\(K^*(1680) \)

\[I(J^P) = \frac{1}{2}(1^-) \]

\(K^*(1680) \) Mass

<table>
<thead>
<tr>
<th>Value (MeV)</th>
<th>Document ID</th>
<th>TECN</th>
<th>CHG</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1717 ± 27</td>
<td>OUR AVERAGE</td>
<td>Error includes scale factor of 1.4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1677 ± 10 ± 32</td>
<td>ASTON 88</td>
<td>LASS 0</td>
<td>11</td>
<td>(K^- p \to K^- \pi^+ n)</td>
</tr>
<tr>
<td>1735 ± 10 ± 20</td>
<td>ASTON 87</td>
<td>LASS 0</td>
<td>11</td>
<td>(K^- p \to K^0 \pi^+ \pi^- n)</td>
</tr>
<tr>
<td>~1678 ± 64</td>
<td>BIRD 89</td>
<td>LASS –</td>
<td>11</td>
<td>(K^- p \to K^0 \pi^- p)</td>
</tr>
<tr>
<td>1800 ± 70</td>
<td>ETKIN 80</td>
<td>MPS 0</td>
<td>6</td>
<td>(K^- p \to K^0 \pi^+ \pi^- n)</td>
</tr>
</tbody>
</table>

\(K^*(1680) \) Width

<table>
<thead>
<tr>
<th>Value (MeV)</th>
<th>Document ID</th>
<th>TECN</th>
<th>CHG</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>322 ± 110</td>
<td>OUR AVERAGE</td>
<td>Error includes scale factor of 4.2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205 ± 16 ± 34</td>
<td>ASTON 88</td>
<td>LASS 0</td>
<td>11</td>
<td>(K^- p \to K^- \pi^+ n)</td>
</tr>
<tr>
<td>423 ± 18 ± 30</td>
<td>ASTON 87</td>
<td>LASS 0</td>
<td>11</td>
<td>(K^- p \to K^0 \pi^+ \pi^- n)</td>
</tr>
<tr>
<td>454 ± 270</td>
<td>BIRD 89</td>
<td>LASS –</td>
<td>11</td>
<td>(K^- p \to K^0 \pi^- p)</td>
</tr>
<tr>
<td>170 ± 30</td>
<td>ETKIN 80</td>
<td>MPS 0</td>
<td>6</td>
<td>(K^- p \to K^0 \pi^+ \pi^- n)</td>
</tr>
<tr>
<td>250 to 300</td>
<td>ESTABROOKS 78</td>
<td>ASPK 0</td>
<td>13</td>
<td>(K^\pm p \to K^\pm \pi^\pm n)</td>
</tr>
</tbody>
</table>

\(K^*(1680) \) Decay Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(K\pi)</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(K\rho)</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(K^*(892)\pi)</td>
</tr>
</tbody>
</table>

Constrained Fit Information
An overall fit to 4 branching ratios uses 4 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 = 2.9$ for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / \langle \delta x_i^2 \rangle$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

\[
\begin{array}{ccc}
\chi_2 & -36 \\
\chi_3 & -39 & -72 \\
\chi_1 & \chi_2 \\
\end{array}
\]

K*(1680) BRANCHING RATIOS

<table>
<thead>
<tr>
<th>$\Gamma(K\pi)/\Gamma_{\text{total}}$</th>
<th>Γ_1/Γ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>0.387±0.026 OUR FIT</td>
<td>ASTON 88 LASS 0</td>
</tr>
<tr>
<td>0.388±0.014±0.022</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ_1/Γ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
</tr>
<tr>
<td>1.30±0.23 OUR FIT</td>
</tr>
<tr>
<td>2.8 ±1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ_2/Γ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
</tr>
<tr>
<td>0.81±0.14 OUR FIT</td>
</tr>
<tr>
<td>1.2 ±0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ_2/Γ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
</tr>
<tr>
<td>1.05±0.27 OUR FIT</td>
</tr>
<tr>
<td>0.97±0.09±0.30 OUR FIT</td>
</tr>
</tbody>
</table>

K*(1680) REFERENCES

BIRD 89	SLAC-332	P.F. Bird (SLAC)
ASTON 88	NP B296 493	D. Aston et al. (SLAC, NAGO, CINC, INUS)
ASTON 87	NP B292 693	D. Aston et al. (SLAC, NAGO, CINC, INUS)
ASTON 84	PL 149B 258	D. Aston et al. (SLAC, CARL, OTTA) JP
ETKIN 80	PR D22 42	A. Etkin et al. (BNL, CUNY) JP
ESTABROOKS 78	NP B133 490	P.G. Estabrooks et al. (MCGI, CARL, DURH+) JP

OTHER RELATED PAPERS

ABLIKIM 05Q	PR D72 092002	M. Ablikim et al. (BES Collab.)
EBERT 05	MPL A20 1887	D. Ebert, R.N. Faustov, V.O. Galkin
LI 05E	MPL A20 2497	D.-M. Li et al.

HTTP://PDG.LBL.GOV Page 2 Created: 7/6/2006 16:34