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1. STATISTICS

Revised September 2013 by G. Cowan (RHUL).

This chapter gives an overview of statistical methods used in
high-energy physics. In statistics, we are interested in using a given
sample of data to make inferences about a probabilistic model, e.g., to
assess the model’s validity or to determine the values of its parameters.
There are two main approaches to statistical inference, which we may
call frequentist and Bayesian.

In frequentist statistics, probability is interpreted as the frequency
of the outcome of a repeatable experiment. The most important tools
in this framework are parameter estimation, covered in Section 1.2,
statistical tests, discussed in Section 1.3, and confidence intervals,
which are constructed so as to cover the true value of a parameter
with a specified probability, as described in Section 1.4.2. Note that in
frequentist statistics one does not define a probability for a hypothesis
or for the value of a parameter.

In Bayesian statistics, the interpretation of probability is more
general and includes degree of belief (called subjective probability).
One can then speak of a probability density function (p.d.f.) for a
parameter, which expresses one’s state of knowledge about where its
true value lies. Using Bayes’ theorem (Eq. (31.4)), the prior degree of
belief is updated by the data from the experiment. Bayesian methods
for interval estimation are discussed in Sections 1.4.1 and 1.4.2.5.

Following common usage in physics, the word “error” is often
used in this chapter to mean “uncertainty.” More specifically it can
indicate the size of an interval as in “the standard error” or “error
propagation,” where the term refers to the standard deviation of an
estimator.

1.1. Fundamental concepts

Consider an experiment whose outcome is characterized by one or
more data values, which we can write as a vector x. A hypothesis H is
a statement about the probability for the data, often written P (x|H).
(We will usually use a capital letter for a probability and lower case for
a probability density. Often the term p.d.f. is used loosely to refer to
either a probability or a probability density.) This could, for example,
define completely the p.d.f. for the data (a simple hypothesis), or it
could specify only the functional form of the p.d.f., with the values of
one or more parameters not determined (a composite hypothesis).

If the probability P (x|H) for data x is regarded as a function
of the hypothesis H , then it is called the likelihood of H , usually
written L(H). Often the hypothesis is characterized by one or more
parameters θ, in which case L(θ) = P (x|θ) is called the likelihood
function.

In some cases one can obtain at least approximate frequentist
results using the likelihood evaluated only with the data obtained. In
general, however, the frequentist approach requires a full specification
of the probability model P (x|H) both as a function of the data x and
hypothesis H .

In the Bayesian approach, inference is based on the posterior
probability for H given the data x, which represents one’s degree of
belief that H is true given the data. This is obtained from Bayes’
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2 1. Statistics

theorem (31.4), which can be written

P (H |x) =
P (x|H)π (H)∫

P (x|H ′)π (H ′) dH ′
. (1.1)

Here P (x|H) is the likelihood for H , which depends only on the data
actually obtained. The quantity π(H) is the prior probability for H ,
which represents one’s degree of belief for H before carrying out the
measurement. The integral in the denominator (or sum, for discrete
hypotheses) serves as a normalization factor. If H is characterized by
a continuous parameter θ then the posterior probability is a p.d.f.
p(θ|x). Note that the likelihood function itself is not a p.d.f. for θ.

1.2. Parameter estimation

Here we review point estimation of parameters, first with an overview
of the frequentist approach and its two most important methods,
maximum likelihood and least squares, treated in Sections 1.2.2 and
1.2.3. The Bayesian approach is outlined in Sec. 36.1.4.

An estimator θ̂ (written with a hat) is a function of the data used to
estimate the value of the parameter θ. Sometimes the word ‘estimate’
is used to denote the value of the estimator when evaluated with given
data.

1.2.1. Estimators for mean, variance, and median:

Suppose we have a set of n independent measurements, x1, . . . , xn,
each assumed to follow a p.d.f. with unknown mean µ and unknown
variance σ2. The measurements do not necessarily have to follow a
Gaussian distribution. Then

µ̂ =
1

n

n∑

i=1

xi (1.5)

σ̂2 =
1

n − 1

n∑

i=1

(xi − µ̂)2 (1.6)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/n and

the variance of σ̂2 is

V
[
σ̂2

]
=

1

n

(
m4 − n − 3

n − 1
σ4

)
, (1.7)

where m4 is the 4th central moment of x (see Eq. (37.8b)). For
Gaussian distributed xi, this becomes 2σ4/(n − 1) for any n ≥ 2,
and for large n the standard deviation of σ̂ (the “error of the error”)

is σ/
√

2n. For any n and Gaussian xi, µ̂ is an efficient estimator

for µ, and the estimators µ̂ and σ̂2 are uncorrelated. Otherwise the
arithmetic mean (1.5) is not necessarily the most efficient estimator.

If the xi have different, known variances σ2
i , then the weighted

average

µ̂ =
1

w

n∑

i=1

wixi , (1.8)

where wi = 1/σ2
i and w =

∑
i wi, is an unbiased estimator for µ with a

smaller variance than an unweighted average. The standard deviation
of µ̂ is 1/

√
w.

1.2.2. The method of maximum likelihood:

Suppose we have a set of measured quantities x and the likelihood
L(θ) = P (x|θ) for a set of parameters θ = (θ1, . . . , θN ). The
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1. Statistics 3

maximum likelihood (ML) estimators for θ are defined as the values
that give the maximum of L. Because of the properties of the
logarithm, it is usually easier to work with lnL, and since both are
maximized for the same parameter values θ, the ML estimators can
be found by solving the likelihood equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , N . (1.9)

In evaluating the likelihood function, it is important that any
normalization factors in the p.d.f. that involve θ be included.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set
of ML estimators can be estimated by using

(
V̂ −1

)

ij
= − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

; (1.10)

for finite samples, however, Eq. (1.10) can result in an underestimate
of the variances. In the large sample limit (or in a linear model with
Gaussian errors), L has a Gaussian form and lnL is (hyper)parabolic.
In this case, it can be seen that a numerically equivalent way of
determining s-standard-deviation errors is from the hypersurface
defined by the θ′ such that

lnL
(
θ′

)
= lnLmax − s2/2 , (1.11)

where ln Lmax is the value of lnL at the solution point (compare
with Eq. (1.61)). The minimum and maximum values of θi on the
hypersurface then give an approximate s-standard deviation confidence
interval for θi (see Section 32.3.2.4).

1.2.2.1. ML with binned data:

1.2.3. The method of least squares:

The method of least squares (LS) coincides with the method of
maximum likelihood in the following special case. Consider a set of N
independent measurements yi at known points xi. The measurement
yi is assumed to be Gaussian distributed with mean µ(xi; θ) and
known variance σ2

i . The goal is to construct estimators for the
unknown parameters θ. The likelihood function contains the sum of
squares

χ2 (θ) = −2 lnL (θ) + constant =

N∑

i=1

(yi − µ (xi; θ))2

σ2
i

. (1.13)

The parameter values that maximize L are the same as those which
minimize χ2.

The minimum of Equation (1.13) defines the least-squares estimators

θ̂ for the more general case where the yi are not Gaussian distributed
as long as they are independent. If they are not independent but
rather have a covariance matrix Vij = cov[yi, yj ], then the LS
estimators are determined by the minimum of

χ2 (θ) = (y − µ (θ))T V −1 (y − µ (θ)) , (1.14)
where y = (y1, . . . , yN ) is the (column) vector of measurements, µ(θ)
is the corresponding vector of predicted values, and the superscript T
denotes the transpose.

Often one further restricts the problem to the case where µ(xi; θ)
is a linear function of the parameters, i.e.,

µ (xi; θ) =

m∑

j=1

θjhj (xi) . (1.15)
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4 1. Statistics

Here the hj(x) are m linearly independent functions, e.g.,

1, x, x2, . . . , xm−1 or Legendre polynomials. We require m < N
and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a
system of m linear equations. Defining Hij = hj(xi) and minimizing

χ2 by setting its derivatives with respect to the θi equal to zero gives
the LS estimators,

θ̂ =
(
HT V −1H

)
−1

HT V −1y ≡ Dy . (1.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT =
(
HT V −1H

)
−1

. (1.17)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter
space defined by

χ2 (θ) = χ2
(
θ̂
)

+ 1 = χ2
min + 1 (1.23)

has tangent planes located at approximately plus-or-minus-one

standard deviation σ
θ̂

from the LS estimates θ̂.

As the minimum value of the χ2 represents the level of agreement
between the measurements and the fitted function, it can be used for
assessing the goodness-of-fit; this is discussed further in Section 32.2.2.

1.2.4. The Bayesian approach:

In the frequentist methods discussed above, probability is associated
only with data, not with the value of a parameter. This is no longer
the case in Bayesian statistics, however, which we introduce in this
section. For general introductions to Bayesian statistics see, e.g.,
Refs. [22–25].

Suppose the outcome of an experiment is characterized by a vector
of data x, whose probability distribution depends on an unknown
parameter (or parameters) θ that we wish to determine. In Bayesian
statistics, all knowledge about θ is summarized by the posterior p.d.f.
p(θ|x), whose integral over any given region gives the degree of belief
for θ to take on values in that region, given the data x. It is obtained
by using Bayes’ theorem,

p (θ|x) =
P (x|θ)π (θ)∫

P (x|θ′)π (θ′) dθ′
, (1.24)

where P (x|θ) is the likelihood function, i.e., the joint p.d.f. for the
data viewed as a function of θ, evaluated with the data actually
obtained in the experiment, and π(θ) is the prior p.d.f. for θ. Note
that the denominator in Eq. (1.24) serves to normalize the posterior
p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. p(θ|x),
one would usually summarize it with statistics such as the mean (or
median) values, and covariance matrix. In addition one may construct
intervals with a given probability content, as is discussed in Sec. 1.4.1
on Bayesian interval estimation.

For the special case of a constant prior, one can see from Bayes’
theorem (1.24) that the posterior is proportional to the likelihood, and
therefore the mode (peak position) of the posterior is equal to the ML
estimator. The posterior mode, however, will change in general upon a
transformation of parameter. One may use as the Bayesian estimator
a summary statistic other than the mode, such as the median, which is
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1. Statistics 5

invariant under parameter transformation. But this will not in general
coincide with the ML estimator.

1.2.4.1. Bayesian treatment of nuisance parameters:

As discussed in Sec. 1.2.2, a model may depend on parameters of
interest θ as well as on nuisance parameters ν, which must be included
for an accurate description of the data. Knowledge about the values
of ν may be supplied by control measurements, theoretical insights,
physical constraints, etc. Suppose, for example, one has data y from a
control measurement which is characterized by a probability Py(y|ν).
Suppose further that before carrying out the control measurement
one’s state of knowledge about ν is described by an initial prior π0(ν),
which in practice is often taken to be a constant or in any case very
broad. By using Bayes’ theorem (1.1) one obtains the updated prior
π(ν) (i.e., now π(ν) = π(ν|y), the probability for ν given y),

π (ν|y) ∝ P (y|ν)π0 (ν) . (1.27)

In the absence of a model for P (y|ν) one may make some reasonable
but ad hoc choices. For a single nuisance parameter ν, for example,
one might characterize the uncertainty in a nuisance parameter ν by
a p.d.f. π(ν) centered about its nominal value with a certain standard
deviation σν . Often a Gaussian p.d.f. provides a reasonable model
for one’s degree of belief about a nuisance parameter; in other cases,
more complicated shapes may be appropriate. If, for example, the
parameter represents a non-negative quantity then a log-normal or
gamma p.d.f. can be a more natural choice than a Gaussian truncated
at zero. Note also that truncation of the prior of a nuisance parameter
ν at zero will in general make π(ν) nonzero at ν = 0, which can lead to
an unnormalizable posterior for a parameter of interest that appears
multiplied by ν.

The likelihood function, prior, and posterior p.d.f.s then all depend
on both θ and ν, and are related by Bayes’ theorem, as usual. Note
that the likelihood here only refers to the primary measurement
x. Once any control measurements y are used to find the updated
prior π(ν) for the nuisance parameters, this information is fully
encapsulated in π(ν) and the control measurements do not appear
further.

One can obtain the posterior p.d.f. for θ alone by integrating over
the nuisance parameters, i.e.,

p (θ|x) =

∫
p (θ, ν|x) dν . (1.28)

1.2.5. Propagation of errors:

Consider a set of n quantities θ = (θ1, . . . , θn) and a set of m
functions η(θ) = (η1(θ), . . . , ηm(θ)). Suppose we have estimated

θ̂ = (θ̂1, . . . , θ̂n), using, say, maximum-likelihood or least-squares, and

we also know or have estimated the covariance matrix Vij = cov[θ̂i, θ̂j ].
The goal of error propagation is to determine the covariance matrix

for the functions, Uij = cov[η̂i, η̂j ], where η̂ = η(θ̂ ). In particular, the
diagonal elements Uii = V [η̂i] give the variances. The new covariance
matrix can be found by expanding the functions η(θ) about the

estimates θ̂ to first order in a Taylor series. Using this one finds

Uij ≈
∑

k,l

∂ηi

∂θk

∂ηj

∂θl

∣∣∣∣
θ̂

Vkl . (1.29)
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6 1. Statistics

This can be written in matrix notation as U ≈ AV AT where the
matrix of derivatives A is

Aij =
∂ηi

∂θj

∣∣∣∣
θ̂

, (1.30)

and AT is its transpose. The approximation is exact if η(θ) is linear.

1.3. Statistical tests

1.3.1. Hypothesis tests:

A frequentist test of a hypothesis (often called the null hypothesis,
H0) is a rule that states for which data values x the hypothesis is
rejected. A region of x-space called the critical region, w, is specified
such that such that there is no more than a given probability under H0,
α, called the size or significance level of the test, to find x ∈ w. If the
data are discrete, it may not be possible to find a critical region with
exact probability content α, and thus we require P (x ∈ w|H0) ≤ α. If
the data are observed in the critical region, H0 is rejected.

The critical region is not unique. Choosing one should take into
account the probabilities for the data predicted by some alternative
hypothesis (or set of alternatives) H1. Rejecting H0 if it is true is
called a type-I error, and occurs by construction with probability no
greater than α. Not rejecting H0 if an alternative H1 is true is called
a type-II error, and for a given test this will have a certain probability
β = P (x /∈ w|H1). The quantity 1 − β is called the power of the test
of H0 with respect to the alternative H1. A strategy for defining the
critical region can therefore be to maximize the power with respect to
some alternative (or alternatives) given a fixed size α.

To maximize the power of a test of H0 with respect to the
alternative H1, the Neyman–Pearson lemma states that the critical
region w should be chosen such that for all data values x inside w, the
ratio

λ (x) =
f (x|H1)

f (x|H0)
, (1.31)

is greater than a given constant, the value of which is determined by
the size of the test α. Here H0 and H1 must be simple hypotheses,
i.e., they should not contain undetermined parameters.

The lemma is equivalent to the statement that (1.31) represents the
optimal test statistic where the critical region is defined by a single cut
on λ. This test will lead to the maximum power (i.e., the maximum
probability to reject H0 if H1 is true) for a given probability α to
reject H0 if H0 is in fact true. It can be difficult in practice, however,
to determine λ(x), since this requires knowledge of the joint p.d.f.s
f(x|H0) and f(x|H1).

In the usual case where the likelihood ratio (1.31) cannot be used
explicitly, there exist a variety of other multivariate classifiers that
effectively separate different types of events. Methods often used in
HEP include neural networks or Fisher discriminants (see Ref. 10).
Recently, further classification methods from machine-learning have
been applied in HEP analyses; these include probability density
estimation (PDE) techniques, kernel-based PDE (KDE or Parzen
window), support vector machines, and decision trees. Techniques
such as “boosting” and “bagging” can be applied to combine a
number of classifiers into a stronger one with greater stability with
respect to fluctuations in the training data. Descriptions of these
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1. Statistics 7

methods can be found in [11–13], and Proceedings of the PHYSTAT
conference series [14]. Software for HEP includes the TMVA [15] and
StatPatternRecognition [16] packages.

1.3.2. Tests of significance (goodness-of-fit):

Often one wants to quantify the level of agreement between the data
and a hypothesis without explicit reference to alternative hypotheses.
This can be done by defining a statistic t, which is a function of the
data whose value reflects in some way the level of agreement between
the data and the hypothesis.

The hypothesis in question, H0, will determine the p.d.f. f(t|H0)
for the statistic. The significance of a discrepancy between the data
and what one expects under the assumption of H0 is quantified by
giving the p-value, defined as the probability to find t in the region of
equal or lesser compatibility with H0 than the level of compatibility
observed with the actual data. For example, if t is defined such that
large values correspond to poor agreement with the hypothesis, then
the p-value would be

p =

∫
∞

tobs

f (t|H0) dt , (1.32)

where tobs is the value of the statistic obtained in the actual
experiment.

The p-value should not be confused with the size (significance level)
of a test, or the confidence level of a confidence interval (Section 1.4),
both of which are pre-specified constants. We may formulate a
hypothesis test, however, by defining the critical region to correspond
to the data outcomes that give the lowest p-values, so that finding
p ≤ α implies that the data outcome was in the critical region. When
constructing a p-value, one generally chooses the region of data space
deemed to have lower compatibility with the model being tested as
one having higher compatibility with a given alternative, such that
the corresponding test will have a high power with respect to this
alternative.

The p-value is a function of the data, and is therefore itself a
random variable. If the hypothesis used to compute the p-value is
true, then for continuous data p will be uniformly distributed between
zero and one. Note that the p-value is not the probability for the
hypothesis; in frequentist statistics, this is not defined. Rather, the
p-value is the probability, under the assumption of a hypothesis H0, of
obtaining data at least as incompatible with H0 as the data actually
observed.

When searching for a new phenomenon, one tries to reject the
hypothesis H0 that the data are consistent with known (e.g., Standard
Model) processes. If the p-value of H0 is sufficiently low, then one
is willing to accept that some alternative hypothesis is true. Often
one converts the p-value into an equivalent significance Z, defined so
that a Z standard deviation upward fluctuation of a Gaussian random
variable would have an upper tail area equal to p, i.e.,

Z = Φ−1 (1 − p) . (1.33)
Here Φ is the cumulative distribution of the Standard Gaussian, and
Φ−1 is its inverse (quantile) function. Often in HEP the level of
significance where an effect is said to qualify as a discovery is Z = 5,
i.e., a 5σ effect, corresponding to a p-value of 2.87 × 10−7. One’s
actual degree of belief that a new process is present, however, will
depend in general on other factors as well, such as the plausibility of
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8 1. Statistics

the new signal hypothesis and the degree to which it can describe the
data, one’s confidence in the model that led to the observed p-value,
and possible corrections for multiple observations out of which one
focuses on the smallest p-value obtained (the “look-elsewhere effect”,
discussed in Section 1.3.2.1).

1.3.2.1. The look-elsewhere effect:

The “look-elsewhere effect” relates to multiple measurements used
to test a single hypothesis. The classic example is when one searches
in a distribution for a peak whose position is not predicted in advance.
Here the no-peak hypothesis is tested using data in a given range of
the distribution. In the frequentist approach the correct p-value of the
no-peak hypothesis is the probability, assuming background only, to
find a signal as significant as the one found or more so anywhere in the
search region. This can be substantially higher than the probability
to find a peak of equal or greater significance in the particular place
where it appeared. There is in general some ambiguity as to what
constitutes the relevant search region or even the broader set of
relevant measurements. Although the desired p-value is well defined
once the search region has been fixed, an exact treatment can require
extensive computation.

The “brute-force” solution to this problem by Monte Carlo involves
generating data under the background-only hypothesis and for each
data set, fitting a peak of unknown position and recording a measure
of its significance. To establish a discovery one often requires a
p-value less than 2.9 × 10−7, corresponding to a 5σ or larger effect.
Determining this with Monte Carlo thus requires generating and
fitting a very large number of experiments, perhaps several times 107.
In contrast, if the position of the peak is fixed, then the fit to the
distribution is much easier, and furthermore one can in many cases
use formulae valid for sufficiently large samples that bypass completely
the need for Monte Carlo (see, e.g., [38]) . But this fixed-position
or “local” p-value would not be correct in general, as it assumes the
position of the peak was known in advance.

A method that allows one to modify the local p-value computed
under assumption of a fixed position to obtain an approximation
to the correct “global” value using a relatively simple calculation is
described in Ref. 18. Suppose a test statistic q0, defined so that larger
values indicate increasing disagreement with the data, is observed to
have a value u. Furthermore suppose the model contains a nuisance
parameter θ (such as the peak position) which is only defined under
the signal model (there is no peak in the background-only model). An
approximation for the global p-value is found to be

pglobal ≈ plocal + 〈Nu〉 , (1.36)
where 〈Nu〉 is the mean number of “upcrossings” of the the statistic
q0 above the level u in the range of the nuisance parameter considered
(e.g., the mass range).

The value of 〈Nu〉 can be estimated from the number of upcrossings
〈Nu0

〉 above some much lower value, u0, by using a relation due to
Davis [19],

〈Nu〉 ≈ 〈Nu0
〉e−(u−u0)/2 . (1.37)

By choosing u0 sufficiently low, the value of 〈Nu〉 can be estimated by
simulating only a very small number of experiments or even from the
observed data, rather than the 107 needed if one is dealing with a 5σ
effect.
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1.3.2.2. Goodness-of-fit with the method of Least Squares:

When estimating parameters using the method of least squares, one
obtains the minimum value of the quantity χ2 (1.13). This statistic
can be used to test the goodness-of-fit, i.e., the test provides a
measure of the significance of a discrepancy between the data and the
hypothesized functional form used in the fit. It may also happen that
no parameters are estimated from the data, but that one simply wants
to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1, . . . , nN ), with a hypothesis for their expectation values
µi = E[ni]. As the distribution is Poisson with variances σ2

i = µi, the

χ2 (1.13) becomes Pearson’s χ2 statistic,

χ2 =

N∑

i=1

(ni − µi)
2

µi
. (1.38)

If the hypothesis µ = (µ1, . . . , µN ) is correct, and if the expected
values µi in (1.38) are sufficiently large (or equivalently, if the
measurements ni can be treated as following a Gaussian distribution),
then the χ2 statistic will follow the χ2 p.d.f. with the number of
degrees of freedom equal to the number of measurements N minus the
number of fitted parameters.

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value
for the hypothesis is then

p =

∫
∞

χ2
f (z; nd) dz , (1.39)

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of
degrees of freedom. Values are shown in Fig. 32.1 or obtained from
the ROOT function TMath::Prob.

Since the mean of the χ2 distribution is equal to nd, one expects
in a “reasonable” experiment to obtain χ2 ≈ nd. Hence the quantity
χ2/nd is sometimes reported. Since the p.d.f. of χ2/nd depends on
nd, however, one must report nd as well if one wishes to determine
the p-value. The p-values obtained for different values of χ2/nd are
shown in Fig. 1.2.

1.3.3. Bayes factors:

In Bayesian statistics, all of one’s knowledge about a model is
contained in its posterior probability, which one obtains using Bayes’
theorem (1.24). Thus one could reject a hypothesis H if its posterior
probability P (H |x) is sufficiently small. The difficulty here is that
P (H |x) is proportional to the prior probability P (H), and there will
not be a consensus about the prior probabilities for the existence of
new phenomena. Nevertheless one can construct a quantity called the
Bayes factor (described below), which can be used to quantify the
degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors
of parameters θi and θj , respectively. Some of the components will
be common to both models and others may be distinct. The full prior
probability for each model can be written in the form

π (Hi, θi) = P (Hi)π (θi|Hi) . (1.40)
Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is
the normalized p.d.f. of its parameters. For each model, the posterior
probability is found using Bayes’ theorem,

P (Hi|x) =

∫
P (x|θi, Hi) P (Hi)π (θi|Hi) dθi

P (x)
, (1.41)
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Figure 1.1: One minus the χ2 cumulative distribution,
1 − F (χ2; n), for n degrees of freedom. This gives the p-value
for the χ2 goodness-of-fit test as well as one minus the coverage
probability for confidence regions (see Sec. 32.3.2.4).
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Figure 1.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees
of freedom. The curves show as a function of n the χ2/n that
corresponds to a given p-value.

where the integration is carried out over the internal parameters θi
of the model. The ratio of posterior probabilities for the models is
therefore

P (Hi|x)

P
(
Hj |x

) =

∫
P (x|θi, Hi)π (θi|Hi) dθi∫

P
(
x|θj , Hj

)
π

(
θj |Hj

)
dθj

P (Hi)

P
(
Hj

) . (1.42)
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The Bayes factor is defined as

Bij =

∫
P (x|θi, Hi)π (θi|Hi) dθi∫

P
(
x|θj , Hj

)
π

(
θj |Hj

)
dθj

. (1.43)

This gives what the ratio of posterior probabilities for models i and
j would be if the overall prior probabilities for the two models were
equal. If the models have no nuisance parameters, i.e., no internal
parameters described by priors, then the Bayes factor is simply the
likelihood ratio. The Bayes factor therefore shows by how much the
probability ratio of model i to model j changes in the light of the data,
and thus can be viewed as a numerical measure of evidence supplied
by the data in favour of one hypothesis over the other.

Although the Bayes factor is by construction independent of the
overall prior probabilities P (Hi) and P (Hj), it does require priors
for all internal parameters of a model, i.e., one needs the functions
π(θi|Hi) and π(θj |Hj). In a Bayesian analysis where one is only
interested in the posterior p.d.f. of a parameter, it may be acceptable
to take an unnormalizable function for the prior (an improper prior)
as long as the product of likelihood and prior can be normalized. But
improper priors are only defined up to an arbitrary multiplicative
constant, and so the Bayes factor would depend on this constant.
Furthermore, although the range of a constant normalized prior is
unimportant for parameter determination (provided it is wider than
the likelihood), this is not so for the Bayes factor when such a prior
is used for only one of the hypotheses. So to compute a Bayes factor,
all internal parameters must be described by normalized priors that
represent meaningful probabilities over the entire range where they
are defined.

An exception to this rule may be considered when the identical
parameter appears in the models for both numerator and denominator
of the Bayes factor. In this case one can argue that the arbitrary
constants would cancel. One must exercise some caution, however, as
parameters with the same name and physical meaning may still play
different roles in the two models.

Both integrals in equation (1.43) are of the form

m =

∫
P (x|θ)π (θ) dθ , (1.44)

which is the marginal likelihood seen previously in Eq. (38.44) (in
some fields this quantity is called the evidence). A review of Bayes
factors can be found in Ref. 30. Computing marginal likelihoods can
be difficult; in many cases it can be done with the nested sampling
algorithm [31] as implemented, e.g., in the program MultiNest [32].

1.4. Intervals and limits

When the goal of an experiment is to determine a parameter θ,
the result is usually expressed by quoting, in addition to the point
estimate, some sort of interval which reflects the statistical precision
of the measurement. In the simplest case, this can be given by the

parameter’s estimated value θ̂ plus or minus an estimate of the

standard deviation of θ̂, σ̂
θ̂
. If, however, the p.d.f. of the estimator

is not Gaussian or if there are physical boundaries on the possible
values of the parameter, then one usually quotes instead an interval
according to one of the procedures described below.
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1.4.1. Bayesian intervals:

As described in Sec. 1.2.4, a Bayesian posterior probability may
be used to determine regions that will have a given probability of
containing the true value of a parameter. In the single parameter
case, for example, an interval (called a Bayesian or credible interval)
[θlo, θup] can be determined which contains a given fraction 1 − α of
the posterior probability, i.e.,

1 − α =

∫ θup

θlo

p (θ|x) dθ . (1.45)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be
set to a physical boundary or to plus or minus infinity. In other cases,
one might be interested in the set of θ values for which p(θ|x) is higher
than for any θ not belonging to the set, which may constitute a single
interval or a set of disjoint regions; these are called highest posterior
density (HPD) intervals. Note that HPD intervals are not invariant
under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior
p.d.f. can simply be set to zero for negative values. An important
example is the case of a Poisson variable n, which counts signal events
with unknown mean s, as well as background with mean b, assumed
known. For the signal mean s, one often uses the prior

π (s) =

{
0 s < 0
1 s ≥ 0

. (1.46)

For example, to obtain an upper limit on s, one may proceed as
follows. The likelihood for s is given by the Poisson distribution for n
with mean s + b,

P (n|s) =
(s + b)n

n!
e−(s+b) , (1.47)

along with the prior (1.46) in (1.24) gives the posterior density for
s. An upper limit sup at confidence level (or here, rather, credibility
level) 1 − α can be obtained by requiring

1 − α =

∫ sup

−∞

p (s|n) ds =

∫ sup
−∞

P (n|s) π (s) ds∫
∞

−∞
P (n|s) π (s) ds

, (1.48)

where the lower limit of integration is effectively zero because of the
cut-off in π(s). By relating the integrals in Eq. (1.48) to incomplete
gamma functions, the solution for the upper limit is found to be

sup = 1
2F−1

χ2 [p, 2 (n + 1)] − b , (1.49)

where F−1
χ2 is the quantile of the χ2 distribution (inverse of the

cumulative distribution). Here the quantity p is

p = 1 − α
(
Fχ2 [2b, 2 (n + 1)]

)
, (1.50)

where Fχ2 is the cumulative χ2 distribution. For both Fχ2 and F−1
χ2

above, the argument 2(n + 1) gives the number of degrees of freedom.
For the special case of b = 0, the limit reduces to

sup = 1
2F−1

χ2 (1 − α; 2 (n + 1)) . (1.51)

It happens that for the case of b = 0, the upper limit from Eq. (1.51)
coincides numerically with the frequentist upper limit discussed in
Section 1.4.2.4. Values for 1−α = 0.9 and 0.95 are given by the values
µup in Table 1.3.

As in any Bayesian analysis, it is important to show how the result
changes under assumption of different prior probabilities. For example,
one could consider the Jeffreys prior as described in Sec. 1.2.4. For
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this problem one finds the Jeffreys prior π(s) ∝ 1/
√

s + b for s ≥ 0 and
zero otherwise. As with the constant prior, one would not regard this
as representing one’s prior beliefs about s, both because it is improper
and also as it depends on b. Rather it is used with Bayes’ theorem to
produce an interval whose frequentist properties can be studied.

If the model contains nuisance parameters then these are eliminated
by marginalizing, as in Eq. (1.28), to obtain the p.d.f. for the
parameters of interest. For example, if the parameter b in the Poisson
counting problem above were to be characterized by a prior p.d.f.
π(b), then one would first use Bayes’ theorem to find p(s, b|n). This is
then marginalized to find p(s|n) =

∫
p(s, b|n)π(b) db, from which one

may determine an interval for s. One may not be certain whether to
extend a model by including more nuisance parameters. In this case, a
Bayes factor may be used to determine to what extent the data prefer
a model with additional parameters, as described in Section 1.3.3.

1.4.2. Frequentist confidence intervals:

1.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the
experiment and θ is the unknown parameter for which we want
to construct a confidence interval. The variable x could (and often
does) represent an estimator for θ. Using f(x; θ), we can find for a
pre-specified probability 1−α, and for every value of θ, a set of values
x1(θ, α) and x2(θ, α) such that

P (x1 < x < x2; θ) = 1 − α =

∫ x2

x1

f (x; θ) dx . (1.53)

This is illustrated in Fig. 1.3: a horizontal line segment [x1(θ, α),
x2(θ, α)] is drawn for representative values of θ. The union of such
intervals for all values of θ, designated in the figure as D(α), is known
as the confidence belt. Typically the curves x1(θ, α) and x2(θ, α) are
monotonic functions of θ, which we assume for this discussion.
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Figure 1.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value
x0, one draws a vertical line through x0. The confidence interval for θ
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is the set of all values of θ for which the corresponding line segment
[x1(θ, α), x2(θ, α)] is intercepted by this vertical line. Such confidence
intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure.
We see from the figure that θ0 lies between θ1(x) and θ2(x) if and
only if x lies between x1(θ0) and x2(θ0). The two events thus have
the same probability, and since this is true for any value θ0, we can
drop the subscript 0 and obtain

1 − α = P (x1 (θ) < x < x2 (θ)) = P (θ2 (x) < θ < θ1 (x)) . (1.54)

In this probability statement, θ1(x) and θ2(x), i.e., the endpoints of
the interval, are the random variables and θ is an unknown constant.
If the experiment were to be repeated a large number of times, the
interval [θ1, θ2] would vary, covering the fixed value θ in a fraction
1 − α of the experiments.

The condition of coverage in Eq. (1.53) does not determine x1 and
x2 uniquely, and additional criteria are needed. One possibility is to
choose central intervals such that the probabilities excluded below x1
and above x2 are each α/2. In other cases, one may want to report
only an upper or lower limit, in which case the probability excluded
below x1 or above x2 can be set to zero. Another principle based on
likelihood ratio ordering for determining which values of x should be
included in the confidence belt is discussed below.

When the observed random variable x is continuous, the coverage
probability obtained with the Neyman construction is 1−α, regardless
of the true value of the parameter. If x is discrete, however, it is not
possible to find segments [x1(θ, α), x2(θ, α)] that satisfy Eq. (1.53)
exactly for all values of θ. By convention, one constructs the confidence
belt requiring the probability P (x1 < x < x2) to be greater than or
equal to 1 − α. This gives confidence intervals that include the true
parameter with a probability greater than or equal to 1 − α.

If the model contains nuisance parameters ν, then these can be
incorporated into the test (or the p-values) used to determine the
limit by profiling as discussed in Section 38.3.2.1. As mentioned there,
the strict frequentist approach is to regard the parameter of interest
θ as excluded only if it is rejected for all possible values of ν. The
resulting interval for θ will then cover then cover the true value with
a probability greater than or equal to the nominal confidence level for
all points in ν-space.

If the p-value is based on the profiled values of the nuisance

parameters, i.e., with ν = ̂̂ν(θ) used in Eq. (38.42), then the resulting
interval for the parameter of interest will have the correct coverage if
the true values of ν are equal to the profiled values. Otherwise the
coverage probability may be too high or too low. This procedure has
been called profile construction in HEP [20]( see also [17]) .

1.4.2.3. Gaussian distributed measurements:

An important example of constructing a confidence interval is when
the data consists of a single random variable x that follows a Gaussian
distribution; this is often the case when x represents an estimator for
a parameter and one has a sufficiently large data sample. If there is
more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ, the probability that
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the measured value x will fall within ±δ of the true value µ is

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
= 2Φ

(σ

δ

)
− 1 ,

(1.58)
where erf is the Gaussian error function, which is rewritten in the
final equality using Φ, the Gaussian cumulative distribution. Fig. 1.4
shows a δ = 1.64σ confidence interval unshaded. The choice δ = σ
gives an interval called the standard error which has 1 − α = 68.27%
if σ is known. Values of α for other frequently used choices of δ are
given in Table 1.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 1.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by α = 0.1, are as shown.

Table 1.1: Area of the tails α outside ±δ from the mean of a
Gaussian distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

We can set a one-sided (upper or lower) limit by excluding above
x + δ (or below x − δ). The values of α for such limits are half the
values in Table 1.1.

The relation (1.58) can be re-expressed using the cumulative
distribution function for the χ2 distribution as

α = 1 − F
(
χ2; n

)
, (1.59)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be seen as
the n = 1 curve in Fig. 1.1 or obtained by using the ROOT function
TMath::Prob.
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For multivariate measurements of, say, n parameter estimates θ̂ =

(θ̂1, . . . , θ̂n), one requires the full covariance matrix Vij = cov[θ̂i, θ̂j ],
which can be estimated as described in Sections 1.2.2 and 1.2.3. Under
fairly general conditions with the methods of maximum-likelihood
or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the
true (unknown) values θ, and furthermore, the likelihood function
itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 1.5,

corresponding to a contour χ2 = χ2
min + 1 or lnL = lnLmax − 1/2.

The ellipse is centered about the estimated values θ̂, and the tangents
to the ellipse give the standard deviations of the estimators, σi and
σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (1.60)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the
distance σi from the ellipse’s horizontal center-line at which the ellipse
becomes tangent to vertical, i.e., at the distance ρijσi below the
center-line as shown. As ρij goes to +1 or −1, the ellipse thins to a
diagonal line.

θ i

φ

θ i

jσ

θj

iσ
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Figure 1.5: Standard error ellipse for the estimators θ̂i and θ̂j .
In this case the correlation is negative.

As in the single-variable case, because of the symmetry of the

Gaussian function between θ and θ̂, one finds that contours of constant
lnL or χ2 cover the true values with a certain, fixed probability. That
is, the confidence region is determined by

lnL (θ) ≥ lnLmax − ∆ lnL , (1.61)
or where a χ2 has been defined for use with the method of
least-squares,

χ2 (θ) ≤ χ2
min + ∆χ2 . (1.62)

Values of ∆χ2 or 2∆ lnL are given in Table 1.2 for several values of
the coverage probability and number of fitted parameters.

For non-Gaussian data samples, the probability for the regions
determined by equations (1.61) or (1.62) to cover the true value of
θ becomes independent of θ only in the large-sample limit. So for a
finite data sample these are not exact confidence regions according to
our previous definition.
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Table 1.2: Values of ∆χ2 or 2∆ lnL corresponding to a
coverage probability 1 − α in the large data sample limit, for
joint estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

1.4.2.4. Poisson or binomial data:

Another important class of measurements consists of counting a
certain number of events, n. In this section, we will assume these
are all events of the desired type, i.e., there is no background. If n
represents the number of events produced in a reaction with cross
section σ, say, in a fixed integrated luminosity L, then it follows a
Poisson distribution with mean µ = σL. If, on the other hand, one
has selected a larger sample of N events and found n of them to have
a particular property, then n follows a binomial distribution where the
parameter p gives the probability for the event to possess the property
in question. This is appropriate, e.g., for estimates of branching ratios
or selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on
the mean value µ can be found from the Neyman procedure to be

µlo = 1
2F−1

χ2 (αlo; 2n) , (1.64a)

µup = 1
2F−1

χ2

(
1 − αup; 2 (n + 1)

)
, (1.64b)

where the upper and lower limits are at confidence levels of 1 − αlo

and 1 − αup, respectively, and F−1
χ2 is the quantile of the χ2

distribution (inverse of the cumulative distribution). The quantiles

F−1
χ2 can be obtained from standard tables or from the ROOT

routine TMath::ChisquareQuantile. For central confidence intervals
at confidence level 1 − α, set αlo = αup = α/2.

It happens that the upper limit from Eq. (1.64b) coincides
numerically with the Bayesian upper limit for a Poisson parameter,
using a uniform prior p.d.f. for µ. Values for confidence levels of 90%
and 95% are shown in Table 1.3. For the case of binomially distributed
n successes out of N trials with probability of success p, the upper
and lower limits on p are found to be

plo =
nF−1

F [αlo; 2n, 2 (N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2 (N − n + 1)]

, (1.65a)

pup =
(n + 1)F−1

F

[
1 − αup; 2 (n + 1) , 2 (N − n)

]

(N − n) + (n + 1)F−1
F

[
1 − αup; 2 (n + 1) , 2 (N − n)

] .(1.65b)

Here F−1
F is the quantile of the F distribution (also called the

Fisher–Snedecor distribution; see Ref. 4).

A number of issues arise in the construction and interpretation
of confidence intervals when the parameter can only take on values
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Table 1.3: Lower and upper (one-sided) limits for the mean µ
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n µlo µup µlo µup

0 – 2.30 – 3.00

1 0.105 3.89 0.051 4.74

2 0.532 5.32 0.355 6.30

3 1.10 6.68 0.818 7.75

4 1.74 7.99 1.37 9.15

5 2.43 9.27 1.97 10.51

6 3.15 10.53 2.61 11.84

7 3.89 11.77 3.29 13.15

8 4.66 12.99 3.98 14.43

9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

in a restricted range. Important examples are where the mean of
a Gaussian variable is constrained on physical grounds to be non-
negative and where the experiment finds a Poisson-distributed number
of events, n, which includes both signal and background. Application
of some standard recipes can lead to intervals that are partially or
entirely in the unphysical region. Furthermore, if the decision whether
to report a one- or two-sided interval is based on the data, then the
resulting intervals will not in general cover the parameter with the
stated probability 1 − α.

Several problems with such intervals are overcome by using the
unified approach of Feldman and Cousins [33]. Properties of these
intervals are described further in the Review. Table 1.4 gives the
unified confidence intervals [µ1, µ2] for the mean of a Poisson variable
given n observed events in the absence of background, for confidence
levels of 90% and 95%. The values of 1 − α given here refer to the
coverage of the true parameter by the whole interval [µ1, µ2]. In
Table 1.3 for the one-sided upper and lower limits, however, 1 − α
referred to the probability to have individually µup ≥ µ or µlo ≤ µ.

Another possibility is to construct a Bayesian interval as described
in Section 1.4.1. The presence of the boundary can be incorporated
simply by setting the prior density to zero in the unphysical region.
Advantages and pitfalls of this approach are discussed further in the
Review.

Another alternative is presented by the intervals found from the
likelihood function or χ2 using the prescription of Equations (1.61)
or (1.62). As in the case of the Bayesian intervals, the coverage
probability is not, in general, independent of the true parameter.
Furthermore, these intervals can for some parameter values undercover.

In any case it is important to report sufficient information so that
the result can be combined with other measurements. Often this
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Table 1.4: Unified confidence intervals [µ1, µ2] for a the mean
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1 − α =90% 1 − α =95%

n µ1 µ2 µ1 µ2

0 0.00 2.44 0.00 3.09

1 0.11 4.36 0.05 5.14

2 0.53 5.91 0.36 6.72

3 1.10 7.42 0.82 8.25

4 1.47 8.60 1.37 9.76

5 1.84 9.99 1.84 11.26

6 2.21 11.47 2.21 12.75

7 3.56 12.53 2.58 13.81

8 3.96 13.99 2.94 15.29

9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

means giving an unbiased estimator and its standard deviation, even
if the estimated value is in the unphysical region. It is also useful
to report the likelihood function or an appropriate summary of it.
Although this by itself is not sufficient to construct a frequentist
confidence interval, it can be used to find the Bayesian posterior
probability density for any desired prior p.d.f.

Further discussion and all references may be found in the full Review
of Particle Physics; the equation and reference numbering corresponds
to that version.
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