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23. PASSAGE OF PARTICLES THROUGH MATTER

Revised May 1998 by D.E. Groom (LBNL).

23.1. Notation

Table 23.1: Summary of variables used in this section. The
kinematic variables β and γ have their usual meanings.

Symbol Definition Units or Value

α Fine structure constant 1/137.035 989 5(61)
M Incident particle mass MeV/c2

E Incident particle energy γMc2 MeV
T Kinetic energy MeV

mec
2 Electron mass × c2 0.510 999 06(15) MeV

re Classical electron radius 2.817 940 92(38) fm
e2/4πε0mec

2

NA Avogadro’s number 6.022 136 7(36)× 1023 mol−1

ze Charge of incident particle
Z Atomic number of medium
A Atomic mass of medium g mol−1

K/A 4πNAr2
emec

2/A 0.307 075 MeV g−1 cm2

for A = 1 g mol−1

I Mean excitation energy eV
δ Density effect correction to ionization energy loss

~ωp Plasma energy 28.816
√

ρ〈Z/A〉 eV(a)√
4πNer3

e mec
2/α

Nc Electron density (units of re)−3

wj Weight fraction of the jth element in a compound or mixture
nj ∝ number of jth kind of atoms in a compound or mixture
X0 Radiation length g cm−2

— 4αre2NA/A (716.408 g cm−2)−1

for A = 1 g mol−1

Ec Critical energy MeV
Es Scale energy

√
4π/α mec

2 21.2052 MeV
RM Molière radius MeV g−1 cm2

(a) For ρ in g cm−3.

23.2. Ionization energy loss by heavy particles [1–5]

Moderately relativistic charged particles other than electrons lose
energy in matter primarily by ionization. The mean rate of energy
loss (or stopping power) is given by the Bethe-Bloch equation,

−dE

dx
= Kz2 Z

A

1
β2

[
1
2

ln
2mec

2β2γ2Tmax

I2
− β2 − δ

2

]
. (23.1)

Here Tmax is the maximum kinetic energy which can be imparted to a
free electron in a single collision, and the other variables are defined in
Table 23.1. The units are chosen so that dx is measured in mass per
unit area, e.g., in g cm−2.

In this form, the Bethe-Bloch equation describes the energy loss of
pions in a material such as copper to about 1% accuracy for energies
between about 6 MeV and 6 GeV. At lower energies corrections for
tightly-bound atomic electrons and other effects must be made, and
at higher energies radiative effects begin to be important. These
limits of validity depend on both the effective atomic number of the
absorber and the mass of the slowing particle. Low-energy effects will
be discussed in Sec. 23.2.2.

The function as computed for pions on copper is shown by the solid
curve in Fig. 23.1, and for pions on other materials in Fig. 23.2. A
minor dependence on M at the highest energies is introduced through
Tmax, but for all practical purposes in high-energy physics dE/dx in a
given material is a function only of β. Except in hydrogen, particles
of the same velocity have very similar rates of energy loss in different
materials; there is a slow decrease in the rate of energy loss with
increasing Z. The qualitative difference in stopping power behavior at
high energies between a gas (He) and the other materials shown in
Fig. 23.2 is due to the density-effect correction, δ, discussed below.

The stopping power functions are characterized by broad minima
whose position drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100.

In practical cases, most relativistic particles (e.g., cosmic-ray
muons) have energy loss rates close to the minimum, and are said to
be minimum ionizing particles, or mip’s.

Eq. (23.1) may be integrated to find the total range R for a particle
which loses energy only through ionization. Since dE/dx depends
only on β, R/M is a function of E/M or pc/M . In practice, range is
a useful concept only for low-energy hadrons (R <∼ λI , where λI is
the nuclear interaction length), and for muons below a few hundred
GeV (above which radiative effects dominate). R/M as a function of
βγ = pc/M is shown for a variety of materials in Fig. 23.3.
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Figure 23.1: Energy loss rate in copper. The function without
the density-effect correction, δ, is also shown, as is the loss
rate excluding energy transfers with T > 0.5 MeV. The
shell correction is indicated. The conventional β−2 low-energy
approximation is compared with β−5/3.
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Figure 23.3: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For
example: For a K+ whose momentum is 700 MeV/c, βγ = 1.42.
For lead we read R/M ≈ 396, and so the range is 195 g cm−2.

For a particle with mass M and momentum Mβγc, Tmax is given
by

Tmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (23.2)

It is usual [1,2] to make the “low-energy” approximation
Tmax = 2mec

2 β2γ2, valid for 2γme/M � 1; this, in fact, is done
implicitly in many standard references. For a pion in copper, the
error thus introduced into dE/dx is greater than 6% at 100 GeV. The
correct expression should be used.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where structure effects significantly
modify the cross sections. This problem has been investigated by J.D.
Jackson [6], who concluded that for hadrons (but not for large nuclei)
corrections to dE/dx are negligible below energies where radiative
effects dominate. While the cross section for rare hard collisions is
modified, the average stopping power, dominated by many softer
collisions, is almost unchanged.

The mean excitation energy I is (10 ± 1 eV) × Z for elements
heavier than sulphur. The values adopted by the ICRU for the
chemical elements [7] are now in wide use; these are shown in Fig. 23.4.
Machine-readable versions can also be found [8]. Given the availability
of these constants and their variation with atomic structure, there
seems little point to depending upon approximate formulae, as was
done in the past.

Ionization losses by electrons and positrons [7,9,10] are not discussed
here. Above the critical energy, which is a few tens of MeV in most
materials (see Fig. 23.7), bremsstrahlung is the dominant source of
energy loss. This important case is discussed below. The contributions
of various electron energy-loss processes in lead are shown in Fig. 24.4.
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23.2.1. The density effect: As the particle energy increases,
its electric field flattens and extends, so that the distant-collision
contribution to Eq. (23.1) increases as lnβγ. However, real media
become polarized, limiting the field extension and effectively truncating
this part of the logarithmic rise [4,11–14]. At very high energies,

δ/2→ ln(~ωp/I) + lnβγ − 1/2 , (23.3)

where δ/2 is the density effect correction introduced in Eq. (23.1)
and ~ωp is the plasma energy defined in Table 23.1. A comparison
with Eq. (23.1) shows that |dE/dx| then grows as lnβγ rather than
lnβ2γ2, and that the mean excitation energy I is replaced by the
plasma energy ~ωp. The stopping power as calculated with and
without the density effect correction is shown in Fig. 23.1. Since the
plasma frequency scales as the square root of the electron density, the
correction is much larger for a liquid or solid than for a gas, as is
illustrated by the examples in Fig. 23.2.

The density effect correction is usually computed using Stern-
heimer’s parameterization [11]:

δ =


2(ln 10)x− C if x ≥ x1;
2(ln 10)x− C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ0102(x−x0) if x < x0 (conductors)

(23.4)
Here x = log10 η = log10(p/Mc). C (the negative of the C used in
Ref. 11) is obtained by equating the high-energy case of Eq. (23.4) with
the limit given in Eq. (23.3). The other parameters are adjusted to
give a best fit to the results of detailed calculations for momenta below
Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in
Ref. 14. A recipe for finding the coefficients for nontabulated materials
given by Sternheimer and Peierls [13] is summarized in Ref. 10.

The remaining relativistic rise can be attributed to large energy
transfers to a few electrons. If these escape or are otherwise accounted
for separately, the energy deposited in an absorbing layer (in contrast
to the energy lost by the particle) approaches a constant value, the
Fermi plateau (see Sec. 23.2.5 below). The curve in Fig. 23.1 labeled
“Tcut = 0.5 MeV” illustrates this behavior. At extreme energies (e.g.,
> 321 GeV for muons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy
muons, as discussed in Sec. 23.6.
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23.2.2. Energy loss at low energies: A shell correction C/Z is
often included in the square brackets of Eq. (23.1) [3,5,7] to correct
for atomic binding having been neglected in calculating some of the
contributions to Eq. (23.1). We show the Barkas form [3] in Fig. 23.1.
For copper it contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV
for a pion), and the correction decreases very rapidly with energy.

Eq. (23.1) is based on a first-order Born approximation. Higher-
order corrections, again important only at lower energy, are normally
included by adding a term z2L2(β) inside the square brackets.

An additional “Barkas correction” zL1(β) makes the stopping power
for a negative particle somewhat larger than for a positive particle
with the same mass and velocity. In a 1956 paper, Barkas et al. noted
that negative pions had a longer range than positive pions [15]. The
effect has been measured for a number of negative/positive particle
pairs, most recently for antiprotons at the CERN LEAR facility [16].

A detailed discussion of low-energy corrections to the Bethe formula
is given in ICRU Report 49 [5]. When the corrections are properly
included, the accuracy of the Bethe-Bloch treatment is accurate to
about 1% down to β ≈ 0.05, or about 1 MeV for protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons,
one usually relies on the empirical fitting formulae developed by
Andersen and Ziegler [5,17]. For particles moving more slowly than
≈ 0.01c (more or less the velocity of the outer atomic electrons),
Lindhard has been quite successful in describing electronic stopping
power, which is proportional to β [18,19]. Finally, we note that at low
energies, e.g., for protons of less than several hundred eV, non-ionizing
nuclear recoil energy loss dominates the total energy loss [5,19,20].

As shown in ICRU49 [5] (using data taken from Ref. 17), the nuclear
plus electronic proton stopping power in copper is 113 MeV cm2 g−1 at
T = 10 keV, rises to a maximum of 210 MeV cm2 g−1 at 100–150 keV,
then falls to 120 MeV cm2 g−1 at 1 MeV. Above 0.5–1.0 MeV the
corrected Bethe-Block theory is adequate.

23.2.3. Fluctuations in energy loss: The quantity (dE/dx)δx is
the mean energy loss via interaction with electrons in a layer of the
medium with thickness δx. For finite δx, there are fluctuations in the
actual energy loss. The distribution is skewed toward high values
(the Landau tail) [1,21]. Only for a thick layer [(dE/dx)δx� Tmax] is
the distribution nearly Gaussian. The large fluctuations in the energy
loss are due to the small number of collisions involving large energy
transfers. The fluctuations are smaller for the so-called restricted
energy loss rate, as discussed in Sec. 23.2.5 below.

23.2.4. Energy loss in mixtures and compounds: A mixture or
compound can be thought of as made up of thin layers of pure
elements in the right proportion (Bragg additivity). In this case,

dE

dx
=
∑

wj
dE

dx

∣∣∣∣
j

, (23.5)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (23.1) can be inserted into Eq. (23.5) to
find expressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for example, 〈Z/A〉 =∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, 〈I 〉 as defined this way is
an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and 〈δ〉 as calculated this way has
little relevance, because it is the electron density which matters.
If possible, one uses the tables given in Refs. 14 and 10, which
include effective excitation energies and interpolation coefficients for
calculating the density effect correction for the chemical elements and
nearly 200 mixtures and compounds. If a compound or mixture is not
found, then one uses the recipe for δ given in Ref. 13 (or Ref. 22), and
calculates 〈I〉 according to the discussion in Ref. 9. (Note the “13%”
rule!)

23.2.5. Restricted energy loss rates for relativistic ionizing
particles: Fluctuations in energy loss are due mainly to the production
of a few high-energy knock-on electrons. Practical detectors often
measure the energy deposited, not the energy lost. When energy is
carried off by energetic knock-on electrons, it is more appropriate to
consider the mean energy loss excluding energy transfers greater than

some cutoff Tcut. The restricted energy loss rate is

−dE

dx

∣∣∣∣
T<Tcut

= Kz2 Z

A

1
β2

[
1
2

ln
2mec

2β2γ2Tupper

I2

−β2

2

(
1 +

Tupper

Tmax

)
− δ

2

]
(23.6)

where Tupper = MIN(Tcut, Tmax). This form agrees with the equation
given in previous editions of this Review [23] for Tcut � Tmax but
smoothly joins the normal Bethe-Bloch function (Eq. (23.1)) for
Tcut > Tmax.

23.2.6. Energetic knock-on electrons (δ rays): The distribution
of secondary electrons with kinetic energies T � I is given by [1]

d2N

dTdx
=

1
2

Kz2 Z

A

1
β2

F (T )
T 2

(23.7)

for I � T ≤ Tmax, where Tmax is given by Eq. (23.2). The factor F is
spin-dependent, but is about unity for T � Tmax. For spin-0 particles
F (T ) = (1 − β2T/Tmax); forms for spins 1/2 and 1 are also given
by Rossi [1]. When Eq. (23.7) is integrated from Tcut to Tmax,one
obtains the difference between Eq. (23.1) and Eq. (23.6). For incident
electrons, the indistinguishability of projectile and target means that
the range of T extends only to half the kinetic energy of the incident
particle. Additional formulae are given in Ref. 24. Equation (23.7) is
inaccurate for T close to I: for 2I .T . 10I, the 1/T 2 dependence
above becomes approximately T−η, with 3. η. 5 [25].

23.2.7. Ionization yields: Physicists frequently relate total energy
loss to the number of ion pairs produced near the particle’s track.
This relation becomes complicated for relativistic particles due to
the wandering of energetic knock-on electrons whose ranges exceed
the dimensions of the fiducial volume. For a qualitative appraisal
of the nonlocality of energy deposition in various media by such
modestly energetic knock-on electrons, see Ref. 26. The mean local
energy dissipation per local ion pair produced, W , while essentially
constant for relativistic particles, increases at slow particle speeds [27].
For gases, W can be surprisingly sensitive to trace amounts of
various contaminants [27]. Furthermore, ionization yields in practical
cases may be greatly influenced by such factors as subsequent
recombination [28].

23.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many
small-angle scatters. Most of this deflection is due to Coulomb
scattering from nuclei, and hence the effect is called multiple Coulomb
scattering. (However, for hadronic projectiles, the strong interactions
also contribute to multiple scattering.) The Coulomb scattering
distribution is well represented by the theory of Molière [29]. It is
roughly Gaussian for small deflection angles, but at larger angles
(greater than a few θ0, defined below) it behaves like Rutherford
scattering, having larger tails than does a Gaussian distribution.

If we define
θ0 = θ rms

plane =
1√
2

θrms
space . (23.8)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
a width given by [30,31]

θ0 =
13.6 MeV

βcp
z
√

x/X0

[
1 + 0.038 ln(x/X0)

]
. (23.9)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This value of θ0 is from
a fit to Molière distribution [29] for singly charged particles with β = 1
for all Z, and is accurate to 11% or better for 10−3 < x/X0 < 100.

Eq. (23.9) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (23.9) once, after finding x and X0 for the
combined scatterer.
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Lynch and Dahl have extended this phenomenological approach,
fitting Gaussian distributions to a variable fraction of the Molière
distribution for arbitrary scatterers [31], and achieve accuracies of 2%
or better.

x

splane
yplane

Ψplane

θplane

x /2

Figure 23.5: Quantities used to describe multiple Coulomb
scattering. The particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [29]

1
2π θ2

0

exp

−θ2
space

2θ2
0

 dΩ , (23.10)

1√
2π θ0

exp

−θ2
plane

2θ2
0

 dθplane , (23.11)

where θ is the deflection angle. In this approximation, θ2
space ≈

(θ2
plane,x + θ2

plane,y), where the x and y axes are orthogonal to the
direction of motion, and dΩ ≈ dθplane,x dθplane,y. Deflections into
θplane,x and θplane,y are independent and identically distributed.

Figure 23.5 shows these and other quantities sometimes used to
describe multiple Coulomb scattering. They are

ψ rms
plane =

1√
3

θ rms
plane =

1√
3

θ0 , (23.12)

y rms
plane =

1√
3

x θ rms
plane =

1√
3

x θ0 , (23.13)

s rms
plane =

1
4
√

3
x θ rms

plane =
1

4
√

3
x θ0 . (23.14)

All the quantitative estimates in this section apply only in the
limit of small θ rms

plane and in the absence of large-angle scatters. The
random variables s, ψ, y, and θ in a given plane are distributed in
a correlated fashion (see Sec. 28.1 of this Review for the definition
of the correlation coefficient). Obviously, y ≈ xψ. In addition, y and
θ have the correlation coefficient ρyθ =

√
3/2 ≈ 0.87. For Monte

Carlo generation of a joint (y plane, θplane) distribution, or for other
calculations, it may be most convenient to work with independent
Gaussian random variables (z1, z2) with mean zero and variance one,
and then set

yplane =z1 x θ0(1− ρ2
yθ)

1/2/
√

3 + z2 ρyθx θ0/
√

3

=z1 x θ0/
√

12 + z2 x θ0/2 ; (23.15)
θplane =z2 θ0 . (23.16)

Note that the second term for y plane equals x θplane/2 and represents
the displacement that would have occurred had the deflection θplane
all occurred at the single point x/2.

For heavy ions the multiple Coulomb scattering has been measured
and compared with various theoretical distributions [32].

23.4. Radiation length and associated quantities

In dealing with electrons and photons at high energies, it is
convenient to measure the thickness of the material in units of the
radiation length X0. This is the mean distance over which a high-
energy electron loses all but 1/e of its energy by bremsstrahlung, and is
the appropriate scale length for describing high-energy electromagnetic
cascades. X0 has been calculated and tabulated by Y.S. Tsai [33]:

1
X0

= 4αr2
e
NA

A

{
Z2[Lrad − f(Z)

]
+ Z L′rad

}
. (23.17)

For A = 1 g mol−1, 4αre2NA/A = (716.408 g cm−2)−1. Lrad and
L′rad are given in Table 23.2. The function f(Z) is an infinite sum, but
for elements up to uranium can be represented to 4-place accuracy by

f(Z) = a2[(1 + a2)−1 + 0.20206

−0.0369 a2 + 0.0083 a4 − 0.002 a6] , (23.18)

where a = αZ [34].

Table 23.2: Tsai’s Lrad and L′rad, for use in calculating the
radiation length in an element using Eq. (23.17).

Element Z Lrad L′rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

Although it is easy to use Eq. (23.17) to calculate X0, the functional
dependence on Z is somewhat hidden. Dahl provides a compact fit to
the data [35]:

X0 =
716.4 g cm−2 A

Z(Z + 1) ln(287/
√

Z)
(23.19)

Results obtained with this formula agree with Tsai’s values to better
than 2.5% for all elements except helium, where the result is about
5% low.
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Figure 23.6: Two definitions of the critical energy Ec.

The radiation length in a mixture or compound may be approxi-
mated by

1/X0 =
∑

wj/Xj , (23.20)

where wj and Xj are the fraction by weight and the radiation length
for the jth element.

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec
is sometimes defined as the energy at which the two loss rates
are equal [36]. Berger and Seltzer [36] also give the approximation
Ec = (800 MeV)/(Z + 1.2). This formula has been widely quoted,
and has been given in previous editions of this Review [23]. Among
alternate definitions is that of Rossi [1], who defines the critical
energy as the energy at which the ionization loss per radiation length
is equal to the electron energy. Equivalently, it is the same as the
first definition with the approximation |dE/dx|brems ≈ E/X0. These
definitions are illustrated in the case of copper in Fig. 23.6.

The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there
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Figure 23.7: Electron critical energy for the chemical elements,
using Rossi’s definition [1]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 23.7. Fits
were also made with functions of the form a/(Z + b)α, but α was
essentially unity.

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Molière radius RM , given
by [37,38]

RM = X0 Es/Ec , (23.21)

where Es ≈ 21 MeV (see Table 23.1), and the Rossi definition of Ec is
used.

In a material containing a weight fraction wj of the element with
critical energy Ecj and radiation length Xj , the Molière radius is
given by

1
RM

=
1

Es

∑ wj Ecj
Xj

. (23.22)

For very high-energy photons, the total e+e− pair-production cross
section is approximately

σ = 7
9(A/X0NA) , (23.23)

where A is the atomic weight of the material and NA is Avogadro’s
number. Equation Eq. (23.23) is accurate to within a few percent
down to energies as low as 1 GeV. The cross section decreases at
lower energies, as shown in Fig. 24.4 of this Review. As the energy
decreases, a number of other processes become important, as is shown
in Fig. 24.3 of this Review.

23.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick
absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t = x/X0

y = E/Ec , (23.24)

so that distance is measured in units of radiation length and energy in
units of critical energy.

Longitudinal profiles for an EGS4 [22] simulation of a 30 GeV
electron-induced cascade in iron are shown in Fig. 23.8. The number
of particles crossing a plane (very close to Rossi’s Π function [1])
is sensitive to the cutoff energy, here chosen as a total energy of
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Figure 23.8: An EGS4 simulation of a 30 GeV electron-
induced cascade in iron. The histogram shows fractional energy
deposition per radiation length, and the curve is a gamma-
function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes
at X0/2 intervals (scale on right) and the squares the number of
photons with E ≥ 1.5 MeV crossing the planes (scaled down to
have same area as the electron distribution).

1.5 MeV for both electrons and photons. The electron number falls off
more quickly than energy deposition. This is because, with increasing
depth, a larger fraction of the cascade energy is carried by photons.
Exactly what a calorimeter measures depends on the device, but it
is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Čerenkov
detectors and other devices with “thick” sensitive regions it is closer
to the energy deposition (total track length). In such detectors the
signal is proportional to the “detectable” track length Td, which is
in general less than the total track length T . Practical devices are
sensitive to electrons with energy above some detection threshold Ed,
and Td = T F (Ed/Ec). An analytic form for F (Ed/Ec) obtained by
Rossi [1] is given by Fabjan [39]; see also Amaldi [40].

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma
distribution [41]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(23.25)

The maximum tmax occurs at (a− 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (23.25) with

tmax = (a− 1)/b = 1.0× (ln y + Cj) , j = e, γ , (23.26)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for
photon-induced cascades. To use Eq. (23.25), one finds (a − 1)/b
from Eq. (23.26) and Eq. (23.24), then finds a either by assuming
b ≈ 0.5 or by finding a more accurate value from Fig. 23.9. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [1] (see Fabjan’s review in Ref. 39), but
with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the
EGS4 result.

The “shower length” Xs = X0/b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in
Fig. 23.9. As a corollary of this Z dependence, the number of electrons
crossing a plane near shower maximum is underestimated using Rossi’s
approximation for carbon and seriously overestimated for uranium.
Essentially the same b values are obtained for incident electrons and
photons. For many purposes it is sufficient to take b ≈ 0.5.

The gamma distribution is very flat near the origin, while the
EGS4 cascade (or a real cascade) increases more rapidly. As a result
Eq. (23.25) fails badly for about the first two radiation lengths; it was
necessary to exclude this region in making fits.
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Figure 23.9: Fitted values of the scale factor b for energy
deposition profiles obtained with EGS4 for a variety of elements
for incident electrons with 1 ≤ E0 ≤ 100 GeV. Values obtained
for incident photons are essentially the same.

Because fluctuations are important, Eq. (23.25) should be used only
in applications where average behavior is adequate. Grindhammer
et al. have developed fast simulation algorithms in which the variance
and correlation of a and b are obtained by fitting Eq. (23.25) to
individually simulated cascades, then generating profiles for cascades
using a and b chosen from the correlated distributions [42].

Measurements of the lateral distribution in electromagnetic
cascades are shown in Refs. 37 and 38. On the average, only 10%
of the energy lies outside the cylinder with radius RM . About
99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails.
The distributions are characterized by a narrow core, and broaden as
the shower develops. They are often represented as the sum of two
Gaussians, and Grindhammer [42] describes them with the function

f(r) =
2r R2

(r2 + R2)2
, (23.27)

where R is a phenomenological function of x/X0 and lnE.

23.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more
important than ionization for all charged particles. For muons and
pions in materials such as iron, this “critical energy” occurs at
several hundred GeV. Radiative effects dominate the energy loss of
energetic muons found in cosmic rays or produced at the newest
accelerators. These processes are characterized by small cross sections,
hard spectra, large energy fluctuations, and the associated generation
of electromagnetic and (in the case of photonuclear interactions)
hadronic showers [45–53]. As a consequence, at these energies the
treatment of energy loss as a uniform and continuous process is for
many purposes inadequate.

It is convenient to write the average rate of muon energy loss
as [43]

−dE/dx = a(E) + b(E)E . (23.28)

Here a(E) is the ionization energy loss given by Eq. (23.1), and
b(E) is the sum of e+e− pair production, bremsstrahlung, and
photonuclear contributions. To the approximation that these slowly-
varying functions are constant, the mean range x0 of a muon with
initial energy E0 is given by

x0 ≈ (1/b) ln(1 + E0/Eµc) , (23.29)

where Eµc = a/b. Figure 23.10 shows contributions to b(E) for iron.
Since a(E) ≈ 0.002 GeV g−1 cm2, b(E)E dominates the energy loss
above several hundred GeV, where b(E) is nearly constant. The rate
of energy loss for muons in hydrogen, uranium, and iron is shown in
Fig. 23.11 [44].
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to dE/dx in iron from ionization and the processes shown in
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The “muon critical energy” Eµc can be defined more exactly as the
energy at which radiative and ionization losses are equal, and can be
found by solving Eµc = a(Eµc)/b(Eµc). This definition corresponds
to the solid-line intersection in Fig. 23.6, and is different from the
Rossi definition we used for electrons. It serves the same function:
below Eµc ionization losses dominate, and above Eµc dominate. The
dependence of Eµc on atomic number Z is shown in Fig. 23.12.

The radiative cross sections are expressed as functions of the
fractional energy loss ν. The bremsstrahlung cross section goes
roughly as 1/ν over most of the range, while for the pair production
case the distribution goes as ν−3 to ν−2 (see Ref. 55). “Hard” losses
are therefore more probable in bremsstrahlung, and in fact energy
losses due to pair production may very nearly be treated as continuous.
The calculated momentum distribution of an incident 1 TeV/c muon
beam after it crosses 3 m of iron is shown in Fig. 23.13. The most
probable loss is 9 GeV, or 3.8 MeV g−1cm2. The full width at half
maximum is 7 GeV/c, or 0.7%. The radiative tail is almost entirely
due to bremsstrahlung; this includes most of the 10% that lost more
than 2.8% of their energy. Most of the 3.3% that lost more than 10% of
their incident energy experienced photonuclear interactions, which are
concentrated in rare, relatively hard collisions. The latter can exceed
nominal detector resolution [56], necessitating the reconstruction
of lost energy. Electromagnetic and hadronic cascades in detector
materials can obscure muon tracks in detector planes and reduce
tracking efficiency [57].
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23.7. Čerenkov and transition radiation [4,58,59]

A charged particle radiates if its velocity is greater than the
local phase velocity of light (Čerenkov radiation) or if it crosses
suddenly from one medium to another with different optical properties
(transition radiation). Neither process is important for energy loss,
but both are used in high-energy physics detectors.

Čerenkov Radiation. The half-angle θc of the Čerenkov cone for a
particle with velocity βc in a medium with index of refraction n is

θc = arccos(1/nβ)

≈
√

2(1− 1/nβ) for small θc, e.g. in gases. (23.30)

The threshold velocity βt is 1/n, and γt = 1/(1− β2
t )

1/2. Therefore,
βtγt = 1/(2δ + δ2)1/2, where δ = n − 1. Values of δ for various
commonly used gases are given as a function of pressure and
wavelength in Ref. 60. For values at atmospheric pressure, see
Table 6.1. Data for other commonly used materials are given in
Ref. 61.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

remec2

(
1− 1

β2n2(E)

)
≈ 370 sin2 θc(E) eV−1cm−1 (z = 1) , (23.31)

or, equivalently,
d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n2(λ)

)
. (23.32)

The index of refraction is a function of photon energy E, as is the
sensitivity of the transducer used to detect the light. For practical use,
Eq. (23.31) must be multiplied by the the transducer response function
and integrated over the region for which β n(E) > 1. Further details
are given in the discussion of Čerenkov detectors in the Detectors
section (Sec. 25 of this Review).

Transition Radiation. The energy radiated when a particle with
charge ze crosses the boundary between vacuum and a medium with
plasma frequency ωp is

I = αz2γ~ωp/3 , (23.33)

where

~ωp =
√

4πNer3
e mec

2/α

=
√

4πNea3∞ 2× 13.6 eV . (23.34)

Here Ne is the electron density in the medium, re is the classical
electron radius, and a∞ is the Bohr radius. For styrene and similar
materials,

√
4πNea3∞ ≈ 0.8, so that ~ωp ≈ 20 eV. The typical emission

angle is 1/γ.
The radiation spectrum is logarithmically divergent at low energies

and decreases rapidly for ~ω/γ~ωp > 1. About half the energy is
emitted in the range 0.1 ≤ ~ω/γ~ωp ≤ 1. For a particle with γ = 103,
the radiated photons are in the soft x-ray range 2 to 20 eV. The γ
dependence of the emitted energy thus comes from the hardening of
the spectrum rather than from an increased quantum yield. For a
typical radiated photon energy of γ~ωp/4, the quantum yield is

Nγ ≈
1
2

αz2γ~ωp
3

/γ~ωp
4

≈ 2
3αz2 ≈ 0.5%× z2 . (23.35)

More precisely, the number of photons with energy ~ω > ~ω0 is
given by [4]

Nγ(~ω > ~ω0) =
αz2

π

[(
ln

γ~ωp
~ω0

− 1
)2

+
π2

12

]
, (23.36)

within corrections of order (~ω0/γ~ωp)2. The number of photons
above a fixed energy ~ω0 � γ~ωp thus grows as (ln γ)2, but the number
above a fixed fraction of γ~ωp (as in the example above) is constant.
For example, for ~ω > γ~ωp/10, Nγ = 2.519 αz2/π = 0.59%× z2.

The yield can be increased by using a stack of plastic foils with
gaps between. However, interference can be important, and the soft
x rays are readily absorbed in the foils. The first problem can be
overcome by choosing thicknesses and spacings large compared to the
“formation length” D = γc/ωp, which in practical situations is tens
of µm. Other practical problems are discussed in Sec. 25.
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