TABLES OF PARTICLE PROPERTIES

April 1982

M. Aguilar-Benitez, R.L. Crawford, R. Frosch, G.P. Gopal, R.E. Hendrick, R.L. Kelly, M.J. Losty, L. Montanet, F.C. Porter, A. Rittenberg, M. Roos, L.D. Roper, T. Shimada, R.E. Shrock, T.G. Trippe, Ch. Walck, C.G. Wohl, G.P. Yost

(Closing date for data: Jan. 1, 1982)

Stable Particle Table

For additional parameters, see Addendum to this table.

Quantities in italics have changed by more than one (old) standard deviation since April 1980.

Particle I ^G (J ^P)		^a Mass ^b	Ass ^b Mean life ^b		Partial decay mode		
	(MeV) Mass ² (GeV ²)		(sec) c7 (cm)	Mode	Fraction ^b	p or p _{max} (MeV/c)	
			РНС	DTON			
γ	0,1(1 ⁻)-	- (< 6×10 ⁻²²)		stable			
			LEP	TONS			
ν _e	$J = \frac{1}{2}$	(< 0.000046) ^d	stable $(>3\times10^8 m_{\nu_e})$ (MeV	stable V))			
e	$J = \frac{1}{2}$	0.5110034 ±0.0000014	stable (>2×10 ²² y)	stable			
ν _μ	$J = \frac{1}{2}$	0(< 0.52)	stable $(>1.1\times10^5 m_{\nu_{\mu}})$ (M	stable (eV))			
μ	$J=\frac{1}{2}$	$105.65943 \\ \pm 0.00018 \\ m^2 = 0.01116392$	2.19714×10^{-6} ±0.00007 cr = 6.5868 × 10 ⁴	$ \begin{array}{ccc} \mu^{-} & (\text{or } \mu^{+} \to \text{CC}) \\ e^{-} \bar{\nu} \nu \\ e^{-} \bar{\nu} \nu \gamma \\ \dagger [e^{-} \nu_{e} \bar{\nu}_{\mu} \\ e^{-} \gamma \\ e^{-} e^{+} e^{-} \\ e^{-} \gamma \gamma \end{array} $	$ \begin{array}{c} (98.6 \pm 0.4)\% \\ e(1.4 \pm 0.4)\% \\ (<9)\% \\ (<1.9)\% \\ (<1.9)\times 10^{-10} \\ (<1.9)\times 10^{-9} \\ (<5)\times 10^{-8} \end{array} $	53 53 53 53 53 53 53	
-ν _τ	$J = \frac{1}{2}$	< 250			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
τ	$J = \frac{1}{2}$	1784.2 ± 3.2 $m^2=3.18$	$(4.6 \pm 1.9) \times 10^{-13}$ c7 =0.014	$r^{-} \neg (\text{or } \tau^{+} \rightarrow \text{CC})$ $\mu^{-} \bar{\nu}\nu$ $e^{-} \bar{\nu}\nu$ hadron ⁻ neutrals 3(hadron [±]) neutrals 5(hadron [±]) neutrals †[3(hadron [±])\nu 3(hadron [±])\nu 3(hadron [±])\nu(\geq 1\gamma) †[\pi^{-}\nu \rho^{-}\nu K^{-} neutrals \pi^{-}\pi^{-}\pi^{+}\nu \pi^{-}\pi^{-}\pi^{+}(20\pi^{0})\nu +[K^{-}(20\pi^{0})\nu +[K^{-}(20\pi^{0})\nu)]	$(18.5 \pm 1.2)\% (16.2 \pm 1.0)\% (37.0 \pm 3.2)\% (28.4 \pm 3.0)\% (<6)\% (13 \pm 8)\% (15 \pm 7)\% (10.7 \pm 1.6)\% (21.6 \pm 3.6)\% (small) (7 \pm 5)\% (18 \pm 7)\%]$	889 892 887 726 864 864	
				$T[K (892)\nu K^{+-}(1430)\nu \pi^{-}\rho^{0}\nu$ (c	$(1.7 \pm 0.7)\%$ (<0.9)% $(5.4 \pm 1.7)\%$] ontinued next page)	669 316 718	

Particle	I ^G (J ^P)C ^a	Mass ^b	Mean life ^b	Partial decay mode			
	(M M (G		(sec) c7 (cm)	Mode	Fraction ^b		p or p _{max} (MeV/c)
			τ	\neg (or $\tau^+ \rightarrow CC$)			·
T (cont	inued)			+ e ⁻ ched parts			
• (com	inited)			$+ \mu^{-}$ ched parts.	(<4)%	
				$\mu^-\gamma$	(<5.5)×10 ⁻⁴	889
				$e^{-\gamma}$	(<6.4)×10-4	892
				$\mu^{-}\mu^{+}\mu^{-}$	(<4.9)×10-4	876
				$e^{-}\mu^{+}\mu^{-}$	(<3.3)×10 ⁻⁴	886
				$\mu^-e^+e^-$	(<4.4)×10 ⁻⁴	889
				e ⁻ e ⁺ e ⁻	(<4.0)×10 ⁻⁴	892
				$\mu^{-}\pi^{0}$	(<8.2)×10 ⁻⁴	884
				$e^{-}\pi^{0}$	(<2.1)×10 ⁻³	887
				$\mu^{-}K^{0}$	(<1.0)×10 ⁻³	819
				e ⁻ K ⁰	(<1.3)×10-3	823
				$\mu^- \rho^0$	(<4.4)×10 ⁻⁴	722
				$e^- \rho^0$	(<3.7)×10 ⁻⁴	726
			NONSTRANG	E MESONS ^a			
			. π	⁺ \neg (or π^- →CC)			
π^{\pm}	$1^{-}(0^{-})$	139.5673	2.6030×10 ⁻⁸	$\mu^+\nu$	100%		30
	- (-)	±0.0007	±0.0023	e ⁺ ν	(1.267 ± 0.02)	23)×10 ⁻⁴	70
	п	$n^2 = 0.0194790$	$c\tau = 780.4$	$\mu^+\nu\gamma$	$e(1.24 \pm 0.2)$	5)×10 ⁻⁴	30
	m_+-m_+	=33.9079	$(\tau^+ - \tau^-)/\bar{\tau} =$	$e^+\nu\gamma$	e(5.6 ± 0.7)×10 ⁻⁸	70
	$\pi \perp \mu \perp$	± 0.0007	(0.05±0.07)%	$e^+\nu\pi^0$	(1.02 ± 0.0)	7)×10 ⁻⁸	5
			(test of CPT)	e ⁺ ve ⁺ e ⁻	(<5)×10 ⁻⁹	70
7 0	$1^{-}(0^{-})^{+}$	134.9630	0.83×10 ⁻¹⁶	 γγ	(98.787 + 0.	020)%	67
		±0.0038	± 0.06 S=1.8 [*]	$\gamma e^+ e^-$	$(1.213^{\pm 0.0})$)%	67
	n	$n^2 = 0.018215$	$c\tau = 2.5 \times 10^{-6}$	$\dot{\gamma}\gamma\gamma$	(<3.8)×10 ⁻⁷	67
	m_+-m_	a = 4.6043		e ⁺ e ⁻ e ⁺ e ⁻	f(3.32))×10 ⁻⁵	67
	π → π	±0.0037		$\gamma\gamma\gamma\gamma$	(<4)×10-6	67
				e ⁺ e ⁻	(2.2 + 2.4))×10 ⁻⁷	67
				עע	(<2.4)×10 ⁻⁵	67
n	$0^{+}(0^{-}) +$	548.8 Γ=	0.83±0.12)keV	$(\gamma\gamma)$	(39.1 ± 0.8))%	274
"		±0.6	Neutral decays	$\sqrt{3\pi^0}$	(31.8 ± 0.8))% S=1.1*	180
		S=1.4	$(70.9 \pm 0.7)\%$	$\lfloor \pi^0 \gamma \gamma$	^g (<0.3)%	258
	n	$n^2 = 0.3012$		$(\pi^{+}\pi^{-}\pi^{0}$	(23.7 ± 0.5))%	175
				$\pi^+\pi^-\gamma$	(4.91 ± 0.1)	3)%	236
				e ⁺ e ⁻ γ	(0.50 ± 0.1)	2)%	274
				$\mu^+\mu^-\gamma$	(3.1 ± 0.4))×10-4	253
				e ⁺ e ⁻	(<3)×10 ⁻⁴	274
				$\mu^+_\mu^-$	(6.5 ± 2.1))×10 ^{-•}	253
			Charged decays	<i>π</i> _π_e ⁺ e [−]	(0.13 ± 0.1)	3)%	236
			(29.1±0.7)%	$\pi_{\pi}^{+}\pi_{\gamma}^{-}\gamma\gamma$	(<0.21)%	236
				$\pi^{\tau}\pi^{-}\pi^{\nu}\gamma$	(<6)×10 [•]	175
				$\pi^{-}\pi^{-}$	(<0.15)%	236
				$\pi^{0}e^{+}e^{-}$	(<5)×10 ⁻³	258
				$\pi^{0}\mu^{+}\mu^{-}$	(<5)×10 ⁻⁰	211
					(<3)×10 °	211

Particle	I ^G (J ^P)C _n ^a	² Mass ^b	^a Mass ^b Mean life ^b Partial decay mode					
_		(MeV) Mass ² (GeV ²)	(sec) c7 (cm)	Mode	Fraction ^b	p or P _{max} (MeV/c)		
			STRANGE !	MESONS a				
			K	$+ \neg \downarrow$ (or $K^- \rightarrow CC$)			
Κ±	$\frac{1}{2}(0^{-})$	493.667	1.2371×10 ⁻⁸	$\mu^+\nu$	$(63.50 \pm 0.16)\%$	236		
	-	±0.015	±0.0026 S=1.9*	$\pi^{+}\pi^{0}$	$(21.16 \pm 0.15)\%$	205		
	n	n ² =0.2437	$c\tau = 370.9$	$\pi^+\pi^+\pi^-$	$(5.59 \pm 0.03)\%$ S=1.1	125		
			$(\tau^{+} - \tau^{-})/\bar{\tau} =$	$\pi^-\pi^0\pi^0$	$(1.73 \pm 0.05)\%$ S=1.4	133		
			$(0.11 \pm 0.09)\%$	$\pi^0 \mu^+ \nu$	$(3.20 \pm 0.09)\%$ S=1.7	215		
			(test of CPI)	$\pi^{\circ}e^{-\nu}$	$(4.82 \pm 0.05)\%$ S=1.1	228		
			S=1.2	$\mu'\nu\gamma$	$(5.8 \pm 3.5) \times 10^{-3}$	236		
				$\pi^{*}\pi^{*}e^{+}\nu$	$(1.8 \pm 0.6) \times 10^{-5}$	207		
	^m K ^{±-m} K ⁰			$\pi \pi e^{-y}$	$(3.90 \pm 0.15) \times 10^{-9}$	203		
		- *		-++»	$(<1.2) \times 10^{-5}$	203		
		S=1.1		$\pi^+\pi^+\mu^-\bar{\nu}$	$(1.4 \pm 0.9) \times 10^{-6}$	151		
				e ⁺ v	$(-1.54 \pm 0.07) \times 10^{-5}$	247		
				$e^+ \nu \gamma (SD+)^h$	$(1.52 \pm 0.23) \times 10^{-5}$	247		
				$e^+\nu\gamma$ (SD-) ^h	(<1.6)×10 ⁻⁴	247		
				$\pi^+\pi^0\gamma$	$1.e(2.75\pm0.16)\times10^{-4}$	205		
				$\pi^+\pi^+\pi^-\gamma$	$e(1.0 \pm 0.4) \times 10^{-4}$	125		
				$\pi^0 \mu^+ \nu \gamma$	e(<6)×10 ⁻⁵	215		
				$\pi^0 e^+ \nu \gamma$	$e(3.7 \pm 1.4) \times 10^{-4}$	228		
				π ⁺ e ⁺ e ⁻	$(2.7 \pm 0.5) \times 10^{-7}$	227		
				π_e+e+	(<1)×10 ⁻⁸	227		
				$\pi^+_{\pm}\mu^+\mu^-$	(<2.4)×10 ⁻⁶	172		
			,	$\pi'_{1}\gamma\gamma$	e(<3.5)×10 ⁻³	227		
				$\pi \gamma \gamma \gamma$	*(<3.0)×10	227		
				$\pi^+ \nu \nu$	(<1.4))×10 ⁻⁷	227		
				$\pi \gamma$ $\pi^{\mp}a^{+}\pm$	(<4)×10 °	227		
				$\pi^{+}e^{-}\mu^{+}$	$(<7) \times 10^{-9}$	214		
				$e^+\nu\nu\bar{\nu}$	$(<5)^{10}$	214		
				$\mu^+\nu\nu\bar{\nu}$	(<6)×10 ⁻⁶	236		
				$\mu^+\nu e^+e^-$	$(11 + 3) \times 10^{-7}$	236		
				$\mu^-\nu e^+e^+$	(<2.0)×10 ⁻⁸	236		
				e+ve+e-	$\begin{pmatrix} 2 & +2 \\ -1 & 1 \end{pmatrix} \times 10^{-7}$	247		
				$\mu^+ \nu_e$	(<4)×10 ⁻³	236		
K⁰ K⁰	$\frac{1}{2}(0^{-})$	497.67 ±0.13 S=1.1 [●]		50 % K _{Short} , 50%	6 K _{Long}			
	m	2=0.24768						

K ⁰ S	$\frac{1}{2}(0^{-})$	0.8923×10^{-10} ± 0.0022 cr = 2.675
		c7 - 2.075

$\pi^+\pi^-$	(68.61 +	0.24)%	206
$\pi^0\pi^0$	(31.39	$(1.24)_{\%}$ S=1.1	209
$\pi^+\pi^-\gamma$	e(1.85±	0.10)×10 ⁻³	206
$\mu^+\mu^-$	(<3.2)×10 ⁻⁷	225
c+c-	(<3.4)×10 -4	249
$\gamma\gamma$	(<0.4)×10 ⁻³	249

Particle	I ^G (J ^P)C _n ^a Mass ^b (MeV)		Mean life ^b		Partial decay mode			
		(MeV) Mass ² (GeV ²)	(sec) cτ (cm)	Mode	Fraction ^b	p or P _{max} (MeV/c)		
K ⁰ L	$\frac{1}{2}(0^{-})$	ter (5.183×10^{-8} ±0.040 c7 = 1554	$\pi^{0}\pi^{0}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$ $\pi^{\pm}\mu^{\mp}\nu$ $\pi^{\pm}e^{\mp}\nu$	$\begin{array}{c} (21.5 \pm 1.0)\% & S=1.7^{\bullet} \\ (12.39 \pm 0.20)\% & S=1.3^{\bullet} \\ (27.1 \pm 0.4)\% & S=1.4^{\bullet} \\ (38.7 \pm 0.5)\% & S=1.5^{\bullet} \end{array}$	139 133 216 229		
	^m K _L ^{-m} K _S	= 0.5349×10 ±0.0022	¹⁰ ħ sec ⁻¹	$ \begin{aligned} & \uparrow [\pi c \nu \gamma \\ \pi^+ \pi^- \\ \pi^0 \pi^0 \\ \pi^+ \pi^- \gamma \\ \pi^0 \gamma \gamma \\ \gamma \gamma \\ c \mu \\ \mu^+ \mu^- \\ \mu^+ \mu^- \\ \mu^+ \mu^- \\ \pi^0 \mu^+ \mu^- \\ e^+ e^- \end{aligned} $	$ \begin{array}{c} \epsilon (1.3 \pm 0.8)\% \\ j(0.203 \pm 0.005)\% & S=1.1^{\circ} \\ j(0.094 \pm 0.018)\% & S=1.5^{\circ} \\ \epsilon (4.41 \pm 0.32) \times 10^{-5} \\ (<2.4) \times 10^{-4} \\ (4.9 \pm 0.4) \times 10^{-4} \\ k(<6) \times 10^{-6} \\ (9.1 \pm 1.9) \times 10^{-9} \\ (2.8 \pm 2.8) \times 10^{-7} \\ (<1.2) \times 10^{-6} \\ k(<2.0) \times 10^{-7} \end{array} $	229 206 209 206 231 249 238 225 225 177 249		
				$ \begin{array}{l} e^+e^-\gamma\\ \pi^0e^+e^-\\ \pi^+\pi^-e^+e^-\\ \pi^0\pi^\pm e^\mp\nu \end{array} $	$ \begin{array}{c} (1.7 \pm 0.9) \times 10^{-5} \\ (<2.3) \times 10^{-6} \\ (<8.8) \times 10^{-6} \\ (6.2 \pm 2.0) \times 10^{-5} \end{array} $	249 231 206 207		
			CHARMED NONST	RANGE MESONS a				
D±	1/2(0 ⁻) 1 m ² m _{D±} -m _D	869.4 ± 0.6 $^2=3.495$ $_0=4.7$ ± 0.3	$[(9.1^{+2.2}_{-1.5}) \times 10^{-13}]$ $c\tau = 0.027$	D ⁺ -] (or D ⁻ \rightarrow CC) e [±] anything K ⁻ anything K ⁰ any + K ⁰ any K ⁺ anything η anything $\dagger [K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	$(19 + 4)\%$ $(16 \pm 4)\%$ $(48 \pm 15)\%$ $(-6.0 \pm 3.3)\%$ $(-13)\%$ $(-13 + 0.5)\%$ $(1.8 \pm 0.5)\%$ $(13 \pm 8)\%$ $(-8.4 \pm 3.5)\%$ $(-0.45 \pm 0.30)\%$ $(-0.6)\%$ $(-0.23)\%$ $(-0.5)\%$ $(-0.37)\%$ $(-3.7)\%$	845 772 862 845 814 792 744 845 925 908 714		
D⁰ D⁰	$\frac{1}{2}(0^{-}) \qquad 1$ m ² $\frac{\Gamma(D^{0} \rightarrow \overline{D}^{0} \rightarrow K}{\Gamma(D^{0} \rightarrow K)}$	$\frac{(864.7)}{\pm 0.6}$ $2^{2}=3.477$ $\frac{(5^{+}\pi^{-})}{\pi} < 0.16$	$(4.8 + 2.4) \times 10^{-13}$ c7 = 0.014	$D^{\nu} \rightarrow (\text{ or } D^{\nu} \rightarrow CC)$ $e^{\pm} \text{ anything}$ $K^{0} \text{ any} + K^{0} \text{ any}$ $K^{+} \text{ anything}$ $\eta \text{ anything}$ $\uparrow [K^{-}\pi^{+}$ $K^{-}\pi^{+}\pi^{0}$ $K^{-}\pi^{+}\pi^{0}\pi^{0}$ $\overline{K}^{0}\pi^{0}$ $\overline{K}^{0}\pi^{+}\pi^{-}$ $\pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $\pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $K^{+}K^{-}$ $\uparrow [K^{*-}\pi^{+}$ $\overline{K}^{*0}\pi^{0}$ $K^{-}\rho^{+}$ $\overline{K}^{0}\rho^{0}$	$(<6) \ \)\% \\ (44 \pm 10) \ \ \% \ \ S=1.3^{\circ} \\ (33 \pm 10) \ \ \% \\ (8 \pm 3) \ \ \% \\ (<13) \ \ \% \\ (<13) \ \ \% \\ (<13) \ \ \% \\ (<2.4 \pm 0.4) \ \ \% \\ (9.3 \pm 2.8) \ \ \% \\ (4.5 \pm 1.3) \ \ \% \ \ S=1.4^{\circ} \\ (5een) \\ (4.5 \pm 1.3) \ \ \% \ \ S=1.4^{\circ} \\ (seen) \\ (2.2 \pm 1.1) \ \ \% \\ (4.2 \pm 0.8) \ \ \% \\ (7.9 \pm 3.8) \times 10^{-4} \\ (<9) \ \ \times 10^{-4} \\ (<9) \ \ \times 10^{-4} \\ (<9) \ \ \times 10^{-4} \\ (1.4 \pm 1.4) \ \ \% \\ (1.4 \pm 1.4) \ \ \% \\ (1.4 \pm 1.4) \ \ \% \\ (7.2 \pm 3.1) \ \ \% \\ (0.1 \pm 0.6) \ \ \% \end{bmatrix}$	861 844 812 815 860 842 922 768 791 711 711 679 677		

Particle	I ^G (J ^P)C ^a	Mass ^b	Mean life ^b		Partial de	cay mode	y mode			
		(MeV) Mass ² (GeV ²)	(sec) c7 (cm)	Mode	Frac	tion ^b	p or P _{max} (MeV/c)			
			CHARMED STRAN	GE MESON a						
			F+-	(or F ⁻ →CC)						
F±	0(0 ⁻) ^m	2021	$(2.2^{+2.8}_{-1.1}) \times 10^{-13}$	$\eta \pi^+$	(seen)	930			
1		±15		$\eta \pi^+ \pi^+ \pi^-$	(seen)	885			
				$\eta'\pi'\pi'\pi$ $\rho^+\phi$	(seen) (seen)	467			
			NONSTRANGE E	ARYONS a						
р	$\frac{1}{2}(\frac{1}{2}^+)$	938.2796 +0.0027	stable (≥8×10 ³⁰ y)	stable						
	n	$n^2 = 0.880369$		$ q_p - q_e < 10^{-21}$	q _e ⁿ					
n	$\frac{1}{(1^+)}$	939.5731	925±11	$pe^{-\bar{\nu}}$	100%		1			
11	2 2 1	±0.0027	$c\tau = 2.77 \times 10^{13}$	$p\nu\bar{\nu}$ (chg.noncons.)	(<9)×10 ⁻²⁴	1			
	r	$n^2 = 0.882798$								
	mp-mn	± 0.00004		$ q_n < 10^{-21} q_e ^n$						
			STRANGENESS -1	BARYONS a						
Δ	$0(\frac{1}{2}^{+})$	1115.60	2.632×10 ⁻¹⁰	pπ ⁻	(64.2 (25.8 ±	0.5)%	100			
		± 0.05 S=1 2 [•]	± 0.020 S=1.0	nπ ne ⁻ ν	(8.35+	0.15)×10 ⁻⁴	163			
	r	$n^2 = 1.2446$		ρμ ⁻ ν	(1.57±	0.35)×10 ⁻⁴	131			
	m _Λ −m _Σ 0=	=-76.86 ±0.08		ρ π [−] γ	e(8.5 ±	1.4)×10 ⁻⁴	100			
Σ+	$1(\frac{1}{2}^{+})$	1189.36	0.800×10 ⁻¹⁰	pπ ⁰	(51.64	0.20)%	189			
-	2	±0.06	±0.004	$n\pi^+$	(48.36 [±]	0.30)%	185			
		S=1.8 $m^2=1.4146$	$c\tau = 2.40$	$p\gamma$ $p\pi^+\gamma$	e(45 + e)	$0.13) \times 10^{-9}$	S=1.4 225 185			
	1	11 -1.4140		$\Lambda e^+ \nu$	$(2.0 \pm$	0.5)×10 ⁻⁵	71			
	m _{~+} -m _{~-}	=-7.97		$n\mu^+\nu$	(<3.0)×10 ⁻⁵	202			
	2. 2	±0.07	$\Gamma(\Sigma^+ \to \ell^+ n \nu) \to \infty$	$ne^+\nu_+$	(<5)×10 ⁻⁶	224			
0		S=1.3	$\frac{1}{\Gamma(\Sigma^{-} \rightarrow \ell^{-} n\nu)} < .04$	pe'e	(</td <td>)×10 *</td> <td>225</td>)×10 *	225			
Σ^{0}	$1(\frac{1}{2}^{+})^{p}$	1192.46	5.8×10 ⁻²⁰	$\overline{\Lambda\gamma}$	100%		74			
	2	±0.08	±1.3	Λe ⁺ e ⁻	8(5.45)×10 ⁻³	74			
	I	m ² =1.4220	$c\tau = 1.7 \times 10^{-5}$	$\Lambda\gamma\gamma$	(<3)%	/4			
Σ^{-}	$1(\frac{1}{2}^{+})$	1197.34	1.482×10 ⁻¹⁰	<u>n</u> π	100%		193			
	`2 ′	±0.05	$\pm 0.011 \text{ S} = 1.3^*$	ne ⁻ v	(1.08±	0.04)×10 ⁻³	230			
	I	$m^2 = 1.4336$	$c\tau = 4.44$	$n\mu^{-}\nu$	(0.45±	$0.04) \times 10^{-3}$	210			
	m_0_m_	<u> </u>		$\Lambda e \nu$ $n\pi^{-}\gamma$	e(46 + e)	$0.05) \times 10^{-4}$	79 193			
	Σ0Σ-	±0.06			(7.0 ±	,	.,,,			

Particle	I ^G (J ^P)C ^a	Mass ^b	Mean life ^b	Partial decay mode			
		(MeV) Mass ² (GeV ²)	(sec) c7 (cm)	Mode	Fraction ^b	p or p _{max} (MeV/c)	
			STRANGENESS -	2 BARYONS ^a			
Ξ ⁰	$\frac{1}{2}(\frac{1}{2}^+)^q$	1314.9 ±0.6 $n^2=1.729$	$2.90 \times 10^{-10} \\ \pm 0.10 \\ c_{7} = 8.69$	$ \begin{array}{c} \Lambda \pi^{0} \\ \Lambda \gamma \\ \Sigma^{0} \gamma \\ p \pi^{-} \end{array} $	$ \begin{array}{c} 100\% \\ (0.5 \pm 0.5)^{6} \\ (<7)^{6} \\ (<3.6)^{7} \\ (<1.2)^{7} \\ \end{array} $	135 % 184 % 117 ×10 ⁻⁵ 299	
	m <u>z</u> 0-m <u>z</u> -	=-6.4 ±0.6		$p = \nu$ $\Sigma^+ e^- \nu$ $\Sigma^- e^+ \nu$ $\Sigma^+ \mu^- \nu$ $\Sigma^- \mu^+ \nu$ $p \mu^- \nu$	(<1.3) (<1.1) (<0.9) (<1.1) (<0.9) (<1.1) (<0.9) (<1.3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H	$\frac{1}{2}(\frac{1}{2}^{+})^{q}$	1321.32 ±0.13 n ² =1.7459	1.641×10^{-10} ±0.016 cr =4.92		100% (2.9 ± 1.1): (<1.4): (3.5 ± 3.5): (<8): (<1.1): (<1.2): (<1.5)' (<1.2): (<4): (<4): (<2.3): (<2.3):	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			STRANGENESS	-3 BARYON ^a			
Ω_	0(<u>3</u> ⁺) ^q	1672.45 ±0.32 $n^2=2.7971$	$0.819 \times 10^{-10} \pm 0.027 \ c\tau = 2.46$	$ \begin{array}{c} \Lambda K^{-} \\ \Xi^{0} \pi^{-} \\ \Xi^{-} \pi^{0} \\ \Xi^{0} e^{-\nu} \\ \Xi^{0} (1530) \pi^{-} \\ \Lambda \pi^{-} \\ \Xi^{-} \gamma \end{array} $	$(\begin{array}{c} 68.6 \pm 1.3 \\ (\begin{array}{c} 23.4 \pm 1.3 \\ (\begin{array}{c} 23.4 \pm 1.3 \\ (\begin{array}{c} 8.0 \pm 0.8 \\ (\end{array})) \\ (\begin{array}{c} \sim 1 \\ (\end{array}) \\ (\begin{array}{c} \sim 2 \\ (< 1.3 \\ (< 3.1 \\)) \end{array})$	% 211 % 294 % 290 % 319 ×10 ⁻³ 449 ×10 ⁻³ 314	
<u></u>			NONSTRANGE CHAI	MED BARYON 4			
Δ ⁺	0(¹ / ₂ ⁺) ^r	2282.2 ± 3.1 S=1.8* $n^2=5.21$	$(1.1^{+0.9}_{-0.4}) \times 10^{-13}$ $c\tau = 0.003$	$pK^{-}\pi^{+}$ $p\bar{K}^{0}$ $p\bar{K}^{0}\pi^{+}\pi^{-}$ $\Lambda\pi^{+}\pi^{+}\pi^{-}$ $\Sigma^{0}\pi^{+}$ $T[pK^{*0}$ $\Delta^{++}K^{-}$ $pK^{*-}\pi^{+}$ e^{+} anything Λe^{+} anything Λe^{+} anything	$\begin{array}{c} (2.2 \pm 1.0) \\ (1.1 \pm 0.7) \\ (<4) \\ (<4) \\ (<6 \pm 0.5) \\ (<3.1, seen) \\ (seen) \\ (0.48 \pm 0.30) \\ (0.45 \pm 0.27) \\ (seen) \\ (4.5 \pm 1.7) \\ (1.8 \pm 0.9) \\ (1.1 \pm 0.8) \\ \end{array}$	5 820 5 870 5 751 5 861 5 804 822 682 5 682 5 707 576 % % %	
$\rightarrow \mathbf{A_b^0}$ $\rightarrow \text{ search}$ $\rightarrow \nu \text{ boun}$ $\rightarrow \mu \text{ boun}$ $\rightarrow \mu \text{ bave}$ $\rightarrow \text{ free qu}$ $\rightarrow \text{ charm}$ $\rightarrow \text{ bottom}$ $\rightarrow \text{ top haa}$ $\rightarrow \text{ other s}$	es for massive ds from astro lepton searche gauge boson se aark searches tic monopole searches and hadron searc dron searches stable particle	e neutrinos and physics and co es earches evidence thes searches searches	l lepton mixing ssmology				

ADDENDUM TO Stable Particle Table

	Magnetic Mome	nt J			
ew	1.001 159 652 2 ±.000 000 000	$\frac{209}{031} \frac{e\hbar}{2m_ec} \qquad \mu \text{ Dec}$	ay parameters ⁵		
μ ^w	1.001 165 924 ±.000 000 009	$\frac{c\hbar}{2m_{\mu}c} \qquad \begin{array}{l} \rho = 0.752 \pm \\ \xi \cdot P_{\mu} = 0.97 \\ g_{A}/g_{V} = 0 \end{array}$	$\begin{array}{cccc} 0.003 & \eta = - \\ 72 \pm 0.014 & \delta = \\ 0.86 \substack{+0.33 \\ -0.11} & \phi = 1 \end{array}$	$\begin{array}{l} 0.12 \pm 0.21 \\ 0.755 \pm 0.009 \\ 80^{\circ} \pm 15^{\circ} \end{array} h = \\ \end{array}$	1.01±0.06
η	$\begin{array}{ccc} \mathbf{Mode} & \mathbf{L} \\ \pi^+ \pi^- \pi^0 \\ \pi^+ \pi^- \gamma \end{array}$	eft-right asymmetry Se (0.12±.17)% (0.88±.40)%	xtant asymmetry (0.19±0.16)%	Quadrant asymmetry (-0.17±0.17)%	$B = 0.047 \pm 0.062$
K±	Mode Partial μν (51.3) $\pi\pi^0$ (17.1) $\pi\pi^+\pi^-$ (4.5) $\pi\pi^0\pi^0$ (1.4) $\mu\pi^0\nu$ (2.5) $\sigma\sigma^{0}\nu$ (3.5)	al rate (sec ⁻¹) 3 ± 0.17)×10 ⁶ S=1.2 ² 0 ± 0.13)×10 ⁶ S=1.1 ¹ 2 ± 0.02)×10 ⁶ S=1.1 ¹ 0 ± 0.04)×10 ⁶ S=1.4 ² 8 ± 0.07)×10 ⁶ S=1.7 ² 0 ± 0.04)×10 ⁶ S=1.7 ²	Slope paramete $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ $K^- \rightarrow \pi^- \pi^- \pi^+$ $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ $K_L^{0} \rightarrow \pi^+ \pi^- \pi^0$ Form factors for	s for $K \to 3\pi^{f}$ $g=-0.215\pm.004$ S=1 $g=-0.217\pm.007$ S=2 $g=0.607\pm.030$ S=1 $g=0.670\pm.014$ S=1 r K _{P3} decays	.4 See Data Card Listings .5 for quadratic coefficients. .6
K ⁰ _S	$\frac{\pi^{+}\pi^{-}}{\pi^{0}\pi^{0}} \frac{j(0.7)}{j(0.3)}$	$\frac{689 \pm .0033) \times 10^{10}}{(517 \pm .0029) \times 10^{10}} = 1.1^{10}$ $\frac{4 \pm 0.20) \times 10^{6}}{5 = 1.7^{10}} = 1.7^{10}$	$\mathbf{K}_{\ell 3}^{+} \begin{cases} \lambda_{\mu}^{e} = \\ \lambda_{\mu}^{\mu} = \\ \lambda_{0}^{\mu} = - \end{cases}$	$0.029 \pm .004$ $0.026 \pm .008 \text{ S}=1.5^{\circ}$ $0.003 \pm .007 \text{ S}=1.5^{\circ}$	$ K \overset{0}{}_{0} \begin{cases} \lambda^{e}_{\pm} = 0.0300 \pm .0016 \text{ S} = 1.2^{\circ} \\ \lambda^{\mu}_{\pm} = 0.034 \pm .006 \text{ S} = 2.5^{\circ} \\ \lambda^{\mu}_{0} = 0.020 \pm .007 \text{ S} = 2.5^{\circ} \end{cases} $
► <u>L</u>	$\pi^{+}\pi^{-}\pi^{0} (2.3)$ $\pi\mu\nu (5.2)$ $\pie\nu (7.4)$ $\pi^{+}\pi^{-}j(3.9)$ $\pi^{0}\pi^{0}j(1.8)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	See Data Card $(\eta_{+-}) = (2.274)$ $(\eta_{+-}) = (4.6 \pm 1)$ $ \eta_{+-0} ^2 < 0.12$	Listings for ξ , f_s , and f_t rameters ^{<i>u,j</i>} $\pm .022) \times 10^{-3} \eta_0$ $2)^\circ \phi_{00}$ $ \eta_{000} ^2 < 0.28$	$ =(2.33\pm.08)\times10^{-3} \text{ S}=1.1^*$ =(54±5)° $\delta=(0.330\pm.012)\%$
			$\Delta S = -\Delta Q$ Re x=0.009±.	$120 \text{ S}=1.4^* \text{ Im } \text{x}=1.4^* \text{ Im } \text{x}=1$	$-0.004 \pm .026$ S=1.1 [*]
	Magnetic moment (eħ/2mpc)	Μeasure	$\frac{\text{Decay parameters}^{\nu}}{\phi(\text{degree})} \frac{\gamma}{\gamma}$	Derived Cou	pling Constant Ratios
р	2.7928456 ±.0000011				
n ^w	-1.91304184 ±.00000088	pe ⁻ v		g_A/r ϕ_{AV}	$g_V = -1.255 \pm 0.006$ = (180.11 ± 0.17)°
٨٣	-0.613 ±.004	$p\pi^-$ 0.642±0.013 $n\pi^0$ 0.646±0.044 $pe\nu$	(-6.5±3.5)° 0.76	(7.7±4.1)° 8 _A /4	$g_V = -0.690 \pm 0.034 \text{ S} = 1.4^*$
Σ+	2.33 ±.13	$\begin{array}{rrr} p\pi^0 & -0.979 \pm 0.016 \\ n\pi^+ & +0.068 \pm 0.013 \\ p\gamma & -0.72 \pm 0.29 \end{array}$	$(36\pm34)^{\circ}$ 0.17 $(167\pm20)^{\circ}$ -0.97 S=1.1*	(187±6)° (-73 ⁺¹³⁴)°	
Σ ⁻	-1.41 ±.25	$n\pi^{-} -0.068 \pm 0.008$ $ne^{-}\nu$ $Ae^{-}\nu$	(10±15)° 0.98	$(249^{+12}_{-116})^{\circ}$ $g_{A}/g_{V} =$ $g_{V}/g_{A} =$	$\pm (0.385 \pm 0.070)$ S=2.3° 0.14 ± 0.24 S=1.6° g_{WM}/g_A =2.4 ± 1.7
Ξ	-1.250 ±.014	$\Lambda \pi^0 = -0.413 \pm 0.022$ S=2.0*	(21±12)° 0.85	(218 ⁺¹² ₋₁₈)°	
Ξ-	-1.85 ±.75	$\Lambda \pi^{-} = -0.434 \pm 0.015$ S=1.4*	$(2\pm 6)^{\circ}$ 0.90 S=1.1*	(184±12)°	
Ω^{-}	····	$\Lambda K^{-} = -0.10 \pm 0.38$ S=1.2 [•]			
_					

- → Indicates an entry in the Stable Particle Data Card Listings not entered in the Stable Particle Table.
- * S = Scale factor = √χ²/(N-1), where N ≈ number of experiments. S should be ≈1. If S > 1, we have enlarged the error of the mean, δx̄; i.e., δx̄ → Sôx̄. This convention is still inadequate, since if S ≫ 1 the experiments are probably inconsistent, and therefore the real uncertainty is probably even greater than Sôx. See text, and ideograms in Stable Particle Data Card Listings.
- † Square brackets indicate subreactions of some previous unbracketed decay mode(s). Reactions in one set of brackets may overlap with reactions in another set of brackets.
- a. The baryon number B, strangeness S, and charm C of the hadrons which appear in the tables are as follows:

Mesons (B=0)	S	С	Baryons (B=1)	S	С
π,η	0	0	p,n	0	0
K ⁺ ,K ⁰	+1	0	Λ, Σ	-1	0
K~, ⊼ ⁰	-1	0	Ξ	-2	0
D ⁺ ,D ⁰	0	+1	Ω-	-3	0
D^{-}, \overline{D}^{0}	0	-1	Λ_{c}^{+}	0	+1
F ⁺	+1	+1	Ľ		
F ⁻	-1	-1			

- b. Quoted upper limits correspond to a 90% confidence level.
- c. In decays with more than two bodies, pmax is the maximum momentum that any particle can have.
- d. 99% confidence level. Lower limit from same experiment, > 14 eV, not yet confirmed. See Stable Particle Data Card Listings.
- e. See Stable Particle Data Card Listings for energy limits used in this measurement.
- f. Theoretical value; see also Stable Particle Data Card Listings.
- g. See note in Stable Particle Data Card Listings.
- h. Structure-dependent part with positive (SD+) and negative (SD-) photon helicity.
- *i*. The direct emission branching fraction is $(1.56 \pm .35) \times 10^{-5}$.
- j. The $K_S^0 \to \pi\pi$ and $K_L^0 \to \pi\pi$ rates (and branching fractions) are from our branching fraction and rate fits and do not include results of $K_L^{0-}K_S^0$ interference experiments. The $|\eta_{+-}|$ and $|\eta_{00}|$ values given in the addendum are these rates combined with the $|\eta_{+-}|$ and $|\eta_{00}|$ results from interference experiments.
- k. The stronger limit <2×10⁻⁹ of Clark et al., Phys. Rev. Lett. 26, 1667 (1971) is not listed because of possible (but unknown) systematic errors. See Stable Particle Data Card Listings.
- ℓ . This is a weighted average of D^{\pm} (44%) and D^{0} (56%) branching fractions.
- m. Quantum numbers shown are favored but not yet established. See Stable Particle Data Card Listings.
- *n*. Limit from neutrality-of-matter experiments. Assumes $|q_n| = |q_n| |q_e|$.
- p. J^{P} not measured for Σ^{0} . Assumed same as Σ^{\pm} to allow isotriplet association.
- q. P for Ξ and J^P for Ω^- not yet measured. Values shown are SU(3) predictions.
- r. J^{P} for Λ_{c}^{+} not yet measured. Values shown are SU(4) predictions.
- s. $|g_A/g_V|$ defined by $g_A^2 = |C_A|^2 + |C_A|^2$, $g_V^2 = |C_V|^2 + |C_V|^2$, and $\Sigma < \tilde{\epsilon} |\Gamma_i| \mu > \langle \tilde{\nu} |\Gamma_i(C_i + C_i\gamma_5)| \nu >; \phi$ defined by $\cos \phi = -\text{Re}(C_A^*C_V + C_A^*C_V^*)/g_Ag_V$, P_{μ} is muon longitudinal polarization [for more details, see text Section VI A].
- t. The definition of the slope parameter of the Dalitz plot is as follows [see also text Section VI B.1]: $|\mathbf{M}|^2 = 1 + g \left[\frac{\mathbf{s}_3 \mathbf{s}_0}{\mathbf{m}_{\perp}^2} \right]$
- u. The definition for the CP violation parameters is as follows [see also text Section VI B.3]:

$$\begin{aligned} \eta_{+-} &= |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_{L}^{0} \to \pi^{+}\pi^{-})}{A(K_{S}^{0} \to \pi^{+}\pi^{-})} \qquad \eta_{00} = |\eta_{00}| e^{i\phi_{00}} = \frac{A(K_{L}^{0} \to \pi^{0}\pi^{0})}{A(K_{S}^{0} \to \pi^{0}\pi^{0})} \\ \delta &= \frac{\Gamma(K_{L}^{0} \to \ell^{+}) - \Gamma(K_{L}^{0} \to \ell^{-})}{\Gamma(K_{L}^{0} \to \ell^{+}) + \Gamma(K_{L}^{0} \to \ell^{-})}, \quad |\eta_{+-0}|^{2} = \frac{\Gamma(K_{S}^{0} \to \pi^{+}\pi^{-}\pi^{0})^{CP \text{ viol.}}}{\Gamma(K_{L}^{0} \to \pi^{+}\pi^{-}\pi^{0})}, \quad |\eta_{000}|^{2} = \frac{\Gamma(K_{S}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0})^{CP \text{ viol.}}}{\Gamma(K_{L}^{0} \to \pi^{0}\pi^{0}\pi^{0})} \end{aligned}$$

v. The definition of these quantities is as follows [for more details on sign convention, see text Section VI B]:

$$\alpha = \frac{2|\mathbf{s}||\mathbf{p}|\cos\Delta}{|\mathbf{s}|^2 + |\mathbf{p}|^2} \qquad \beta = \sqrt{1 - \alpha^2 \sin\phi} \qquad \mathbf{g}_{A}, \ \mathbf{g}_{V}, \ \mathbf{g}_{WM} \text{ defined by } \langle \mathbf{B}_{f} | \gamma_{\lambda}(\mathbf{g}_{V} - \mathbf{g}_{A}\gamma_{5}) + (\mathbf{g}_{WM}/\mathbf{m}_{B_{i}})\sigma^{\lambda\nu}q_{\nu} | \mathbf{B}_{i} \rangle \\ \beta = \frac{-2|\mathbf{s}||\mathbf{p}|\sin\Delta}{|\mathbf{s}|^2 + |\mathbf{p}|^2} \qquad \gamma = \sqrt{1 - \alpha^2 \cos\phi} \qquad \mathbf{g}_{A}, \ \mathbf{g}_{V}, \ \mathbf{g}_{WM} \text{ defined by } \langle \mathbf{B}_{f} | \gamma_{\lambda}(\mathbf{g}_{V} - \mathbf{g}_{A}\gamma_{5}) + (\mathbf{g}_{WM}/\mathbf{m}_{B_{i}})\sigma^{\lambda\nu}q_{\nu} | \mathbf{B}_{i} \rangle \\ \phi_{AV} \text{ defined by } \mathbf{g}_{A}/\mathbf{g}_{V} = |\mathbf{g}_{A}/\mathbf{g}_{V}| e^{i\phi}AV$$

w. For limits on electric dipole moment, see Data Card Listings. Forbidden by P and T invariance.

Meson Table

April 1982

In addition to the entries in the Meson Table, the Meson Data Card Listings contain all substantial claims for meson resonances. See contents of Meson Data Card Listings below.

Quantities in italics are new or have changed by more than one (old) standard deviation since April 1980.

0 1 1/2			Full	_		Partial decay mode	
 <i>ε</i> ρ Κ <i>ω/φ</i> δ <i>η</i> π Κ 	* I ^C (J ^P)C _n estab.	Mass M (MeV)	Width Γ (MeV)	$M^2 \pm \Gamma M^a (GeV^2)$	Mode	Fraction(%) [Upper limits (%) are 90% CL]	p or p _{max} (MeV/c)
			ľ	NONSTRANGE	MESONS		-
$\frac{\pi^{\pm}}{\pi^{0}}$	<u>1⁻(0⁻)+</u>	139.57 134.96	0.0 7.95 eV ±0.55 eV	0.019479 0.018215	See	Stable Particle Table	
η	<u>0⁺(0⁻)+</u>	548.8 ±0.6	0.83 keV ±0.12 keV	0.301 ±0.000	Neutral Charged	70.9 See Stable 29.1 Particle T	able
ρ(770)	<u>1⁺(1⁻)</u> -	769 [‡] ±3 [§]	154 [‡] ±5 [§]	0.591 ±0.118	$\pi\pi$ $\pi\gamma$ $\mu^+\mu^-$ e^+e^-	$\approx 100 0.044 \pm 0.005 0.0067 \pm 0.0012^{d} 0.0043 \pm 0.0005^{d} 0.0043 \pm 0.0005^{d} $	358 372 370 384
M and Γ f	rom neutral m	ode.			WY For upper lin	mits, see footnote e	107
ω(783)	<u>0⁻(1⁻)</u> -	782.6 ±0.2 S=1.1*	9.9 ±0.3	0.612 ±0.008	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{0}\gamma$ $\pi^{+}\pi^{-}$ $\pi^{0}\mu^{+}\mu^{-}$ $e^{+}e^{-}$ $\eta\gamma$ For upper life	89.9 ± 0.5 8.7 ± 0.5 1.4 ± 0.2 0.010 ± 0.002 0.0072 ± 0.0007 S=1.3* seen [‡]	327 380 366 349 391 199
η'(958)	<u>0+(0-)+</u> ‡	957.57 ±0.25	0.28 ±0.10	0.917 ±0.0003	$\frac{\eta \pi \pi}{\rho^0 \gamma}$ $\frac{\rho^0 \gamma}{\omega \gamma}$ $\frac{\gamma \gamma}{\mu^+ \mu^- \gamma}$ For upper lin	65.3 ± 1.6 30.0 ± 1.6 2.8 ± 0.5 1.9 ± 0.2 0.009 ± 0.002 mits, see footnote g	231 170 159 479 467
S*(975)	<u>0+(0+)+</u>	975^{c} ±4 S=1.4*	33 ^c ±6	0.951 ±0.032	ππ KK	78 ± 3 22 ± 3	467
See note o $\delta(980)^{\ddagger}$	$\frac{1}{1^{-}(0^{+})+}$	S wave.* 983 ^h	54 ^h	0.966	ηπ	seen	320
φ(1020)	<u>0⁻(1⁻)</u> -	±2 1019.61 ±0.07	±7 4.21 ±0.13	±0.053 1.040 ±0.004	$\frac{K\bar{K}}{K\bar{K}}$ $\frac{K^{+}K^{-}}{K_{1}K_{S}}\pi^{-}\pi^{0} (in \eta \gamma \pi^{0} \gamma e^{+}e^{-} \mu^{+}\mu^{-} \pi^{+}\pi^{-}$ For upper lin	seen 49.1 ± 1.0 S=1.3* 34.6 ± 1.0 S=1.3* $cl. \rho \pi$) 14.8 ± 0.7 S=1.2* 1.5 ± 0.2 0.14 ± 0.05 0.031 ± 0.001 0.025 ± 0.003 0.02 ± 0.01 mits, see footnote <i>i</i>	127 111 462 362 501 510 499 490
H(1190)	0-(1+)-	1190 ±60	320 ±50	1.416 ±0.381	ρπ	seen	327
Seen in on	e experiment o	only.				· · · · · · · · · · · · · · · · · · ·	······
B(1235)	1+(1+)-	1233 ±10 [§]	137 ±10§	1.52 ±0.17	ωπ [D/S amplit For upper lin	only mode seen ude ratio = 0.29 ± 0.05] mits, see footnote j	349

	0 n		Fuil	-		Partial decay mode	
$ \begin{array}{c c} \epsilon & \rho \\ \hline \omega/\phi & \delta \\ \hline \eta & \pi & K \end{array} $	I ^G (J ^P)C _n ⊢→ estab.	Mass M (MeV)	Width Г (MeV)	$M^2 \pm \Gamma M^a (GeV^2)$	Mode	Fraction(%) [Upper limits (%) are 90% CL]	p or P _{max} (MeV/c)
f(1270)	<u>0⁺(2⁺)+</u>	1273 ±5§	179 ±20 [§]	1.62 ±0.23	$\pi\pi^{\pi\pi}$ $2\pi^+2\pi^-$ $K\overline{K}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	621 558 397
					$\frac{77}{\pi^{+}\pi^{-}2\pi^{0}}$ For upper limits,	seen see footnote k	561
A ₁ (1270)	$\frac{1^{-}(1^{+})+}{1^{-}(1^{+})+}$	1275 [‡] ±30	315 [‡] ±45	1.63 ±0.40	$ \rho \pi $ $ \pi(\pi\pi)_{S-wave} $	dominant seen	389 599
D(1285)	<u>0⁺(1⁺)+</u>	1283 ±5 [§]	26 ±5§	1.65 ±0.03	ΚΚπ ηππ †[δπ	11 ±3 49 ±6 36 ±7]	302 482 236
(1300)	0+(0+)+	~1300	200-600		$\frac{4\pi (\text{prob. }\rho\pi\pi)^{\ddagger}}{\pi\pi}$	40 ± 7 ~90	564 635
See note on	ππ and Kk	S wave \$			KK ηη	~10	418 348
$\frac{1}{\pi(1300)}$	$\frac{1^{-}(0^{-})+}{1^{-}(0^{-})+}$	1300 [§] ±100 [§]	200-600		$\rho\pi$ $\pi(\pi\pi)_{\rm S}$ where	seen seen	407 612
Not a well-	established :	resonance.			· /S-wave		
A ₂ (1320)	$\frac{1^{-}(2^{+})+}{2^{+}}$	1318 ±5 [§]	110 ±5§	1.74 ±0.14	ρπ ηπ	70.1 ± 2.2 14.5 ± 1.2	419 534
					ωππ KK η'π	10.6 ± 2.5 4.8 ± 0.5 < 2 (CL=97%)	361 434 286
					$\pi\gamma$	0.45 ±0.11 0.0007 ±0.0004	652 659
E(1420) [‡]	0+(1+)+	1418	52	2.01	$K\overline{K}\pi$ (prob. $K^*\overline{K}$	+KK*) seen	423
		±10 [§]	±10 [§]	±0.07	ηππ †[δπ	possibly seen possibly seen]	565 348
f'(1515)	$\frac{0^{+}(2^{+})^{+}}{2^{+}}$	1520 ±10 [§]	$75 \pm 10^{\$}$	2.31 ±0.11	K κ ππ	dominant possibly seen	574 747
ρ′(1600)	<u>1⁺(1⁻)</u> -	$1600^{\ddagger} \pm 20^{\$}$	300 [‡] ±100 [§]	2.56 ±0.48	$4\pi \text{ (incl. } \rho \pi^+ \pi^- \\ \pi \pi \\ \mathbf{K}^* \overline{\mathbf{K}} + \overline{\mathbf{K}}^* \mathbf{K}$	$(A_1\pi)$ large $< 30^+$ ~ 15	738 788 388
					$\eta\pi\pi$ KK e ⁺ e ⁻	~13 ~1	675 630 800
ω(1670)	0-(3-)-	1688 ±5	$166 \pm 15^{\$}$ S=1.1*	2.78 ±0.28	3π †[ρπ 5π	seen seen	806 648 740
A ₃ (1680) [‡]	<u>1⁻(2⁻)+</u>	1680 [§]	250 [§]	2.82	$\frac{\dagger [\omega \pi \pi \text{ (prob. B}\pi)]}{f\pi}$	seen] 55±5	616 337
		±30°	±30°	±0.42	ρπ π(ππ) _{S-wave} For upper limits,	36 ± 6 9 ± 5 see footnote ℓ	656 813
φ'(1680)	<u>0⁻(1⁻)</u> -	1684 ±15 [§]	126 ±22	2.84 ±0.21	$\frac{\mathbf{K}^*\mathbf{K}}{\omega\pi\pi} + \mathbf{K}^*\mathbf{K}$	dominant seen	541 624
+	· + · · - ·				ĸĸ	seen	682
g(1690)+	<u>1⁺(3⁻)</u> -	1691 ±5 [§]	200 ⁸ ±20 [§]	2.86 ±0.34	2π $4\pi \text{ (incl. } \pi\pi\rho,\rho\rho$ $K\overline{K}\pi \text{ (incl. } K^*\overline{K})$	23.8 ± 1.3 , $A_2\pi, \omega\pi$) 70.9 ± 1.9	834 787 625

$\frac{\mathbf{J}^{P} \mathbf{G}}{\mathbf{J}} \mathbf{O} 1 \mathbf{V}_{2}$	_		Full	_		Partial decay mode	
$ \begin{array}{c c} \mathbf{N} & + & \epsilon & \rho \\ \hline $	^P (J ^P)C _n → estab.	Mass M (MeV)	Width Γ (MeV)	$M^2 \pm \Gamma M^a \\ (GeV^2)$	Mode	Fraction(%) [Upper limits (%) are 90% CL]	p or p _{max} (MeV/c)
h(2040) 0 ⁺	(4+)+	2040 [§] ±20 [§]	150 [§] ±50 [§]	4.16 ±0.31	ππ KK	seen seen	1010 890
$\vec{\eta}_{c}(2980) \underline{0}^{4}$	<u>+()+</u>	2981 ±6	< 20	8.89	$\eta \pi^+ \pi^-$ 2($\pi^+ \pi^-$) K ⁺ K ⁻ $\pi^+ \pi^-$ pp	seen seen seen seen	1426 1458 1343 1158
J/\$\$\psi_3100) 0^-	-(1-)-	3096.9 ±0.1	0.063 ±0.009	9.591 ±0.000	e^+e^- $\mu^+\mu^-$ hadrons + ra	$7.4 \pm 1.2 \\ 7.4 \pm 1.2 \\ diative \qquad 85 \pm 2$	1548 1545
Decay	modes in	ito stable h	adrons		Decay m	odes into hadronic resonances	
$ \begin{array}{c} & & & \\ & & & $	0 .0 +K ⁻ .0 ζ ⁻ ζ ⁺ K ⁻	3. 4 2. 9 1. 2 0. 9 0. 7 0. 5 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7	7 ± 0.5 9 ± 0.7 2 ± 0.3 9 ± 0.3 2 ± 0.23 3 ± 0.06 4 ± 0.1 4 ± 0.2 8 ± 0.36 2 ± 0.08 1 ± 0.13 5 ± 0.07 4 ± 0.26 3 ± 0.04 2 ± 0.02 1 ± 0.02 8 ± 0.09 6 ± 0.06 3 ± 0.04 1 ± 0.02 1 ± 0.03 2 ± 0.008 1 ± 0.005 1.005	1496 1433 1368 1345 1407 1107 1517 1466 1106 818 1320 1440 988 948 1232 1174 1231 1033 988 1074 1176 1131 1468 1542 1032	$ \begin{array}{c} \dagger \left[\rho \pi & \omega 2 \pi^{+} 2 \pi^{-} \\ \rho A_{2} & \omega \pi \pi \\ K^{*0}(892) \overline{K}^{*0} \\ K \pm K^{*+} (892) \\ B \pm (1235) \pi^{+} \\ K^{0} \overline{K}^{*0} (892) + \delta \\ \omega f \\ \phi \pi^{+} \pi^{-} \\ \eta' p \overline{p} \\ \phi K \overline{K} \\ \omega p \overline{p} \\ \omega K \overline{K} \\ \phi \eta \\ \phi f'(1515) \\ \pi^{\pm} A_{7} \\ K^{*0} (1430) \overline{K}^{*} \\ K^{0} \overline{K}^{*0} (1430) \\ K \pm K^{*} \mp (1430) \\ K \pm K^{*} \mp (1430) \\ \varphi 2 \pi^{+} 2 \pi^{-} \\ \phi f \\ K^{*0} (892) \overline{K}^{*0} \\ \phi f \\ \omega f' \end{array} $	$\begin{array}{c} 1.22 \pm 0.12 \\ 0.85 \pm 0.34 \\ 0.84 \pm 0.45 \\ 0.68 \pm 0.19 \\ (1430) + c.c. & 0.67 \pm 0.26 \\ 0.34 \pm 0.05 \\ 0.29 \pm 0.07 \\ -c.c. & 0.27 \pm 0.06 \\ 0.23 \pm 0.08 \\ 0.16 \pm 0.08 \\ 0.18 \pm 0.06 \\ 0.18 \pm 0.06 \\ 0.18 \pm 0.08 \\ 0.16 \pm 0.10 \\ 0.10 \pm 0.06 \\ 0.08 \pm 0.05 \\ < 0.43 \\ 0(1430) < 0.29 \\ +c.c. & < 0.2 \\ < 0.15 \\ < 0.15 \\ < 0.05 \\ < 0.037 \\ < 0.016 \end{bmatrix}$	1449 1392 1126 1435 1007 1373 1299 1373 1144 1365 596 1176 768 1265 1320 874 1263 584 1154 1154 1154 1154 1154 1154 1154
ĸĸĸ		< 0	. 009]	1466	$\frac{\text{Radiativ}}{\gamma \eta'} \\ \gamma \eta' \\ \gamma f \\ \gamma \eta \\ \gamma \pi^{0} \\ \gamma D(1285) \\ 2\gamma \\ \gamma f'(1515) \\ \gamma P \bar{P} \\ 3\gamma \\ \frac{1}{2} \\ \gamma + $	$\begin{array}{c} \underline{e \ decay \ modes} \\ 0.55 \pm 0.22^{n} \\ 0.36 \pm 0.05 \\ 0.15 \pm 0.04 \\ 0.086 \pm 0.009 \\ 0.007 \pm 0.005 \\ < 0.06 \\ < 0.05 \\ < 0.03 \\ < 0.01 \\ < 0.006 \end{bmatrix}$	1224 1400 1287 1500 1546 1283 1548 1175 1232 1548
χ(3415) <u>0</u> 4	<u>r(0+)+</u>	3415.0 ±1.0		11.662	$2(\pi^{+}\pi^{-}) (in \pi^{+}\pi^{-}K^{+}K^{-}) = 3(\pi^{+}\pi^{-}) \pi^{+}\pi^{-} = \gamma J/\psi(3100) K^{+}K^{-} = p\bar{p}\pi^{+}\pi^{-}$ For upper lin	cl. $\pi\pi\rho$) 4.3 ±0.9 (incl. $\pi K\overline{K}^*$) 3.4 ±0.9 1.7 ±0.6 0.9 ±0.2 0.8 ±0.2 0.8 ±0.2 0.6 ±0.2 nits, see footnote o	1679 1580 1633 1702 303 1635 1320

			Full			Partial decay mode	
$\frac{\epsilon}{\omega/\phi} \frac{\rho}{\delta} K$	* I ^G (J ^P)C _n ⊢⊣ estab.	Mass M (MeV)	Width Γ (MeV)	M ² ±ΓΜ ^{<i>a</i>} (GeV ²)	Mode	Fraction(%) [Upper limits (%) are 90% CL]	p or p _{max} (MeV/c)
p _c or	$0^{+}(1^{+}) +$	3510.0		12.320	γJ/ψ(3100)	28±3	389
χ(3510)		±0.6			$3(\pi^{+}\pi^{-})$	2.4 ± 0.9	1683
					$2(\pi^+\pi^-)$ (incl.	$\pi\pi\rho$) 1.8 ± 0.5	1727
					$\pi^{+}\pi^{-}K^{+}K^{-}$ (in	ncl. πKK^*) 1.0 ± 0.4	1632
					$\pi^{T}\pi^{T}pp$ For upper limits	0.15 ± 0.10 s, see footnote p	1381
χ(3555)	$0^+(2^+)^+$	3555.8		12.644	$\gamma J/\psi(3100)$	15.7±1.7	429
		±0.6			$2(\pi^{+}\pi^{-})$ (incl.	$\pi\pi\rho$) 2.3 ±0.5	1750
					$\pi^{+}\pi^{-}K^{+}K^{-}$ (in	ncl. $\pi K \overline{K}^*$) 2.0 ± 0.5	1656
					$3(\pi^{+}\pi^{-})$	1.2 ± 0.8	1706
					$\pi^+\pi^-p\bar{p}$	0.35 ± 0.14	1410
					$\pi^+\pi^-$	0.20 ± 0.11	1772
					K ⁺ K ⁻ For unner limits	0.16 ± 0.12	1708
1(2685)	07(1-)-	3686.0	0.215	13 597		0.9 ± 0.1	19/2
ψ(3003)	$\frac{0}{(1)}$	+0.1	+0.040	+0.001	се "+"-	0.9 ± 0.1	1840
		±0.1	10.040	10.001	hadrons + radia	ative 98.1 ± 0.3	1040
	^m ↓(3685) [−]	· ^m ₄ (3100) =	= 589.06±0.13				
R	adiative deca	y modes			Decay mod	es into hadrons	
$t[\gamma \chi(34)]$	15)	8.2	±1.4	261	$\dagger [J/\psi \pi^+\pi^-$	33 ± 2	477
YX(35	10)	8.0)±1.3	172	$J/\psi \pi^0 \pi^0$	17 ± 2	481
YX(35	55)	7.4	±1.3	128	$J/\psi\eta$	$2.8\pm0.6^{\$}$	196
$\gamma \eta_c(29)$	980)	0.43	\$±0.26	638	$2(\pi^+\pi^-)\pi^0$	0.35 ± 0.15	1799
γn'(35	90)	0.2	? to 1.3	91	$\pi^{+}\pi^{-}K^{+}K^{-}$	0.16 ± 0.04	1726
$\gamma \pi^{\check{0}}$		<0.	5 (CL=95%)	1841	$J/\psi \pi^0$	0.10 ± 0.03	528
$\gamma \eta$		<0.	02	1802	$p\bar{p}\pi^+\pi^-$	0.08 ± 0.02	1491
$\gamma \eta'$		<0.	02	1719	K ^{*0} (892)K [±] π [∓]	0.067 ± 0.025	1674
$\gamma \iota(144$	Ю)	<0.	018 ⁿ]	1570	$2(\pi^{+}\pi^{-})$	0.05 ± 0.01	1817
					$\rho^0\pi^+\pi^-$	0.042±0.015	1751
					pp	0.019 ± 0.005	1586
					$3(\pi^{+}\pi^{-})$	0.015 ± 0.010	1774
					K ⁺ K ⁻	0.010 ± 0.007	1776
					π΄π	0.008 ± 0.005	1838
					$\rho \pi$ $\Lambda \overline{\Lambda}$	<0.1 <0.04]	1/60
¥(3770)	(1 ⁻)-	3770	25	14.213		0.0011 ±0.0002	1885
,	<u> </u>	±3	±3	±0.094	DD	dominant	242
	^m ψ(3770) ⁻	^m \u03685) =	= 83.9±2.4 S=1.8*				
∜(4030)	(1 ⁻)-	4030 [§] ±5 [§]	52 ±10	16.241 ±0.210	e ⁺ e hadrons	0.0014 ±0.0004 dominant	2015
¥(4160)	(1 ⁻)-	4159	78	17.297	e+e-	0.0010 ±0.0004	2079
	<u> </u>	±20	±20	±0.324	hadrons	dominant	
¥(4415)	(1-)-	4415	43 + 20	19.492	e ⁺ e ⁻	0.0010 ±0.0003 S=1.4*	2208
m (0.460)	(1-)	±0	±20°	±0.190	+	2.2 + 0.7	4707
1(9460)	<u>(1)-</u>	9456 ±10	0.042 ±0.015	89.416 ±0.0004	μ μ e ⁺ e ⁻	3.2 ± 0.7 2.8 ± 1.1	4727 4728
-(,	(17)-	10016	0.030	100.320	$\mu^+\mu^-$	seen	5007
<u>Υ(10020)</u>	(1)		+0.010	+0.0003	e+e-	1.7±0.6	5008
Ŷ(10020)	<u>(1)</u>	±10	10.010	20.0000			
Υ(10020)	<u>m</u> r(10020)	±10 - m ₁ (9460)	± 0.010	_0.0000	Υ (9460)ππ	<i>30</i> ±6	472
T(10020) T(10350)	$\frac{(1^{-})}{m_{\Upsilon(10020)}}$	± 10 - m T (9460) 10347 + 10	= 559±3	107.060	Υ(9460)ππ e ⁺ e ⁻	30±6 	472 5174

			Full	•		Partial decay mode	
$\frac{\epsilon}{\omega/\phi} \frac{\rho}{\delta} K^*$ $- \eta \pi K$	I ^G (J ^P)C _n → estab.	Mass M (MeV)	Width Γ (MeV)	$M^2 \pm \Gamma M^a \\ (GeV^2)$	Mode	Fraction(%) [Upper limits (%) are 90% CL]	p or P _{max} (MeV/o
Ŷ(10570)	<u>(1⁻)-</u>	10569 ±10	14 ±5	111.704 ±0.15	e+e-	0.0019±0.0008	5285
	^m Y(10570)	- ^m T(9460)	= 1113±4				
				STRANGE	MESONS		
K ⁺ K ⁰	<u>1/2(0⁻)</u>	493.67 497.67		0.244 0.248	See S	Stable Particle Table	
K*(892)	1/2(1 ⁻)	891.8	50.8	0.795	Κπ	≈ 100	288
		±0.4 S=1.2*	±0.9	±0.045	Κγ Κππ	0.15 ±0.07 < 0.07 (CL=95%)	309 216
M and Γ fro	om charged	mode; m ⁰ -	$m^{\pm} = 6.7 \pm 1.2$	2 MeV.	<u> </u>		
Q ₁ (1280)	<u>1/2(1⁺)</u>	1270 <mark>\$</mark>	90 [§]	1.61	Κρ	42±6	45
		±10 ⁸	±20 ⁸	±0.11	κπ	28 ± 4	200
					Κ*π Κω	10 ± 3 11 ± 2	299
					Κε	3 ± 2	
r(1350)	1/2(0+)	~1350	~250	1.82	Κπ	seen	574
x(1550)	<u>1/2(0_)</u>	+	200	±0.34	120		5/4
See note on	$K\pi$ S wave	. 1					
Q ₂ (1400)	1/2(1+)	1414	180	2.00	Κ*π	94±6	410
-		±13	±10	±0.25	Κρ	3±3	308
					Ke	2±2	204
• <u> </u>					κω	1 ±1	274
K*(1430)	$\frac{1}{2(2^{+})}$	1434°	100^{3}	2.06	Kπ K*-	44.8 ± 2.3 S=2.7* 24.6 \pm 2.0 S=1.1*	623
		±J-	±10-	±0.14	$K^{*}\pi$	13.0 ± 2.6 S=1.1*	374
					Κρ	8.8 ± 1.1 S=1.3*	334
					Κω	$4.2 \pm 1_{8}5$	320
•					Κη	5±58	492
L(1770) [‡]	1/2(2-)	~1770 [§]	~200 [§]	3.13	K*(1430)π	dominant	278
				±0.35	K*(892)π	seen	652
See note on	1(1770) ‡				KI	seen	
V#(1790) [‡]	1/2(2=)	1775	1408	2.15	V		702
K*(1/80)*	$\frac{1}{2}(3)$	+108	+ 208	3.15 +0.25	Κππ †[Κο	large	793 616
		10	±20	±0.25	†[K*π	largel	654
		•			Κπ	17±5 [§]	812
See note on	K*(1780).*	r					
→ -=			CHA	RMED, NONS	IRANGE MESON	S	
D ⁺ D ⁰	1/2(0 ⁻)	1869.4 1864.7		3.495 3.477	See S	Stable Particle Table	
D* ⁺ (2010)	1/2(1 ⁻)	2010.1	< 2.0	4.041	$D^0\pi^+$	64±11	39
		±0.7			$D^+\pi^0$	28 ± 9	38
		- 145 4	+0.2 MeV		$D^{\intercal}\gamma$	8±7	136
	"D*+ - "	$D^{0} = 143.4$	10.2 IVIC V				
D* ⁰ (2010)	1/2(1)	2007.2	< 5	4.029	$D^0\pi^0$	55 ± 15	44
_ 、	/ = \ - /	±2.1	-		$D^0\gamma$	45 ± 15	137
			C	HARMED, STI	RANGE MESON	· · · ·	
F ⁺	0(0 ⁻)	2021		4.084	See S	Stable Particle Table	
+							

Contents	of	Meson	Data	Card	Listings
----------	----	-------	------	------	----------

		Non-strange	(S = 0; C, I)	B = 0)	1	Strange ($ S = 1$; C,B = 0)
entry	I ^G (J ^P)C _n	entry	I ^G (J ^P)C _n	entry	I ^G (J ^P)C _n	entry I (J ^P)
π	1-(0-)+	f′ (1515)	0+(2+)+	→ δ (2450)	1 ⁻ (6 ⁺)+	K 1/2(0 ⁻)
η	0+(0-)+	ρ' (1600)	$1^{+}(1^{-})^{-}$	$\rightarrow e^+e^-$ (1100-2200)		K [*] (892) 1/2(1 ⁻)
ρ (770)	1+(1-)-	<i>→</i> θ (1640)	$0^+(2^+)+$	$\rightarrow \overline{N}N$ (1400-3600)		$Q_1 (1280) 1/2(1^+)$
ω (783)	0-(1-)-	ω (1670)	0-(3-)-	\rightarrow X (1900-3600)		κ (1350) 1/2(0 ⁺)
η' (958)	0 ⁺ (0 ⁻)+	A ₃ (1680)	$1^{-}(2^{-}) +$	η_{c} (2980)	+	$Q_2 (1400) 1/2(1^+)$
S [*] (975)	0+(0+)+	φ' (1680)	0^(1^)-	J/ψ (3100)	0-(1-)-	\rightarrow K' (1400) 1/2(0 ⁻)
δ (980)	1 ⁻ (0 ⁺)+	g (1690)	1+(3-)-	χ (3415)	$0^+(0^+) +$	K [*] (1430) 1/2(2 ⁺)
φ (1020)	0-(1-)-	→ φ (1850)	0	P _c or χ(3510)	0+(1+)+	\rightarrow L (1580) 1/2(2 ⁻)
H (1190)	0-(1+)-	→ X (1850)	(2+)	χ (3555)	$0^+(2^+) +$	$\rightarrow K^*$ (1650) 1/2(1 ⁻)
B (1235)	1+(1+)-	→ S (1935)		$\rightarrow \eta_{c}'$ (3590)	+	L (1770) 1/2(2 ⁻)
$\rightarrow \rho'$ (1250)	1+(1-)-	$\rightarrow \delta$ (2030)	$1^{-}(4^{+}) +$	ψ (3685)	0-(1-)-	K [*] (1780) 1/2(3 ⁻)
f (1270)	0 ⁺ (2 ⁺)+	h (2040)	$0^{+}(4^{+}) +$	ψ (3770)	(1 ⁻)-	$\rightarrow K^*$ (2060) 1/2(4 ⁺)
A ₁ (1270)	1 ⁻ (1 ⁺)+	→ π (2050)	$1^{-}(3^{+}) +$	ψ (4030)	(1-)-	→ K [*] (2200)
$\rightarrow \eta$ (1275)	0+(0-)+	$\rightarrow \pi$ (2100)	1^(2^)+	ψ (4160)	(1-)-	Charmed $(C = 1)$
D (1285)	0+(1+)+	$\rightarrow \rho$ (2150)	$1^{+}(1^{-})^{-}$	ψ (4415)	(1 ⁻)-	D (1870) 1/2(0 ⁻)
e (1300)	0+(0+)+	→ ε (2150)	$0^+(2^+) +$	Т (9460)	(1^)-	D [*] (2010) 1/2(1 ⁻)
π (1300)	1-(0-)+	$\rightarrow \rho$ (2250)	1+(3-)-	Υ (10020)	(1-)-	F (2020) 0 (0 ⁻)
A ₂ (1320)	1 ⁻ (2 ⁺)+	→ ϵ (2300)	$0^+(4^+) +$	Υ (10350)	(1 ⁻)-	→ F [*] (2140)
E (1420)	0+(1+)+	$\rightarrow \rho$ (2350)	1+(5-)-	Υ (10570)	(1-)-	Bottom (Beauty) $(\mathbf{B} = 1)$
						→ B (5200)
						→ Exotics

- → Indicates an entry in the Meson Data Card Listings not entered in the Meson Table. We do not regard these as established resonances. All the entries in the Listings can be found in the Table of Contents of the Meson Data Card Listings immediately preceding these footnotes.
- ‡ See Meson Data Card Listings.
- * Quoted error includes scale factor S = $\sqrt{\chi^2/(N-1)}$. See footnote to Stable Particle Table.
- † Square brackets indicate a subreaction of the previous (unbracketed) decay mode(s).
- § This is only an educated guess; the error given is larger than the error on the average of the published values. (See the Meson Data Card Listings for the latter.)
- a. ΓM is approximately the half-width of the resonance when plotted against M^2 .
- b. For decay modes into ≥ 3 particles, p_{max} is the maximum momentum that any of the particles in the final state can have. The momenta have been calculated by using the averaged central mass values, without taking into account the widths of the resonances.
- c. From pole position (M $i\Gamma/2$).
- d. The e⁺e⁻ branching fraction is from e⁺e⁻ $\rightarrow \pi^+\pi^-$ experiments only. The $\omega\rho$ interference is then due to $\omega\rho$ mixing only, and is expected to be small. See note in the Meson Data Card Listings. The $\mu^+\mu^-$ branching fraction is compiled from 3 experiments, each possibly with substantial $\omega\rho$ interference. The error reflects this uncertainty; see notes in the Meson Data Card Listings. If $e\mu$ universality holds, $\Gamma(\rho^0 \rightarrow \mu^+\mu^-) = \Gamma(\rho^0 \rightarrow e^+e^-) \times 0.99785$.

- e. Empirical limits on fractions for other decay modes of $\rho(770)$ are $\pi^{\pm}\eta < 0.8\%$ (CL=84%), $\pi^{+}\pi^{+}\pi^{-}\pi^{-} < 0.15\%$, $\pi^{\pm}\pi^{+}\pi^{-}\pi^{0} < 0.2\%$ (CL=84%).
- f. Empirical limits on fractions for other decay modes of $\omega(783)$ are $\pi^+\pi^-\gamma < 5\%$, $\pi^0\pi^0\gamma < 1\%$, η + neutral(s) < 1.5\%, $\mu^+\mu^- < 0.02\%$.
- g. Empirical limits on fractions for other decay modes of $\eta'(958)$ are $\pi^+\pi^- < 2\%$ (CL=84%), $\pi^+\pi^-\pi^0 < 5\%$ (CL=84%), $\pi^+\pi^+\pi^-\pi^- < 1\%$ (CL=95%), $\pi^+\pi^+\pi^-\pi^-\pi^0 < 1\%$ (CL=84%), $6\pi < 1\%$, $\pi^+\pi^-e^+e^- < 0.6\%$, $\pi^0e^+e^- < 1.3\%$ (CL=84%), $\eta e^+e^- < 1.1\%$, $\pi^0\rho^0 < 4\%$, $\eta\mu^+\mu^- < 1.5 \times 10^{-5}$, $\pi^0\mu^+\mu^- < 6 \times 10^{-5}$.
- h. The mass and width are from the $\eta\pi$ mode only. If the KK channel is strongly coupled, the width may be larger.
- i. Empirical limits on fractions for other decay modes of $\phi(1020)$ are $\pi^+\pi^-\gamma < 0.7\%$, $\omega\gamma < 5\%$ (CL=84%), $\rho\gamma < 2\%$ (CL=84%), $2\pi^+2\pi^-\pi^0 < 1\%$ (CL=95%), $2\pi^+2\pi^- < 0.1\%$.
- *j.* Empirical limits on fractions for other decay modes of B(1235) are $\pi\pi < 15\%$, K $\overline{K} < 2\%$ (CL=84%), $4\pi < 50\%$ (CL=84%), $\phi\pi < 1.5\%$ (CL=84%), $\eta\pi < 25\%$, ($\overline{K}K$)[±] $\pi^0 < 8\%$, $K_SK_S\pi^{\pm} < 2\%$, $K_SK_L\pi^{\pm} < 6\%$.
- k. Empirical limits (CL=95%) on fractions for other decay modes of f(1270) are $\eta\pi\pi < 1\%$, K⁰K⁻ π^+ + c.c. < 0.5%, $\eta\eta < 2\%$.
- ℓ . Empirical limits on fractions for other decay modes of A₃(1680) are $\eta\pi < 10\%$, $5\pi < 10\%$.
- m. Includes $p\bar{p}\pi^+\pi^-\gamma$ and excludes $p\bar{p}\eta$, $p\bar{p}\omega$, $p\bar{p}\eta'$.
- n. The $\iota(1440)$ evidence is listed under E(1420); see E(1420) mini-review.
- o. Empirical limits on fractions for other decay modes of $\chi(3415)$ are $2\gamma < 0.17\%$, $p\bar{p} < 0.011\%$.
- p. Empirical limits on fractions for other decay modes of $\chi(3510)$ are $(\pi^+\pi^- \text{ and } K^+K^-) < 0.2\%$, $\gamma\gamma < 0.16\%$, $p\bar{p} < 0.13\%$.
- q. Empirical limits on fractions for other decay modes of $\chi(3555)$ are $2\gamma < 0.06\%$, $p\bar{p} < 0.10\%$, $J/\psi \pi^+ \pi^- \pi^0 < 1.5\%$.

Established Nonets, and octet-singlet mixing angles θ obtained from the Gell-Mann-Okubo mass formula [Appendix II, Eq. (3)]. Of the two isosinglets, the "mainly octet" one is written first, followed by a semicolon. The angle $\delta = \theta - 35.3$ ° measures the deviation from ideal mixing.

(J ^P)C _n	Nonet members	$\theta_{lin.}$	$ heta_{ ext{quadr.}}$	δ _{lin.}	δ _{quadr.}
(0 ⁻)+	π, Κ, η; η'	$-24.4 \pm 0.1^{\circ}$	$-11.1 \pm 0.2^{\circ}$	$-59.7 \pm 0.1^{\circ}$	$-46.4 \pm 0.2^{\circ}$
(1 ⁻)-	ρ, Κ [*] , φ; ω	$35.9 \pm 0.5^{\circ}$	$38.6 \pm 0.4^{\circ}$	$0.6 \pm 0.5^{\circ}$	$3.3 \pm 0.4^{\circ}$
(2 ⁺)+	A ₂ , K [*] (1430), f'; f	26 ± 3°	28 ± 3°	$-9 \pm 3^{\circ}$	$-7 \pm 3^{\circ}$
(1 ⁺)+ [†]	A ₁ , Q _A , E; D	$52 \pm 13^{\circ}$	51 ± 12°	$16 \pm 13^{\circ}$	15 ± 12°

[†] $m(Q_A)$ is assumed to be the average of $m(Q_1)$ and $m(Q_2)$.

More generally, because of unitarity, the mixing angles are energy dependent and complex above the first threshold (see Appendix II C), which is important especially for the scalar and the axial mesons. Note also that the two axial strange mesons (Q_1 and Q_2) are mixtures of the exact SU(3) states: $Q_1 = \cos\phi Q_A + \sin\phi Q_B$, $Q_2 = -\sin\phi Q_A + \cos\phi Q_B$. Below we give the mixing angles δ and ϕ obtained in a unitary mixing scheme using both masses and widths as input data:

(J ^P)C _n	Nonet members	Mixing angles
(1 ⁺)+	A ₁ , Q _A , E; D	$\delta_{\rm DE}(1283) = 14^\circ + i1^\circ$
		$\delta_{DE}(1418) = 25^{\circ} + i8^{\circ}$
(1+)-	в, q _в , н′ [†] ; н	$\delta_{\rm HH'}(1190) = -6^{\circ} + i4^{\circ}$
		$\delta_{\rm HH'}(1400) = -15^{\circ} + i10^{\circ}$
		$\phi_{Q_1Q_2}(1270) = 50^\circ + i3^\circ$
		$\phi_{Q_1Q_2}(1414) = 61^\circ - i3^\circ$
(0 ⁺)+	δ, κ, S [*] ; ε	$\delta_{\mathbf{S}^{\bullet}\epsilon}(975) = +4^{\circ} + \mathbf{i}29^{\circ}$
		$\delta_{\mathbf{S}^{*}\epsilon}(1300) = -33^{\circ} + \mathrm{i}7^{\circ}$

^T as yet, not seen experimentally

Baryon Table

April 1982

The following short list gives the name, the nominal mass, the quantum numbers (where known), and the status of each of the Baryon States in the Data Card Listings. States with 3- or 4-star status are included in the Baryon Table below; the others are omitted because the evidence for the existence of the effect and/or for its interpretation as a resonance is open to question.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NI(020)	D11	****	A(1020)	D 22	****	4/1110	DO 1	****	5(1102)	D1	****	2(1317)	D11	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IN(939)	PII DU	****	$\Delta(1232)$	P33	**	A(1115)	PUL	****	Z(1193) S(1295)	rii Dir	****	프(1517) 프(1520)	PII Dia	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1440)	PII	****	$\Delta(1550)$	P31 D22		A(1405)	501		2(1385)	P13		E(1530)	P13	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1520)	DI3		$\Delta(1600)$	P33		A(1520)	D03		2(1480)		-	르(1630) 르(1630)	~	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1535)	SII		$\Delta(1620)$	\$31	****	Λ(1600)	P01	***	2(1560)		**	<u> </u>	SII	**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1540)	P13	•	$\Delta(1700)$	D33	****	Λ(1670)	S01	****	$\Sigma(1580)$	D13	**	Ξ(1820)	13	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1650)	S11	****	$\Delta(1900)$	S31	***	Λ(1690)	D03	****	Σ(1620)	S 11	**	표(1940)		**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1675)	D15	****	$\Delta(1905)$	F35	****	Λ(1800)	S0 1	***	$\Sigma(1660)$	P 11	***	E(2030)	1	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1680)	F15	****	Δ(1910)	P31	****	Λ(1800)	P01	***	Σ(1670)	D13	****	Ξ(2120)		*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1700)	D13	****	Δ(1920)	P33	***	Λ(1800)	G09	Dead	Σ(1670)		**	Ξ(2250)		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1710)	PI 1	****	Δ(1930)	D35	****	Λ(1800)		*	Σ(1690)		**	Ξ(2370)	1	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1720)	P13	****	Δ(1940)	D33	*	Λ(1820)	F05	****	Σ(1750)	S11	***	Ξ(2500)		**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1990)	F17	***	Δ(1950)	F37	****	Λ(1830)	D05	****	Σ(1770)	P 11	Dead			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2000)	F15	**	Δ(2150)	S31	*	Λ(1890)	P03	****	Σ(1775)	D15	****	Ω(1672)	P03	****
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2080)	D13	***	Δ(2160)		*	Λ(2000)		•	Σ(1840)	P 13	*			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2100)	S11	*	Δ(2200)	G37	**	Λ(2020)	F07	*	Σ(1880)	P 11	**	$\Lambda_{c}(2282)$		****
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2100)	P11	*	Δ(2300)	H39	**	Λ(2100)	G07	****	Σ(1915)	F15	****	C		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2190)	G17	****	Δ(2350)	D35	*	Λ(2110)	F05	***	Σ(1940)	D13	***	$\Sigma_{2}(2450)$		**
N(2220) H19 **** Δ (2400) G39 * Λ (2350) **** Σ (2030) F17 **** Λ_b (5500) *	N(2200)	D15	***	$\Delta(2400)$	F37	*	Λ(2325)	D03	*	Σ(2000)	S 11	*	Ç.		
	N(2220)	H19	****	$\Delta(2400)$	G39	*	Λ(2350)		****	Σ(2030)	F17	****	$\Lambda_{\rm h}(5500)$		*
$N(2250) G19 **** \Delta(2420) H311 *** \Lambda(2585) *** \Sigma(2070) F15 *$	N(2250)	G19	****	$\Delta(2420)$	H311	***	Λ(2585)		***	Σ(2070)	F15	*	0.		
N(2600) I111 *** Δ (2500) * Σ (2080) P13 ** Dibaryons	N(2600)	I111	***	$\Delta(2500)$		*				Σ(2080)	P13	**	Dibaryons		
N(2700) K113 * Δ(2750) I313 * Σ(2100) G17 * NN(2170) ID2 ***	N(2700)	K113	*	$\Delta(2750)$	I313	*				\Sigma (2100)	G17	*	NN(2170)	1D2	***
N(2800) G19 * Δ(2850) *** Σ(2250) **** NN(2250) 3F3 ***	N(2800)	G19	*	$\Delta(2850)$		***				Σ(2250)		****	NN(2250)	3F3	***
$N(3000)$ * $\Delta(2950)$ K315 * $\Sigma(2455)$ *** $NN(?)$ *	N(3000)		*	$\Delta(2950)$	K315	*				Σ(2455)		***	NN(?)		*
$N(3030)$ *** $\Delta(3230)$ *** $\Sigma(2620)$ *** $\Lambda N(2130)$ 3S1 ***	N(3030)		***	$\Delta(3230)$		***				$\Sigma(2620)$		***	AN(2130)	3 S 1	***
$N(3245)$ * $\Sigma(3000)$ ** $\Xi N(?)$ *	N(3245)		*	. ,						Σ (3000)		**	$\Xi N(?)$		*
N(3690) * Z0(1780) P01 * $\Sigma(3170)$ *	N(3690)		*	Z0(1780)	P01	*				D (3170)		*			
N(3755) * Z0(1865) D03 *	N(3755)		*	Z0(1865)	D03	*				-(,					
Z1(1900) P13 *	- ()			Z1(1900)	P13	*									
Z1(2150) *				$Z_1(2150)$		*									
Z1(2500) *				$Z_1(2500)$		*									

**** Good, clear, and unmistakable.

*** Good, but in need of clarification or not absolutely certain.

** Needs confirmation.

* Weak.

			Massd	Entl e	M ² ^f	Parti	al decay mo	ode
Particle ^{<i>a</i>}	$I(J^P)L^b_{2I\cdot 2J}$	$P_{beam}^{c} (GeV/c)$ $\sigma = 4\pi X^{2} (mb)$	M (MeV)	width Γ (MeV)	$\pm \Gamma M$ (GeV ²)	Mode ^g	Fraction ^h (%)	P ⁱ (MeV/c
		S=0 I=1	1/2 NUCLEON	RESONANCE	S(N)			
р п	1/2(1/2+)		938.3 939.6		0.880 0.883	See Sta	ble Particle	Table
N(1440)	$1/2(1/2^+)P'_{11}$	p = 0.61	1400 to	120 to	2.07	Νπ	50-70	397
		$\sigma = 31.0$	1480	350	±0.29	Νη	8-18	†
				(200)		Νππ	~30	342
						$\Delta \pi$	12-287+	143
						Νρ	~ 7	†
						L _{Ne}	~ 5-	t
N(1520)	1/2(3/2 ⁻)D ₁₃	p = 0.74	1510 to	100 to	2.31	Νπ	50-60	456
		$\sigma = 23.5$	1530	140	±0.19	Νη	< 1	149
				(125)		Νππ	35-50	410
						$\Delta \pi$	15-25	228
						Νρ	15-25	†
						LN€	< 5-1	†
N(1535)	$1/2(1/2^{-})S'_{11}$	p = 0.76	1520 to	100 to	2.36	Νπ	35-50	467
		$\sigma = 22.4$	1560	250	±0.23	Nη	4065	182
				(150)		Νππ	~ 5	422
						$\int \Delta \pi$	~ 1]•	242
						Νρ	~ 3	†
						ĽN€	~ 2	t

			Mess d	Full ^e	M ^{2 ∫}	Parti	ial decay m	ode
Particle ^a	$I(J^P)L_{2I}^{b}\cdot 2J$	$P_{\text{beam}}^{c} (\text{GeV/c}) \sigma = 4\pi \lambda^{2} (\text{mb})$	M (MeV)	width Γ (MeV)	±ΓM (GeV ²)	Mode ^g	Fraction ^h (%)	p ⁱ (MeV/c
N(1650)	$1/2(1/2^{-})S_{11}''$	p = 0.96 $\sigma = 16.4$	1620 to 1680	100 to 200 (150)	2.72 ±0.25	Νπ Νη ΛΚ	55-65 ~ 1 5-10	547 346 161
						ΣΚ Νππ ΓΔπ Νρ	3-10 ~30 4-15 * ~20	† 511 344 †
N(1675)	1/2(5/2 ⁻)D ₁₅	p = 1.01 $\sigma = 15.4$	1660 to	120 to	2.81	$\frac{ - N\epsilon}{N\pi}$ Nn	< 5- 30-40 < 2	
		0 15.7	1070	(155)		$ \begin{array}{c} \Lambda K \\ N\pi\pi \\ \Gamma\Delta\pi \\ N\alpha \end{array} $	< 1 55-70 50-65] *	209 529 364
N(1680)	1/2(5/2 ⁺)F ₁₅	p = 1.01 $\sigma = 15.2$	1670 to 1690	110 to 140 (125)	2.82 ±0.21	Νπ Νη Νππ	55-65 < 1 ~40	567 379 532
						$\begin{bmatrix} \Delta \pi \\ N \rho \\ N \epsilon \end{bmatrix}$	$ \begin{array}{c} \sim 12 \\ \sim 10 \\ \sim 20 \end{array} $	369 † †
N(1700)	1/2(3/2 ⁻)D ₁₃	p = 1.05 $\sigma = 14.5$	1670 to 1730	70 to 120 (100)	2.89 ±0.17	Νπ Νη ΔΚ Νππ	8-12 ~ 4 ~ 1 ~85 15-40]•	580 400 250 547 385
N(1710)	1/2(1/2 ⁺)P ₁₁	p = 1.07	1680 to	90 to	2.92	$N\rho$ $N\epsilon$ $N\pi$	~ 5 <40- 10-20 5-35	† † 587 410
		0 - 14.2	1740	(110)	10.19		5-35 5-15 2-10 >50 10-25 25-65 15-40	264 138 554 393 48
N(1720)	1/2(3/2 ⁺)P ₁₃	p = 1.09 $\sigma = 13.9$	1690 to 1800	125 to 250 (200)	2.96 ±0.34		10-20 3-6 2-12 2-5 ~70 ~20 45-70	594 420 278 162 561 401 104
N(1990)	$1/2(7/2^+)F_{17}$	p = 1.62 $\sigma = 8.34$	1950 to 2050	120 to 400 (350)	3.96 ±0.70	<u>Νε</u> Νπ Νη ΔΚ ΣΚ	$\sim 20^{-1}$ ~ 5 ~ 3 seen seen	766 648 554 497
N(2080)	1/2(3/2 ⁻)D ₁₃	p = 1.82 $\sigma = 7.26$	2030 to 2100	115 to 300 (275)	4.33 ±0.57	Νπ ΔK ΣK	~10 seen seen	821 627 576
N(2190)	1/2(7/2 ⁻)G ₁₇	$p = 2.07^{*}$ $\sigma = 6.21$	2120 to 2230	200 to 500 (350)	4.80 ±0.77	Νπ Νη ΔΚ	~14 ~ 2 < 1	888 790 712
N(2200)	1/2(5/2 ⁻)D ₁₅	p = 2.10 $\sigma = 6.12$	1900 to 2230	150 to 400 (300)	4.84 ±0.66	Νπ Νη ΔΚ	~ 8 seen seen	894 797 718
N(2220)	1/2(9/2 ⁺)H ₁₉	p = 2.14 $\sigma = 5.97$	2150 to 2300	300 to 500 (400)	4.93 ±0.89	Νπ Νη	\sim 18 \sim 1	905 811

		_	Mass ^d	Full ^e	M ² ^f	Par	tial decay m	ode
Particle ^a	$I(J^{\mathbf{P}})L_{2\mathbf{I}}^{b}\cdot 2J$	$P_{beam}^{c} (GeV/c)$ $\sigma = 4\pi \lambda^{2} (mb)$	M (MeV)	width Γ (MeV)	±ΓΜ (GeV ²)	Mode ^g	Fraction (%)	ⁱ p ⁱ (MeV/
N(2250)	1/2(9/2 ⁻)G ₁₉	p = 2.21 $\sigma = 5.74$	2130 to 2270	200 to 500 (300)	5.06 ±0.68	Νπ Νη	~ 10 ~ 2	923 831
N(2600)	1/2(11/2 ⁻)I ₁₁₁	p = 3.12 $\sigma = 3.86$	2580 to 2700	>300 (400)	6.76 ±1.04	Νπ	~ 5	1126
N(3030)	1/2(?)	p = 4.41 $\sigma = 2.62$	~3030	~400 (400)	9.18 ±1.21	Νπ	(J+1/2)x < 0.1 j	1366
÷		S=0 I=	= 3/2 DELTA RE	SONANCES (Δ)			
Δ(1232)	$3/2(3/2^+)P'_{33}$	p = 0.30 $\sigma = 95.0$	1230 to 1234	110 to 120 (115)	1.52 ±0.14	Νπ Νγ	99.4 0.6	227 259
	$\Delta(++)$ pole $\Delta(0)$ pole po	position: ^k $M-i\Gamma/$	$2 = (1210.6 \pm 0.)$ $2 = (1210.3 \pm 1.)$	(110) 5) - i(49.7± 0) - i(53.0±)	0.3) ^e 1.0) ^e			
Δ(1600)	3/2(3/2 ⁺)P ₃₃	p = 0.87 $\sigma = 18.7$	1500 to 1900	150 to 350 (250)	2.56 ±0.40		15-25 ~80 20-65]* <10	512 473 301 †
Δ(1620)	$3/2(1/2^{-})S_{31}^{\prime}$	p = 0.91 $\sigma = 17.7$	1600 to 1650	120 to 160 (140)	2.62 ±0.23	$\frac{1}{N\pi}$ $\frac{1}{N\pi}$ $\int \Delta \pi$ $\int \Delta \pi$	25-35 ~70 35-50]*	526 488 318
Δ(1700)	3/2(3/2 ⁻)D ₃₃	p = 1.05 $\sigma = 14.5$	1630 to 1740	190 to 300 (250)	2.89 ±0.43	Nπ Nππ [Δπ] Nρ	10-20 ~85 <50]* ~40]	580 547 385 †
Δ(1900)	$3/2(1/2^{-})S_{31}^{\prime\prime}$	$p = 1.44$ $\sigma = 9.71$	1850 to 2000	130 to 300 (150)	3.61 ±0.29	<u>Ν</u> π ΣΚ	6-12 ~10	710 410
Δ(1905)	3/2(5/2 ⁺)F ₃₅	p = 1.45 $\sigma = 9.63$	1890 to 1920	250 to 400 (300)	3.63 ±0.57		8-15 < 3 ~80 10-30]* ~60]	713 415 687 542 421
Δ(1910)	3/2(1/2 ⁺)P ₃₁	p = 1.46 $\sigma = 9.54$	1850 to 1950	200 to 330 (220)	3.65 ±0.42		20-25 2-20 >40 smal∏* <40	716 421 691 545 426
Δ(1920)	3/2(3/2 ⁺)P ₃₃	p = 1.48 $\sigma = 9.39$	1860 to 2160	190 to 300 (250)	3.69 ±0.48	Nπ ΣK	14-20 ~ 5	722
Δ(1930)	3/2(5/2 ⁻)D ₃₅	p = 1.50 $\sigma = 9.21$	1890 to 1960	150 to 350 (250)	3.72 ±0.48	Νπ ΣΚ	4-14 <10	729 441
Δ(1950)	3/2(7/2 ⁺)F ₃₇	p = 1.54 $\sigma = 8.91$	1910 to 1960	200 to 340 (240)	3.80 ±0.47	Νπ ΣΚ Νππ [Δπ Νο	35-45 < 1 ~60 ~40 ~20]*	741 460 716 574 469
Δ(2420)	3/2(11/2 ⁺)H ₃₁₁	p = 2.64 $\sigma = 4.68$	2380 to 2450	300 to 500 (300)	5.86 ±0.73	<u> </u>	5-15	1023
Δ(2850)	3/2(?+)	p = 3.85 $\sigma = 3.05$	2800 to 2900	~400 (400)	8.12 ±1.14	Νπ	$(J+1/2)x \sim 0.25^{j}$	1266
Δ(3230)	3/2(?)	p = 5.08 $\sigma = 2.25$	3200 to 3350	~440 (440)	10.43 ±1.42	Νπ	$(J+1/2)x \sim 0.05^{j}$	1475

			Marad	E.I.I.C	M ² ^f	Parti	al decay m	ode
Particle ^a	$I(J^P)L_{1\cdot 2J}^b$	$P_{beam}^{c} (GeV/c)$ $\sigma = 4\pi\lambda^{2} (mb)$	M (MeV)	width T (MeV)	$\pm \Gamma M$ (GeV ²)	Mode	Fraction ^h (%)	p ⁱ (MeV/c)
		S=-1 I	=0 LAMBDA	RESONANCES	(Δ)			
Δ	$0(1/2^+)$		1115.6		1.245	See Sta	ble Particle	Table
Ā(1405)	$0(1/2^{-})S_{01}'$	Below K ⁻ p threshold	1405 ±5 ¢	40±10 [¢]	1.97 ±0.06	Σπ	100	152
$\overline{\Lambda(1520)}$	$0(3/2^{-})D_{02}$	p = 0.395	1519.4	15.6±1.02	2.31	NK	45±1	244
		$\sigma = 82.2$	±1.0 ^ℓ		±0.02	$\Sigma \pi$	42 ± 1	267
						$\Lambda \pi \pi$	10±1	252
						Σππ	0.9±0.1	152
Λ(1600)	$0(1/2^+)P'_{01}$	p = 0.58	1560 to	50 to	2.56	NK	15-30	343
	, vi	$\sigma = 41.6$	1700	250 (150)	±0.24	Σπ	1 060	336
$\overline{\Lambda(1670)}$	0(1/2 ⁻)S ₀₁	p = 0.74	1660 to	25 to	2.79	NK	15-25	414
/		$\sigma = 28.5$	1680	50	±0.06	$\Sigma \pi$	2060	393
				(35)		Δη.	15-35	64
Δ(1690)	$0(3/2^{-})D_{02}^{\prime\prime}$	p = 0.78	1685 to	50 to	2.86	NK	20-30	433
	() / 03	$\sigma = 26.1$	1695	70	±0.10	$\Sigma \pi$	20-40	409
				(60)		$\Lambda \pi \pi$	~25	415
						Σππ	~20	350
Λ(1800)	0(1/2 ⁻)S ₀₁	p = 1.01	1720 to	200 to	3.24	NK	25-40	528
	01	$\sigma = 17.6$	1850	400	±0.54	Σπ	seen	493
				(300)		Σ(1385)π NK*(892)	seen seen	345
Δ(1800)	$0(1/2^+)P_{01}''$	p = 1.01	1750 to	50 to	3.24	NK	20-50	528
()		$\sigma = 17.6$	1850	250	±0.27	$\Sigma \pi$	10-40	493
				(150)		$\Sigma(1385)\pi$	seen	345
						NK*(892)	3060	
Λ(1820)	$0(5/2^+)F_{05}'$	p = 1.06	1815 to	70 to	3.29	NK	55-65	545
		$\sigma = 16.5$	1825	90	±0.15	Σπ	8-14	508
				(80)		$\Sigma(1385)\pi$	5-10	362
Ā(1830)	$0(5/2^{-})D_{05}$	p = 1.08	1810 to	60 to	3.35	NK	3-10	553
		$\sigma = 16.0$	1830	110	±0.17	$\Sigma\pi$	35-75	515
	<u> </u>			(95)		$2(1385)\pi$	>15	3/1
Δ(1890)	0(3/2 ⁺)P ₀₃	p = 1.21	1850 to	60 to	3.57	NK	20-35	599
		$\sigma = 13.6$	1910	200	±0.19	2π	3-10	339
				(100)		Z(1385)π NK*(892)	seen	420
					4 41	NR (872)	30011	255
Λ(2100)	0(7/2)G ₀₇	p = 1.68	2090 to	100 to	4.41	NK S-	25-35	704
		$\sigma = 8.68$	2110	(200)	±0.42	<u>2π</u> Δn	~ 3	617
				(200)		ΞK	< 3	483
						Λω	< 8	443
						NK+(892)	10-20	514
A(2110)	0(5/2 ⁺)F ₂ -	p = 1.70	2090 to	150 to	4.45	NK	5-25	757
M(2110)	0(0/2)105	$\sigma = 8.54$	2140	250	±0.42	$\Sigma \pi$	10-40	711
				(200)		$\Lambda\omega$	seen	455
						$\Sigma(1385)\pi$	seen	589
						NK*(892)	10-60	524
Λ(2350)	0(9/2+)	p = 2.29	2340 to	100 to	5.52	NK	~12	915
		$\sigma = 5.84$	2370	250	±0.35	$\Sigma \pi$	~10	867
				(150)				
Λ(2585)	0(?)	p = 2.92	~2585	~300	6.68	NK	(J+1/2)x	1060
		$\sigma = 4.35$		(300)	±0.78		~1.0)	

Particle ^a	I(J ^P)L ^b I·2J		Mass ^d	Full ^e	M ² ^f	Partial decay mode		
		$P_{beam}^{c} (GeV/\sigma = 4\pi \lambda^{2} (I)$	(c) M mb) (MeV)	width Γ (MeV)	$\pm \Gamma M$ (GeV ²)	Mode	Fraction (%)	h P ⁱ (MeV/
		<u></u>	=-1 I=1 SIGMA	RESONANCES (Σ)	<u></u>		
Σ	1(1/2+)		1.415	See Sta	ble Particle	Table		
			(0)1192.5		1.422			
			(-)1197.3		1.434			
Σ(1385)	$1(3/2^+)P'_{13}$	Below	$(+)1382.3\pm0.4$	35±1	1.92	Λπ	88±2	208
		K ⁻ p	S=1.6 ^m	$S=1.0^{m}$	±0.05	$\Sigma \pi$	12 ± 2	127
•		threshold	$(0)1382.0\pm 2.5$ S=1.6 ^m	~35				
			(-)1387.4±0.6	40 ± 2				
			$S = 2.2^{m}$	S=1.9 ^m				_
Σ(1660)	$1(1/2^+)P'_{11}$	p = 0.72	1630 to	40 to	2.76	NK	10-30	405
		$\sigma = 29.8$	1690	200	±0.17	$\Lambda\pi$	seen	439
				(100)		$\Sigma \pi$	seen	385
Σ(1670)	$1(3/2^{-})D_{13}''$	p = 0.74	1665 to	40 to	2.79	NK	7-13	414
	15	$\sigma = 28.5$	1685	80	±0.10	$\Lambda\pi$	5-15	447
				(60)		$\Sigma\pi$	30-60	393
Σ(1750)	$1(1/2^{-})S_{11}''$	p = 0.91	1730 to	60 to	3.06	NK	10-40	486
	., , 11	$\sigma = 20.7$	1800	160	±0.16	$\Lambda\pi$	seen	507
				(90)		$\Sigma\pi$	< 8	455
						$\Sigma\eta$	15-55	81
Σ(1775)	$1(5/2^{-})D_{15}$	p = 0.96	1770 to	105 to	3.15	NK	37-43	508
	15	$\sigma = 19.0$	1780	135	±0.21	$\Lambda\pi$	14-20	525
				(120)		$\Sigma\pi$	2-5	474
						Σ(1385)π	8-12	324
						$\Lambda(1520)\pi$	17-23	198
Σ(1915)	$-1(5/2^+)F_{15}'$	p = 1.26	1900 to	80 to	3.67	NK	5-15	618
		$\sigma = 12.8$	1935	160	±0.23	$\Lambda\pi$	seen	622
				(120)		$\Sigma\pi$	seen	577
						Σ(1385)π	< 5	440
Σ(1940)	$1(3/2^{-})D_{13}^{\prime\prime\prime}$	p = 1.32	1900 to	150 to	3.76	NK	<20	637
	15	$\sigma = 12.1$	1950	300	±0.43	$\Lambda\pi$	seen	639
				(220)		$\Sigma \pi$	seen	594
						$\Sigma(1385)\pi$	seen	460
						$\Lambda(1520)\pi$	seen	354
						$\Delta(1232)$ K	seen	410
						NK*(892)	seen	320
Σ(2030)	$1(7/2^{+})F_{17}$	p = 1.52	2025 to	150 to	4.12	NK	17-23	702
		$\sigma = 9.93$	2040	200	±0.37	$\Delta \pi$	17-23	700
				(180)		$\Sigma\pi$	5-10	657
						ZK D(1205)	< 2	412
						$2(1385)\pi$	5-15	529
						$\Lambda(1220)\pi$	10-20	430
						A(1232)K	10-20	498 128
						INA (072)		-+50
Σ(2250)	1(?)	p = 2.04	2210 to	60 to	5.06	NK	<10	851
		$\sigma = 6.76$	2280	150	±0.23	$\Lambda\pi$	seen	842

~2455

~2600

Σ(2455)

Σ(2620)

⇒...

1(?)

1(?)

p = 2.57 $\sigma = 5.08$

p = 3.02 $\sigma = 4.19$

(100)

~120

(120)

~200

(200)

6.03

±0.29

6.86

±0.52

 $\Sigma \pi$

Nĸ

NŔ

seen

 $(J+1/2)x \sim 0.2^{j}$

(J+1/2)x ~0.3 j

803

981

1081

			Mass ^d	Full ^e	M ² ^f	Partial decay mode		
Particle ^a	$I(J^{\mathbf{P}})L_{2\mathbf{I}\cdot 2\mathbf{J}}^{b}$	$P_{\text{beam}}^{c} (\text{GeV/c})$ $\sigma = 4\pi \lambda^{2} (\text{mb})$	M (MeV)	width Γ (MeV)	±ΓΜ (GeV ²)	Mode	Fraction (%)	p ⁱ (MeV/
		S=-2 I=1	1/2 CASCADE	RESONANCE	S (Z)			
Ξ	1/2(1/2 ⁺)	(0)1314.9 (-)1321.3			1.7 29 1.7 46	See Stal	See Stable Particle	
Z (1530)	$1/2(3/2^+)P_{13}$	(0)1 S	531.8 ± 0.3 $5 = 1.3^{m}$	9.1±0.5	2.34 ±0.02	Ξπ	100	148
		(-)1	535.0±0.6	10.1±1.9				
Ξ(1820)	1/2(3/2)		$^{1823}_{\pm 6}\ell$	20^{+15}_{-10}	3.31 ±0.04	ΛŘ ΣŘ Ξπ	~45 ~10 small	396 306 413
						$\Xi(1530)\pi$	~45	231
Ξ (2030)	1/2(?)		2024 ±6 ^ℓ	$16^{+15}_{-5}^{\ell}$	4.12 ±0.03	Λ <u>κ</u> Σ <u>κ</u>	~20 ~80	587 524
						Ξπ Ξ(1530)π	small small	573 418
Ω	0(3/2+)		1672.4±0.3		2.797	See Sta	ble Particle	Table
Λ _c ⁺	0(1/2 ⁺)	2282±3			5.21	See Stable Particle Table		
			Mass ^d	Full ^e	M ^{2 f}	Partial decay mode		
Par ticle ^{<i>a</i>}	$I(J^P)^{2S+1}L_J^b$	P_{beam}^{c} (GeV/c) $\sigma = 4\pi X^{2}$ (mb)	M (MeV)	width Γ (MeV)	$\pm \Gamma M$ (GeV ²)	Mode	Fraction (%)	h p' (MeV
			S=0 DIBA	RYONS				
	0(1 ⁺)		1875.6		3.518			
NN(2170)	$1(2^{+})^{1}D_{2}$	p = 1.26 $\sigma = 16.5$	2140 to 2190	50 to 125 (90)	4.71 ±0.20	NN πd	10-20 seen	545 241
NN(2250)	$1(3^{-})^{3}F_{3}$	p = 1.49 $\sigma = 12.7$	2200 to 2400	75 to 225 (150)	5.06 ±0.34	NN πd	20-30 seen	621 318
	<u> </u>		S=-1 DIBA	RYONS				
ΔN(2130)	$1/2(1^+)^3 S_1$	p = 0.64	2100 to	5 to	4.54	ΔN	seen	282

- → Each arrow in the left-hand margin indicates there is an entry in the Data Card Listings for a baryon that is not well enough established (status less than 3 stars) to be included here. There is a short list of *all* the baryons in the Listings, whatever their status, at the front of this Table.
- t. This mode is energetically forbidden when the nominal mass of the decaying resonance (and of any resonance in the final state) is used, but is in fact allowed due to the finite width of the resonance(s).
- *. The modes in brackets are sub-reactions of the first preceding unbracketed mode.
- a. The nominal mass here (in MeV) is used for identification. See column 4 for the actual mass.
- b. When there is more than one baryon with the same quantum numbers, one prime is attached to the spectroscopic symbol for the first of them (e.g., S'_{11}), two primes to the second, etc.
- c. The quantities here are calculated using the nominal mass of column 1.
- d. Usually a conservatively large range of masses rather than a statistical average of various determinations of the mass is given. In these cases, the mass determinations are nearly entirely from various phase-shift analyses of more or less the same data. It is thus not appropriate to treat the determinations as independent measurements or to average them together. The masses, widths, and branching fractions in this Table are Breit-Wigner parameters. The Data Card Listings also include pole parameters where they are available.
- e. Usually a conservatively large range of widths rather than a statistical average of various determinations of the width is given (see note d for the reason). The nominal value in parentheses is then simply a best guess.
- f. The quantities here are calculated using the nominal mass of column 1 and the nominal width of column 5.
- g. For information on the N γ decay modes of the N and Δ baryons, see the mini-review on these states in the Listings.
- h. Most of the inelastic branching fractions come from partial-wave analyses, and these determine $\sqrt{xx'}$, where x and x' are the elastic and inelastic branching fractions, not x' directly. Thus any uncertainty (and it is often considerable) in x carries over into x'. When x' so determined is really poorly known, we here simply note that the mode is seen. The values of $\sqrt{xx'}$ are given in the Data Card Listings.
- *i*. For a 2-body decay mode, this is the momentum of the decay products in the rest frame of the decaying particle. For a mode with more than two decay products, this is the maximum momentum any of the products can have in this frame. The nominal mass of column 1 is used, as is the nominal mass of any resonance in the final state.
- j. The size of the bump in the total cross section gives (J+1/2)x, where x is the elastic branching fraction, but the value of J is not known.
- k. These pole positions are from fits to phase shifts (without Coulomb corrections). The Data Card Listings now include pole positions and residues for most of the N and Δ resonances. See Sect. I of the N and Δ mini-review in the Listings for a brief discussion of the advantages of pole parameters over the usual Breit-Wigner parameters.
- It is larger than the error on the weighted average of the published values (the error on this average is given in the Listings).
- m. The error given here has been scaled up by the "S factor" (see the * footnote to the Stable Particle Table for how S is defined) because the various measurements disagree more seriously than one would expect from statistics.