\[
I(j^P) = \frac{1}{2}(0^{-})
\]

K^0 MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>497.648±0.022 OUR FIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497.648±0.022 OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497.625±0.001±0.031 655k</td>
<td>LAI</td>
<td>02 NA48</td>
<td>K^0_L beam</td>
<td></td>
</tr>
<tr>
<td>497.661±0.033 3713</td>
<td>BARKOV</td>
<td>87B CMD</td>
<td>e^+ e^- → K^0 L K^0 S</td>
<td></td>
</tr>
<tr>
<td>497.742±0.085 780</td>
<td>BARKOV</td>
<td>85B CMD</td>
<td>e^+ e^- → K^0 L K^0 S</td>
<td></td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

497.44 ±0.50	FITCH	67 OSPK	
498.9 ±0.5	BALTAY	66 HBC	K^0 from pp
497.44 ±0.33 2223	KIM	65B HBC	K^0 from pp
498.1 ±0.4	CHRISTENS...	64 OSPK	

\[m_{K^0} - m_{K^±} \]

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>CHG</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.972±0.027 OUR FIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error includes scale factor of 1.2.</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

3.95 ±0.21 417	HILL	68B DBC	+	K^+ d → K^0 pp
3.90 ±0.25 9	BURNSTEIN	65 HBC		
3.71 ±0.35 7	KIM	65B HBC	−	K^- p → nK^0
5.4 ±1.1	CRAWFORD	59 HBC	+	
3.9 ±0.6	ROSENFELD	59 HBC		

K^0 MEAN SQUARE CHARGE RADIUS

<table>
<thead>
<tr>
<th>VALUE (fm^2)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.077±0.010 OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−0.077±0.007±0.011 5037</td>
<td>ABOUZAID</td>
<td>06 KTEV</td>
<td>K^0 → π^+ π^- e^+ e^-</td>
<td></td>
</tr>
<tr>
<td>−0.090±0.021</td>
<td>LAI</td>
<td>03C NA48</td>
<td>K^0_L → π^+ π^- e^+ e^-</td>
<td></td>
</tr>
<tr>
<td>−0.054±0.026</td>
<td>MOLZON</td>
<td>78</td>
<td>K_S regen. by electrons</td>
<td></td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

| −0.087±0.046 | BLATNIK | 79 | VMD + dispersion relations |
| −0.050±0.130 | FOETH | 69B | K_S regen. by electrons |

T-VIOLATION PARAMETER IN K^0-\bar{K^0} MIXING

The asymmetry \(A_T = \frac{\Gamma(\bar{K}^0 \rightarrow K^0) - \Gamma(K^0 \rightarrow \bar{K}^0)}{\Gamma(K^0 \rightarrow \bar{K}^0) + \Gamma(K^0 \rightarrow \bar{K}^0)} \) must vanish if \(T \) invariance holds.

ASYMMETRY A_T IN K^0-\bar{K^0} MIXING

<table>
<thead>
<tr>
<th>VALUE (units x 10^{-3})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6±1.3±1.0</td>
<td>640k</td>
<td>1 ANGELOPO...</td>
<td>98 CPLR</td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 1 Created: 7/6/2006 16:35
ANGELOPOULOS 98

measures the asymmetry
$$A_T = \frac{\Gamma(K^0_{t=0} \rightarrow e^+ \pi^- \nu_{t=\tau}) - \Gamma(K^0_{t=0} \rightarrow e^- \pi^+ \nu_{t=\tau})}{\Gamma(K^0_{t=0} \rightarrow e^+ \pi^- \nu_{t=\tau}) + \Gamma(K^0_{t=0} \rightarrow e^- \pi^+ \nu_{t=\tau})}$$
as a function of the neutral-kaon eigentime τ. The initial strangeness of the neutral kaon is tagged by the charge of the accompanying charged kaon in the reactions $p p \rightarrow K^- \pi^+ + K^0$ and $p p \rightarrow K^+ \pi^− + \overline{K}^0$. The strangeness at the time of the decay is tagged by the lepton charge. The reported result is the average value of A_T over the interval $1 \tau_s < \tau < 20 \tau_s$. From this value of A_T ANGELOPOULOS 01B, assuming CPT invariance in the $e \pi \nu$ decay amplitude, determine the T-violating as $\Delta S - \Delta S$ conserving parameter (for its definition, see Review below) $4 \text{Re}(\epsilon) = (6.2 \pm 1.4 \pm 1.0) \times 10^{-3}$.

CPT INVARIANCE TESTS IN NEUTRAL KAON DECAY

The time evolution of a neutral kaon state is described by
$$\frac{d}{dt} \Psi = -i\Lambda \Psi , \quad \Lambda \equiv M - \frac{i}{2} \Gamma \quad (1)$$
where M and Γ are Hermitian 2×2 matrices known as the mass and decay matrices. The corresponding eigenvalues are $\lambda_{L,S} = m_{L,S} - \frac{i}{2} \gamma_{L,S}$. CPT invariance requires the diagonal elements of Λ to be equal. The CPT-violation complex parameter δ is defined as
$$\delta = \frac{\Lambda_{K^0 \overline{K}^0} - \Lambda_{K^0 \overline{K}^0}}{2(\lambda_L - \lambda_S)}$$
$$= \delta_\parallel \exp(i\phi_{SW}) + \delta_\perp \exp(i(\phi_{SW} + \pi/2)) \quad (2)$$
where we have introduced the projections δ_\parallel and δ_\perp respectively parallel and perpendicular to the superweak direction $\phi_{SW} = \tan^{-1}(2\Delta m/\Delta \gamma)$, where $\Delta m = m_L - m_S$ and $\Delta \gamma = \gamma_S - \gamma_L$, the positive mass and width differences between K_L and K_S. These projections are linked to the mass and width difference between K^0 and \overline{K}^0:
$$\delta_\parallel = \frac{1}{4} \frac{\gamma_{K^0} - \gamma_{\overline{K}^0}}{\sqrt{\Delta m^2 + \left(\frac{\Delta \gamma}{2}\right)^2}} , \quad \delta_\perp = \frac{1}{2} \frac{m_{K^0} - m_{\overline{K}^0}}{\sqrt{\Delta m^2 + \left(\frac{\Delta \gamma}{2}\right)^2}} \quad (3)$$
Re(δ) can be directly measured by studying the time evolution of the strangeness content of initially pure K^0 and \bar{K}^0 states, for example through the asymmetry

$$A_{CPT} = \frac{P[\bar{K}^0 \to K^0(t)] - P[K^0 \to \bar{K}^0(t)]}{P[\bar{K}^0 \to K^0(t)] + P[K^0 \to \bar{K}^0(t)]} = 4 \text{Re}(\delta)$$

(4)

where $P[a \to b(t)]$ is the probability that the pure initial state a is seen as state b at proper time t. This method has been used by tagging the initial strangeness with strong interactions and the final strangeness with the semileptonic decay (a more appropriate combination of semileptonic rates allows to be independent of any direct CPT violation in the decay itself) and yields today’s best value of $\text{Re}(\delta)$, compatible with zero with an error of $\sim 3 \times 10^{-4}$.

As an alternative it has been proposed to compare the semileptonic charge asymmetries for K_L and K_S

$$A_{L,S} = \frac{R(K_{L,S} \to \pi^- \ell^+ \nu) - R(K_{L,S} \to \pi^+ \ell^- \bar{\nu})}{R(K_{L,S} \to \pi^- \ell^+ \nu) + R(K_{L,S} \to \pi^+ \ell^- \bar{\nu})} ,$$

$$A_S - A_L = 4 \text{Re}(\delta) .$$

(5)

A_L has been accurately measured. A_S has been recently measured with tagged K_S at ϕ factories, however not yet with the required accuracy. Note however that Eq. (5) assumes CPT invariance in the $\Delta S = -\Delta Q$ semileptonic decay amplitude.
Figure 1: CP- and CPT-violation parameters in 2π decay.

δ_\perp can be obtained from the measurement of the $\pi\pi$ decays CP-violation parameters η_{+-} and η_{00}. Figure 1 shows the various contributions to $\eta_{\pi\pi}$ [1]. The T-violation parameter ϵ_T

$$
\epsilon_T = i \frac{\Lambda_{K^0\bar{K}^0}^2 - \Lambda_{K^0\bar{K}^0}^2}{\Delta \gamma (\lambda_L - \lambda_S)}
$$

has been defined in such a way that it is exactly aligned along the superweak direction [4]. A_I (resp. B_I) is the CPT-conserving (resp. violating) decay amplitude for the $\pi\pi$ Isospin I state, ϵ' is the direct CP/CPT-violation parameter [$\epsilon' = 1/3(\eta_{+-} - \eta_{00})$] and $\delta\phi = \frac{1}{2} [\varphi_T - \arg(A_0^*A_0)]$ is the phase difference between
the $I = 0$ component of the decay amplitude and the matrix element $\Gamma_{K^0\bar{K}^0}$. From Fig. 1 one obtains

$$\delta_\perp = |\eta_{+-}|(\phi_{SW} - \frac{2}{3}\phi_{+-} - \frac{1}{3}\phi_{00})$$

$$- \frac{\text{Re}(B_0)}{\text{Re}(A_0)} \sin(\phi_{SW}) + \delta \phi \cos(\phi_{SW}).$$

(7)

The present accuracy on the term $|\eta_{+-}|(\phi_{SW} - \frac{2}{3}\phi_{+-} - \frac{1}{3}\phi_{00})$ is 2.6×10^{-5}. $\delta \phi$ gets contributions from CP violation in semileptonic and 3π decays [2,3] and can only be neglected at the present time if one assumes that η_{000} is not significantly larger than η_{+-0}. Furthermore, B_0 is not directly measured, so additional assumptions (for example, CPT conservation in the decay which implies $B_0 = 0$) or a combination with other measurements are necessary to obtain δ_\perp.

If one assumes unitarity, one can measure $\text{Im}(\delta)$ using the Bell-Steinberger relation which relates K_S and K_L decay amplitudes into all final states f:

$$\text{Re}(\epsilon_T) - i\text{Im}(\delta) = \frac{1}{2(i\Delta m + \frac{1}{2}(\gamma_L + \gamma_S))} \times \sum A_{fL}A_{fS}^*.$$

(8)

Since the $\pi\pi$ amplitudes dominate, the result relies also strongly on the $\phi_{\pi\pi}$ phase measurements. The advantage is that B_0 does not enter. Using all available data, one obtains a value of $\text{Im}(\delta)$ compatible with zero with a precision of 2×10^{-5}. The precision here is limited by the measurement of η_{+-}.

The results on $\text{Re}(\delta)$ and $\text{Im}(\delta)$ can be combined to obtain δ_\parallel and δ_\perp and therefore the $K^0-\bar{K}^0$ mass and width difference shown in Fig. 2. The current accuracy is a few 10^{-18} GeV for both.

If one assumes that CPT is conserved in the decays ($\gamma_{K^0} = \gamma_{\bar{K}^0}$, $\delta_\parallel = 0$, $B_I = 0$), the phase of δ is known, and the δ_\perp and
Bell-Steinberger methods are identical. One in this case obtains a limit for $|m_{K^0} - m_{\overline{K}^0}|$ of 4.7×10^{-19} GeV (90%CL).

![Figure 2: $K^0 - \overline{K}^0$ mass vs width difference.](image)

Footnotes and References

‡ Many authors have a different definition of the T-violation parameter, $\epsilon = (\Lambda_{K^0\overline{K}^0} - \Lambda_{\overline{K}^0K^0})/(2(\lambda_L - \lambda_S))$. ϵ is not exactly aligned with the superweak direction. The two definitions can be related through $\epsilon = \epsilon_T + i\delta\phi$.

CP-VIOLATION PARAMETERS

In $K^0\bar{K}^0$ mixing, if CP-violating interactions include a T conserving part then

$$|K_S⟩ = [|[K_1] + (ε + δ)|K_2]|/\sqrt{1 + |ε + δ|^2}$$

$$|K_L⟩ = [|[K_2] + (ε - δ)|K_1]|/\sqrt{1 + |ε - δ|^2}$$

where

$$|K_1⟩ = [|[K^0] + |\bar{K}^0]|/\sqrt{S}$$

$$|K_2⟩ = [|[K^0] - |\bar{K}^0]|/\sqrt{2}$$

and

$$|\bar{K}^0⟩ = CP|K^0⟩.$$

The parameter $δ$ specifies the CP-violating part.

Estimates of $δ$ are given below assuming the validity of the $ΔS = ΔQ$ rule.

See also THOMSON 95 for a test of CPT-symmetry conservation in K^0 decays using the Bell-Steinberger relation.

REAL PART OF $δ$

A nonzero value violates CPT invariance.

<table>
<thead>
<tr>
<th>VALUE (units 10^{-3})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9 ± 2.6 ± 0.6</td>
<td>1.3M</td>
<td>3 ANGELOPO... 98f CPLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 ± 2.8</td>
<td>6481</td>
<td>5 DEMIDOV 95 K_{f3} reanalysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 If $ΔS = ΔQ$ is not assumed, ANGELOPOULOS 98f finds $Re(δ) = (3.0 ± 3.3 ± 0.6) × 10^{-4}$.

4 APOSTOLAKIS 99b assumes only unitarity and combines CPLEAR and other results.

5 DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.

IMAGINARY PART OF $δ$

A nonzero value violates CPT invariance.

<table>
<thead>
<tr>
<th>VALUE (units 10^{-5})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 0.2 ± 2.0</td>
<td>6 LAI 05A NA48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.4 ± 5.0</td>
<td>7 APOSTOLA... 99b RVUE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 90 ± 290 ± 100</td>
<td>1.3M</td>
<td>8 ANGELOPO... 98f CPLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100 ± 3700</td>
<td>6481</td>
<td>9 DEMIDOV 95 K_{f3} reanalysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 LAI 05A values are obtained through unitarity (Bell-Steinberger relations), improving determination of n_{1000} and combining other data from PDG and APOSTOLAKIS 99b.

7 APOSTOLAKIS 99b assumes only unitarity and combines CPLEAR and other results.

8 If $ΔS = ΔQ$ is not assumed, ANGELOPOULOS 98f finds $Im(δ) = (-15 ± 23 ± 3) × 10^{-3}$.

9 DEMIDOV 95 reanalyzes data from HART 73 and NIEBERGALL 74.
Re(y)

A non-zero value would violate CPT invariance in $\Delta S = \Delta Q$ amplitude. $\text{Re}(y)$ is the following combination of K_{e3} decay amplitudes:

$$\text{Re}(y) = \text{Re}(\frac{A(K^0 \rightarrow e^- \pi^+ \nu_e)}{A(K^0 \rightarrow e^+ \pi^- \bar{\nu}_e)} - \frac{A(K^0 \rightarrow e^- \pi^+ \nu_e)}{A(K^0 \rightarrow e^+ \pi^- \bar{\nu}_e)})$$

<table>
<thead>
<tr>
<th>VALUE (units 10^{-3})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4±2.5</td>
<td>13k</td>
<td>AMBROSINO 06E</td>
<td>KLOE</td>
</tr>
</tbody>
</table>

* • • • We do not use the following data for averages, fits, limits, etc. • • •

0.3±3.1

10 They use the PDG 04 (web update) for the K_ℓ^0 semileptonic charge asymmetry and PDG 04 (CP review, CPT NOT ASSUMED) for Re(ϵ).

11 Constrained by Bell-Steinberger (or unitarity) relation.

Re(x-)

A non-zero value would violate CPT invariance in decay amplitudes with $\Delta S \neq \Delta Q$.

x_-, used here to define $\text{Re}(x_-)$, and x_+, used below in the $\Delta S = \Delta Q$ section are the following combinations of K_{e3} decay amplitudes:

$$x_\pm = \frac{1}{2} \left(\frac{A(K^0 \rightarrow \pi^- e^+ \nu_e)}{A(K^0 \rightarrow \pi^- e^- \bar{\nu}_e)} \pm \frac{A(K^0 \rightarrow \pi^+ e^- \bar{\nu}_e)}{A(K^0 \rightarrow \pi^+ e^+ \nu_e)} \right).$$

<table>
<thead>
<tr>
<th>VALUE (units 10^{-3})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.8±2.5</td>
<td>13k</td>
<td>AMBROSINO 06E</td>
<td>KLOE</td>
<td>Tagged K^0_S</td>
</tr>
</tbody>
</table>

* • • • We do not use the following data for averages, fits, limits, etc. • • •

-0.5±3.0

12 APOSTOLA... 99b CPLR

2±13 ±3

650k ANGELOPOULOS 98f

12 Uses PDG 04 (web update) for the K_ℓ^0 semileptonic charge asymmetry and Re(δ) from CPLER, ANGELOPOULOS 98f.

13 Constrained by Bell-Steinberger (or unitarity) relation.

$|m_{K^0} - m_{\bar{K}^0}| / m_{\text{average}}$

A test of CPT invariance. “Our Evaluation” is described in the “Tests of Conservation Laws” section. It assumes CPT invariance in the decay and neglects some contributions from decay channels other than $\pi \pi$.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10^{-18} (CL = 90%) Our Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* • • We do not use the following data for averages, fits, limits, etc. • • •

$(-3±4) \times 10^{-18}$

14 ANGELOPOULOS 99b

14 ANGELOPOULOS 99b assumes only unitarity and combines CPLER and other results.

$(\Gamma_{K^0} - \Gamma_{\bar{K}^0})/m_{\text{average}}$

A test of CPT invariance.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(7.8±8.4) \times 10^{-18}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 ANGELOPOULOS 99b assumes only unitarity and combines CPLER with other results.

Correlated with $(m_{K^0} - m_{\bar{K}^0}) / m_{\text{average}}$ with a correlation coefficient of -0.95.
TESTS OF $\Delta S = \Delta Q$ RULE

$\text{Re}(x_+)$

A non-zero value would violate the $\Delta S = \Delta Q$ rule in CPT conserving transitions. x_+ is defined above in the $\text{Re}(x_-)$ section.

$\text{VALUE (units } 10^{-3} \text{) EVTS DOCUMENT ID TECN}$

$\text{ VALUE EVTS DOCUMENT ID TECN}$

-0.8 ± 3.1 OUR AVERAGE
-0.5 ± 3.6 13k 16 AMBROSINO 06E KLOE
-1.8 ± 6.1 17 ANGELOPO... 98D CPLR

$\text{Re}(x_+)$ can be shown to be equal to the following combination of rates:

$$\text{Re}(x_+) = \frac{1}{2} \left(\Gamma(K^0_S \rightarrow \pi e \nu) - \Gamma(K^0_L \rightarrow \pi e \nu) \right)$$

which is valid up to first order in terms violating CPT and/or the $\Delta S = \Delta Q$ rule.

REFERENCES

ABOUZAID 06 PRL 96 101801 E. Abouzaid et al. (KTEV Collab.)
AMBROSINO 06E PL B636 173 F. Ambrosino et al. (KLOE Collab.)
LAI 05A PL B610 165 A. Lai et al. (CERN NA48 Collab.)
PDG 04 PL B592 1 S. Eidelman et al. (PDG Collab.)
LAI 03C EPJ C30 33 A. Lai et al. (CERN NA48 Collab.)
LAI 02 PL B533 196 A. Lai et al. (CERN NA48 Collab.)
ANGELOPO... 01B EPJ C22 55 A. Angelopoulos et al. (CPLEAR Collab.)
ANGELOPO... 99B PL B471 332 A. Angelopoulos et al. (CPLEAR Collab.)
APOSTOLA... 99B PL B456 297 A. Apostolakis et al. (CPLEAR Collab.)
ANGELOPO... 98D PL B444 38 A. Angelopoulos et al. (CPLEAR Collab.)
ANGELOPO... 98E PL B444 43 A. Angelopoulos et al. (CPLEAR Collab.)
Also EPJ C22 55 A. Angelopoulos et al. (CPLEAR Collab.)
ANGELOPO... 98F PL B444 52 A. Angelopoulos et al. (CPLEAR Collab.)
Also EPJ C22 55 A. Angelopoulos et al. (CPLEAR Collab.)
DEMIDOV 95 PAN 58 968 V. Demidov, K. Gusev, E. Shabalin (ITEP)
From YAF 58 1041.
THOMSON 95 PR D51 1412 G.B. Thomson, Y. Zou (RUTG)
BARKOV 87B SJNP 46 630 L.M. Barkov et al. (NOVO)
Translated from YAF 46 1088.
BARKOV 85B JETPL 42 138 L.M. Barkov et al. (NOVO)
Translated from ZETFP 42 113.
BLATNIK 79 LNC 24 39 S. Blatnik, J. Stahov, C.B. Lang (TUZL, GRAZ)
MOLZON 78 PRL 30B 276 H. Mollo et al. (EF1+)
NIEBERGALL 74 PL B38 52 F. Niebergall et al. (CERN, ORSAY, VIEN)
HART 73 NP B66 317 J.C. Hart et al. (CERN, ORSAY, VIEN)
FOETH 72 PRL 30B 276 H. Foeth et al. (AACH, CERN, TORI)
HILL 71 PR 168 1534 D.G. Hill et al. (BNL, CMU)
FITCH 67 PR 164 1711 V.L. Fitch et al. (PRIN)
BALTAY 66 PR 142 932 C. Baltay et al. (YALE, BNL)
BURNSTEIN 65 PR 138B 895 R.A. Burnstein, H.A. Rubin (UMD)
KIM 65B PR 140B 1334 J.K. Kim, L. Kirsch, D. Miller (COLU)
CHRISTENS... 64 PRL 13 138 J.H. Christenson et al. (PRIN)
CRAWFORD 59 PRL 2 112 F.S. Crawford et al. (LRL)
ROSENFIELD 59 PRL 2 110 A.H. Rosenfeld, F.T. Solmitz, R.D. Tripp (LRL)

HTTP://PDG.LBL.GOV Page 9 Created: 7/6/2006 16:35