\textbf{CP VIOLATION IN \(K_S \to 3\pi \)}

Written 1996 by T. Nakada (Paul Scherrer Institute) and L. Wolfenstein (Carnegie-Mellon University).

The possible final states for the decay \(K^0 \to \pi^+\pi^-\pi^0 \) have isospin \(I = 0, 1, 2, \) and \(3 \). The \(I = 0 \) and \(I = 2 \) states have \(CP = +1 \) and \(K_S \) can decay into them without violating \(CP \) symmetry, but they are expected to be strongly suppressed by centrifugal barrier effects. The \(I = 1 \) and \(I = 3 \) states, which have no centrifugal barrier, have \(CP = -1 \) so that the \(K_S \) decay to these requires \(CP \) violation.

In order to see \(CP \) violation in \(K_S \to \pi^+\pi^-\pi^0 \), it is necessary to observe the interference between \(K_S \) and \(K_L \) decay, which determines the amplitude ratio

\[
\eta_{+0} = \frac{A(K_S \to \pi^+\pi^-\pi^0)}{A(K_L \to \pi^+\pi^-\pi^0)}.
\]

(1)

If \(\eta_{+0} \) is obtained from an integration over the whole Dalitz plot, there is no contribution from the \(I = 0 \) and \(I = 2 \) final states and a nonzero value of \(\eta_{+0} \) is entirely due to \(CP \) violation.

Only \(I = 1 \) and \(I = 3 \) states, which are \(CP = -1 \), are allowed for \(K^0 \to \pi^0\pi^0\pi^0 \) decays and the decay of \(K_S \) into \(3\pi^0 \) is an unambiguous sign of \(CP \) violation. Similarly to \(\eta_{+0} \), \(\eta_{000} \) is defined as

\[
\eta_{000} = \frac{A(K_S \to \pi^0\pi^0\pi^0)}{A(K_L \to \pi^0\pi^0\pi^0)}.
\]

(2)

If one assumes that \(CPT \) invariance holds and that there are no transitions to \(I = 3 \) (or to nonsymmetric \(I = 1 \) states), it can be shown that

\[
\eta_{+0} = \eta_{000} = \epsilon + i \frac{\text{Im } a_1}{\text{Re } a_1}.
\]

(3)

With the Wu-Yang phase convention, \(a_1 \) is the weak decay amplitude for \(K^0 \) into \(I = 1 \) final states; \(\epsilon \) is determined from \(CP \) violation in \(K_L \to 2\pi \) decays. The real parts of \(\eta_{+0} \) and \(\eta_{000} \) are equal to \(\text{Re}(\epsilon) \). Since currently-known upper limits on \(|\eta_{+0}| \) and \(|\eta_{000}| \) are much larger than \(|\epsilon| \), they can be interpreted as upper limits on \(\text{Im}(\eta_{+0}) \) and \(\text{Im}(\eta_{000}) \) and so as limits on the \(CP \)-violating phase of the decay amplitude \(a_1 \).