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38. KINEMATICS

Revised January 2000 by J.D. Jackson (LBNL).

Throughout this section units are used in which h = ¢ = 1. The
following conversions are useful: he = 197.3 MeV fm, (he)? = 0.3894
(GeV)? mb.

38.1. Lorentz transformations

The energy F and 3-momentum p of a particle of mass m form a 4-vector p = (E, p)
whose square p? = E? — |p|? = m2. The velocity of the particle is 3 = p/E. The energy
and momentum (E£*, p*) viewed from a frame moving with velocity 3 are given by

E*N _( vy —’Yfﬁf) (E) . _
(P’ﬁ )= (3 p) Pt .

where vy = (1 — 5?)—1/2
By. Other 4-vectors, such as the space-time coordinates of events, of course transform in
the same way. The scalar product of two 4-momenta p; - po = E1FE2 — p;y - py is invariant
(frame independent).

and p. (pH) are the components of p perpendicular (parallel) to

38.2. Center-of-mass energy and momentum

In the collision of two particles of masses m1 and mo the total center-of-mass energy
can be expressed in the Lorentz-invariant form

1/2
Ben = |(B1+E2)® = (p1+p2)?] .

9 9 1/2
= [ml +mj + 2E1 Eo(1 — (5132 cos 9)} ) (38.2)

where 6 is the angle between the particles. In the frame where one particle (of mass mg)
is at rest (lab frame),

Eem = (mf +m3 + 2E1 1, ma) /2 . (38.3)
The velocity of the center-of-mass in the lab frame is
Bem = Plab/ (E11ap +m2) , (38.4)
where pjay, = P11ap and
Yem = (E11ab + m2)/Eem - (38.5)
The c.m. momenta of particles 1 and 2 are of magnitude
ma
Pcm = plabE . (38.6)
cm

For example, if a 0.80 GeV/c kaon beam is incident on a proton target, the center of mass
energy is 1.699 GeV and the center of mass momentum of either particle is 0.442 GeV/c.
It is also useful to note that

Eem dEcm = mo dEq 151, = m2 B11ab dPlab - (38-7)
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2 38. Kinematics

38.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in terms of an
invariant amplitude —i.#. As an example, the S-matrix for 2 — 2 scattering is related

to . by

Phph |S| pip2) = I —i(2m)* 6% (p1 + p2 — P — ph)
M (p1, p2; Py, Ph)

. 38.8
“QENT (2Bo)1/2 Q)2 (21 (338)

The state normalization is such that

(p'lp) = (2m)%5°(p— p') . (38.9)

38.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest frame is given
in terms of the Lorentz-invariant matrix element .# by

(2m)*
2M

dl' = | |? dD, (P; pi, ..., pn), (38.10)

where d®,, is an element of n-body phase space given by

n n
d®n(P; py, ..., pn) =0 (P =Y "p) ] % (38.11)
=1 =1
This phase space can be generated recursively, viz.
d®,(P; p1, ..., pn) = d®;(q; p1, ..., Pj)
X d®p,_jt1 (P q, pj+1, ...,pn)(27r)3dq2 , (38.12)

. . 2
where ¢ = (37_, E;)? — ‘Zgzl p;| - This form is particularly useful in the case where a

particle decays into another particle that subsequently decays.

38.4.1. Swurvival probability. If a particle of mass M has mean proper lifetime 7
(= 1/T) and has momentum (E, p), then the probability that it lives for a time ty or
greater before decaying is given by

P(tg) = e o l/7 = =M T/E (38.13)
and the probability that it travels a distance xg or greater is

P(zg) = e M=o /1P| (38.14)
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Py, My

p2’ m2
Figure 38.1: Definitions of variables for two-body decays.

38.4.2. Two-body decays:

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

M2—m%+m%

. i | (38.15)
1p1] = |pal
(M a4 ) (M2 = g — m2)?)] (35.10
oM ’ |
and

where d€) = d¢1d(cosfy) is the solid angle of particle 1.

38.4.3. Three-body decays:

Py, My

P, M Py, My
p3l m3

Figure 38.2: Definitions of variables for three-body decays.

Deﬁnlng pij = pi + p;j and mU = pm, then m%2 + mgg + m%3 = M? + m% + m% + m%
and ml2 = (P —p3)? = M? + m3 — 2M E3, where E3 is the energy of particle 3 in the
rest frame of M. In that frame, the momenta of the three decay particles lie in a plane.
The relative orientation of these three momenta is fixed if their energies are known. The
momenta can therefore be specified in space by giving three Euler angles («, 3,7) that
specify the orientation of the final system relative to the initial particle [1]. Then

]_ 2
(2 ) 16 ‘%‘ 1 2 (C()S 13) (38 8)
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4 38. Kinematics

Alternatively

1 1
I'= (275 16112 A\ |pi| |ps| dmig dQ dQs (38.19)

where (|p}|, €2]) is the momentum of particle 1 in the rest frame of 1 and 2, and €23 is the
angle of particle 3 in the rest frame of the decaying particle. |p}| and |p3| are given by

jpp = L2 = (m o)) (miy = (ma = ma)")] - : (38.20a)
2mq2
and 12
ipa] = [(M? = (m12 +m3)?) (M? = (m12 — m3)?)] (38.200)

2M
[Compare with Eq. (38.16).]

If the decaying particle is a scalar or we average over its spin states, then integration
over the angles in Eq. (38.18) gives

1 1
dI' = (27‘(‘)3 8—M |,%|2 dEl dE2
1 1 —= . 9 9
= —(27'(')3 32M3 ‘%‘ dm12 dm23 . (3821)

This is the standard form for the Dalitz plot.

38.4.3.1. Dalitz plot: For a given value of m%Q, the range of mgg is determined by its
values when p, is parallel or antiparallel to ps:

(m%?))max =

(B3 + EX)? - (\/E§2 —md— B2 - m§)2 , (38.220)
(m%3>min =

(E5 + E3)? - (\/E22 —m3 + \/E§2 — m§)2 : (38.22b)

Here E5 = (m2y —m2 +m3)/2mi2 and Ef = (M? —m32, — m3)/2mq2 are the energies
of particles 2 and 3 in the mqo rest frame. The scatter plot in m%Q and m%3 is called a
Dalitz plot. If |.#|2 is constant, the allowed region of the plot will be uniformly populated
with events [see Eq. (38.21)]. A nonuniformity in the plot gives immediate information
on |.#|?. For example, in the case of D — K, bands appear when M(K7) = ME*(892)
reflecting the appearance of the decay chain D — K*(892)7r — K.
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Figure 38.3: Dalitz plot for a three-body final state. In this example, the state
is 7T K% at 3 GeV. Four-momentum conservation restricts events to the shaded
region.

38.4.4. Kinematic limits: In a three-body decay the maximum of |ps|, [given by
Eq. (38.20)], is achieved when mjis = mj + mg, i.e., particles 1 and 2 have the same
vector velocity in the rest frame of the decaying particle. If, in addition, msg > my, mo,

then ‘pg‘max > ’plymam ’p2’max-

38.4.5. Multibody decays: The above results may be generalized to final states
containing any number of particles by combining some of the particles into “effective
particles” and treating the final states as 2 or 3 “effective particle” states. Thus, if

Dijk.. =Pi +pj +pp+ ..., then
Mijk... = \/p2ijk:... ) (38.23)

and m;;i . may be used in place of e.g., mi2 in the relations in Sec. 38.4.3 or 38.4.3.1
above.

Py, My P3, M3

, M
P2, My Pr+2: Mps2

Figure 38.4: Definitions of variables for production of an n-body final state.
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38.5. Cross sections
The differential cross section is given by
(2m)* |4 |?

4\/(171 -p2)? — mim3

do =

X d®p(p1 + p2; P3s - -, Pnt2) -

[See Eq. (38.11).] In the rest frame of my(lab),

\/(pl -p2)% — m3m3 = mapq1ap ;

while in the center-of-mass frame

\/(pl -p2)? — mim3 = premV/s -

38.5.1. Two-body reactions:

Py, My P3, M3

Figure 38.5: Definitions of variables for a two-body final state.

(38.24)

(38.250)

(38.25b)

Two particles of momenta p; and ps and masses mi and mo scatter to particles of
momenta p3 and pg and masses m3 and my; the Lorentz-invariant Mandelstam variables

are defined by

s = (p1+p2)° = (p3+pa)°
=mi +2E1Ey —2p; - py +m3 |
t=(p1 —p3)® = (p2 — pa)”
=mi — 2E1E3 + 2p; - p3 + m3 ,
u=(p1 —ps)® = (p2 — p3)°
=mi] — 2F1Eq + 2p; - py +mj ,
and they satisfy
s+t+u=mi+mi+ms+ms.
The two-body cross section may be written as

dO' 1 1 2
— = — || .
dt 647S |P1em]
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38. Kinematics 7
In the center-of-mass frame
t = (Elcm - E?)cm)2 - (plcm - p3cm)2 — 4P1em P3em Sin2(90m/2)

= t0 — 4P1ecm P3cm Sin2(9cm/2) ) (38.31)

where 0y, is the angle between particle 1 and 3. The limiting values tg (e = 0) and
t1 (Oem = m) for 2 — 2 scattering are
2 2 2 212
mi —ms—ms5+m
to(t1) = ! 32\/5 2 il - (P1em :Fp3cm)2 . (38.32)

In the literature the notation ty,in (tmax) for to (t1) is sometimes used, which should
be discouraged since tg > t1. The center-of-mass energies and momenta of the incoming
particles are
I _s—l—m%—m% B _s—l—m%—m%
lem = 2—\/5 ) 2cm = 2—\/5 )

For F3cm and Eycm, change m1 to mg and mg to my. Then

Pilab M2
Piem = \/ EZ,, —m? and prom = % . (38.34)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations
see Eqs. (38.2)-(38.4).]

(38.33)

38.5.2. Inclusive reactions: Choose some direction (usually the beam direction) for
the z-axis; then the energy and momentum of a particle can be written as

E =mgcoshy , pz , py, pz = mgpsinhy , (38.35)
where m,. is the transverse mass
m2 =m?+p3 +py (38.36)
and the rapidity y is defined by
v= 2 E—p;
E
—In ( +pz) — tanh~! (72) . (38.37)
m,p E

Under a boost in the z-direction to a frame with velocity 3, y — y — tanh™! 3. Hence
the shape of the rapidity distribution d/N/dy is invariant. The invariant cross section may
also be rewritten
3o d3c d%c
E 3 = : 72 .
d’p  dodyprdp,  mdyd(pz)

(38.38)
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8 38. Kinematics

The second form is obtained using the identity dy/dp, = 1/E, and the third form
represents the average over ¢.

Feynman’s x variable is given by

Pz E+p,
Pz max (E + pz)max

T = (pr < p2l) - (38.39)

In the c.m. frame,

2 2m.,, sinh
p o Prom _ 2y S Yom (38.40)

v Vs

and

= (ycm>max = ln(\/g/m) . (38.41)
For p > m, the rapidity [Eq. (38.37)] may be expanded to obtain

1. cos?(0/2) +m?/4p? + ...

= —In
Y=o Sin2(0/2) + m2/4p? + ...

~ —In tan(0/2) = n (38.42)

where cos = p,/p. The pseudorapidity n defined by the second line is approximately
equal to the rapidity y for p > m and 6 > 1/v, and in any case can be measured when
the mass and momentum of the particle is unknown. From the definition one can obtain
the identities

sinhn =cotf , coshn=1/sinf , tanhn = cosf . (38.43)

38.5.3. Partial waves: The amplitude in the center of mass for elastic scattering of
spinless particles may be expanded in Legendre polynomials

f(k,0) = % Z(% + 1)ayPy(cosb) , (38.44)
14

where k is the c.m. momentum, 6 is the c.m. scattering angle, a;, = (n,e?9¢ —1)/2i,
0 <mnp <1, and &y is the phase shift of the ¢th partial wave. For purely elastic scattering,
1y = 1. The differential cross section is

do

0o = |f(k,0)% . (38.45)

The optical theorem states that

4
Ttot = %Imf(k:,()) , (38.46)

and the cross section in the ¢" partial wave is therefore bounded:

_47r

k2

AT(20 4+ 1)

(204 1)|ay|? < el (38.47)

oy
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Figure 38.6: Argand plot showing a partial-wave amplitude a, as a function of
energy. The amplitude leaves the unitary circle where inelasticity sets in (1, < 1).

The evolution with energy of a partial-wave amplitude a, can be displayed as a trajectory
in an Argand plot, as shown in Fig. 38.6.

The usual Lorentz-invariant matrix element .# (see Sec. 38.3 above) for the elastic
process is related to f(k, ) by

M =815 f(k,0) (38.48)
SO 1
Otot — —m Im %(t = 0) s (3849)

where s and t are the center-of-mass energy squared and momentum transfer squared,
respectively (see Sec. 38.4.1).

38.5.3.1. Resonances: The Breit-Wigner (nonrelativistic) form for an elastic amplitude
ay with a resonance at c.m. energy Ep, elastic width I'), and total width ['yoy is
_ F61/2

Er— E —iltot/2 "’
where E is the c.m. energy. As shown in Fig. 38.7, in the absence of background the

elastic amplitude traces a counterclockwise circle with center iz /2 and radius x4 /2,
where the elasticity zo] = I'g1/T'tot. The amplitude has a pole at E = Er — iltot /2.

(38.50)

ayg

The spin-averaged Breit-Wigner cross section for a spin-J resonance produced in the
collision of particles of spin S and S2 is

(QJ + 1) ™ BinBoutF%ot
2591 +1)(282 +1) k2 (E—Eg)2 +T2, /4’

where k is the c.m. momentum, F is the c.m. energy, and Bj, and B,y are the
branching fractions of the resonance into the entrance and exit channels. The 25 + 1
factors are the multiplicities of the incident spin states, and are replaced by 2 for photons.
This expression is valid only for an isolated state. If the width is not small, I'tot cannot
be treated as a constant independent of E. There are many other forms for opgy, all of
which are equivalent to the one given here in the narrow-width case. Some of these forms
may be more appropriate if the resonance is broad.

omw(E) = | (38.51)
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Figure 38.7: Argand plot for a resonance.

The relativistic Breit-Wigner form corresponding to Eq. (38.50) is:

—mFel

ag = (38.52)

s —m2 +imliot

A better form incorporates the known kinematic dependences, replacing mI'iot by
Vs Ttot(8), where Tgot(s) is the width the resonance particle would have if its mass
were /s, and correspondingly mI'q; by /s Ta(s) where I'¢i(s) is the partial width in the
incident channel for a mass /s:

—/5T¢(s)
s mZ+ivsTion(s) (38.53)

Ay =

For the Z boson, all the decays are to particles whose masses are small enough to be
ignored, so on dimensional grounds T'tt(s) = v/sTg/my, where I'g defines the width
of the Z, and T'¢(s)/Ttot(s) is constant. A full treatment of the line shape requires
consideration of dynamics, not just kinematics. For the Z this is done by calculating the
radiative corrections in the Standard Model.
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