au-DECAY PARAMETERS

Written April 1996 by D.E. Groom (LBNL).

Neglecting radiative corrections and terms proportional to m_{ℓ}^2/m_{τ}^2 , the energy spectrum of the charged decay lepton ℓ in the τ rest frame is given by

$$\frac{d^2 \Gamma_{\tau \to \ell \nu \overline{\nu}}}{d\Omega \, dx} \propto x^2 \\
\times \left\{ 12(1-x) + \rho_\tau \left(\frac{32}{3}x - 8 \right) + 24\eta_\tau \, \frac{m_\ell}{m_\tau} \, \frac{(1-x)}{x} \right. \\
\left. - P_\tau \, \xi_\tau \cos \theta \, \left[4(1-x) + \delta_\tau \left(\frac{32}{3}x - 8 \right) \right] \right\} .$$
(1)

Here $x = 2E_{\ell}/m_{\tau}$ is the scaled lepton energy, P_{τ} is the τ polarization, and θ is the angle between the τ spin and the lepton momentum. With unpolarized τ 's or integrating over the full θ range, the spectrum depends only on ρ_{τ} and η_{τ} . Measurements of the other two Michel parameters, ξ_{τ} and δ_{τ} , require polarized τ 's. The Standard Model predicitions for $\rho_{\tau}, \eta_{\tau}, \xi_{\tau}$ and δ_{τ} are $\frac{3}{4}$, 0, 1 and $\frac{3}{4}$. Where possible, we give separately the parameters for $\tau^- \to e^- \nu_{\tau} \overline{\nu}_e$ and $\tau^- \to \mu^- \nu_{\tau} \overline{\nu}_{\mu}$, to avoid assumptions about universality. Listings labelled "(eor μ)" contain either the results assuming lepton universality if quoted by the experiments or repeat the results from the "e" or " μ " section.

Hadronic two-body decays $\tau \to \nu_{\tau} h$, $h = \pi$, ρ , a_1, \ldots , can under minimal assumptions be written

$$\frac{1}{\Gamma} \frac{d\Gamma}{dz} = f_h(z) + P_\tau \,\xi_h \,g_h(z) \;, \tag{2}$$

where the kinematic functions f_h , g_h and the definition of the variable z depend on the spin of the hadron h. For the simple case $h = \pi$, one has $z = E_{\pi}/E_{\tau}$, f(z) = 1, and g(z) = 2z - 1. The parameter ξ_h is predicted to be unity and can be identified with twice the negative ν_{τ} helicity. Again ξ_h is listed, when available, separately for each hadron and averaged over all hadronic decays modes.