$K_{\ell 3}^{\pm}$ AND $K_{\ell 3}^{0}$ FORM FACTORS

Written by T.G. Trippe (LBNL).

Assuming that only the vector current contributes to $K \to \pi \ell \nu$ decays, we write the matrix element as

$$M \propto f_{+}(t) \left[(P_K + P_{\pi})_{\mu} \overline{\ell} \gamma_{\mu} (1 + \gamma_5) \nu \right]$$

+ $f_{-}(t) \left[m_{\ell} \overline{\ell} (1 + \gamma_5) \nu \right] ,$ (1)

where P_K and P_{π} are the four-momenta of the K and π mesons, m_{ℓ} is the lepton mass, and f_+ and f_- are dimensionless form factors which can depend only on $t = (P_K - P_{\pi})^2$, the square of the four-momentum transfer to the leptons. If time-reversal invariance holds, f_+ and f_- are relatively real. $K_{\mu 3}$ experiments measure f_+ and f_- , while K_{e3} experiments are sensitive only to f_+ because the small electron mass makes the f_- term negligible.

(a) $K_{\mu 3}$ experiments. Analyses of $K_{\mu 3}$ data frequently assume a linear dependence of f_+ and f_- on t, *i.e.*,

$$f_{\pm}(t) = f_{\pm}(0) \left[1 + \lambda_{\pm}(t/m_{\pi}^2) \right]$$
 (2)

Most $K_{\mu 3}$ data are adequately described by Eq. (2) for f_{+} and a constant f_{-} (i.e., $\lambda_{-}=0$). There are two equivalent parametrizations commonly used in these analyses:

(1) $\lambda_+, \xi(0)$ parametrization. Analyses of $K_{\mu 3}$ data often introduce the ratio of the two form factors

$$\xi(t) = f_{-}(t)/f_{+}(t)$$
 .

The $K_{\mu 3}$ decay distribution is then described by the two parameters λ_{+} and $\xi(0)$ (assuming time reversal invariance and $\lambda_{-}=0$). These parameters can be determined by three different methods:

Method A. By studying the Dalitz plot or the pion spectrum of $K_{\mu 3}$ decay. The Dalitz plot density is (see, e.g., Chounet et al. [1]):

$$\rho(E_{\pi}, E_{\mu}) \propto f_{+}^{2}(t) \left[A + B\xi(t) + C\xi(t)^{2} \right] ,$$

where

$$A = m_K \left(2E_{\mu}E_{\nu} - m_K E_{\pi}' \right) + m_{\mu}^2 \left(\frac{1}{4}E_{\pi}' - E_{\nu} \right) ,$$

$$B = m_{\mu}^2 \left(E_{\nu} - \frac{1}{2}E_{\pi}' \right) ,$$

$$C = \frac{1}{4}m_{\mu}^2 E_{\pi}' ,$$

$$E_{\pi}' = E_{\pi}^{\text{max}} - E_{\pi} = \left(m_K^2 + m_{\pi}^2 - m_{\mu}^2 \right) / 2m_K - E_{\pi} .$$

Here E_{π} , E_{μ} , and E_{ν} are, respectively, the pion, muon, and neutrino energies in the kaon center of mass. The density ρ is fit to the data to determine the values of λ_{+} , $\xi(0)$, and their correlation.

Method B. By measuring the $K_{\mu3}/K_{e3}$ branching ratio and comparing it with the theoretical ratio (see, e.g., Fearing et al. [2]) as given in terms of λ_+ and $\xi(0)$, assuming μ -e universality:

$$\Gamma(K_{\mu 3}^{\pm})/\Gamma(K_{e 3}^{\pm}) = 0.6457 + 1.4115\lambda_{+} + 0.1264\xi(0)$$
$$+ 0.0192\xi(0)^{2} + 0.0080\lambda_{+}\xi(0) ,$$
$$\Gamma(K_{\mu 3}^{0})/\Gamma(K_{e 3}^{0}) = 0.6452 + 1.3162\lambda_{+} + 0.1264\xi(0)$$
$$+ 0.0186\xi(0)^{2} + 0.0064\lambda_{+}\xi(0) .$$

This cannot determine λ_+ and $\xi(0)$ simultaneously but simply fixes a relationship between them.

Method C. By measuring the muon polarization in $K_{\mu 3}$ decay. In the rest frame of the K, the μ is expected to be polarized in the direction \mathbf{A} with $\mathbf{P} = \mathbf{A}/|\mathbf{A}|$, where \mathbf{A} is given (Cabibbo and Maksymowicz [3]) by

$$\mathbf{A} = a_1(\xi)\mathbf{p}_{\mu}$$

$$-a_2(\xi) \left[\frac{\mathbf{p}_{\mu}}{m_{\mu}} \left(m_K - E_{\pi} + \frac{\mathbf{p}_{\pi} \cdot \mathbf{p}_{\mu}}{\left| \mathbf{p}_{\mu} \right|^2} (E_{\mu} - m_{\mu}) \right) + \mathbf{p}_{\pi} \right]$$

$$+ m_K \operatorname{Im} \xi(t) (\mathbf{p}_{\pi} \times \mathbf{p}_{\mu}) .$$

If time-reversal invariance holds, ξ is real, and thus there is no polarization perpendicular to the K-decay plane. Polarization experiments measure the weighted average of $\xi(t)$ over the t range of the experiment, where the weighting accounts for the variation with t of the sensitivity to $\xi(t)$.

(2) λ_+, λ_0 parametrization. Most of the more recent $K_{\mu 3}$ analyses have parameterized in terms of the form factors f_+ and f_0 which are associated with vector and scalar exchange, respectively, to the lepton pair. f_0 is related to f_+ and f_- by

$$f_0(t) = f_+(t) + \left[t/(m_K^2 - m_\pi^2)\right] f_-(t)$$
.

Here $f_0(0)$ must equal $f_+(0)$ unless $f_-(t)$ diverges at t=0. The earlier assumption that f_+ is linear in t and f_- is constant leads to f_0 linear in t:

$$f_0(t) = f_0(0) \left[1 + \lambda_0 (t/m_\pi^2) \right] .$$

With the assumption that $f_0(0) = f_+(0)$, the two parametrizations, $(\lambda_+, \xi(0))$ and (λ_+, λ_0) are equivalent as long as correlation information is retained. (λ_+, λ_0) correlations tend to be less strong than $(\lambda_+, \xi(0))$ correlations.

The experimental results for $\xi(0)$ and its correlation with λ_+ are listed in the K^{\pm} and K_L^0 sections of the Particle Listings in section ξ_A , ξ_B , or ξ_C depending on whether method A, B, or C discussed above was used. The corresponding values of λ_+ are also listed.

Because recent experiments tend to use the (λ_+, λ_0) parametrization, we include a subsection for λ_0 results. Wherever possible we have converted $\xi(0)$ results into λ_0 results and vice versa.

See the 1982 version of this note [4] for additional discussion of the $K_{\mu 3}^0$ parameters, correlations, and conversion between parametrizations, and also for a comparison of the experimental results.

(b) K_{e3} experiments. Analysis of K_{e3} data is simpler than that of $K_{\mu 3}$ because the second term of the matrix element assuming a pure vector current [Eq. (1) above] can be neglected. Here f_+ is usually assumed to be linear in t, and the linear coefficient λ_+ of Eq. (2) is determined.

If we remove the assumption of a pure vector current, then the matrix element for the decay, in addition to the terms in Eq. (2), would contain

$$+2m_K f_S \overline{\ell}(1+\gamma_5)\nu$$

+ $(2f_T/m_K)(P_K)_{\lambda}(P_{\pi})_{\mu} \overline{\ell} \sigma_{\lambda\mu}(1+\gamma_5)\nu$,

where f_S is the scalar form factor, and f_T is the tensor form factor. In the case of the K_{e3} decays where the f_- term can be neglected, experiments have yielded limits on $|f_S/f_+|$ and $|f_T/f_+|$.

References

- 1. L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Reports 4C, 199 (1972).
- 2. H.W. Fearing, E. Fischbach, and J. Smith, Phys. Rev. **D2**, 542 (1970).
- 3. N. Cabibbo and A. Maksymowicz, Phys. Lett. 9, 352 (1964).
- 4. Particle Data Group, Phys. Lett. **111B**, 73 (1982).