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34. KINEMATICS

Revised January 2000 by J.D. Jackson (LBNL).

Throughout this section units are used in which 2 = ¢ = 1. The
following conversions are useful: he = 197.3 MeV fm, (he)? = 0.3894
(GeV)? mb.

34.1. Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a 4-vector p = (E, p)
whose square p? = E? — |p|?> = m?. The velocity of the particle is 3 = p/E. The energy
and momentum (E*, p*) viewed from a frame moving with velocity B¢ are given by

E*\ [ vy —Wfﬁf) (E) .
(PTI ) N (—vfﬁf o) \py) o Pr TP Gy

where v¢ = (1 — BJ%)_l/ 2 and j (pH) are the components of p perpendicular (parallel) to
B . Other 4-vectors, such as the space-time coordinates of events, of course transform in
the same way. The scalar product of two 4-momenta p; - po = E1E2 — py - py is invariant
(frame independent).

34.2. Center-of-mass energy and momentum

In the collision of two particles of masses m1 and mo the total center-of-mass energy
can be expressed in the Lorentz-invariant form

1/2
Eem = [(El + E»)? — (py + P2)2} ;

9 9 1/2
= [ml + mj5 + 2F1 Eo(1 — (132 cos 9)} , (34.2)

where 6 is the angle between the particles. In the frame where one particle (of mass m2)
is at rest (lab frame),

Eem = (mf +m3 + 2E1 11 m2)1/2 . (34.3)
The velocity of the center-of-mass in the lab frame is
Bem = Prab/ (Ev1ab +m2) (34.4)
where pjap, = P11ap and
Yem = (El lab + m2)/Ecm . (34.5)
The c.m. momenta of particles 1 and 2 are of magnitude
ma
Pem = plabE . (34.6)
cm

For example, if a 0.80 GeV/c kaon beam is incident on a proton target, the center of mass
energy is 1.699 GeV and the center of mass momentum of either particle is 0.442 GeV/c.
It is also useful to note that

Eem dEcm = mo dE1 155 = M2 1 1ab dPlab - (34'7)
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2 34. Kinematics

34.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in terms of an
invariant amplitude —i.#. As an example, the S-matrix for 2 — 2 scattering is related
to .# by

(pph |S] pipe) = I —i(2m)* 6*(p1 + p2 — P} — ph)
A (p1, p2; DY, Ph)

. 34.8
(2E1)1/2 (2E2)1/2 (2E1)1/2 (2E1)1/2 ( )

The state normalization is such that
('lp) = (2m)*6%(p — p') - (34.9)

34.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest frame is given
in terms of the Lorentz-invariant matrix element .# by

(2m)"
I'=
d 2M

d@n (P; pl, ey pn), (34.10)

where d®,, is an element of n-body phase space given by
. 4 E ' I I (
dq)’n(Pv p1, -, pn =0 p% J 271' 32E . (3411)

1=

This phase space can be generated recursively, viz.
X dq)n—j+1 (P7 4, Pit+1s -+ pn)(zﬂ')gdq2 ) (3412)

. ; 2
where ¢? = ( g:l E;)? — ’ g:l Pi’ . This form is particularly useful in the case where a

particle decays into another particle that subsequently decays.

34.4.1. Survival probability.: If a particle of mass M has mean proper lifetime 7
(= 1/T') and has momentum (E, p), then the probability that it lives for a time ¢g or
greater before decaying is given by

P(tg) =e /7 = =Mt T/E (34.13)
and the probability that it travels a distance x or greater is

P(xg) = e Mz I/IPI (34.14)
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Figure 34.1: Definitions of variables for two-body decays.

34.4.2. Two-body decays:

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

2 2 2
M —m5+my

B = i 7 (34.15)
|p1| = |p2
- [(M2 — (m1 + m2)2) (]\/[2 —(mq — m2)2)}1/2 (34.16)
= 2M 7 .
and

where dQ) = d¢1d(cos ) is the solid angle of particle 1.

34.4.3. Three-body decays:

/‘\// P, My
°.M (o

P2, My

P3, M3

Figure 34.2: Definitions of variables for three-body decays.

Deﬁmng pij = p; +p; and m” = pm, then m%Q + m%3 + m%3 = M? + m% + m% + m%
and ml2 = (P - pg) = M? + m3 2M Es, where E3 is the energy of particle 3 in the
rest frame of M. In that frame, the momenta of the three decay particles lie in a plane.
The relative orientation of these three momenta is fixed if their energies are known. The
momenta can therefore be specified in space by giving three Euler angles («, 3,+) that
specify the orientation of the final system relative to the initial particle [1]. Then

1
I = @ 16M .| dEy dEs da d(cos () dy (34.18)
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4 3. Kinematics

Alternatively

1 1
dl = EEERTIYE .2 % |pt| |ps| dmig dQF dQ3 | (34.19)

where (|p}|, €2]) is the momentum of particle 1 in the rest frame of 1 and 2, and 3 is the
angle of particle 3 in the rest frame of the decaying particle. |p}| and |p3| are given by

|p>1k| _ [(m%2 - (ml + m2)2) (m%Q - (ml - m2)2)} 12 7 (34.20(1)
2m2
and 12
jpy| = LA = (miz +ms)®) (M7 = (maz = ms)")] (34.200)

2M
[Compare with Eq. (34.16).]

If the decaying particle is a scalar or we average over its spin states, then integration
over the angles in Eq. (34.18) gives

1 1
dl' = (277)3 m |%|2 dEl dE2
1 1 T3 9 9

This is the standard form for the Dalitz plot.

34.4.3.1. Dalitz plot: For a given value of m%Q, the range of m%3 is determined by its
values when py is parallel or antiparallel to ps:

(m%:a)max =

(B3 + E3)2 — (\/E22 —m— B~ m§)2 , (34.22a)
(m%S)min =

(B3 + E3)* - (\/E22 —m3 + \/E§2 — m§)2 : (34.22b)

Here E} = (m2y —m3 4+ m3)/2mi2 and E} = (M? — m3, — m3)/2mq2 are the energies
of particles 2 and 3 in the mq2 rest frame. The scatter plot in m%Q and m%3 is called a
Dalitz plot. If |.#|2 is constant, the allowed region of the plot will be uniformly populated
with events [see Eq. (34.21)]. A nonuniformity in the plot gives immediate information
on |.#|2. For example, in the case of D — Krr, bands appear when M([r) = ME*(892)>
reflecting the appearance of the decay chain D — K*(892)r — K.
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Figure 34.3: Dalitz plot for a three-body final state. In this example, the state
is 7T K% at 3 GeV. Four-momentum conservation restricts events to the shaded
region.

34.4.4. Kinematic limits: In a three-body decay the maximum of |ps3|, [given by
Eq. (34.20)], is achieved when mis = mj + mg, i.e., particles 1 and 2 have the same
vector velocity in the rest frame of the decaying particle. If, in addition, mg > mq,mo,

then |p3|max > |p1|maxa |p2|max-

34.4.5. Multibody decays: The above results may be generalized to final states
containing any number of particles by combining some of the particles into “effective
particles” and treating the final states as 2 or 3 “effective particle” states. Thus, if

Dijk... =Pi +pj + pp + ..., then
Mijk... = \| PPijk... (34.23)

and m;ji. . may be used in place of e.g., mi2 in the relations in Sec. 34.4.3 or 34.4.3.1
above.

Py, My p3, m3

m
P2, My Pn+2r Mn42

Figure 34.4: Definitions of variables for production of an n-body final state.
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6 34. Kinematics

34.5. Cross sections
The differential cross section is given by
(2m)* ] |?

4\/(291 -p2)? — mim3

do =

X d®n(p1 +p2; P3,s -5 Pnt2) -

[See Eq. (34.11).] In the rest frame of ma(lab),

\/(Pl -p2)%2 — m?m3 = mapy1ap ;

while in the center-of-mass frame

\/(Pl -p2)? — m?m3 = premV/'s -

34.5.1. Two-body reactions:

Py My P3, M3

P2, My Py My

Figure 34.5: Definitions of variables for a two-body final state.

(34.24)

(34.25a)

(34.25)

Two particles of momenta p; and ps and masses m; and mso scatter to particles of
momenta p3 and pg and masses m3 and my; the Lorentz-invariant Mandelstam variables

are defined by

s = (p1 +p2)2 = (p3 +p4)2

= m3 4 2F1 Ey — 2p; - py +m3

t=(p1—p3)* = (p2 — pa)*

:m%—2E1E3+2p1~p3+m§,

u=(p1 —pa)® = (p2 — p3)°

—m? —2F\Ey +2py - py +m3

and they satisfy
8+t+u:m%+m%+m§+mi .

The two-body cross section may be written as

do 1 1
20 _ | |? .
dt 647Ss | P1em]
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34. Kinematics 7

In the center-of-mass frame
t= (Elcm - EScm)2 - (plcm - pScm)2 —4p1em P3em Sin2 (ecm/Q)

=10 — 4Plem P3em Sin2(9cm/2) ) (34.31)

where ., is the angle between particle 1 and 3. The limiting values ¢y (fecm = 0) and
t1 (Bem = m) for 2 — 2 scattering are

2 2 2 272
mi —ms—més+m
to(t) = | —= 32\/5 2 4 — (plem TP3em)? . (34.32)

In the literature the notation tyin (fmax) for to (t1) is sometimes used, which should
be discouraged since tg > t1. The center-of-mass energies and momenta of the incoming
particles are

s+m%—m% s+m%—m1

E =+ 4 R A
lcm 2\/5 ) 2\/5 ’

For Fscm and Eycm, change my to m3 and mo to my4. Then

/ P1lab M2
Picm = Efcm - m% and piem = 37\/5 . (34.34)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations
see Eqs. (34.2)-(34.4).]

2

Eoem = (34.33)

34.5.2. Inclusive reactions: Choose some direction (usually the beam direction) for
the z-axis; then the energy and momentum of a particle can be written as

E =mgcoshy , pz, py, pz = mpsinhy, (34.35)
where Mo is the transverse mass
m2, =m?+p3 +py | (34.36)

and the rapidity y is defined by

1 (E+pz)
y=—=1In

2 E—p,
E
—In ( “’Z) — tanh~1 (&) . (34.37)
mp E

Under a boost in the z-direction to a frame with velocity 3, y — y — tanh™! 3. Hence
the shape of the rapidity distribution d/N/dy is invariant. The invariant cross section may
also be rewritten
o o d’c
E—e = — = -
d3p  dpdyprdp; mdy d(p7.)

(34.38)
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8 34. Kinematics

The second form is obtained using the identity dy/dp, = 1/E, and the third form
represents the average over ¢.

Feynman’s x variable is given by

IZ2 E+p,
Pz max (E + pz)max

T = (pr < |p2l) - (34.39)

In the c.m. frame,

2 2m.. sinh
g~ Pzem _ Sy B0 Yom (34.40)

e Vs

and
= (Yem)max = In(v/s/m) . (34.41)
For p > m, the rapidity [Eq. (34.37)] may be expanded to obtain

B lln cos?(0/2) +m?/4p® + ...
Y=o Sin2(0/2) + m2/4p2 +

~ —In tan(0/2) =7 (34.42)

where cos = p,/p. The pseudorapidity n defined by the second line is approximately
equal to the rapidity y for p > m and € > 1/v, and in any case can be measured when
the mass and momentum of the particle is unknown. From the definition one can obtain
the identities

sinhn =cotf , coshn=1/sinf , tanhn = cosf . (34.43)

34.5.3. Partial waves: The amplitude in the center of mass for elastic scattering of
spinless particles may be expanded in Legendre polynomials

(k. 0) = % S(20 + 1)agPy(cos6) | (34.44)
V4

where k is the c.m. momentum, 6 is the c.m. scattering angle, ay = (n,e?9¢ — 1)/2i,
0 <ny <1, and d; is the phase shift of the ¢! partial wave. For purely elastic scattering,
ne = 1. The differential cross section is

0P (34.45)

The optical theorem states that

4
ot = %Im F(k,0) (34.46)

and the cross section in the ¢th partial wave is therefore bounded:

_47T

k2

4m(20 4 1)

(20 4+ 1)|ag|? < ol (34.47)

o¢
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112155

12 0. 12

Figure 34.6: Argand plot showing a partial-wave amplitude ay as a function of
energy. The amplitude leaves the unitary circle where inelasticity sets in (1, < 1).

The evolution with energy of a partial-wave amplitude ay can be displayed as a trajectory
in an Argand plot, as shown in Fig. 34.6.

The usual Lorentz-invariant matrix element .# (see Sec. 34.3 above) for the elastic
process is related to f(k, ) by

M = 85 f(k,9) (34.48)

SO 1
Otot = —=————— Tm.#Z(t = 0) , 34.49
ot 2p1ap M2 ( ) ( )

where s and t are the center-of-mass energy squared and momentum transfer squared,
respectively (see Sec. 34.4.1).

34.5.3.1. Resonances: The Breit-Wigner (nonrelativistic) form for an elastic amplitude
ay with a resonance at c.m. energy EpR, elastic width I'j, and total width I'tet is

_ Fel/2
ER—E —iTyt/2

ag (34.50)

where E is the c.m. energy. As shown in Fig. 34.7, in the absence of background the
elastic amplitude traces a counterclockwise circle with center iz, /2 and radius x/2,
where the elasticity xo = Ig)/Ttot. The amplitude has a pole at E = Er — il'tot/2.

The spin-averaged Breit-Wigner cross section for a spin-J resonance produced in the
collision of particles of spin S1 and S2 is

(2J +1) 7 BmBoutl't

34.51
251 +1)(2S2 + 1) k2 (E— ER)2+T2,/4" (3451)

UBW(E) = (

where k is the c.m. momentum, F is the c.m. energy, and Bj, and Byt are the
branching fractions of the resonance into the entrance and exit channels. The 25 + 1
factors are the multiplicities of the incident spin states, and are replaced by 2 for photons.
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Figure 34.7: Argand plot for a resonance.

This expression is valid only for an isolated state. If the width is not small, I'tot cannot
be treated as a constant independent of E. There are many other forms for opyy, all of
which are equivalent to the one given here in the narrow-width case. Some of these forms
may be more appropriate if the resonance is broad.

The relativistic Breit-Wigner form corresponding to Eq. (34.50) is:

—mlg

ag = (34.52)

s —m?2 +imliot

A better form incorporates the known kinematic dependences, replacing mI'tot by
V$Ttot(s), where T'tot(s) is the width the resonance particle would have if its mass
were /s, and correspondingly mI'¢) by /s Te1(s) where T'g(s) is the partial width in the
incident channel for a mass /s:

—vsTa(s)
pyme ey TR (34.53)

Ay =

For the Z boson, all the decays are to particles whose masses are small enough to be
ignored, so on dimensional grounds Ttot(s) = v/sTg/my, where Ty defines the width
of the Z, and T'¢(s)/Itot(s) is constant. A full treatment of the line shape requires
consideration of dynamics, not just kinematics. For the Z this is done by calculating the
radiative corrections in the Standard Model.
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