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Introduction and Notation: With the exception of the

LSND anomaly, current accelerator, reactor, solar and at-

mospheric neutrino data can be described within the framework

of a 3 × 3 mixing matrix between the flavor eigenstates νe, νµ,

and ντ and mass eigenstates ν1, ν2 and ν3. (See Eq. (13.32)

of the Review “Neutrino Mass, Mixing and Flavor Change”

by B. Kayser.) Whether or not this is the ultimately correct

framework, it is currently widely used to parametrize neutrino

mixing data and to plan new experiments.

The mass differences are called ∆m2
21

and ∆m2
32

following

Eq. (13.30) in the review. In these Listings, we assume that

∆m2
31

∼ ∆m2
32

, although in the future, experiments may be

precise enough to measure these separately. The angles, as

specified in Eq. (13.31) of the review, are labeled θ12, θ23, and

θ13. The CP violating phase is called δ, but that does not

yet appear in the Listings. The familiar two neutrino form for

oscillations is given in Eqs. (13.18) and (13.19). Despite the

fact that the mixing angles have been measured to be much

larger than in the quark sector, the two-neutrino form is often

a very good approximation and is used in many situations.

This is possible thanks to the existence of two small numbers,

∆m2
21

/∆m2
32

¿ 1, sin2(2θ13) < 0.13.

The angles appear in the equations below in many forms.

They most often appear as sin2(2θ). The Listings currently use

this convention.

Accelerator neutrino experiments: Ignoring the small

∆m2
21

scale, CP violation, and matter effects, the equations

for the probability of appearance in an accelerator oscillation

experiment are:

P (νµ → ντ ) = sin2(2θ23) cos4(θ13) sin2(∆m2
32L/4E) (1)

P (νµ → νe) = sin2(2θ13) sin2(θ23) sin2(∆m2
32L/4E) (2)

P (νe → νµ) = sin2(2θ13) sin2(θ23) sin2(∆m2
32L/4E) (3)

P (νe → ντ ) = sin2(2θ13) cos2(θ23) sin2(∆m2
32L/4E) (4)

1



For the case of negligible θ13, these probabilities vanish except

for P(νµ → ντ ), which then takes the familiar two-neutrino

form.

New long-baseline experiments are being planned to search

for non-zero θ13 through P (νµ → νe). Including the CP vi-

olating terms and low mass scale, the equation for neutrino

oscillation in vacuum is:

P (νµ → νe) = P1 + P2 + P3 + P4

P1 = sin2(θ23) sin2(2θ13) sin2(∆m2
32L/4E)

P2 = cos2(θ23) sin2(2θ13) sin2(∆m2
21L/4E)

P3 = −/ + J sin(δ) sin(∆m2
32L/4E)

P4 = J cos(δ) cos(∆m2
32L/4E) (5)

where

J = cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23) sin(∆m2

32L/4E)

sin(∆m2

21L/4E) (6)

is the “Jarlskog Invariant” for the lepton sector, and the

sign in the 3rd term is negative for neutrinos and positive for

anti-neutrinos. For most new proposed long-baseline accelerator

experiments, P2 can safely be neglected, but depending on the

values of θ13 and δ, the other three terms could be comparable.

Also, depending on the distance and the mass hierarchy, matter

effects will need to be included.

Reactor neutrino experiments: Nuclear reactors are prolific

sources of ν̄e with an energy near 4 MeV. The oscillation

probability can be expressed

P (ν̄e → ν̄e) = 1 − cos4(θ13) sin2(2θ12) sin2(∆m2

21L/4E)

− sin2(2θ13) sin2(∆m2

32L/4E) (7)

For short distances (L<5 km), it is a good approximation to

ignore the second term on the right, and this takes the familiar

two-neutrino form with θ13 and ∆m2
32

. For long distances and

small θ13, the last term oscillates rapidly and averages to zero

for an experiment with finite energy resolution, leading to the

familiar two-neutrino form with θ12 and ∆m2
21

.
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Solar and Atmospheric neutrino experiments: Solar neu-

trino experiments are sensitive to νe disappearance and have

allowed the measurement of θ12 and ∆m2
21

. They are also sen-

sitive to θ13. In the discussion after Eq. (13.21), we identify

∆m2
¯ = ∆m2

21
and θ¯ = θ12.

Atmospheric neutrino experiments are primarily sensitive

to νµ disappearance through νµ → ντ oscillations, and have

allowed the measurement of θ23 and ∆m2
32

. In Eqs. (13.24) and

(13.25), we identify ∆m2
atm = ∆m2

32
∼ ∆m2

31
and θatm = θ23.

Despite the large νe component of the atmospheric neutrino

flux, it is difficult to measure ∆m2
21

effects. This is because of

a cancellation between νµ → νe and νe → νµ together, with the

fact that the ratio of νµ and νe atmospheric fluxes, which arise

from sequential π and µ decay, is near 2.
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