NOTE ON SCALAR MESONS

Updated January 2006 by S. Spanier (University of Tennessee) and N.A. Törnqvist (Helsinki).

I. Introduction: In contrast to the vector and tensor mesons, the identification of the scalar mesons is a long-standing puzzle. Scalar resonances are difficult to resolve because of their large decay widths which cause a strong overlap between resonances and background, and also because several decay channels open up within a short mass interval. In addition, the $\bar{K}K$ and $\eta\eta$ thresholds produce sharp cusps in the energy dependence of the resonant amplitude. Furthermore, one expects non-$\bar{q}q$ scalar objects, like glueballs and multiquark states in the mass range below 1800 MeV. The number of experimental and theoretical publications since our last issue indicates great activity in this field. For some recent reviews see AMSLER 04, BUGG 04C, CLOSE 02B.

Scalars are produced, for example, in πN scattering on polarized/unpolarized targets, $\bar{p}p$ annihilation, central hadronic production, J/Ψ, B-, D- and K-meson decays, $\gamma\gamma$ formation, and ϕ radiative decays. Experiments are accompanied by the development of theoretical models for the reaction amplitudes, which are based on common fundamental principles of two-body unitarity, analyticity, Lorentz invariance, and chiral- and flavour-symmetry using different techniques (K-matrix formalism, N/D-method, Dalitz Tuan ansatz, unitarized quark models with coupled channels, effective chiral field theories like the linear sigma model, etc.). Dynamics near the lowest two-body thresholds in some analyses is described by crossed...
channel \((t,u)\) meson exchange or with an effective range parameterization instead of or in addition to resonant features in the \(s\)-channel, only. Furthermore, elastic \(S\)-wave scattering amplitudes involving soft pions have zeros close to threshold (ADLER 65, 65A), which may be shifted or removed in associated production processes.

The mass and width of a resonance are found from the position of the nearest pole in the process amplitude \((T\)-matrix or \(S\)-matrix) at an unphysical sheet of the complex energy plane: \((E - i\Gamma/2)\). It is important to notice that only in the case of narrow well-separated resonances, far away from the opening of decay channels, does the naive Breit-Wigner parameterization (or \(K\)-matrix pole parametrization) agree with this pole position.

In this note, we discuss all light scalars organized in the listings under the entries \((I = 1/2)\) \(K_0^*(800)\) (or \(\kappa\)), \(K^*(1430)\), \((I = 1)\) \(a_0(980), a_0(1450)\), and \((I = 0)\) \(f_0(600)\) (or \(\sigma\)), \(f_0(980), f_0(1370)\), and \(f_0(1500)\). This list is minimal and does not necessarily exhaust the list of actual resonances. The \((I = 2)\) \(\pi\pi\) and \((I = 3/2)\) \(K\pi\) phase shifts do not exhibit any resonant behavior. See also our notes in previous issues for further comments on e.g., scattering lengths and older papers.

II. The \(I = 1/2\) States: The \(K^*(1430)\) (ASTON 88) is perhaps the least controversial of the light scalar mesons. The \(K\pi\) \(S\)-wave scattering has two possible isospin channels, \(I = 1/2\) and \(I = 3/2\). The \(I = 3/2\) wave is elastic and repulsive up to 1.7 GeV (ESTABROOKS 78) and contains no known resonances. The \(I = 1/2\) \(K\pi\) phase shift, measured from about 100 MeV above threshold in \(Kp\) production, rises smoothly, passes 90° at 1350 MeV, and continues to rise to about 170° at 1600 MeV. The first important inelastic threshold is \(K\eta'/(958)\). In the inelastic region the continuation of
the amplitude is uncertain since the partial-wave decomposition has several solutions. The data are extrapolated towards the $K\pi$ threshold using effective range type formulas (ASTON 88, ABELE 98) or chiral perturbation predictions (BERNARD 91, JAMIN 00, CHERRY 01). In analyses using unitarized amplitudes there is agreement on the presence of a resonance pole around 1410 MeV having a width of about 300 MeV. In recent years there has been controversy about the existence of a light and very broad “κ” meson in the 700-900 MeV region (e.g. D-meson decay analyses LINK 02, AITALA 02, 06). Some authors find this pole in their phenomenological analysis (see e.g. PALAEZ 04A, ZHENG 04, ISHIDA 03, BLACK 01,03, BUGG 03, DELBOURGO 98, OLLER 99, 99C, SCADRON 03, ANISOVICH 97C, JAMIN 00, SHAKIN 01), while others do not (e.g. CHERRY 01, KOPP 01, LINK 05I). Since it appears to be a very wide object ($\Gamma \approx 500$ MeV) near the $K\pi$ threshold, its presence and properties are difficult to establish on data.

In an important observation BES finds a κ like structure in J/ψ decays to $\bar{K}^{*0}(892)K^+\pi^-$ where κ recoils against the $K^*(892)$ (ABLIKIM 06C).

III. The $I = 1$ States:

Two isovector states are known, the established $a_0(980)$ and the $a_0(1450)$. Independent of any model, the $\bar{K}K$ component in the $a_0(980)$ wave function must be large: it lies just below the opening of the $\bar{K}K$ channel to which it strongly couples. This generates an important cusp-like behavior in the resonant amplitude. Hence, its mass and width parameters are strongly distorted. To reveal its true coupling constants, a coupled channel model with energy-dependent widths and mass shift contributions is necessary. In all measurements in our listings, the mass position agrees on a value near 984 MeV, but the width takes values between 50 and
300 MeV, mostly due to the different models. For example, the analysis of the $\bar{p}p$-annihilation data using an unitary K-matrix description finds a width as determined from the T-matrix pole of 92 ± 8 MeV, while the observed width of the peak in the $\pi\eta$ mass spectrum is about 45 MeV.

The relative coupling $KK/\pi\eta$ is determined indirectly from $f_1(1285)$ (BARBERIS 98C, CORDEN 78, DEFOIX 72) or $\eta(1410)$ decays (BAI 90C, BOLTON 92B, AMSLER 95C), from the line shape observed in the $\pi\eta$ decay mode (FLATTE 76, AMSLER 94D, BUGG 94, JANSSEN 95), or from the coupled-channel analysis of $\pi\pi\eta$ and $KK\pi$ final states of $\bar{p}p$ annihilation at rest (ABELE 98).

The $a_0(1450)$ is seen in $\bar{p}p$ annihilation experiments with stopped and higher momenta \bar{p}, with a mass of about 1450 MeV or close to the $a_2(1320)$ meson which is typically a dominant feature. The broad structure at about 1300 MeV observed in $\pi N \rightarrow \bar{K}KN$ reactions (MARTIN 79) needs further confirmation in its existence and isospin assignment.

IV. The $I = 0$ States: The $I = 0 J^{PC} = 0^{++}$ sector is the most complex one, both experimentally and theoretically. The data have been obtained from $\pi\pi$, $\bar{K}K$, $\eta\eta$, 4π, and $\eta\eta' (958)$ systems produced in S-wave. Analyses based on several different production processes conclude that probably four poles are needed in the mass range from $\pi\pi$ threshold to about 1600 MeV. The claimed isoscalar resonances are found under separate entries σ or $f_0(600)$, $f_0(980)$, $f_0(1370)$, and $f_0(1500)$.

Below 1100 MeV, the important data come from the $\pi\pi$ and $\bar{K}K$ final states. Information on the $\pi\pi$ S-wave phase shift $\delta_f^I = \delta_0^I$ was already extracted 30 years ago from the πN scattering with unpolarized (GRAYER 74) and polarized targets (BECKER 79), and near threshold from the K_{e4}-decay (ROSSELET 77). The $\pi\pi$ S-wave inelasticity is not
accurately known, and the reported $\pi\pi \to \bar{K}K$ cross sections (WETZEL 76, POLYCHRONAKOS 79, COHEN 80, and ETKIN 82B) may have large uncertainties. The πN data (GRAYER 74, BECKER 79) have been analyzed in combination with high-statistics data from $\bar{p}p$ annihilation at rest (see entries labeled as RVUE for re-analyses of the data). The re-analysis (KAMINSKI 97, 02, 03) finds two out of four relevant solutions, with the S-wave phase shift rising slower than the P-wave [$\rho(770)$], which is used as a reference. One of these corresponds to the well-known “down” solution of GRAYER 74. The other “up” solution shows a decrease of the modulus in the mass interval between 800-980 MeV. Both solutions exhibit a sudden drop in the modulus and inelasticity at 1 GeV, due to the appearance of $f_0(980)$ which is very close to the opening of the $\bar{K}K$-threshold. The phase shift δ_0^0 rises smoothly up to this point, where it jumps by 120° (in the “up”) or 140° (in the “down”) solution to reach 230°, and then both continue to rise slowly.

The suggestion (SVEC 97) of the existence of a narrow f_0 state near 750 MeV, with a small width of 100 to 200 MeV, is excluded by unitarity as shown by (KAMINSKI 97, 00) using both the π- and $a_1(1260)$-exchange in the reaction amplitudes. The $2\pi^0$ invariant mass spectra of the $\bar{p}p$ annihilation at rest (AMSLER 95D, ABELE 96) and the central collision (ALDE 97) do not show a distinct resonance structure below 900 MeV, and these data are consistently described with the standard “down” solution (GRAYER 74, KAMINSKI 97), which allows for the existence of the broad ($\Gamma \approx 500$ MeV) resonance called σ. An enhancement is observed in the $\pi^+\pi^-$ invariant mass near threshold in the decays $D^+ \to \pi^+\pi^-\pi^+$ (AITALA 01B, LINK 04) and $J/\psi \to \omega \pi^+\pi^-$ (AUGUSTIN 89,
ABLIKIM 04A). The σ pole is difficult to establish because of its large width, and can certainly not be modelled by a naive Breit-Wigner resonance. It can be distorted by background as required by chiral symmetry, and from crossed channel exchanges, the $f_0(1370)$, and other dynamical features; it may be generated by t-channel meson exchanges (LOHSE 90, ZOU 94). However, most analyses listed in our issue under $f_0(600)$ agree on a pole position near $500 - i\, 250$ MeV.

The $f_0(980)$ overlaps strongly with the σ and the above mentioned broad background. This can lead to a dip in the $\pi\pi$ spectrum at the $\bar{K}K$ threshold. It changes from a dip into a peak structure in the $\pi^0\pi^0$ invariant mass spectrum of the reaction $\pi^- p \rightarrow \pi^0\pi^0n$ (ACHASOV 98E), with increasing four-momentum transfer to the $\pi^0\pi^0$ system, which means increasing the a_1-exchange contribution in the amplitude, while the π-exchange decreases.

One also observes the σ, and the $a_0(980)$, in radiative decays ($\phi \rightarrow f_0\gamma$, $\phi \rightarrow a_0\gamma$) in SND data (ACHASOV 00F, ACHASOV 00H), CMD2 (AKHMETSHIN 99B), and in KLOE data (ALOISIO 02C, ALOISIO 02D). In addition to these observations of the σ, its existence is also supported by the reaction $e^+e^- \rightarrow \pi^0\pi^0\gamma$ in the vicinity of the ρ and ω peaks. Both SND (ACHASOV 02F) and CMD-2 (AKHMETSHIN 04B) conclude that their value for the branching ratio $\rho \rightarrow \pi^0\pi^0\gamma$ exceeds the expectations from vector dominance, and that their results are much better described if a direct coupling of $\rho \rightarrow \sigma \gamma$ is added.

A meson resonance that is very well studied experimentally, is the $f_0(1500)$ seen by the Crystal Barrel experiment in five decay modes: $\pi\pi$, $\bar{K}K$, $\eta\eta$, $\eta'\eta(958)$, and 4π (AMSLER 95D, ABELE 96, and ABELE 98). Due to its interference with the $f_0(1370)$ (and $f_0(1700)$), the peak attributed to $f_0(1500)$ can
appear shifted in invariant mass spectra. Therefore, the application of simple Breit-Wigner forms arrive at slightly different resonance masses for \(f_0(1500) \). Analyses of central-production data of the likewise five decay modes (BARBERIS 99D, BARBERIS 00E) agree on the description of the S wave with the one above. The \(\bar{p}p, \bar{n}p/\bar{p}n \) (GASPERO 93, ADAMO 93, AMSLER 94, ABELE 96) show a single enhancement at 1400 MeV in the invariant 4\(\pi \) mass spectra, which is resolved into \(f_0(1370) \) and \(f_0(1500) \) (ABELE 01, ABELE01B). The data on 4\(\pi \) from central production (BABERIS 00C) require both resonances, too, but disagree on the relative content of \(\rho \rho \) and \(\sigma \sigma \) in 4\(\pi \). All investigations agree, that the 4\(\pi \) decay mode represents about half of the \(f_0(1500) \) decay width and is dominant for \(f_0(1370) \).

The determination of the \(\pi \pi \) coupling of \(f_0(1370) \) is aggravated by the strong overlap with the broad \(f_0(600) \) and \(f_0(1500) \). Since it does not show up prominently in the 2\(\pi \) spectra, its mass and width are difficult to determine. Multi-channel analyses of hadronically produced two- and three-body final states agree on a mass between 1300 MeV and 1400 MeV and a narrow \(f_0(1500) \), but arrive at a somewhat smaller width for \(f_0(1370) \).

Both Belle and BaBar have observed strong indications of scalars in B meson decays. For example, GARMASH 02 saw a broad structure between 1.0 and 1.5 GeV in \(\pi^+\pi^- \), \(K^+K^- \) and \(K\pi \) final states. It could be a result of interference of several resonances in this mass range, but lack of statistics prevent from an unambiguous identification of this effect.

V. Interpretation: What is the nature of the light scalars? In the literature, many suggestions are discussed such as conventional \(q\bar{q} \) mesons, \(q\bar{q}q\bar{q} \) or meson-meson bound states mixed with a scalar glueball. In reality, they can be superpositions
of these components, and one depends on models to determine the dominant one. Although we have seen progress in recent years, this question remains open. Here, we mention some of the present conclusions.

Almost every model on scalar states agrees that the $K^*(1430)$ is predominantly the quark model $s\bar{u}$ or $s\bar{d}$ state.

If one uses the naive quark model (which may be too naive because of lack of chiral symmetry constraints), it is natural to assume the $f_0(1370)$, $a_0(1450)$, and the $K^*(1430)$ are in the same SU(3) flavour nonet being the $(\bar{u}u + \bar{d}d)$, $u\bar{d}$ and $u\bar{s}$ state, respectively. In this picture, the choice of the ninth member of the nonet is ambiguous. The controversially discussed candidates are $f_0(1500)$ and $f_0(1700)$. Compared to the above states, the $f_0(1500)$ is very narrow. Thus, it is unlikely to be their isoscalar partner. It is also too light to be the first radial excitation. Assuming the three f_0’s in the 1300-1700 MeV region to be mixtures between an $\bar{u}u$, $\bar{s}s$, and a gluonium state, one can arrive at an arrangement of these states, although different analyses (CLOSE 01B, LI 01) do not agree in detail. See our note on non-$\bar{q}q$ states.

The $f_0(980)$ and $a_0(980)$ are often interpreted as multi-quark states (JAFFE 77, ALFORD 00, MAIANI 04A) or $\bar{K}K$ bound states (WEINSTEIN 90). The insight into their internal structure using two-photon widths (BARNES 85, LI 91, DELBOURGO 99, LUCIO 99, ACHASOV 00H) is not conclusive. The $f_0(980)$ appears as a peak structure in $J/\psi \to \phi \pi^+ \pi^-$ and in D_s decays without $f_0(600)$ background. Based on that observation it is suggested that $f_0(980)$ has a large $\bar{s}s$ component, which according to (DEANDREA 01) is surrounded by a virtual $\bar{K}K$ cloud. Data on radiative decays ($\phi \to f_0\gamma$ and $\phi \to a_0\gamma$) from SND, CMD2, and KLOE (see above) favour a 4-quark picture of the $f_0(980)$ and $a_0(980)$. The underlying
model for this conclusion (BOGLIONE 03, OLLER 03B) however may be oversimplified. But it remains quite possible that the states $f_0(980)$ and $a_0(980)$, together with the $f_0(600)$ and the $K^*_0(800)$, form a new low-mass state nonet of predominantly four-quark states, where at larger distances the quarks recombine into a pair of pseudoscalar mesons forming by a meson cloud.

Attempts have been made to start directly from chiral Lagrangians (SCADRON 99, OLLER 99, ISHIDA 99, TORNQVIST 99, OLLER 03B, NAPSUCIALE 04, 04A) which predict the existence of the σ meson near 500 MeV. Hence, e.g., in the chiral linear sigma model with 3 flavours, the σ, $a_0(980)$, $f_0(980)$, and κ (or $K^*_0(1430)$) would form a nonet (not necessarily $\bar{q}q$), while the lightest pseudoscalars would be their chiral partners. In the approach of (OLLER 99) the above resonances are generated starting from chiral perturbation theory predictions near the first open channel, and then by extending the predictions to the resonance regions using unitarity.

In the unitarized quark model with coupled $q\bar{q}$ and meson-meson channels, the light scalars can be understood as additional manifestations of bare $\bar{q}q$ confinement states, strongly mass shifted from the 1.3 - 1.5 GeV region and very distorted due to the strong 3P_0 coupling to S-wave two-meson decay channels (TORNQVIST 95, 96, BEVEREN 86, 99, 01B). Thus, the light scalar nonet comprising the $f_0(600)$, $f_0(980)$, $K^*_0(800)$, and $a_0(980)$, as well as the regular nonet consisting of the $f_0(1370)$, $f_0(1500)$ (or $f_0(1700)$), $K^*(1430)$, and $a_0(1450)$, respectively, are two manifestations of the same bare input states (see also BOGLIONE 02).

Other models with different groupings of the observed resonances exist and may e.g. be found in earlier versions of this review and papers listed as other related papers below.
References

References may be found at the end of the $f_0(600)$ listing.

$f_0(600)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \text{Im}(\sqrt{s})$.

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(400–1200)–i(250–500) OUR ESTIMATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>We do not use the following data for averages, fits, limits, etc. • • • •</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(441 ± 16)–i(272 ± 9)</td>
<td>06</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(470 ± 50)–i(285 ± 25)</td>
<td>05</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(541 ± 39)–i(252 ± 42)</td>
<td>04A</td>
<td>BES2</td>
<td>$J/\psi \rightarrow \omega \pi^+ \pi^-$</td>
</tr>
<tr>
<td>(528 ± 32)–i(207 ± 23)</td>
<td>04</td>
<td>RVUE</td>
<td>Compilation</td>
</tr>
<tr>
<td>(440 ± 8)–i(212 ± 15)</td>
<td>04A</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(533 ± 25)–i(247 ± 25)</td>
<td>03</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>532 – i272</td>
<td>01</td>
<td>RVUE</td>
<td>$\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$</td>
</tr>
<tr>
<td>(470 ± 30)–i(295 ± 20)</td>
<td>01</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(535 ± 48)–i(155 ± 70)</td>
<td>01</td>
<td>RVUE</td>
<td>$\gamma(3S) \rightarrow \gamma \pi \pi$</td>
</tr>
<tr>
<td>610 ± 14 – i620 ± 26</td>
<td>01</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(558 ± 34)–i(196 ± 32)</td>
<td>01</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>445 – i235</td>
<td>00B</td>
<td>RVUE</td>
<td>$\rho \rho \rightarrow \pi^0 \pi^0$</td>
</tr>
<tr>
<td>(523 ± 12)–i(259 ± 7)</td>
<td>99</td>
<td>RVUE</td>
<td>π scalar form factor</td>
</tr>
<tr>
<td>442 – i227</td>
<td>99</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>469 – i203</td>
<td>99B</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>445 – i221</td>
<td>99C</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(1530 ± 90)–i(560 ± 40)</td>
<td>98B</td>
<td>RVUE</td>
<td>Compilation</td>
</tr>
<tr>
<td>420 – i212</td>
<td>98</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(602 ± 26)–i(196 ± 27)</td>
<td>97</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(537 ± 20)–i(250 ± 17)</td>
<td>97B</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>470 – i250</td>
<td>96</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi, \pi K \bar{K}$</td>
</tr>
<tr>
<td>~ (1100 – i300)</td>
<td>95B</td>
<td>CBAR</td>
<td>$p p \rightarrow 3\pi^0$</td>
</tr>
<tr>
<td>400 – i500</td>
<td>95D</td>
<td>CBAR</td>
<td>$p p \rightarrow 3\pi^0$</td>
</tr>
<tr>
<td>1100 – i137</td>
<td>95D</td>
<td>CBAR</td>
<td>$p p \rightarrow 3\pi^0$</td>
</tr>
<tr>
<td>387 – i305</td>
<td>95</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>525 – i269</td>
<td>94</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(506 ± 10)–i(247 ± 3)</td>
<td>94</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>370 – i356</td>
<td>93</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>408 – i342</td>
<td>93</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>870 – i370</td>
<td>92</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>470 – i208</td>
<td>87</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(750 ± 50)–i(450 ± 50)</td>
<td>86</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>(660 ± 100)–i(320 ± 70)</td>
<td>73</td>
<td>HBC</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
<tr>
<td>650 – i370</td>
<td>72</td>
<td>RVUE</td>
<td>$\pi \pi \rightarrow \pi \pi$</td>
</tr>
</tbody>
</table>

1. From the solution of the Roy equation (ROY 71) for the isoscalar S-wave and using a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 data.

2. Reanalysis of the data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, ROSSELET 77, PISLAK 03, and AKHMETSHIN 04.

3. From a mean of six different analyses and \(f_0(600) \) parameterizations.

4. Using data on \(\psi(2S) \rightarrow J/\psi \pi \pi \) from BAI 00 and on \(\Upsilon(nS) \rightarrow \Upsilon(mS) \pi \pi \) from BUTLER 94 and ALEXANDER 98.

5. Reanalysis of data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, and COHEN 80 in the unitarized ChPT model.

6. From a combined analysis of HYAMS 73, AUGUSTIN 89, AITALA 01, and PISLAK 01.

7. A similar analysis (KOMADA 01) finds \((580 \pm 79) - i (190 \pm 107) \) MeV.

8. Coupled channel reanalysis of BATON 70, BENSINGER 71, BAILLON 72, HYAMS 73, HYAMS 75, ROSSELET 77, COHEN 80, and ETKIN 82 using the uniformizing variable.

9. Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.

10. Coupled channel analysis using data from PROTOPOPESCU 73, HYAMS 73, HYAMS 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, CORDEN 79, BISWAS 81.

11. Analysis of data from APEL 73, GRAYER 74, CASON 76, PAWLICKI 77. Includes spread and errors of 4 solutions.

12. Analysis of data from BEIER 72, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CAISON 83, ASTON 88, and ARMSTRONG 91. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

13. Demonstrates explicitly that \(f_0(600) \) and \(f_0(1370) \) are two different poles.

14. Coupled-channel analysis of \(pp \rightarrow 3\pi_0, \pi_0 \eta \eta \) and \(\pi_0 \pi_0 \eta \) on sheet II.

15. Analysis of data from FALVARD 88.

16. Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

17. Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77.

18. Analysis of data from OCHS 73, GRAYER 74, BECKER 79, and CASON 83.

19. Coupled-channel analysis using data from PROTOPOPESCU 73, HYAMS 73, HYAMS 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, CORDEN 79, BISWAS 81.

20. Analysis of data from APEL 73, GRAYER 74, CASON 76, PAWICKI 77.

21. Analysis of data from BATON 70, BENSINGER 71, COLTON 71, BAILLON 72, PROTOPOPESCU 73, and WALKER 67.

\[f_0(600) \] BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(400–1200) OUR ESTIMATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>513\pm32</td>
<td>22 MURAMATSU 02 CLEO</td>
<td>e^+ e^- \approx 10 GeV</td>
<td></td>
</tr>
<tr>
<td>478^{+24}_{-23}^{+17}</td>
<td>AITALA 018 E791</td>
<td>D^+ \rightarrow \pi^- \pi^+ \pi^+</td>
<td></td>
</tr>
<tr>
<td>563^{+58}_{-20}</td>
<td>ISHIDA 01</td>
<td>3 \pi_0, \pi_0 \eta \eta</td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>ASNER 00 CLE2</td>
<td>\tau^- \rightarrow \pi^- \pi_0 \pi_0 \nu_\tau</td>
<td></td>
</tr>
<tr>
<td>540\pm36</td>
<td>ISHIDA 00B</td>
<td>p \overline{p} \rightarrow \pi_0 \pi_0 \pi_0</td>
<td></td>
</tr>
<tr>
<td>750\pm4</td>
<td>ALEKSEEV 99 SPEC</td>
<td>1.78 \pi^- p_{polar} \rightarrow \pi^- \pi^+ n</td>
<td></td>
</tr>
<tr>
<td>744\pm5</td>
<td>ALEKSEEV 98 SPEC</td>
<td>1.78 \pi^- p_{polar} \rightarrow \pi^- \pi^+ n</td>
<td></td>
</tr>
<tr>
<td>759\pm5</td>
<td>TROYAN 98</td>
<td>5.2 n p \rightarrow n p \pi^+ \pi^-</td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 11 Created: 7/6/2006 16:34
780 ± 30 & ALDE & 97 & GAM2 & 450 & pp → ppπ^0π^0 \\
585 ± 20 & 26 & ISHIDA & 97 & & π^+π^− \\
761 ± 12 & 27 & SVEC & 96 & RVUE & 6–17 πN_polar → π^+π^−N \\
~ 860 & 28, 29 & TORNQVIST & 96 & RVUE & π^+π^− K\overline{K}, Kπ, ηπ \\
1165 ± 50 & 30, 31 & ANISOVICH & 95 & RVUE & π^0ρ → π^0π^0n, πp → π^0π^0π^0, π^0π^0η, π^0ηη \\
~ 1000 & 32 & ACHASOV & 94 & RVUE & ππ → ππ \\
414 ± 20 & 27 & AUGUSTIN & 89 & DM2 &

22 Statistical uncertainty only.
23 A similar analysis (KOMADA 01) finds 526 +48 −37 MeV.
24 From the best fit of the Dalitz plot.
25 6σ effect, no PWA.
26 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
27 Breit-Wigner fit to S-wave intensity measured in πN → π−π^+N on polarized targets. The fit does not include f_0(980).
28 Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
29 Also observed by ASNER 00 in τ^− → π^−π^0π^0ντ decays.
30 Uses π^0π^0 data from ANISOVICH 94, AMSLER 94, and ALDE 95B, π^+π^− data from OCHS 73, GRAYER 74 and ROSSELET 77, and ηη data from ANISOVICH 94.
31 The pole is on Sheet III. Demonstrates explicitly that f_0(600) and f_0(1370) are two different poles.
32 Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>335 ± 67</td>
<td>33 MURAMATSU 02 CLEO</td>
<td>e^+e^- ≈ 10 GeV</td>
<td></td>
</tr>
<tr>
<td>324 +42 −40 ± 21</td>
<td>AITALA 018 E791</td>
<td>D^+ → π^−π^+π^+</td>
<td></td>
</tr>
<tr>
<td>372 ± 229 − 95</td>
<td>34 ISHIDA 01</td>
<td>γ(3S) → γππ</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>35 ASNER 00 CLE2</td>
<td>π^− → π^−π^0π^0ντ</td>
<td></td>
</tr>
<tr>
<td>372 ± 80</td>
<td>36 ISHIDA 00B</td>
<td>pp → π^0π^0n</td>
<td></td>
</tr>
<tr>
<td>119 ± 13</td>
<td>37 ALEKSEEV 99 SPEC</td>
<td>1.78 π^−ρ_polar → π^−π^+n</td>
<td></td>
</tr>
<tr>
<td>77 ± 22</td>
<td>38 ALEKSEEV 98 SPEC</td>
<td>1.78 π^−ρ_polar → π^−π^+n</td>
<td></td>
</tr>
<tr>
<td>35 ± 12</td>
<td>39 TROYAN 98</td>
<td>5.2 np → npπ^+π^−</td>
<td></td>
</tr>
<tr>
<td>780 ± 60</td>
<td>40 ALDE 97 GAM2</td>
<td>450 pp → ppπ^0π^0</td>
<td></td>
</tr>
<tr>
<td>385 ± 70</td>
<td>41 ISHIDA 97</td>
<td>ππ → ππ</td>
<td></td>
</tr>
<tr>
<td>290 ± 54</td>
<td>42 SVEC 96 RVUE</td>
<td>6–17 πN_polar → π^+π^−N</td>
<td></td>
</tr>
<tr>
<td>~ 880</td>
<td>43 TORNQVIST 96 RVUE</td>
<td>ππ → ππ, K\overline{K}, Kπ, ηπ</td>
<td></td>
</tr>
<tr>
<td>460 ± 40</td>
<td>44 ANISOVICH 95 RVUE</td>
<td>π^−ρ → π^0π^0n, πp → π^0π^0π^0, π^0π^0η, π^0ηη</td>
<td></td>
</tr>
<tr>
<td>~ 3200</td>
<td>45 ACHASOV 94 RVUE</td>
<td>ππ → ππ</td>
<td></td>
</tr>
<tr>
<td>494 ± 58</td>
<td>46 AUGUSTIN 89 DM2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 12 Created: 7/6/2006 16:34
33 Statistical uncertainty only.
34 A similar analysis (KOMADA 01) finds $301 \pm 145 - 100$ MeV.
35 From the best fit of the Dalitz plot.
36 6σ effect, no PWA.
37 Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.
38 Breit-Wigner fit to S-wave intensity measured in $\pi N \rightarrow \pi^- \pi^+ N$ on polarized targets. The fit does not include $f_0(980)$.
39 Also observed by ASNER 00 in $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$ decays.
40 Uses data from ASTON 88, OCHS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
41 Uses data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, $\pi^+ \pi^-$ data from OCHS 73, GRAYER 74 and ROSSELET 77, and $\eta \eta$ data from ANISOVICH 94.
42 The pole is on Sheet III. Demonstrates explicitly that $f_0(600)$ and $f_0(1370)$ are two different poles.
43 Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

$f_0(600)$ DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>$\pi \pi$</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$\gamma \gamma$</td>
</tr>
</tbody>
</table>

$f_0(600)$ PARTIAL WIDTHS

<table>
<thead>
<tr>
<th>$\Gamma(\gamma \gamma)$</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8 ± 1.5</td>
<td>44</td>
<td>BOGLIONE 99</td>
<td>RVUE $\gamma \gamma \rightarrow \pi^+ \pi^-$, $\pi^0 \pi^0$</td>
</tr>
<tr>
<td>5.4 ± 2.3</td>
<td>44</td>
<td>MORGAN 90</td>
<td>RVUE $\gamma \gamma \rightarrow \pi^+ \pi^-$, $\pi^0 \pi^0$</td>
</tr>
<tr>
<td>10 ± 6</td>
<td>86</td>
<td>COURAU 86</td>
<td>DM1 $e^+ e^- \rightarrow \pi^+ \pi^-$, $e^+ e^-$</td>
</tr>
</tbody>
</table>

44 This width could equally well be assigned to the $f_0(1370)$. The authors analyse data from BOYER 90 and MARSISKE 90 and report strong correlation with $\gamma \gamma$ width of $f_2(1270)$.
45 Supersedes MORGAN 90.

$f_0(600)$ REFERENCES

CAPRINI 06 PRL 96 132001 I. Caprini, G. Colangelo, H. Leutwyler (BCIP+)
ZHOU 05 JHEP 0502 043 Z.Y. Zhou et al.
ABLIKIM 04A PL B598 149 M. Ablikim et al. (BES Collab.)
AKHMETSHIN 04 PL B578 285 R.R. Akhmetshin et al. (Novosibirsk CMD-2 Collab.)
GALLEGOS 04 PR D69 074033 A. Gallegos et al.
PELAEZ 04A MPP A19 2879 J.R. Pelaez
BUGG 03 PL B572 1 D.V. Bugg
PISLAK 03 PR D67 072004 S. Pislak et al. (BNL E865 Collab.)
MURAMATSU 02 PRL 89 251802 H. Muramatsu et al. (CLEO Collab.)
Also AITALA 01B PRL 90 059901 (erratum) H. Muramatsu et al. (CLEO Collab.)
BLACK 01 PR D64 014031 D. Black et al.
COLANGELO 01 NP B603 125 G. Colangelo, J. Gasser, H. Leutwyler
ISHIDA 01 PL B518 47 M. Ishida et al.
KOMADA 01 PL B508 31 T. Komada et al.

HTTP://PDG.LBL.GOV Page 13 Created: 7/6/2006 16:34
OTHER RELATED PAPERS

ABLIKIM 06C PL B633 681 M. Ablikim et al. (BES Collab.)
AITALA 06 PR D73 032004 E.M. Aitala et al. (FNAL E791 Collab.)
BEDIAGA 06 PL B633 167 I. Bediaga, J.M. de Miranda
CHENG 06 PR D73 014017 H.-Y. Cheng, C.-K. Chua, K.-C. Yang
ABLIKIM 05 PL B607 243 M. Ablikim et al. (BES Collab.)
ABLIKIM 05Q PR D72 092002 M. Ablikim et al. (BES Collab.)
AUBERT,B 05G PR D72 052002 B. Aubert et al. (BABAR Collab.)
BRITO 05 PL B608 69 T.V. Brito et al.
CRONIN-HEN... 05 PR D72 031102R D. Cronin-Hennessy et al. (CLEO Collab.)
Giacosa 05 PR C71 025202 F. Giacosa et al.
JAFFE 05 PRPL 389 61 R.L. Jaffe
Li 05B EPJ A25 263 D.-M. Li, K.-W. Wei, H. Yu
LINK 05I PL B585 200 J.M. Link et al. (FNAL FOCUS Collab.)
MAIANI 04A PRL 93 212002 L. Maiani et al.
NAPSUCIALE 04 PL B603 195 M. Napsuciale, S. Rodriguez (GUAN)
NAPSUCIALE 04A PR D70 094043 N.N. Napsuciale, S. Rodriguez
PELAEZ 04 PRL 88 181603 D. Pelaye
PRAKHOV 04 PR C69 045202 S. Prakhov et al. (BNL Crystal Ball Collab.)
PRAKHOV 04A EPJ C26 253 A. Prakhov et al.
PRAKHOV 04B PR C70 034605 S. Prakhov et al.
TESHIMA 04 JPG 28 663 T. Teshima et al.
VANBEVEREN 04 MPL A19 1949 E. Vanbeveren, G. Rupp
ZENG 04 NP A733 235 H.Q. Zheng et al.
ABDEL-REHIM 03 PR D67 054001 A. Abdel-Rehim et al.
ABDEL-REHIM 03B PR D68 013008 A. Abdel-Rehim et al.
BOGLIONE 03 EPJ C30 503 M. Boglione, M.R. Pennington
ISHIDA 03 PTPS 149 190 M. Ishida
KAMINSKI 03 PL B551 241 R. Kaminski, L. Lesniak, B. Loiseau
OLLER 03B NP A714 161 J.A. Oller et al.
SCADRON 03 NP A724 391 M.D. Scadron et al.
SEmenov 03 PAN 66 526 S.V. Semenov
Translated from YAF 66 553.
ACHASOV 02F PL B537 201 M.N. Achasov et al. (Novosibirsk SND Collab.)
AITALA 02 PRL 89 121801 E.M. Aitala et al. (FNAL E791 Collab.)
ALOISIO 02C PL B536 209 A. Aloisio et al. (KLOE Collab.)
ALOISIO 02D PL B537 21 A. Aloisio et al. (KLOE Collab.)
BEVEREN 02 MPL A17 1673 E. van Beveren et al.
BLACK 02 PRL 88 181603 D. Black, M. Harada, J. Schechter
BOGLIONE 02 PR D65 114010 M. Boglione, M.R. Pennington
BRAMON 02 EPJ C26 253 A. Bramon et al.
CLOSE 02B JPG 28 R249 F.E. Close, N. Tornqvist
GARMASH 02 PR D65 092005 A. Garmash et al. (BELLE Collab.)
HE 02 PL B536 59 J. He, Z.G. Xiao, H.Q. Zheng
HERNANDEZ 02 PR C66 065201 E. Hernandez, E. Oset, M.J. Vicente Vacas
ISHIDA 02 PL B539 249 S. Ishida, M. Ishida
KAMINSKI 02 EPJ Direct C4 1 R. Kaminski, L. Lesniak, K. Rybicki
LINK 02 PL B525 205 J.M. Link et al. (FNAL FOCUS Collab.)
LINK 02E PL B535 43 J.M. Link et al. (FNAL FOCUS Collab.)
TESHIMA 02 JPG 28 1391 T. Teshima, I. Kitamura, N. Morisita
ABELE 01 EPJ C19 667 A. Abele et al. (Crystal Barrel Collab.)
ABELE 01B EPJ C21 261 A. Abele et al. (Crystal Barrel Collab.)
BEVEREN 01B EPJ C22 493 E. van Beveren
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Reference</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVEC</td>
<td>PR D46 949</td>
<td>M. Svec, A. de Lesquen, L. van Rossum (MCGI+)</td>
</tr>
<tr>
<td>BERNARD</td>
<td>PR D43 2757</td>
<td>V. Bernard, N. Kaiser, U.G. Meissner</td>
</tr>
<tr>
<td>LI</td>
<td>PR D43 2161</td>
<td>Z.P. Li et al. (TENN)</td>
</tr>
<tr>
<td>RIGGENBACH</td>
<td>PR D43 127</td>
<td>C. Riggenbach et al. (BERN, CERN, MASA)</td>
</tr>
<tr>
<td>BAI</td>
<td>PRL 65 2607</td>
<td>Z. Bai et al. (Mark III Collab.)</td>
</tr>
<tr>
<td>LOHSE</td>
<td>PL B234 235</td>
<td>D. Lohse et al.</td>
</tr>
<tr>
<td>WEINSTEIN</td>
<td>PR D41 2236</td>
<td>J. Weinstein, N. Isgur (TINTO)</td>
</tr>
<tr>
<td>ASTON</td>
<td>NP B301 525</td>
<td>D. Aston et al. (SLAC, NAGO, CINC, INUS)</td>
</tr>
<tr>
<td>BARNES</td>
<td>PL B165 434</td>
<td>T. Barnes</td>
</tr>
<tr>
<td>ACHASOV</td>
<td>ZPHY C22 53</td>
<td>N.N. Achasov, S.A. Devyanin, G.N. Shestakov (NOVM)</td>
</tr>
<tr>
<td>GASSER</td>
<td>ANP 158 142</td>
<td>J. Gasser, H. Leutwyler</td>
</tr>
<tr>
<td>TORNQVIST</td>
<td>PRL 49 624</td>
<td>N.A. Tornqvist (HELS)</td>
</tr>
<tr>
<td>COSTA</td>
<td>NP B175 402</td>
<td>G. Costa et al. (BARI, BONN, CERN, GLAS+)</td>
</tr>
<tr>
<td>BECKER</td>
<td>NP B150 301</td>
<td>H. Becker et al. (MPIM, CERN, ZEEM, CRAC)</td>
</tr>
<tr>
<td>MARTIN</td>
<td>NP B158 520</td>
<td>A.D. Martin, E.N. Ozmutlu (DURH)</td>
</tr>
<tr>
<td>NAGELS</td>
<td>PR D20 1633</td>
<td>M.M. Nagels, T.A. Rijken, J.J. de Swart (NIJM)</td>
</tr>
<tr>
<td>POLYCHRONAKOS...</td>
<td>PR D19 1317</td>
<td>V.A. Polychronakos et al. (NDAM, ANL)</td>
</tr>
<tr>
<td>CORDEN</td>
<td>NP B144 253</td>
<td>M.J. Corden et al. (BIRM, RHEL, TELA+)</td>
</tr>
<tr>
<td>ESTABROOKS</td>
<td>NP B133 490</td>
<td>P.G. Estabrooks et al. (MCGI, CARL, DURH+)</td>
</tr>
<tr>
<td>JAFFE</td>
<td>PR D15 267,281</td>
<td>R. Jaffe (MIT)</td>
</tr>
<tr>
<td>FLATTE</td>
<td>PL 63B 224</td>
<td>S.M. Flatte (CERN)</td>
</tr>
<tr>
<td>WETZEL</td>
<td>NP B115 208</td>
<td>W. Wetzel et al. (ETH, CERN, LOIC)</td>
</tr>
<tr>
<td>DEFOIX</td>
<td>NP B44 125</td>
<td>C. Defoix et al. (CDEF, CERN)</td>
</tr>
<tr>
<td>ADLER</td>
<td>PR 137 B1022</td>
<td>S.L. Adler</td>
</tr>
<tr>
<td>ADLER</td>
<td>PR 139 B1638</td>
<td>S.L. Adler</td>
</tr>
</tbody>
</table>