the unitarity triangle, shown in
Fig. 1.1. These overconstraining measurements serve to improve the
determination of the CKM elements, or to reveal effects beyond
the SM.

The time-dependent CP asymmetry of neutral B decays to a final
state f common to B0 and B0 is given by [92,93]

Af =
Γ

(
B0 (t) → f

)
− Γ

(
B0 (t) → f

)

Γ
(
B0 (t) → f

)
+ Γ (B0 (t) → f)

= Sf sin (∆md t)−Cf cos (∆md t) ,

(1.18)
where

Sf =
2 Imλf

1 + |λf |2
, Cf =

1 − |λf |2
1 + |λf |2

, λf =
q

p

Āf

Af
. (1.19)

Here, q/p describes B0–B0 mixing and, to a good approximation

in the SM, q/p = V ∗
tbVtd/VtbV

∗
td = e−2iβ+O(λ4) in the usual phase

convention. Af (Āf ) is the amplitude of the B0 → f (B0 → f) decay.
If f is a CP eigenstate, and amplitudes with one CKM phase dominate
the decay, then |Af | = |Āf |, Cf = 0, and Sf = sin(arg λf ) = ηf sin 2φ,
where ηf is the CP eigenvalue of f and 2φ is the phase difference

between the B0 → f and B0 → B0 → f decay paths. A contribution
of another amplitude to the decay with a different CKM phase makes
the value of Sf sensitive to relative strong interaction phases between
the decay amplitudes (it also makes Cf 6= 0 possible).

The b → cc̄s decays to CP eigenstates (B0 → charmonium K0
S,L)

are the theoretically cleanest examples, measuring Sf = −ηf sin 2β.
The b → sqq̄ penguin amplitudes have dominantly the same weak
phase as the b → cc̄s tree amplitude. Since only λ2-suppressed penguin
amplitudes introduce a new CP -violating phase, amplitudes with a
single weak phase dominate, and we expect

∣∣|ĀψK/AψK | − 1
∣∣ < 0.01.

The e+e− asymmetric-energy B-factory experiments, BABAR [95] and
Belle [96], provide precise measurements. The world average including
LHCb [97] and other measurements is [98]

sin 2β = 0.682 ± 0.019 . (1.20)

This measurement has a four-fold ambiguity in β, which can be
resolved by a global fit as mentioned in Sec. 1.4. Experimentally, the
two-fold ambiguity β → π/2 − β (but not β → π + β) can be resolved
by a time-dependent angular analysis of B0 → J/ψK∗0 [99,100], or
a time-dependent Dalitz plot analysis of B0 → D0h0 (h0 = π0, η, ω)
with D0 → K0

Sπ+π− [101,102]. These results indicate that negative
cos 2β solutions are very unlikely, in agreement with the global CKM
fit result.

The b → cc̄d mediated transitions, such as B0 → J/ψπ0 and

B0 → D(∗)+D(∗)−, also measure approximately sin 2β. However,
the dominant component of the b → d penguin amplitude has a
different CKM phase (V ∗

tbVtd) than the tree amplitude (V ∗
cbVcd), and
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its magnitudes are of the same order in λ. Therefore, the effect of
penguins could be large, resulting in Sf 6= −ηf sin 2β and Cf 6= 0.
These decay modes have also been measured by BABAR and Belle. The
world averages [98], SJ/ψπ0 = −0.93 ± 0.15, SD+D− = −0.98 ± 0.17,

and SD∗+D∗− = −0.71 ± 0.09 (ηf = +1 for these modes), are

consistent with sin 2β obtained from B0 → charmonium K0 decays,
and the Cf ’s are consistent with zero, although the uncertainties are
sizable.

The b → cūd decays, B0 → D0h0 with D0 → CP eigenstates,
have no penguin contributions and provide theoretically clean sin 2β
measurements. BABAR measured S

D(∗)h0 = −0.56 ± 0.25 [94].

1.3.2.2. Penguin-dominated modes:

The b → sq̄q penguin-dominated decays have the same CKM phase
as the b → cc̄s tree level decays, up to corrections suppressed by
λ2, since V ∗

tbVts = −V ∗
cbVcs[1 + O(λ2)]. Therefore, decays such as

B0 → φK0 and η′K0 provide sin 2β measurements in the SM. Any
new physics contribution to the amplitude with a different weak phase
would give rise to Sf 6= −ηf sin 2β, and possibly Cf 6= 0. Therefore,
the main interest in these modes is not simply to measure sin 2β, but
to search for new physics. Measurements of many other decay modes
in this category, such as B → π0K0

S , K0
SK0

SK0
S , etc., have also been

performed by BABAR and Belle. The results and their uncertainties
are summarized in Fig. 12.3 and Table 12.1 of Ref. 93.

1.3.3. α / φ2:

Since α is the phase between V ∗
tbVtd and V ∗

ubVud, only time-
dependent CP asymmetries in b → uūd decay dominated modes
can directly measure sin 2α, in contrast to sin 2β, where several
different transitions can be used. Since b → d penguin amplitudes
have a different CKM phase than b → uūd tree amplitudes, and their
magnitudes are of the same order in λ, the penguin contribution can
be sizable, which makes the determination of α complicated. To date,
α has been measured in B → ππ, ρπ and ρρ decay modes.

1.3.3.1. B → ππ:

It is now experimentally well established that there is a sizable
contribution of b → d penguin amplitudes in B → ππ decays. Thus,
Sπ+π− in the time-dependent B0 → π+π− analysis does not measure
sin 2α, but

Sπ+π− =
√

1 − C2
π+π− sin (2α + 2∆α) , (1.21)

where 2∆α is the phase difference between e2iγĀπ+π− and Aπ+π− .
The value of ∆α, hence α, can be extracted using the isospin relation
among the amplitudes of B0 → π+π−, B0 → π0π0, and B+ → π+π0

decays [103],
1√
2

Aπ+π− + Aπ0π0 − Aπ+π0 = 0 , (1.22)

and a similar expression for the Āππ ’s. This method utilizes the fact
that a pair of pions from B → ππ decay must be in a zero angular
momentum state, and, because of Bose statistics, they must have even
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12 1. CKM quark-mixing matrix

isospin. Consequently, π0π± is in a pure isospin-2 state, while the
penguin amplitudes only contribute to the isospin-0 final state. The
latter does not hold for the electroweak penguin amplitudes, but their
effect is expected to be small. The isospin analysis uses the world
averages [98,104] Sπ+π− = −0.66 ± 0.06, Cπ+π− = −0.31 ± 0.05, the
branching fractions of all three modes, and the direct CP asymmetry
Cπ0π0 = −0.43+0.25

−0.24. This analysis leads to 16 mirror solutions for
0 ≤ α < 2π. Because of this, and the sizable experimental error of
the B0 → π0π0 rate and CP asymmetry, only a loose constraint on α
can be obtained at present [105], 0◦ < α < 10.1◦, 80.0◦ < α < 104.0◦,
119.0◦ < α < 151.0◦, and 165.2◦ < α < 180◦ at 68% CL.

1.3.3.2. B → ρρ:

The decay B0 → ρ+ρ− contains two vector mesons in the final state,
which in general is a mixture of CP -even and CP -odd components.
Therefore, it was thought that extracting α from this mode would be
complicated.

However, the longitudinal polarization fractions (fL) in B+ → ρ+ρ0

and B0 → ρ+ρ− decays were measured to be close to unity [106],
which implies that the final states are almost purely CP -even.
Furthermore, B(B0 → ρ0ρ0) = (0.97 ± 0.24) × 10−6 is much smaller
than B(B0 → ρ+ρ−) = (24.2+3.1

−3.2) × 10−6 and B(B+ → ρ+ρ0) =

(24.0+1.9
−2.0) × 10−6 [65], which implies that the effect of the penguin

diagrams is small. The isospin analysis using the world averages,
Sρ+ρ− = −0.05 ± 0.17 and Cρ+ρ− = −0.06 ± 0.13 [65], together
with the time-dependent CP asymmetry, Sρ0ρ0 = −0.3 ± 0.7 and

Cρ0ρ0 = −0.2±0.9 [107], and the above-mentioned branching fractions,

gives 0◦ < α < 5.4◦, 84.6◦ < α < 95.3◦ and 174.8◦ < α < 180◦ at 68%
CL [105], with mirror solutions at 3π/2−α. A possible small violation
of Eq. (1.22) due to the finite width of the ρ [108] is neglected.

1.3.3.3. B → ρπ:

The final state in B0 → ρ+π− decay is not a CP eigenstate,
but this decay proceeds via the same quark-level diagrams as
B0 → π+π−, and both B0 and B0 can decay to ρ+π−. Consequently,
mixing-induced CP violations can occur in four decay amplitudes,
B0 → ρ±π∓ and B0 → ρ±π∓. The time-dependent Dalitz plot
analysis of B0 → π+π−π0 decays permits the extraction of α with a
single discrete ambiguity, α → α + π, since one knows the variation
of the strong phases in the interference regions of the ρ+π−, ρ−π+,
and ρ0π0 amplitudes in the Dalitz plot [109]. The combination of
Belle [110] and BABAR [111] measurements gives α = (54.1+7.7

−10.3)
◦ and

(141.8+4.7
−5.4)

◦ [105]. This constraint is still moderate.

Combining the B → ππ, ρπ, and ρρ decay modes [105], α is
constrained as

α =
(
85.4+3.9

−3.8

)◦
. (1.23)

A different statistical approach [112] gives similar constraint from the
combination of these measurements.
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1.3.4. γ / φ3:

By virtue of Eq. (1.16), γ does not depend on CKM elements
involving the top quark, so it can be measured in tree-level B decays.
This is an important distinction from the measurements of α and β,
and implies that the measurements of γ are unlikely to be affected by
physics beyond the SM.

1.3.4.1. B± → DK±:

The interference of B− → D0K− (b → cūs) and B− → D0K−

(b → uc̄s) transitions can be studied in final states accessible in both
D0 and D0 decays [92]. In principle, it is possible to extract the B
and D decay amplitudes, the relative strong phases, and the weak
phase γ from the data.

A practical complication is that the precision depends sensitively
on the ratio of the interfering amplitudes

rB =
∣∣∣A

(
B− → D0K−

) /
A

(
B− → D0K−

)∣∣∣ , (1.24)

which is around 0.1−0.2. The original GLW method [113,114] considers

D decays to CP eigenstates, such as B± → D
(∗)
CP (→ π+π−)K±(∗).

To alleviate the smallness of rB and make the interfering amplitudes
(which are products of the B and D decay amplitudes) comparable
in magnitude, the ADS method [115] considers final states where
Cabibbo-allowed D0 and doubly-Cabibbo-suppressed D0 decays
interfere. Extensive measurements have been made by the B
factories [116,117], CDF [118] and LHCb [119] using both methods.

It was realized that both D0 and D0 have large branching
fractions to certain three-body final states, such as KSπ+π−, and
the analysis can be optimized by studying the Dalitz plot dependence
of the interferences [120,121]. The best present determination of
γ comes from this method. Belle [122] and BABAR [123] obtained
γ = (78+11

−12 ± 4 ± 9)◦ and γ = (68 ± 14 ± 4 ± 3)◦, respectively, where
the last uncertainty is due to the D-decay modeling. (LHCb also
measured γ = (44+43

−38)
◦ with the same method [124].) The error is

sensitive to the central value of the amplitude ratio rB (and r∗B for
the D∗K mode), for which Belle found somewhat larger central values

than BABAR. The same values of r
(∗)
B enter the ADS analyses, and the

data can be combined to fit for r
(∗)
B and γ. The D0–D0 mixing has

been neglected in all measurements, but its effect on γ is far below
the present experimental accuracy [125], unless D0–D0 mixing is due
to CP -violating new physics, in which case it can be included in the
analysis [126].

Combining the GLW, ADS, and Dalitz analyses [105], γ is
constrained as

γ =
(
68.0+8.0

−8.5

)◦
. (1.25)

Similar results are found in Ref. [112].
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14 1. CKM quark-mixing matrix

1.3.4.2. B0 → D(∗)±π∓:

The interference of b → u and b → c transitions can be studied in
B0 → D(∗)+π− (b → cūd) and B0 → B0 → D(∗)+π− (b̄ → ūcd̄) decays

and their CP conjugates, since both B0 and B0 decay to D(∗)±π∓ (or
D±ρ∓, etc.). Since there are only tree and no penguin contributions
to these decays, in principle, it is possible to extract from the four
time-dependent rates the magnitudes of the two hadronic amplitudes,
their relative strong phase, and the weak phase between the two decay
paths, which is 2β + γ.

A complication is that the ratio of the interfering amplitudes
is very small, rDπ = A(B0 → D+π−)/A(B0 → D+π−) = O(0.01)
(and similarly for rD∗π and rDρ), and therefore it has not
been possible to measure it. To obtain 2β + γ, SU(3) flavor
symmetry and dynamical assumptions have been used to relate
A(B0 → D−π+) to A(B0 → D−

s π+), so this measurement is not
model-independent at present. Combining the D±π∓, D∗±π∓ and
D±ρ∓ measurements [127] gives sin(2β + γ) > 0.68 at 68% CL [105],
consistent with the previously discussed results for β and γ. The
amplitude ratio is much larger in the analogous B0

s → D±
s K∓ decays,

which will allow a model-independently extraction of γ − 2βs [128] at
LHCb [129] (here βs = arg(−VtsV

∗
tb/VcsV

∗
cb) is related to the phase of

Bs mixing).

1.4. Global fit in the Standard Model

Using the independently measured CKM elements mentioned
in the previous sections, the unitarity of the CKM matrix can be
checked. We obtain |Vud|2+ |Vus|2+ |Vub|2 = 0.9999±0.0006 (1st row),
|Vcd|2+|Vcs|2+|Vcb|2 = 1.024±0.032 (2nd row), |Vud|2+|Vcd|2+|Vtd|2 =
1.000± 0.004 (1st column), and |Vus|2 + |Vcs|2 + |Vts|2 = 1.025± 0.032
(2nd column), respectively. The uncertainties in the second row
and column are dominated by that of |Vcs|. For the second row,
a slightly better check is obtained from the measurement of∑

u,c,d,s,b |Vij |2 in Sec. 1.2.4 minus the sum in the first row above:

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002 ± 0.027. These provide strong tests of
the unitarity of the CKM matrix. With the significantly improved
direct determination of |Vtb|, the unitarity checks for the third row
and column have also become fairly precise, leaving decreasing room
for mixing with other states. The sum of the three angles of the
unitarity triangle, α + β + γ = (175 ± 9)◦, is also consistent with the
SM expectation.

The CKM matrix elements can be most precisely determined
using a global fit to all available measurements and imposing
the SM constraints (i.e., three generation unitarity). The fit must
also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches
to combining the experimental data. CKMfitter [6,105] and Ref. 130
(which develops [131,132] further) use frequentist statistics, while
UTfit [112,133] uses a Bayesian approach. These approaches provide
similar results.

The constraints implied by the unitarity of the three generation
CKM matrix significantly reduce the allowed range of some of the
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Figure 1.2: Constraints on the ρ̄, η̄ plane. The shaded areas
have 95% CL.

CKM elements. The fit for the Wolfenstein parameters defined in
Eq. (1.4) gives

λ = 0.22537± 0.00061 , A = 0.814+0.023
−0.024 ,

ρ̄ = 0.117± 0.021 , η̄ = 0.353 ± 0.013 . (1.26)

These values are obtained using the method of Refs. [6,105].
Using the prescription of Refs. [112,133] gives λ = 0.2255 ± 0.0006,
A = 0.818± 0.015, ρ̄ = 0.124± 0.024, η̄ = 0.354± 0.015 [134]. The fit
results for the magnitudes of all nine CKM elements are

VCKM =




0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015
0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012
0.00886+0.00033

−0.00032 0.0405+0.0011
−0.0012 0.99914± 0.00005



 ,

(1.27)
and the Jarlskog invariant is J = (3.06+0.21

−0.20) × 10−5.

Figure 1.2 illustrates the constraints on the ρ̄, η̄ plane from various
measurements and the global fit result. The shaded 95% CL regions
all overlap consistently around the global fit region.
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1.5. Implications beyond the SM

The effects in B, Bs, K, and D decays and mixings due to
high-scale physics (W , Z, t, H in the SM, and unknown heavier
particles) can be parameterized by operators composed of SM fields,
obeying the SU(3) × SU(2) × U(1) gauge symmetry. Flavor-changing
neutral currents, suppressed in the SM, are especially sensitive to
beyond SM (BSM) contributions. Processes studied in great detail,
both experimentally and theoretically, include neutral meson mixings,
B(s) → Xγ, Xℓ+ℓ−, ℓ+ℓ−, K → πνν̄, etc. The BSM contributions to
these operators are suppressed by powers of the scale of new physics.
Already at lowest order, there are many dimension-6 operators,
and the observable effects of BSM interactions are encoded in their
coefficients. In the SM, these coefficients are determined by just
the four CKM parameters, and the W , Z, and quark masses. For
example, ∆md, Γ(B → ργ), Γ(B → πℓ+ℓ−), and Γ(B → ℓ+ℓ−)
are all proportional to |VtdVtb|2 in the SM, however, they may
receive unrelated contributions from new physics. The new physics
contributions may or may not obey the SM relations. (For example,
the flavor sector of the MSSM contains 69 CP -conserving parameters
and 41 CP -violating phases, i.e., 40 new ones [135]). Thus, similar
to the measurements of sin 2β in tree- and loop-dominated decay
modes, overconstraining measurements of the magnitudes and phases
of flavor-changing neutral-current amplitudes give good sensitivity to
new physics.

To illustrate the level of suppression required for BSM contributions,
consider a class of models in which the unitarity of the CKM matrix
is maintained, and the dominant effect of new physics is to modify
the neutral meson mixing amplitudes [136] by (zij/Λ2)(qiγ

µPLqj)
2

(for recent reviews, see [137,138]). It is only known since the
measurements of γ and α that the SM gives the leading contribution
to B0 – B0 mixing [6,139]. Nevertheless, new physics with a generic
weak phase may still contribute to neutral meson mixings at a
significant fraction of the SM [140,141,133]. The existing data imply

that Λ/|zij|1/2 has to exceed about 104 TeV for K0 –K0 mixing,

103 TeV for D0 – D0 mixing, 500TeV for B0 –B0 mixing, and 100TeV
for B0

s – B0
s mixing [133,138]. (Some other operators are even better

constrained [133].) The constraints are the strongest in the kaon
sector, because the CKM suppression is the most severe. Thus, if
there is new physics at the TeV scale, |zij | ≪ 1 is required. Even if

|zij | are suppressed by a loop factor and |V ∗
tiVtj |2 (in the down quark

sector), similar to the SM, one expects percent-level effects, which may
be observable in forthcoming flavor physics experiments. To constrain
such extensions of the SM, many measurements irrelevant for the
SM-CKM fit, such as the CP asymmetry in semileptonic B0

d,s decays,

Ad,s
SL , are important [142]. A DØ measurement sensitive to certain

linear combinations of Ad
SL and As

SL shows a 3.6σ hint of a deviation
from the SM [143].

Many key measurements which are sensitive to BSM flavor physics
are not useful to think about in terms of constraining the unitarity
triangle in Fig. 1.1. For example, besides the angles in Eq. (1.16),
a key quantity in the Bs system is βs = arg(−VtsV

∗
tb/VcsV

∗
cb),
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which is the small, λ2-suppressed, angle of a “squashed” unitarity
triangle, obtained by taking the scalar product of the second and
third columns. This angle can be measured via time-dependent CP
violation in B0

s → J/ψ φ, similar to β in B0 → J/ψK0. Since the
J/ψ φ final state is not a CP eigenstate, an angular analysis of
the decay products is needed to separate the CP -even and CP -odd
components, which give opposite asymmetries. In the SM, the
asymmetry for the CP -even part is 2βs (sometimes the notation
φs = −2βs plus a possible BSM contribution to the Bs mixing
phase is used). Testing if the data agree with the SM prediction,
2βs = 0.0363 ± 0.0018 [105], is another sensitive test of the SM.
After the first Tevatron CP -asymmetry measurements of B0

s → J/ψφ
hinted at a possible tension with the SM, the current world average,
dominated by LHCb [145] and including Bs → J/ψ K+K− and
J/ψ π+π− measurements, is 2βs = 0.00 ± 0.07 [65]. This uncertainty
is about 40 times the SM uncertainty; thus a lot will be learned from
higher precision measurements in the future.

In the kaon sector, the two measured CP -violating observables
ǫ and ǫ′ are tiny, so models in which all sources of CP violation
are small were viable before the B-factory measurements. Since the
measurement of sin 2β, we know that CP violation can be an O(1)
effect, and only flavor mixing is suppressed between the three quark
generations. Thus, many models with spontaneous CP violation
are excluded. In the kaon sector, a very clean test of the SM will
come from measurements of K+ → π+νν̄ and K0

L → π0νν̄. These
loop-induced rare decays are sensitive to new physics, and will
allow a determination of β, independent of its value measured in B
decays [146].

The CKM elements are fundamental parameters, so they should be
measured as precisely as possible. The overconstraining measurements
of CP asymmetries, mixing, semileptonic, and rare decays severely
constrain the magnitudes and phases of possible new physics
contributions to flavor-changing interactions. If new particles are
observed at the LHC, it will be important to explore their flavor
parameters as precisely as possible to understand the underlying
physics.
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