Review of Particle Physics: C. Caso et al. (Particle Data Group), European Physical Journal C3, 1 (1998)

$$\eta(1440)$$
 $I^{G}(J^{PC}) = 0^{+}(0^{-}+)$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

THE $\eta(1440)$, $f_1(1420)$, AND $f_1(1510)$

Written March 1998 by M. Aguilar-Benitez (CIEMAT, Madrid) and C. Amsler (Zürich).

The first observation of $\eta(1440)$ was made in $p\overline{p}$ annihilation at rest into $\eta(1440)\pi^+\pi^-$, $\eta(1440) \to K\overline{K}\pi$ (BAIL-LON 67). This state was reported to decay through $a_0(980)\pi$ and $K^*(892)\overline{K}$ with roughly equal contributions. The $\eta(1440)$ has also been observed in radiative $J/\psi(1S)$ decay to $K\overline{K}\pi$ (SCHARRE 80, EDWARDS 82E, AUGUSTIN 90).

The $f_1(1420)$, decaying to $K^*\overline{K}$ was reported in π^-p reactions at 4 GeV/c (DIONISI 80). However, later analyses found that the 1400–1500 MeV region is far more complex. In π^-p experiments (CHUNG 85, REEVES 86, BIRMAN 88) reported 0^{-+} with a dominant $a_0(980)\pi$ contribution to $K\overline{K}\pi$. The π^-p data of RATH 89 at 21 GeV/c suggest the presence of two pseudoscalars decaying to $K\overline{K}\pi$, one around 1410 MeV decaying through $a_0(980)\pi$ and the other around 1470 MeV, decaying to $K^*\overline{K}$. A reanalysis of the MARK III data in radiative $J/\psi(1S)$ decay to $K\overline{K}\pi$ (BAI 90C) also claims the existence of two pseudoscalars in the 1400–1500 MeV range, the lower mass state decaying through $a_0(980)\pi$ and the higher mass state decaying via $K^*\overline{K}$. In addition, $f_1(1420)$ is observed to decay into $K^*\overline{K}$.

In $\pi^- p \to \eta \pi \pi n$ charge-exchange reactions at 8–9 GeV/c the $\eta \pi \pi$ mass spectrum is dominated by $\eta(1440)$ and $\eta(1295)$ (ANDO 86, FUKUI 91C) and at 100 GeV ALDE 97B report $\eta(1295)$ and $\eta(1440)$ decaying to $\eta \pi^0 \pi^0$ with a weak $f_1(1285)$ and no evidence for $f_1(1420)$.

An experiment in $\overline{p}p$ annihilation at rest into $K\overline{K}3\pi$ (BERTIN 95) reports two pseudoscalars with decay properties similar to BAI 90C, although the lower state shows, apart from $a_0(980)\pi$, a large contribution from the direct decay $\eta(1440) \to K\overline{K}\pi$. We note that the data from AUGUSTIN 92 also suggest two states but their intermediate states, $a_0(980)\pi$ and $K^*\overline{K}$, are reversed relative to BAI 90C.

In $J/\psi(1S)$ radiative decay $\eta(1440)$ decays to $K\overline{K}\pi$ through $a_0(980)\pi$ and hence a signal is also expected in the $\eta\pi\pi$ mass spectrum. This has indeed been observed by MARK III in $\eta\pi^+\pi^-$ (BOLTON 92B) which report a mass of 1400 MeV, in line with the existence of a low mass pseudoscalar in the $\eta(1440)$ structure, decaying to $a_0(980)\pi$. This state is also observed in $\overline{p}p$ annihilation at rest into $\eta\pi^+\pi^-\pi^0\pi^0$ where it decays to $\eta\pi\pi$ (AMSLER 95F). The intermediate $a_0(980)\pi$ accounts for roughly half of the $\eta\pi\pi$ rate, in accord with MARK III (BOLTON 92B) and DM2 (AUGUSTIN 90). However, ALDE 97B reports only a very small contribution of $a_0(980)\pi$.

One of these two pseudoscalars could be the first radial excitation of the η' , with $\eta(1295)$ the first radial of the η . Ideal mixing suggested by the $\eta(1295)$ and $\pi(1300)$ mass degeneracy would then imply that the second isoscalar in the nonet is mainly $s\overline{s}$ and hence couples to $K^*\overline{K}$, in accord with observations for the upper $\eta(1440)$ state. This scheme then favors an exotic interpretation of the lower state, perhaps gluonium mixed with $q\overline{q}$ (CLOSE 97B) or a bound state of gluinos (FARRAR 96). The gluonium interpretation is, however, not favoured by lattice gauge theories, which predict the 0^{-+} state above 2 GeV (BALI 93).

Axial (1^{++}) mesons are not observed in $\overline{p}p$ annihilation at rest in liquid hydrogen which proceeds dominantly through

S-wave annihilation. However, in gaseous hydrogen P-wave annihilation is enhanced and, indeed, BERTIN 97 report $f_1(1420)$ decaying to $K^*\overline{K}$ in gaseous hydrogen, while confirming their earlier evidence for two pseudoscalars (BERTIN 95).

In $\gamma\gamma$ fusion from e^+e^- annihilations, a signal around 1420 MeV is seen in single-tag events (GIDAL 87B, AIHARA 88B, BEHREND 89, HILL 89) where one of the two photons is off-shell. However, it is totally absent in the untagged events where both photons are real. This points to a spin 1 object which is not produced by two real (massless) photons (Yang-Landau theorem). The 2γ decays also implies C=+1. For the parity, AIHARA 88C and BEHREND 89 both find angular distributions with positive parity preferred, but negative parity cannot be excluded.

The $f_1(1420)$ is definitively observed in $K\overline{K}\pi$ in pp central production at 300 and 450 GeV, together with $f_1(1285)$. The latter decays via $a_0(980)\pi$ and the former only via $K^*\overline{K}$, while $\eta(1440)$ is absent (ARMSTRONG 89, BARBERIS 97C). The $K_SK_S\pi^0$ decay mode of $f_1(1420)$ establishes unambiguously that C=+1. On the other hand, there is no evidence for any state decaying to $\eta\pi\pi$ around 1400 MeV and hence the $\eta\pi\pi$ mode of $f_1(1420)$ is suppressed (ARMSTRONG 91B).

We now turn to the experimental evidence for $f_1(1510)$. Two states, $f_1(1420)$ and $f_1(1510)$, decaying to $K^*\overline{K}$, compete for the $s\overline{s}$ assignment in the 1⁺⁺ nonet. The $f_1(1510)$ was seen in $K^-p \to \Lambda K\overline{K}\pi$ at 4 GeV/c (GAVILLET 82) and at 11 GeV/c (ASTON 88C). Evidence is also reported in π^-p at 8 GeV/c, based on the phase motion of the 1⁺⁺ $K^*\overline{K}$ wave (BIRMAN 88).

The absence of $f_1(1420)$ in K^-p (ASTON 88C) argues against $f_1(1420)$ being the $s\overline{s}$ member of the 1^{++} nonet. However, $f_1(1420)$ has been reported in K^-p but not in

 $\pi^- p$ (BITYUKOV 84) while two experiments do not observe $f_1(1510)$ in $K^- p$ (BITYUKOV 84, KING 91). It is also not seen in radiative $J/\psi(1S)$ decay (BAI 90C, AUGUSTIN 92), central collisions (BARBERIS 97C), nor in $\gamma\gamma$ collisions (AIHARA 88C), although and surprisingly for an $s\bar{s}$ state, a signal is reported in 4π decays (BAUER 93B). These facts led to the conclusion that $f_1(1510)$ is not well established and that its assignment as $s\bar{s}$ member of the 1^{++} nonet is premature (CLOSE 97D). The Particle Data Group agrees and has removed this state from the Summary Table. Assigning instead $f_1(1420)$ to the 1^{++} nonet one finds a nonet mixing angle of $\sim 50^\circ$ (CLOSE 97D). This is derived from the mass formula and from $f_1(1285)$ radiative decays to $\phi\gamma$ (BITYUKOV 88) and $\rho\gamma$ (AMELIN 95).

Arguments favoring $f_1(1420)$ being a hybrid $q\overline{q}g$ meson or a four-quark state are put forward by ISHIDA 89 and by CALDWELL 90, respectively, while LONGACRE 90 argues that this particle is a molecular state formed by the π orbiting in a P-wave around an S-wave $K\overline{K}$ state.

Summarizing, there is strong evidence for $f_1(1420)$, mostly produced in central collisions and decaying to $K^*\overline{K}$, and for $\eta(1440)$ mostly produced in radiative $J/\psi(1S)$ decay and $\overline{p}p$ annihilation at rest, decaying to $K^*\overline{K}$ and $a_0(980)\pi$. Confusion remains as to which states are observed in π^-p interactions. The $f_1(1510)$ is not well established. Furthermore, there are experimental indications for the presence of two pseudoscalars in the $\eta(1440)$ structure. Accordingly, the Particle Data Group has split the $K\overline{K}\pi$ entry for $\eta(1440)$ into $a_0(980)\pi$ and $K^*\overline{K}$.

η (1440) MASS

DOCUMENT ID VALUE (MeV)

1400 - 1470 OUR ESTIMATE Contains possibly two overlapping pseudoscalars.

$\eta\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	T	ECN	COMMENT
1405± 5 OUR AVERA	GE Error	includes scale fac	tor of 2.	.9. See	e the ideogram below.
1424 ± 6	2200	ALDE	97 в G .	SAM4	$100 \ \pi^- p \rightarrow \eta \pi^0 \pi^0 n$
1409± 3		AMSLER	95F C	BAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
1385 ± 15		¹ BEHREND			$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$1400\pm$ 6		$^{ m 1}$ BOLTON	92B M	/IRK3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1388 ± 4		FUKUI	910 SI	PEC	8.95 $\pi^- p \to \eta \pi^+ \pi^- n$
1398 ± 6	261	² AUGUSTIN	90 D)M2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
1420± 5		ANDO	86 SI	PEC	$8 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

 $^{^{1}}$ From fit to the $a_{0}(980)\pi$ 0 $^{-}$ + partial wave.

² Best fit with a single Breit Wigner.

 $\eta(1440)$ mass, $\eta \pi \pi$ mode (MeV)

$\pi\pi\gamma$ MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for averages,	fits, limits,	etc. • •
1401 ± 18	3,4 AUGUSTIN	90 DM2	$J/\psi \rightarrow \pi^+\pi^-\gamma\gamma$
1440 ± 20	⁴ COFFMAN	90 MRK3	$J/\psi \rightarrow \pi^+\pi^-2\gamma$

HTTP://PDG.LBL.GOV

Page 5

 $^{^3}$ Best fit with a single Breit Wigner. 4 This peak in the $\gamma\rho$ channel may not be related to the $\eta(1440).$

4π MODE

VALUE (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT		
• • • We do not u	se the followir	ng data for averag	es, fits,	limits,	etc. • • •		
1420 ± 20		BUGG	95	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$		
1489 ± 12	3270	⁵ BISELLO	89 B	DM2	$J/\psi ightarrow 4\pi\gamma$		
⁵ Estimated by us from various fits.							

$\overline{K}\pi$ MODE (a₀(980) π dominant)

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1418.	7±1.2 C	UR AVERAGE	Error includes scale	factor	of 1.6.	See the ideogram below.
1407	± 5		⁶ BERTIN	97	OBLX	$0 \overline{p} p \rightarrow$
						$\kappa^\pm (\kappa^0)\pi^\mp \pi^+\pi^-$
1416	± 2		⁶ BERTIN	95	OBLX	$0 \overline{p} p \to K \overline{K} \pi \pi \pi$
1416	±8 +	7 5 700	⁷ BAI	90 C	MRK3	$J/\psi ightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1413	± 8	500	DUCH	89	ASTE	$\overline{p}p \rightarrow$
			7			$_{\pi^+\pi^-\kappa^\pm\pi^\mp\kappa^0}$
1413	± 5		⁷ RATH	89	MPS	$21.4 \pi^- p \rightarrow$
						n $K^0_SK^0_S\pi^0$
1419	± 1	8800	BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}{}^0 \pi^- n$
1424	± 3	620	REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow K\overline{K}\pi X$
1421	± 2		CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
• • •	We do	not use the follow	ving data for averag	es, fits	, limits,	etc. • • •
1459	± 5		⁸ AUGUSTIN	92	DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
6 D	ecaying	into $(K\overline{K})_S\pi$, (F	$(\pi)_S \overline{K}$, and a_0 (980)) π.		

⁷ From fit to the $a_0(980)\pi$ 0 $^{-+}$ partial wave. Cannot rule out a $a_0(980)\pi$ 1 $^{++}$ partial wave.

8 Excluded from averaging because averaging would be meaningless.

 $\eta(1440)$ mass, $K\overline{K}\pi$ mode ($a_0(980)$ π dominant) (MeV)

$K\overline{K}\pi$ MODE (K^* (892) K dominant)

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1473± 4 OUR AVERA	GE Error i	ncludes scale fac	tor of	1.1.	
1464 ± 10		BERTIN	97	OBLX	$0 \overline{p}p \rightarrow$
					$\kappa^{\pm}(\kappa^{0})\pi^{\mp}\pi^{+}\pi^{-}$
1460 ± 10		BERTIN	95	OBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$
$1490 + 14 + 3 \\ -8 - 16$	1100	BAI	90 C	MRK3	$J/\psi ightarrow \gamma K_{S}^{0} K^{\pm} \pi^{\mp}$
1475 ± 4		RATH	89	MPS	21.4 $\pi^- p \rightarrow$
					n K $_S^0$ K $_S^0$ π^0

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

1421 \pm 14 9 AUGUSTIN 92 DM2 $J/\psi
ightarrow \gamma K\overline{K} \gamma$

$K\overline{K}\pi$ MODE (unresolved)

VALUE	EVTS	DOCUMENT ID	TECN	<u>COMMENT</u>
• • • We do not use t	he followin	g data for averages	s, fits, limit	s, etc. • • •
1445± 8	693	AUGUSTIN	90 DM2	$J/\psi ightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1433± 8	296	AUGUSTIN	90 DM2	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
1453 ± 7	170	RATH	89 MPS	21.4 $\pi^- p \rightarrow$
				$\kappa^0_S\kappa^0_S\pi^0$ п
$1440 {+20 \atop -15}$	174	EDWARDS	82E CBAI	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
$1440 + 10 \\ -15$		SCHARRE	80 MRK	2 $J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
1425± 7	800	¹⁰ BAILLON	67 HBC	$0 \ \overline{p}p \rightarrow K \overline{K} \pi \pi \pi$

Created: 6/29/1998 11:48

HTTP://PDG.LBL.GOV Page 7

 $^{^{9}}$ Excluded from averaging because averaging would be meaningless.

 10 From best fit of 0 $^{-+}$ partial wave , 50% $K^*(892) K$, 50% $a_0(980) \pi$.

$\eta(1440)$ WIDTH

VALUE (MeV) DOCUMENT ID

50 - 80 OUR ESTIMATE Contains possibly two overlapping pseudoscalars.

$\eta\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
56± 7 OUR	AVERAGE	Error includes scale	factor of 2.3	3. See the ideogram below.
85 ± 18	2200	ALDE		$100 \ \pi^- \ \rho \rightarrow \ \eta \pi^0 \pi^0 n$
86 ± 10		AMSLER	95F CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
47 ± 13		11 BOLTON	92B MRK3	$J/\psi ightarrow \gamma \eta \pi^+ \pi^-$
$59\pm$ 4		FUKUI	91c SPEC	8.95 $\pi^- p \rightarrow \eta \pi^+ \pi^- n$
$53\!\pm\!11$		¹² AUGUSTIN		$J/\psi ightarrow \gamma \eta \pi^+ \pi^-$
31± 7		ANDO	86 SPEC	$8 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

 \sim 50 12 BEHREND 92 CELL $J/\psi
ightarrow ~\gamma \eta \pi^+ \pi^-$

¹² From $\eta \pi^+ \pi^-$ mass distribution - mainly $a_0(980) \pi$ - no spin–parity determination available.

 $\eta(1440)$ width $\eta \pi \pi$ mode (MeV)

 $^{^{11}}$ From fit to the $a_0(980)\pi$ 0 $^-+$ partial wave.

$\pi\pi\gamma$ MODE

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc.
 • • •

 174±44
 AUGUSTIN
 90
 DM2
 $J/ψ → π^+π^-γγ$

 60±30
 13 COFFMAN
 90
 MRK3
 $J/ψ → π^+π^-2γ$

 13 This peak in the γρ channel may not be related to the η(1440).

4π MODE

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • • 160 ± 30 BUGG95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^ 144 \pm 13$ 327014 BISELLO898 DM2 $J/\psi \rightarrow 4\pi\gamma$

$K\overline{K}\pi$ MODE (a₀(980) π dominant)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
59± 5 OUR AVERAGE	Error in	ncludes scale factor	r of 3	.1. See	the ideogram below.
48± 5		¹⁵ BERTIN	97	OBLX	$0.0 \; \overline{p}p \rightarrow$
		15			$\kappa^{\pm}(\kappa^0)\underline{\pi}^{\mp}\pi^{+}\pi^{-}$
$50\pm$ 4		¹⁵ BERTIN	95	OBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$
75± 9		AUGUSTIN	92	DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
$91 + 67 + 15 \\ -31 - 38$		¹⁶ BAI	90 C	MRK3	$J/\psi \to \gamma K_S^0 K^{\pm} \pi^{\mp}$
62 ± 16	500	DUCH	89	ASTE	$\overline{p}p \rightarrow K\overline{K}\pi\pi\pi$
19± 7		¹⁶ RATH	89	MPS	21.4 $\pi^- p \rightarrow$
					$nK_S^0K_S^0\pi^0$
66± 2	8800	BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}{}^0 \pi^- n$
60 ± 10	620	REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow KK\pi X$
$60\!\pm\!10$		CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$

¹⁵ Decaying into $(K\overline{K})_{S}\pi$, $(K\pi)_{S}\overline{K}$, and $a_{0}(980)\pi$.

¹⁴ Estimated by us from various fits.

 $^{^{16}}$ From fit to the $a_0(980)\,\pi$ 0 $^{-+}$ partial wave , but $a_0(980)\,\pi$ 1 $^{++}$ cannot be excluded.

 $\eta(1440)$ width $K\overline{K}\pi$ mode ($a_0(980)$ π dominant)

$K\overline{K}\pi$ MODE (K^* (892) K dominant)

(00-	.,		
VALUE	DOCUMENT ID	TECN	COMMENT
79 ±13 OUR AVERAGE	Error includes scale factor of	of 1.7. See	the ideogram below.
105 ± 15	BERTIN 97	7 OBLX	$0.0 \ \overline{p}p \rightarrow$
			$\kappa^{\pm}(\kappa^{0})\pi^{\mp}\pi^{+}\pi^{-}$
105 ± 15	BERTIN 95	5 OBLX	$0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$
63 ± 18	AUGUSTIN 92	2 DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
$54 + 37 + 13 \\ -21 - 24$	BAI 90	OC MRK3	$J/\psi \to \gamma K_S^0 K^{\pm} \pi^{\mp}$
$51\!\pm\!13$	RATH 89	9 MPS	21.4 $\pi^- p \rightarrow$
			$nK_S^0K_S^0\pi^0$

 η (1440) width $K\overline{K}\pi$ mode (K^* (892) K dominant)

$K\overline{K}\pi$ MODE (unresolved)

VALUE	EVTS	DOCUMENT ID	TECN COMMENT
ullet $ullet$ We do not	use the following	g data for average	es, fits, limits, etc. • • •
$93 \!\pm\! 14$	296	AUGUSTIN	90 DM2 $J/\psi \rightarrow \gamma K^+ K^- \pi^0$
105 ± 10	693	AUGUSTIN	90 DM2 $J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
$100\!\pm\!11$	170	RATH	89 MPS 21.4 $\pi^- p \rightarrow$
			$\kappa^0_S\kappa^0_S\pi^0$ n
55^{+20}_{-30}	174	EDWARDS	82E CBAL $J/\psi \rightarrow \gamma K^+ K^- \pi^0$
50^{+30}_{-20}		SCHARRE	80 MRK2 $J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
80 ± 10	800	¹⁷ BAILLON	67 HBC $0.0 \overline{p}p \rightarrow K \overline{K} \pi \pi \pi$
¹⁷ From best fit	to 0 $^{-+}$ partial	wave , 50% K^* (892) Κ , 50% a ₀ (980) π.

η (1440) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\overline{K}\pi$	seen
Γ_2	$K\overline{K}^*(892)+$ c.c.	seen
Γ ₃	$\eta\pi\pi$	seen
Γ_4	$a_0(980)\pi$	seen
Γ_5	$\eta(\pi\pi)$ S-wave	seen
Γ_6	4π	seen
Γ ₇	$\gamma \gamma$	
Γ ₈	$ ho^{0}\gamma$	

$\eta(1440) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(KK\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_7/\Gamma$							
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT		
<1.2	95	BEHREND	89	CELL	$\gamma \gamma \rightarrow K_S^0$	$\kappa^{\pm}\pi^{\mp}$	
• • • We do not use the	ne following	data for average					
<1.6	95	AIHARA	86 D	TPC	$e^+e^{e^+e^-K}$	$^0_S \kappa^\pm \pi^\mp$	
<2.2	95	ALTHOFF	85 B	TASS	$e^+e^- \rightarrow e^-$	$e^+e^-K\overline{K}\pi$	
<8.0	95	JENNI	83	MRK2	$e^+e^- \rightarrow e^-$	$e^+e^-K\overline{K}\pi$	
$\Gamma(\eta\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ VALUE (keV) DOCUMENT ID TECH COMMENT							
• • • We do not use the	ne following		s, fits				
<0.3		ANTREASYA	N 87	CBAL	$e^+e^- ightarrow 0$	$\mathrm{e^+e^-}\eta\pi\pi$	
$\Gamma(\rho^0 \gamma) \times \Gamma(\gamma \gamma) / \Gamma_{\text{total}}$ $\Gamma_8 \Gamma_7 / \Gamma$							
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the following data for averages, fits, limits, etc. • •							
<1.5	95	ALTHOFF	84E	TASS	$e^+e^{e^+e^-\pi^-}$	$+\pi - \gamma$	

η (1440) BRANCHING RATIOS

$\Gamma(\eta\pi\pi)/\Gamma(K\overline{K}\pi)$						Γ_3/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the	following of	data for averages	, fits,	limits,	etc. • • •	
< 0.5	90	EDWARDS	83 B	CBAL	$J/\psi \rightarrow \eta \pi \pi \gamma$	
<1.1	90	SCHARRE	80	MRK2	$J/\psi \rightarrow \eta \pi \pi \gamma$	
<1.5	95	FOSTER	68 B	HBC	0.0 p p	

$\Gamma(a_0(980)\pi)/\Gamma(K$	$\overline{K}\pi)$					Γ_4/Γ_1
VALUE	EVTS	DOCUMENT ID				
ullet $ullet$ We do not use	the followi		es, fits	, limits,	etc. • • •	
~ 0.15		¹⁸ BERTIN			$0 \overline{p}p \rightarrow K\overline{K}\tau$	τ π π
~ 0.8	500	¹⁸ DUCH	89	ASTE		⊤ 0
~ 0.75		¹⁸ REEVES	86	SPEC	$\pi^{+}\pi^{-}K^{\pm}$ 6.6 $p\overline{p} \rightarrow KK$	
18 Assuming that the	e a ₀ (980) o	decays only into K	\overline{K} .			
$\Gamma(a_0(980)\pi)/\Gamma(\eta\eta)$	$\pi\pi$)					Γ_4/Γ_3
VALUE	•	DOCUMENT ID)	TECN	COMMENT	
ullet $ullet$ We do not use	the followi	ng data for averag	es, fits	, limits,	etc. • • •	
0.19 ± 0.04	2200	¹⁹ ALDE	97 B	GAM4	$100 \ \pi^- p \rightarrow r$	$_{\eta}\pi^{0}\pi^{0}n$
$0.56\!\pm\!0.04\!\pm\!0.03$		¹⁹ AMSLER	95F	CBAR	$0 \ \overline{p}p \rightarrow \pi^+ \pi$	$-\pi^0\pi^0\eta$
19 Assuming that the	a ₀ (980) o	decays only into $\eta ag{7}$	π.			
$\Gamma(K\overline{K}^*(892) + c.c)$.)/Γ(κ Τ	(π)				Γ_2/Γ_1
VALUE		DOCUMENT ID)	TECN	<u>COMMENT</u>	
0.50 ± 0.10		BAILLON	67	HBC	$0.0 \overline{p}p \rightarrow K\overline{k}$	$\overline{\zeta}\pi\pi\pi$
$\Gamma(K\overline{K}^*(892) + c.c)$)/[r/ <i>\</i> /	<u>√</u> *(902) c c)	. r/.	·- (UOU)	_\](//
•	, .	,	**		COMMENT	
VALUE• • • We do not use		<u></u>			· ·	
		-				- 0
<0.25	90	EDWARDS	82E	CBAL	$J/\psi \rightarrow K^+K$	π γ
$\Gamma(ho^0\gamma)/\Gamma(K\overline{K}\pi)$						Γ_8/Γ_1
VALUE		DOCUMENT ID				
0.0152 ± 0.0038		²⁰ COFFMAN	90	MRK3	$J/\psi \rightarrow \gamma \gamma \pi^{+}$	π^-
$^{20} {\sf Using} {\sf B}(J/\psi ightarrow$						
$\gamma \gamma \rho^0) = 6.4 \times 10^-$	b and assu	iming that the γho^0	signal	does no	ot come from the	$e f_1(1420).$
$\Gamma(\eta(\pi\pi)_{S-\text{wave}})/\Gamma$	$\Gamma(\eta\pi\pi)$					Γ_5/Γ_3
	<u>EVTS</u>	DOCUMENT ID				
• • • We do not use	the followi	ng data for averag				
$0.81\!\pm\!0.04$	2200	ALDE	97 B	GAM4	100 $\pi^- p \rightarrow r$	$_{\eta}\pi^{0}\pi^{0}n$

η (1440) REFERENCES

ALDE	97B	PAN 60 386	D. Alde, Binon, Bricman+	(GAMS Collab.)
		Translated from YAF	60 458.	
BERTIN	97	PL B400 226	+Bruschi, Capponi $+$	(OBELIX Collab.)
AMSLER	95F	PL B358 389	+Armstrong, Urner+	(Crystal Barrel Collab.)
BERTIN	95	PL B361 187	+Bruschi+	(OBELIX Collab.)
BUGG	95	PL B353 378	+Scott, Zoli+	(LOQM, PNPI, WASH)
AUGUSTIN	92	PR D46 1951	+Cosme	` (DM2 Collab.)
BEHREND	92	ZPHY C56 381		(CELLO Collab.)
BOLTON	92B	PRL 69 1328	+Brown, Bunnell+	(Mark III Collab.)
FUKUI	91C	PL B267 293	+ (SUGI, NAGO,	KEK, KYÒT, MIYA, AKIT)
AUGUSTIN	90	PR D42 10	+Cosme+	(DM2 Collab.)
BAI	90C	PRL 65 2507	+Blaylock $+$	(Mark III Collab.)
COFFMAN	90	PR D41 1410	+De Jongh+	(Mark III Collab.)
BEHREND	89	ZPHY C42 367	+Criegee+	`(CELLO Collab.)
BISELLO	89B	PR D39 701	Busetto+	` (DM2 Collab.)
DUCH	89	ZPHY 45 223	+Heel, Bailey+	(ASTERIX Collab.) JP
RATH	89	PR D40 693		RAN, BNL, CUNY, DUKE)
BIRMAN	88	PRL 61 1557	+Chung, Peaslee+	(BNL, FSU, IND, MASD) JP
ANTREASYAN	87	PR D36 2633	+Bartels, Besset+	(Crystal Ball Collab.)
AIHARA	86D	PRL 57 51	+Alston-Garnjost+	
ANDO	86	PRL 57 1296	+lmai+ (KEK, KYOT, NI	RS, SAGA, INUS, TSUK+) IJP
REEVES	86	PR 34 1960	+Chung, Crittenden+	
ALTHOFF	85B	ZPHY C29 189	+Braunschweig, Kirschfink+	
CHUNG	85	PRL 55 779	+Fernow, Boehnlein+	
ALTHOFF	84E	PL 147B 487	+Braunschweig, Kirschfink, Lueb	
EDWARDS	83B	PRL 51 859	+Partridge, Peck+ (CIT, F	
JENNI	83	PR D27 1031	+Burke, Telnov, Abrams, Blocke	
EDWARDS	82E	PRL 49 259	+Partridge, Peck+ (CIT, F	
Also	83	PRL 50 219	Edwards, Partridge+ (C	
SCHARRE	80	PL 97B 329	+Trilling, Abrams, Alam, Blocke	
FOSTER	68B	NP B8 174	+Gavillet, Labrosse, Montanet+	
BAILLON	67	NC 50A 393	+Edwards, D'Andlau, Astier+	

- OTHER RELATED PAPERS -