$B^0 - \overline{B}{}^0$ MIXING

Revised December 1997 by H. Quinn (SLAC)

There are two neutral B meson systems which are like the neutral kaon system, in that two CP-conjugate states exist: the states $B^0 = \overline{b}d$, and $\overline{B}^0 = \overline{d}b$, which we will call the B_d system; and the states $B_s^0 = \overline{b}s$, and $\overline{B}_s^0 = \overline{s}b$, which we call the B_s system. For early work on CP violation in the B systems, chiefly the B_d system, see Ref. 1. In both these systems the mass eigenstates are not CP eigenstates, but are mixtures of the two CP-conjugate quark states. The fact that the mixing, due to box diagrams, shown in Fig. 1, produces non-CP eigenstates means that there is a CP-violating phase that enters in the amplitude for these diagrams. The two mass eigenstates can be written, for example for the B_d system,

$$|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle ,$$

$$|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle .$$
(1)

Here H and L stand for Heavy and Light, respectively.

Figure 1: Mixing Diagrams.

The complex coefficients p and q obey the normalization condition

$$|q|^2 + |p|^2 = 1 . (2)$$

We define the mass difference ΔM and width difference $\Delta \Gamma$ between the neutral *B* mesons:

$$\Delta M \equiv M_H - M_L ,$$

$$\Delta \Gamma \equiv \Gamma_H - \Gamma_L , \qquad (3)$$

so that ΔM is positive by definition. Finding the eigenvalues of the mass-mixing matrix, one gets

$$(\Delta M)^2 - \frac{1}{4} (\Delta \Gamma)^2 = 4(|M_{12}|^2 - \frac{1}{4}|\Gamma_{12}|^2)$$
(4)

and

$$\Delta M \Delta \Gamma = 4 \operatorname{Re} \left(M_{12} \Gamma_{12}^* \right) \,, \tag{5}$$

where the off-diagonal term of the mixing matrix is written as $M_{12} + i\Gamma_{12}$. Note that both M_{12} and Γ_{12} may be complex quantities; the separation is defined by the fact that Γ_{12} is given by the absorbtive part of the diagrams (cut contributions). The ratio q/p is given by

$$\frac{q}{p} = -\frac{\Delta M - \frac{i}{2}\Delta\Gamma}{2(M_{12} - \frac{i}{2}\Gamma_{12})} = -\frac{2(M_{12}^* - \frac{i}{2}\Gamma_{12}^*)}{\Delta M - \frac{i}{2}\Delta\Gamma} .$$
 (6)

Whereas in the kaon case the lifetimes of the two eigenstates are significantly different and the difference in masses between them is small, in the B_d system it is the mass differences that dominate the physics, and the two states have nearly equal predicted widths (and thus lifetimes). We define, for q = d, s

$$x_q = \frac{\Delta M_q}{\Gamma_q}$$
, $y_q = \frac{\Delta \Gamma_q}{\Gamma_q}$. (7)

The value of x_d is about 0.7, not very different from the similar quantity for the K^0 which is 0.48. The difference between the widths of the two B_d eigenstates is produced by the contributions from channels to which both B^0 and \overline{B}^0 can decay. These have branching ratios of $\mathcal{O}(10^{-3})$ [2]. Furthermore there are contributions of both signs to the difference, so there is no reason that the net effect should be much larger than the individual terms. Conservatively, one expects $y_d \leq 10^{-2}$ and thus also $|q/p|_d$ equal to 1 to a very good approximation. Experimentally no effect of a difference in lifetimes has been observed.

For B_s there is currently only a lower bound on the value of x_s . Theoretical expectation is that it may be as large as 20 or more, which makes it quite difficult to measure. A significant difference in widths is possible, due to the fact that a number of the simplest two-body channels contribute only to a single CP (like the two-pion state which dominates K-decays and is the source of the large width difference in that system). The difference in widths could be as much as 20% of the total width in the B_s system [3]. Note that this still gives a small ratio, of order a few percent, for $\Delta\Gamma/\Delta M$.

The proper time evolution of an initially (t = 0) pure B^0 or \overline{B}^0 is given by

$$|B^{0}_{\rm phys}(t)\rangle = g_{+}(t)|B^{0}\rangle + (q/p)g_{-}(t)|\overline{B}^{0}\rangle ,$$

$$|\overline{B}^{0}_{\rm phys}(t)\rangle = (p/q)g_{-}(t)|B^{0}\rangle + g_{+}(t)|\overline{B}^{0}\rangle .$$
(8)

where

$$g_{\pm} = \frac{1}{2} \exp(-\Gamma t/2) \exp(-iMt) \times \left\{ e^{-(\Delta\Gamma/2 - \Delta M)t} \pm e^{+(\Delta\Gamma/2 - \Delta M)t} \right\} .$$
(9)

The rate at which an initial B^0_q (\overline{B}^0_q) decays as a \overline{B}^0_q (B^0_q) is thus

$$R_q(t) = q/p \text{ (or } p/q)\Gamma |g_-(t)|^2$$
 . (10)

The quantity χ_q measures the total probability that a created B^0 decays as a \overline{B}^0 ; it is given by

$$\chi_q = \int_0^\infty R_q(t)dt = \frac{1}{2}|q/p|^2 \frac{x_q^2 - y_q^2/4}{(1 + x_q^2)(1 - y_q^2/4)} \quad , \tag{11}$$

Time-dependent mixing measurements are now being done for the B_d system; earlier experiments measured only the timeintegrated mixing, which is parameterized by a parameter χ_d . In this case to a good approximation we can set |q/p| = 1 and $|y_d| \ll x_d < 1$ so that the simpler form $\chi_d = \frac{1}{2} \frac{x_d^2}{1 + x_d^2}$ applies, and a measurement of χ_d implies a value of x_d .

In the $B^0-\overline{B}^0$ mixing section of the B^0 Particle Listings, we list the χ_d measurements, most of which come from $\Upsilon(4S)$ data, and the Δm_{B^0} measurements, which come from Z data. We average these sections separately, but then include the results from both sections in "OUR EVALUATION" of χ_s and $\Delta M_{B_s^0}$. We convert both of these sets of measurements and list them in the x_d section. The x_d values obtained from Δm_{B^0} measurements have a common systematic error due to the error on τ_{B^0} . The averaging takes this common systematic error into account.

Because of the large value of x_s the quantity χ_s will be close to its upper limit of 0.5. This means that one cannot determine x_s accurately by measuring χ_s . It will require excellent time resolution to resolve the time-dependent mixing of the B_s^0 system, and thereby determine $\Delta M_{B_s^0}$.

In the $B_s^0 - \overline{B}_s^0$ mixing section of the B_s^0 Particle Listings, we give measurements of χ_B , the mixing parameter for a high-energy admixture of *b*-hadrons

$$\chi_B = f_d \, \frac{\mathcal{B}_d}{\langle \mathcal{B} \rangle} \chi_d + f_s \, \frac{\mathcal{B}_s}{\langle \mathcal{B} \rangle} \chi_s \;. \tag{12}$$

Here f_d and f_s are the fractions of b hadrons that are produced as B^0 and B_s^0 mesons respectively, and \mathcal{B}_d , \mathcal{B}_s , and $\langle \mathcal{B} \rangle$ are branching fractions for B_d , B_s , and the b-hadron admixture respectively decaying to the observed mode. If we assume that $\chi_s = 0.5$ and $\mathcal{B}_d/\langle \mathcal{B} \rangle = \mathcal{B}_s/\langle \mathcal{B} \rangle = 1$, Eq. (12) can be used to determine f_s as discussed in the note on "Production and Decay of b-Flavored Hadrons."

References

- A.B. Carter and A.I. Sanda, Phys. Rev. Lett. 45, 952 (1980); Phys. Rev. D23, 1567 (1981); I.I. Bigi and A.I. Sanda Nucl. Phys. B193, 85 (1981) and Nucl. Phys. B281, 41 (1987).
- I.I. Bigi, V.A. Khoze, N.G. Uraltsev, and A.I. Sanda, in *CP Violation*, ed. C. Jarlskog (World Scientific, Singapore, 1989), p. 175.

 R. Aleksan, A. Le Yaouanc, L. Oliver, O. Pene and J.C. Raynall, Phys. Lett. **B316**, 567 (1993);
 M. Beneke, G. Buchalla, I. Dunietz, Phys. Rev. **D54**, 4419 (1996).