7. ELECTROMAGNETIC RELATIONS

Revised September 2005 by H.G. Spieler (LBNL).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Gaussian CGS</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge:</td>
<td>2.997 921 58 × 10^9 esu</td>
<td>= 1 C = 1 A s</td>
</tr>
<tr>
<td>Potential:</td>
<td>(1/298.792 458) statvolt (ergs/esu)</td>
<td>= 1 V = 1 J C^{-1}</td>
</tr>
<tr>
<td>Magnetic field:</td>
<td>10^4 gauss = 10^4 dyne/esu</td>
<td>= 1 T = 1 N A^{-1} m^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = q (E + \frac{V}{c} \times B)</td>
<td>F = q (E + v \times B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\nabla \cdot D = 4\pi \rho</td>
<td></td>
<td>\nabla \cdot D = \rho</td>
</tr>
<tr>
<td>\nabla \times H - \frac{1}{c} \frac{\partial D}{\partial t} = 4\pi J</td>
<td>\nabla \times H - \frac{\partial D}{\partial t} = J</td>
<td></td>
</tr>
<tr>
<td>\nabla \cdot B = 0</td>
<td></td>
<td>\nabla \cdot B = 0</td>
</tr>
<tr>
<td>\nabla \times E + \frac{1}{c} \frac{\partial B}{\partial t} = 0</td>
<td>\nabla \times E + \frac{1}{c} \frac{\partial B}{\partial t} = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constitutive relations:</td>
<td>D = \varepsilon E + \sigma B, H = B - \mu m</td>
<td>D = \varepsilon E + \sigma B, H = B/\mu</td>
</tr>
<tr>
<td>Linear media:</td>
<td>D = \varepsilon E, H = B/\mu, 1</td>
<td>D = \varepsilon E, H = B/\mu, 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E = - \nabla V - \frac{1}{c} \frac{\partial A}{\partial t}</td>
<td>E = - \nabla V - \frac{\partial A}{\partial t}</td>
<td></td>
</tr>
<tr>
<td>B = \nabla \times A</td>
<td>B = \nabla \times A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V = \sum_{\text{charges}} q_i \int \frac{\rho (r')}{</td>
<td>r - r'</td>
<td>} d^3x'</td>
</tr>
<tr>
<td>A = \frac{1}{c} \int \frac{f d\ell}{</td>
<td>r - r'</td>
<td>} - \frac{1}{c} \int \frac{J (r')}{</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E'E = E{</td>
<td></td>
<td>}</td>
</tr>
<tr>
<td>E'E = \gamma (E{\perp} + \frac{1}{c} \mathbf{v} \times \mathbf{B})</td>
<td>E'E = \gamma (E{\perp} + \mathbf{v} \times \mathbf{B})</td>
<td></td>
</tr>
<tr>
<td>B'E = B{</td>
<td></td>
<td>}</td>
</tr>
<tr>
<td>B'E = \gamma (B{\perp} - \frac{1}{c} \mathbf{v} \times \mathbf{E})</td>
<td>B'E = \gamma (B{\perp} - \mathbf{v} \times \mathbf{E})</td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{1}{4\pi \varepsilon_0} = \varepsilon^2 \times 10^{-7} \text{ N A}^{-2} = 8.987 \, 55 \ldots \times 10^8 \text{ m F}^{-1}; \quad \frac{\mu_0}{4\pi} = 10^{-7} \text{ N A}^{-1} \text{ m}^{-1}; \quad c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.997 \, 924 \, 58 \times 10^8 \text{ m s}^{-1}
\]
7.1. Impedances (SI units)

\(\rho \) = resistivity at room temperature in \(10^{-8} \Omega \text{ m} \):
- \(\sim 1.7 \) for Cu
- \(\sim 5.5 \) for W
- \(\sim 2.4 \) for Au
- \(\sim 73 \) for SS 304
- \(\sim 2.8 \) for Al
- \(\sim 100 \) for Nichrome
(AI alloys may have double the Al value.)

For alternating currents, instantaneous current \(I \), voltage \(V \), angular frequency \(\omega \):

\[V = V_0 e^{j\omega t} = Z I . \]
(7.1)

Impedance of self-inductance \(L \): \(Z = j\omega L \).

Impedance of capacitance \(C \): \(Z = 1/j\omega C \).

Impedance of free space: \(Z = \sqrt{\mu_0 / \varepsilon_0} = 376.7 \Omega \).

High-frequency surface impedance of a good conductor:

\[Z = \left(\frac{1 + j}{\delta} \right) \rho , \quad \text{where} \ \delta = \text{skin depth} ; \]
(7.2)

\[\delta = \sqrt{\frac{\rho}{\pi \nu \mu}} \approx \frac{6.6 \text{ cm}}{\sqrt[4]{\nu (\text{Hz})}} \text{ for Cu} . \]
(7.3)

7.2. Capacitors, inductors, and transmission lines

The capacitance between two parallel plates of area \(A \) spaced by the distance \(d \) and enclosing a medium with the dielectric constant \(\varepsilon \) is

\[C = K \varepsilon A/d , \]
(7.4)

where the correction factor \(K \) depends on the extent of the fringing field. If the dielectric fills the capacitor volume without extending beyond the electrodes, the correction factor \(K \approx 0.8 \) for capacitors of typical geometry.

The inductance at high frequencies of a straight wire whose length \(l \) is much greater than the wire diameter \(d \) is

\[L \approx 2\pi \frac{\ln h}{\text{cm}} \cdot l \left(\ln \frac{4l}{d} \right) - 1 . \]
(7.5)

For very short wires, representative of vias in a printed circuit board, the inductance is

\[L \text{(in nH)} \approx \ell / d . \]
(7.6)

A transmission line is a pair of conductors with inductance \(L \) and capacitance \(C \). The characteristic impedance \(Z = \sqrt{L/C} \) and the phase velocity \(v_p = 1/\sqrt{LC} = 1/\sqrt{\mu_0 \varepsilon_0} \), which decreases with the inverse square root of the dielectric constant of the medium. Typical coaxial and ribbon cables have a propagation delay of about 5 ns/cm.

The impedance of a coaxial cable with outer diameter \(D \) and inner diameter \(d \) is

\[Z = 60 \Omega \cdot \frac{1}{\sqrt{\varepsilon_r}} \ln \frac{D}{d} . \]
(7.7)

where the relative dielectric constant \(\varepsilon_r = \varepsilon / \varepsilon_0 \). A pair of parallel wires of diameter \(d \) and spacing \(\alpha > 2.5 d \) has the impedance

\[Z = 120 \Omega \cdot \frac{1}{\sqrt{\varepsilon_r}} \ln \frac{2\alpha}{d} . \]
(7.8)

This yields the impedance of a wire at a spacing \(h \) above a ground plane,

\[Z = 60 \Omega \cdot \frac{1}{\sqrt{\varepsilon_r}} \ln \frac{4h}{d} . \]
(7.9)

A common configuration utilizes a thin rectangular conductor above a ground plane with an intermediate dielectric (microstrip). Detailed calculations for this and other transmission line configurations are given by Gunston.*

7.3. Synchrotron radiation (CGS units)

For a particle of charge \(e \), velocity \(v = \beta c \), and energy \(E = \gamma mc^2 \), traveling in a circular orbit of radius \(R \), the classical energy loss per revolution \(\delta E \) is

\[\delta E = \frac{4\pi \alpha^2}{3} \frac{e^2}{R^3} \gamma^4 . \]
(7.10)

For high-energy electrons or positrons \((\beta \approx 1)\), this becomes

\[\delta E \text{ (in MeV)} \approx 0.0885 \frac{|E| (\text{in GeV})^3}{R (\text{in m})} . \]
(7.11)

For \(\gamma \gg 1 \), the energy radiated per revolution into the photon energy interval \(d(\hbar \omega) \) is

\[dI = \frac{8\pi}{9} \alpha \gamma F(\omega/\omega_c) d(\hbar \omega) , \]
(7.12)

where \(\alpha = e^2/hc \) is the fine-structure constant and

\[\omega_c = \frac{3\gamma^3 e^2}{2R} . \]
(7.13)

is the critical frequency. The normalized function \(F(y) \) is

\[F(y) = \frac{9}{8\sqrt{3}} \sqrt{y} \int_y^\infty K_{5/3}(x) \, dx , \]
(7.14)

where \(K_{5/3}(x) \) is a modified Bessel function of the third kind. For electrons or positrons, \(\hbar \omega_c \text{ (in keV)} \approx 2.22 \frac{|E| (\text{in GeV})^3}{R (\text{in m})} . \)
(7.15)

Fig. 7.1 shows \(F(y) \) over the important range of \(y \).

\[\text{Figure 7.1: The normalized synchrotron radiation spectrum } F(y) . \]

For \(\gamma \gg 1 \) and \(\omega \ll \omega_c \),

\[\frac{dI}{d(\hbar \omega)} \approx 3.3\alpha (\omega R/c)^{1/3} , \]
(7.16)

whereas for

\[\gamma \gg 1 \text{ and } \omega \gtrsim 3\omega_c , \]

\[\frac{dI}{d(\hbar \omega)} \approx \frac{3\pi}{2} \alpha \gamma \left(\frac{\omega}{\omega_c} \right)^{1/2} e^{-\omega/\omega_c} \left[1 + \frac{55}{72} \frac{\omega_c}{\omega} + \ldots \right] . \]
(7.17)

The radiation is confined to angles \(\lesssim 1/\gamma \) relative to the instantaneous direction of motion. For \(\gamma \gg 1 \), where Eq. (7.12) applies, the mean number of photons emitted per revolution is

\[N_\gamma \approx \frac{5\pi}{\sqrt{3}} \gamma , \]
(7.18)

and the mean energy per photon is

\[\langle \hbar \omega \rangle = \frac{8}{9\sqrt{3}} \hbar \omega_c . \]
(7.19)

When \(\langle \hbar \omega \rangle \gtrsim O(E) \), quantum corrections are important.