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21. THE COSMOLOGICAL PARAMETERS
Updated September 2007, by O. Lahav (University College London) and A.R. Liddle
(University of Sussex).

21.1. Parametrizing the Universe

Rapid advances in observational cosmology are leading to the establishment of the first
precision cosmological model, with many of the key cosmological parameters determined
to one or two significant figure accuracy. Particularly prominent are measurements
of cosmic microwave anisotropies, led by the three-year results from the Wilkinson
Microwave Anisotropy Probe (WMAP) [1,2]. However the most accurate model of the
Universe requires consideration of a wide range of different types of observation, with
complementary probes providing consistency checks, lifting parameter degeneracies, and
enabling the strongest constraints to be placed.

The term ‘cosmological parameters’ is forever increasing in its scope, and nowadays
includes the parametrization of some functions, as well as simple numbers describing
properties of the Universe. The original usage referred to the parameters describing the
global dynamics of the Universe, such as its expansion rate and curvature. Also now of
great interest is how the matter budget of the Universe is built up from its constituents:
baryons, photons, neutrinos, dark matter, and dark energy. We need to describe the
nature of perturbations in the Universe, through global statistical descriptions such as
the matter and radiation power spectra. There may also be parameters describing the
physical state of the Universe, such as the ionization fraction as a function of time during
the era since decoupling. Typical comparisons of cosmological models with observational
data now feature between five and ten parameters.

21.1.1. The global description of the Universe :
Ordinarily, the Universe is taken to be a perturbed Robertson–Walker space-time with

dynamics governed by Einstein’s equations. This is described in detail by Olive and
Peacock in this volume. Using the density parameters Ωi for the various matter species
and ΩΛ for the cosmological constant, the Friedmann equation can be written∑

i

Ωi + ΩΛ =
k

R2H2
, (21.1)

where the sum is over all the different species of matter in the Universe. This equation
applies at any epoch, but later in this article we will use the symbols Ωi and ΩΛ to refer
to the present values. A typical collection would be baryons, photons, neutrinos, and
dark matter (given charge neutrality, the electron density is guaranteed to be too small
to be worth considering separately).

The complete present state of the homogeneous Universe can be described by giving
the present values of all the density parameters and the present Hubble parameter h.
These also allow us to track the history of the Universe back in time, at least until
an epoch where interactions allow interchanges between the densities of the different
species, which is believed to have last happened at neutrino decoupling shortly before
nucleosynthesis. To probe further back into the Universe’s history requires assumptions
about particle interactions, and perhaps about the nature of physical laws themselves.
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2 21. The Cosmological Parameters

21.1.2. Neutrinos :
The standard neutrino sector has three flavors. For neutrinos of mass in the range

5 × 10−4 eV to 1 MeV, the density parameter in neutrinos is predicted to be

Ωνh2 =
∑

mν

93 eV
, (21.2)

where the sum is over all families with mass in that range (higher masses need a more
sophisticated calculation). We use units with c = 1 throughout. Results on atmospheric
and solar neutrino oscillations [3] imply non-zero mass-squared differences between the
three neutrino flavors. These oscillation experiments cannot tell us the absolute neutrino
masses, but within the simple assumption of a mass hierarchy suggest a lower limit of
Ων ≈ 0.001 on the neutrino mass density parameter.

For a total mass as small as 0.1 eV, this could have a potentially observable effect on
the formation of structure, as neutrino free-streaming damps the growth of perturbations.
Present cosmological observations have shown no convincing evidence of any effects from
either neutrino masses or an otherwise non-standard neutrino sector, and impose quite
stringent limits, which we summarize in Section 21.3.4. Consequently, the standard
assumption at present is that the masses are too small to have a significant cosmological
impact, but this may change in the near future.

The cosmological effect of neutrinos can also be modified if the neutrinos have decay
channels, or if there is a large asymmetry in the lepton sector manifested as a different
number density of neutrinos versus anti-neutrinos. This latter effect would need to be of
order unity to be significant, rather than the 10−9 seen in the baryon sector, which may
be in conflict with nucleosynthesis [4].

21.1.3. Inflation and perturbations :
A complete model of the Universe should include a description of deviations from

homogeneity, at least in a statistical way. Indeed, some of the most powerful probes of
the parameters described above come from the evolution of perturbations, so their study
is naturally intertwined in the determination of cosmological parameters.

There are many different notations used to describe the perturbations, both in terms
of the quantity used to describe the perturbations and the definition of the statistical
measure. We use the dimensionless power spectrum ∆2 as defined in Olive and Peacock
(also denoted P in some of the literature). If the perturbations obey Gaussian statistics,
the power spectrum provides a complete description of their properties.

From a theoretical perspective, a useful quantity to describe the perturbations is the
curvature perturbation R, which measures the spatial curvature of a comoving slicing
of the space-time. A case of particular interest is the Harrison–Zel’dovich spectrum,
which corresponds to a constant spectrum ∆2

R. More generally, one can approximate the
spectrum by a power-law, writing

∆2
R(k) = ∆2

R(k∗)
[

k

k∗

]n−1

, (21.3)
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21. The Cosmological Parameters 3

where n is known as the spectral index, always defined so that n = 1 for the Harrison–
Zel’dovich spectrum, and k∗ is an arbitrarily chosen scale. The initial spectrum, defined
at some early epoch of the Universe’s history, is usually taken to have a simple form
such as this power-law, and we will see that observations require n close to one, which
corresponds to the perturbations in the curvature being independent of scale. Subsequent
evolution will modify the spectrum from its initial form.

The simplest viable mechanism for generating the observed perturbations is the
inflationary cosmology, which posits a period of accelerated expansion in the Universe’s
early stages [5]. It is a useful working hypothesis that this is the sole mechanism for
generating perturbations. Commonly, it is further assumed to be the simplest class of
inflationary model, where the dynamics are equivalent to that of a single scalar field φ
slowly rolling on a potential V (φ). One aim of cosmology is to verify that this simple
picture can match observations, and to determine the properties of V (φ) from the
observational data.

Inflation generates perturbations through the amplification of quantum fluctuations,
which are stretched to astrophysical scales by the rapid expansion. The simplest models
generate two types, density perturbations which come from fluctuations in the scalar field
and its corresponding scalar metric perturbation, and gravitational waves which are tensor
metric fluctuations. The former experience gravitational instability and lead to structure
formation, while the latter can influence the cosmic microwave background anisotropies.
Defining slow-roll parameters, with primes indicating derivatives with respect to the
scalar field, as

ε =
m2

Pl

16π

(
V ′
V

)2

; η =
m2

Pl

8π

V ′′
V

, (21.4)

which should satisfy ε, |η| � 1, the spectra can be computed using the slow-roll
approximation as

∆2
R(k) � 8

3m4
Pl

V

ε

∣∣∣∣∣
k=aH

;

∆2
grav(k) � 128

3m4
Pl

V

∣∣∣∣∣
k=aH

. (21.5)

In each case, the expressions on the right-hand side are to be evaluated when the scale
k is equal to the Hubble radius during inflation. The symbol ‘�’ indicates use of the
slow-roll approximation, which is expected to be accurate to a few percent or better.

From these expressions, we can compute the spectral indices

n � 1 − 6ε + 2η ; ngrav � −2ε . (21.6)

Another useful quantity is the ratio of the two spectra, defined by

r ≡ ∆2
grav(k∗)

∆2
R(k∗)

. (21.7)
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4 21. The Cosmological Parameters

The literature contains a number of definitions of r; this convention matches that of
recent versions of CMBFAST [6] and that used by WMAP [8], while definitions based on
the relative effect on the microwave background anisotropies typically differ by tens of
percent. We have

r � 16ε � −8ngrav , (21.8)

which is known as the consistency equation.

In general, one could consider corrections to the power-law approximation, which we
discuss later. However, for now we make the working assumption that the spectra can
be approximated by power laws. The consistency equation shows that r and ngrav are
not independent parameters, and so the simplest inflation models give initial conditions
described by three parameters, usually taken as ∆2

R, n, and r, all to be evaluated at some
scale k∗, usually the ‘statistical centre’ of the range explored by the data. Alternatively,
one could use the parametrization V , ε, and η, all evaluated at a point on the putative
inflationary potential.

After the perturbations are created in the early Universe, they undergo a complex
evolution up until the time they are observed in the present Universe. While the
perturbations are small, this can be accurately followed using a linear theory numerical
code such as CMBFAST [6]. This works right up to the present for the cosmic microwave
background, but for density perturbations on small scales non-linear evolution is
important and can be addressed by a variety of semi-analytical and numerical techniques.
However the analysis is made, the outcome of the evolution is in principle determined by
the cosmological model, and by the parameters describing the initial perturbations, and
hence can be used to determine them.

Of particular interest are cosmic microwave background anisotropies. Both the total
intensity and two independent polarization modes are predicted to have anisotropies.
These can be described by the radiation angular power spectra C� as defined in the
article of Scott and Smoot in this volume, and again provide a complete description if the
density perturbations are Gaussian.

21.1.4. The standard cosmological model :

We now have most of the ingredients in place to describe the cosmological model.
Beyond those of the previous subsections, there are two parameters which are essential
— a measure of the ionization state of the Universe and the galaxy bias parameter.
The Universe is known to be highly ionized at low redshifts (otherwise radiation from
distant quasars would be heavily absorbed in the ultra-violet), and the ionized electrons
can scatter microwave photons altering the pattern of observed anisotropies. The most
convenient parameter to describe this is the optical depth to scattering τ (i.e., the
probability that a given photon scatters once); in the approximation of instantaneous and
complete re-ionization, this could equivalently be described by the redshift of re-ionization
zion. The bias parameter, described fully later, is needed to relate the observed galaxy
power spectrum to the predicted dark matter power spectrum. The basic set of
cosmological parameters is therefore as shown in Table 21.1. The spatial curvature does
not appear in the list, because it can be determined from the other parameters using
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21. The Cosmological Parameters 5

Eq. (21.1). The total present matter density Ωm = Ωdm + Ωb is usually used in place of
the dark matter density.

Table 21.1: The basic set of cosmological parameters. We give values (with
some additional rounding) as obtained using a fit of a ΛCDM cosmology with a
power-law initial spectrum to WMAP3 data alone [2]. Tensors are assumed zero
except in quoting a limit on them. We cannot stress too much that the exact
values and uncertainties depend on both the precise datasets used and the choice
of parameters allowed to vary, and the effects of varying some assumptions will be
shown later in Table 21.2. Limits on the cosmological constant depend on whether
the Universe is assumed flat. The density perturbation amplitude is specified by the
derived parameter σ8. Uncertainties are one-sigma/68% confidence unless otherwise
stated.

Parameter Symbol Value

Hubble parameter h 0.73 ± 0.03
Total matter density Ωm Ωmh2 = 0.128 ± 0.008
Baryon density Ωb Ωbh2 = 0.0223 ± 0.0007
Cosmological constant ΩΛ See Ref. 2
Radiation density Ωr Ωrh

2 = 2.47 × 10−5

Neutrino density Ων See Sec. 21.1.2
Density perturbation amplitude σ8 0.76 ± 0.05
Density perturbation spectral index n n = 0.958 ± 0.016
Tensor to scalar ratio r r < 0.65 (95% conf)
Ionization optical depth τ τ = 0.089 ± 0.030
Bias parameter b See Sec. 21.3.4

Most attention to date has been on parameter estimation, where a set of parameters
is chosen by hand and the aim is to constrain them. Interest has been growing towards
the higher-level inference problem of model selection, which compares different choices of
parameter sets. Bayesian inference offers an attractive framework for cosmological model
selection, setting a tension between model complexity and ability to fit the data.

As described in Sec. 21.4, models based on these eleven parameters are able to give a
good fit to the complete set of high-quality data available at present, and indeed some
simplification is possible. Observations are consistent with spatial flatness, and indeed
the inflation models so far described automatically generate negligible spatial curvature,
so we can set k = 0; the density parameters then must sum to one, and so one can be
eliminated. The neutrino energy density is often not taken as an independent parameter.
Provided the neutrino sector has the standard interactions, the neutrino energy density,
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6 21. The Cosmological Parameters

while relativistic, can be related to the photon density using thermal physics arguments,
and it is currently difficult to see the effect of the neutrino mass, although observations
of large-scale structure have already placed interesting upper limits. This reduces the
standard parameter set to nine. In addition, there is no observational evidence for the
existence of tensor perturbations (though the upper limits are quite weak), and so r could
be set to zero. Presently n is in a somewhat controversial position regarding whether
it needs to be varied in a fit, or can be set to the Harrison–Zel’dovich value n = 1.
Parameter estimation [2] suggests n = 1 is ruled out at reasonable significance, but
Bayesian model selection techniques [9] suggest the data is not conclusive. With n set to
one, this leaves seven parameters, which is the smallest set that can usefully be compared
to the present cosmological data set. This model (usually with n kept as a parameter)
is referred to by various names, including ΛCDM, the concordance cosmology, and the
standard cosmological model.

Of these parameters, only Ωr is accurately measured directly. The radiation density
is dominated by the energy in the cosmic microwave background, and the COBE
FIRAS experiment has determined its temperature to be T = 2.725 ± 0.001 Kelvin [10],
corresponding to Ωr = 2.47 × 10−5h−2. It typically does not need to be varied in fitting
other data. If galaxy clustering data is not included in a fit, then the bias parameter is
also unnecessary.

In addition to this minimal set, there is a range of other parameters which might
prove important in future as the dataset further improves, but for which there is so
far no direct evidence, allowing them to be set to a specific value. We discuss various
speculative options in the next section. For completeness at this point, we mention one
other interesting parameter, the helium fraction, which is a non-zero parameter that can
affect the microwave anisotropies at a subtle level. Presently, big-bang nucleosynthesis
provides the best measurement of this parameter, and it is usually fixed in microwave
anisotropy studies, but the data are just reaching a level where allowing its variation may
become mandatory.

21.1.5. Derived parameters :
The parameter list of the previous subsection is sufficient to give a complete description

of cosmological models which agree with observational data. However, it is not a
unique parametrization, and one could instead use parameters derived from that basic
set. Parameters which can be obtained from the set given above include the age of
the Universe, the present horizon distance, the present microwave background and
neutrino background temperatures, the epoch of matter–radiation equality, the epochs
of recombination and decoupling, the epoch of transition to an accelerating Universe,
the baryon-to-photon ratio, and the baryon to dark matter density ratio. The physical
densities of the matter components, Ωih

2, are often more useful than the density
parameters. The density perturbation amplitude can be specified in many different ways
other than the large-scale primordial amplitude, for instance, in terms of its effect on the
cosmic microwave background, or by specifying a short-scale quantity, a common choice
being the present linear-theory mass dispersion on a scale of 8 h−1Mpc, known as σ8.

Different types of observation are sensitive to different subsets of the full cosmological
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21. The Cosmological Parameters 7

parameter set, and some are more naturally interpreted in terms of some of the derived
parameters of this subsection than on the original base parameter set. In particular, most
types of observation feature degeneracies whereby they are unable to separate the effects
of simultaneously varying several of the base parameters.

21.2. Extensions to the standard model

This section discusses some ways in which the standard model could be extended.
At present, there is no positive evidence in favor of any of these possibilities, which
are becoming increasingly constrained by the data, though there always remains the
possibility of trace effects at a level below present observational capability.

21.2.1. More general perturbations :
The standard cosmology assumes adiabatic, Gaussian perturbations. Adiabaticity

means that all types of material in the Universe share a common perturbation, so that if
the space-time is foliated by constant-density hypersurfaces, then all fluids and fields are
homogeneous on those slices, with the perturbations completely described by the variation
of the spatial curvature of the slices. Gaussianity means that the initial perturbations
obey Gaussian statistics, with the amplitudes of waves of different wavenumbers being
randomly drawn from a Gaussian distribution of width given by the power spectrum.
Note that gravitational instability generates non-Gaussianity; in this context, Gaussianity
refers to a property of the initial perturbations before they evolve significantly.

The simplest inflation models, based on one dynamical field, predict adiabatic
fluctuations and a level of non-Gaussianity which is too small to be detected by any
experiment so far conceived. For present data, the primordial spectra are usually assumed
to be power laws.

21.2.1.1. Non-power-law spectra:
For typical inflation models, it is an approximation to take the spectra as power laws,

albeit usually a good one. As data quality improves, one might expect this approximation
to come under pressure, requiring a more accurate description of the initial spectra,
particularly for the density perturbations. In general, one can write a Taylor expansion
of ln∆2

R as

ln ∆2
R(k) = ln∆2

R(k∗) + (n∗ − 1) ln
k

k∗
+

1
2

dn

d ln k

∣∣∣∣∗ ln2 k

k∗
+ · · · , (21.9)

where the coefficients are all evaluated at some scale k∗. The term dn/d lnk|∗ is often
called the running of the spectral index [11]. Once non-power-law spectra are allowed, it
is necessary to specify the scale k∗ at which the spectral index is defined.
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8 21. The Cosmological Parameters

21.2.1.2. Isocurvature perturbations:
An isocurvature perturbation is one which leaves the total density unperturbed, while

perturbing the relative amounts of different materials. If the Universe contains N fluids,
there is one growing adiabatic mode and N − 1 growing isocurvature modes. These can
be excited, for example, in inflationary models where there are two or more fields which
acquire dynamically-important perturbations. If one field decays to form normal matter,
while the second survives to become the dark matter, this will generate a cold dark
matter isocurvature perturbation.

In general, there are also correlations between the different modes, and so the full
set of perturbations is described by a matrix giving the spectra and their correlations.
Constraining such a general construct is challenging, though constraints on individual
modes are beginning to become meaningful, with no evidence that any other than the
adiabatic mode must be non-zero.

21.2.1.3. Non-Gaussianity:
Multi-field inflation models can also generate primordial non-Gaussianity. The extra

fields can either be in the same sector of the underlying theory as the inflation, or
completely separate, an interesting example of the latter being the curvaton model [12].
Current upper limits on non-Gaussianity are becoming stringent, but there remains much
scope to push down those limits and perhaps reveal trace non-Gaussianity in the data. If
non-Gaussianity is observed, its nature may favor an inflationary origin, or a different one
such as topological defects. A plausible possibility is non-Gaussianity caused by defects
forming in a phase transition which ended inflation.

21.2.2. Dark matter properties :
Dark matter properties are discussed in the article by Drees and Gerbier in this

volume. The simplest assumption concerning the dark matter is that it has no significant
interactions with other matter, and that its particles have a negligible velocity. Such dark
matter is described as ‘cold,’ and candidates include the lightest supersymmetric particle,
the axion, and primordial black holes. As far as astrophysicists are concerned, a complete
specification of the relevant cold dark matter properties is given by the density parameter
Ωcdm, though those seeking to directly detect it are as interested in its interaction
properties.

Cold dark matter is the standard assumption and gives an excellent fit to observations,
except possibly on the shortest scales where there remains some controversy concerning
the structure of dwarf galaxies and possible substructure in galaxy halos. For all the
dark matter to have a large velocity dispersion, so-called hot dark matter,, has long been
excluded, as it does not permit galaxies to form; for thermal relics the mass must be
above about 1 keV to satisfy this constraint, though relics produced non-thermally, such
as the axion, need not obey this limit. However, there remains the possibility that further
parameters might need to be introduced to describe dark matter properties relevant to
astrophysical observations. Suggestions which have been made include a modest velocity
dispersion (warm dark matter) and dark matter self-interactions. There remains the
possibility that the dark matter comprises two separate components, e.g., a cold one and
a hot one, an example being if massive neutrinos have a non-negligible effect.
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21.2.3. Dark energy :
While the standard cosmological model given above features a cosmological constant,

in order to explain observations indicating that the Universe is presently accelerating,
further possibilities exist under the general heading dark energy.† A particularly attractive
possibility (usually called quintessence, though that word is used with various different
meanings in the literature) is that a scalar field is responsible, with the mechanism
mimicking that of early Universe inflation [13]. As described by Olive and Peacock, a
fairly model-independent description of dark energy can be given just using the equation
of state parameter w, with w = −1 corresponding to a cosmological constant. In general,
the function w could itself vary with redshift, though practical experiments devised so
far would be sensitive primarily to some average value weighted over recent epochs. For
high-precision predictions of microwave background anisotropies, it is better to use a
scalar-field description in order to have a self-consistent evolution of the ‘sound speed’
associated with the dark energy perturbations.

A competing possibility is that the observed acceleration is due to a modification of
gravity, i.e., the left-hand side of Einstein’s equation rather than the right. Observations
of expansion kinematics alone cannot distinguish these two possibilities, but future probes
of the growth rate of structure formation may be able to.

Present observations are consistent with a cosmological constant, but it is quite
common to see w kept as a free parameter to be added to the set described in the previous
section. Most, but not all, researchers assume the weak energy condition w ≥ −1. In
the future, it may be necessary to use a more sophisticated parametrization of the dark
energy.

21.2.4. Complex ionization history :
The full ionization history of the Universe is given by specifying the ionization fraction

as a function of redshift z. The simplest scenario takes the ionization to be zero from
recombination up to some redshift zion, at which point the Universe instantaneously
re-ionizes completely. In that case, there is a one-to-one correspondence between τ and
zion (that relation, however, also depending on other cosmological parameters).

While simple models of the re-ionization process suggest that rapid ionization is a good
approximation, observational evidence is mixed, with indications of a high optical depth
inferred from the microwave background difficult to reconcile with absorption seen in some
high-redshift quasar systems, and also perhaps with the temperature of the intergalactic
medium at z � 3. Accordingly, a more complex ionization history may need to be
considered, and perhaps separate histories for hydrogen and helium, which will necessitate
new parameters. Additionally, high-precision microwave anisotropy experiments may
require consideration of the level of residual ionization left after recombination, which in
principle is computable from the other cosmological parameters.

† Unfortunately this is rather a misnomer, as it is the negative pressure of this material,
rather than its energy, that is responsible for giving the acceleration. Furthermore, while
generally in physics matter and energy are interchangeable terms, dark matter and dark
energy are quite distinct concepts.
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10 21. The Cosmological Parameters

21.2.5. Varying ‘constants’ :
Variation of the fundamental constants of Nature over cosmological times is another

possible enhancement of the standard cosmology. There is a long history of study of
variation of the gravitational constant G, and more recently attention has been drawn
to the possibility of small fractional variations in the fine-structure constant. There
is presently no observational evidence for the former, which is tightly constrained by
a variety of measurements. Evidence for the latter has been claimed from studies of
spectral line shifts in quasar spectra at redshifts of order two [14], but this is presently
controversial and in need of further observational study.

More broadly, one can ask whether general relativity is valid at all epochs under
consideration.

21.2.6. Cosmic topology :
The usual hypothesis is that the Universe has the simplest topology consistent with its

geometry, for example that a flat Universe extends forever. Observations cannot tell us
whether that is true, but they can test the possibility of a non-trivial topology on scales
up to roughly the present Hubble scale. Extra parameters would be needed to specify
both the type and scale of the topology, for example, a cuboidal topology would need
specification of the three principal axis lengths. At present, there is no direct evidence for
cosmic topology, though the low values of the observed cosmic microwave quadrupole and
octupole have been cited as a possible signature.

21.3. Probes

The goal of the observational cosmologist is to utilize astronomical objects to derive
cosmological parameters. The transformation from the observables to the key parameters
usually involves many assumptions about the nature of the objects, as well as about
the nature of the dark matter. Below we outline the physical processes involved in each
probe, and the main recent results. The first two subsections concern probes of the
homogeneous Universe, while the remainder consider constraints from perturbations.

We note three types of uncertainties that enter into any errors on the cosmological
parameters of interest: (i) due to the assumptions on the cosmological model and its
priors (i.e., the number of assumed cosmological parameters and their allowed range);
(ii) due to the uncertainty in the astrophysics of the objects (e.g., the mass–temperature
relation of galaxy clusters); and (iii) due to instrumental and observational limitations
(e.g., the effect of ‘seeing’ on weak gravitational lensing measurements).

21.3.1. Direct measures of the Hubble constant :
In 1929, Edwin Hubble discovered the law of expansion of the Universe by measuring

distances to nearby galaxies. The slope of the relation between the distance and recession
velocity is defined to be the Hubble constant H0. Astronomers argued for decades on
the systematic uncertainties in various methods and derived values over the wide range,
40 kms−1 Mpc−1 <∼ H0

<∼ 100 kms−1 Mpc−1.
One of the most reliable results on the Hubble constant comes from the Hubble

Space Telescope Key Project [15]. The group has used the empirical period–luminosity
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relations for Cepheid variable stars to obtain distances to 31 galaxies, and calibrated
a number of secondary distance indicators (Type Ia Supernovae, Tully-Fisher, surface
brightness fluctuations, and Type II Supernovae) measured over distances of 400 to 600
Mpc. They estimated H0 = 72 ± 3 (statistical) ± 7 (systematic) km s−1 Mpc−1.‡ The
major sources of uncertainty in this result are due to the metallicity of the Cepheids and
the distance to the fiducial nearby galaxy (called the Large Magellanic Cloud) relative to
which all Cepheid distances are measured. Nevertheless, it is remarkable that this result
is in such good agreement with the result derived from the WMAP CMB measurements
(see Table 21.2).

21.3.2. Supernovae as cosmological probes :
The relation between observed flux and the intrinsic luminosity of an object depends

on the luminosity distance dL, which in turn depends on cosmological parameters. More
specifically

dL = (1 + z)re(z) , (21.10)

where re(z) is the coordinate distance. For example, in a flat Universe

re(z) =
∫ z

0
dz′/H(z′) . (21.11)

For a general dark energy equation of state w(z) = pQ(z)/ρQ(z), the Hubble parameter
is, still considering only the flat case,

H2(z)/H2
0 = (1 + z)3Ωm + ΩQ exp[3X(z)] , (21.12)

where
X(z) =

∫ z

0
[1 + w(z′)](1 + z′)−1dz′ , (21.13)

and Ωm and ΩQ are the present density parameters of matter and dark energy
components. If a general equation of state is allowed, then one has to solve for w(z)
(parametrized, for example, as w(z) = w = const., or w(z) = w0 + w1z) as well as for ΩQ.

Empirically, the peak luminosity of supernova of Type Ia (SNe Ia) can be used as an
efficient distance indicator (e.g., Ref. 16). The favorite theoretical explanation for SNe
Ia is the thermonuclear disruption of carbon-oxygen white dwarfs. Although not perfect
‘standard candles,’ it has been demonstrated that by correcting for a relation between
the light curve shape and the luminosity at maximum brightness, the dispersion of the
measured luminosities can be greatly reduced. There are several possible systematic
effects which may affect the accuracy of the SNe Ia as distance indicators, for example,
evolution with redshift and interstellar extinction in the host galaxy and in the Milky
Way, but there is no indication that any of these effects are significant for the cosmological
constraints.

‡ Unless stated otherwise, all quoted uncertainties in this article are one-sigma/68%
confidence. It is common for cosmological parameters to have significantly non-Gaussian
error distributions.
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Figure 21.1: This shows the preferred region in the Ωm–ΩΛ plane from the
compilation of supernovae data in Ref. 18, and also the complementary results
coming from some other observations. [Courtesy of the Supernova Cosmology
Project.]

Two major studies, the ‘Supernova Cosmology Project’ and the ‘High-z Supernova
Search Team,” found evidence for an accelerating Universe [17], interpreted as due to
a cosmological constant, or to a more general ‘dark energy’ component. Current results
from the Supernova Cosmology Project [18] are shown in Fig. 21.1 (see also Ref. 19).
The SNe Ia data alone can only constrain a combination of Ωm and ΩΛ. When combined
with the CMB data (which indicates flatness, i.e., Ωm + ΩΛ ≈ 1), the best-fit values are
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Most results in the literature are consistent with Einstein’s
w = −1 cosmological constant case. For example, Wood-Vasey et al. [20] combined data
from the ESSENCE and SNLS surveys and deduced w = −1.07 ± 0.09 (stat 1σ) ± 0.13
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(sys), Ωm = 0.267+0.028
−0.018 (stat 1σ).

Future experiments will aim to set constraints on the cosmic equation of state w(z).
However, given the integral relation between the luminosity distance and w(z), it is not
straightforward to recover w(z) (e.g., Ref. 21).

21.3.3. Cosmic microwave background :
The physics of the cosmic microwave background (CMB) is described in detail by

Scott and Smoot in this volume. Before recombination, the baryons and photons are
tightly coupled, and the perturbations oscillate in the potential wells generated primarily
by the dark matter perturbations. After decoupling, the baryons are free to collapse into
those potential wells. The CMB carries a record of conditions at the time of decoupling,
often called primary anisotropies. In addition, it is affected by various processes as it
propagates towards us, including the effect of a time-varying gravitational potential (the
integrated Sachs-Wolfe effect), gravitational lensing, and scattering from ionized gas at
low redshift.

The primary anisotropies, the integrated Sachs-Wolfe effect, and scattering from a
homogeneous distribution of ionized gas, can all be calculated using linear perturbation
theory, a widely-used implementation being the CMBFAST code of Seljak and
Zaldarriaga [6] (CAMB is a popular alternative, often used embedded in the analyis
package CosmoMC [7]) . Gravitational lensing is also calculated in this code. Secondary
effects such as inhomogeneities in the re-ionization process, and scattering from
gravitationally-collapsed gas (the Sunyaev–Zel’dovich effect), require more complicated,
and more uncertain, calculations.

The upshot is that the detailed pattern of anisotropies, quantified, for instance, by the
angular power spectrum C�, depends on all of the cosmological parameters. In a typical
cosmology, the anisotropy power spectrum [usually plotted as 	(	 + 1)C�] features a flat
plateau at large angular scales (small 	), followed by a series of oscillatory features at
higher angular scales, the first and most prominent being at around one degree (	 � 200).
These features, known as acoustic peaks, represent the oscillations of the photon-baryon
fluid around the time of decoupling. Some features can be closely related to specific
parameters—for instance, the location of the first peak probes the spatial geometry, while
the relative heights of the peaks probes the baryon density—but many other parameters
combine to determine the overall shape.

The three-year data release from the WMAP satellite [1], henceforth WMAP3, has
provided the most accurate results to date on the spectrum of CMB fluctuations, with
a precision determination of the temperature power spectrum up to 	 � 900, shown in
Fig. 21.2, and the best measurements of the spectrum of E-polarization anisotropies and
the correlation spectrum between temperature and polarization (those spectra having first
been detected by DASI [22]) . These are consistent with models based on the parameters
we have described, and provide quite accurate determinations of many of them [2]. In
this subsection, we will refer to results from WMAP alone, with the following section
studying some combinations with other observations. We note that as the parameter
fitting is done in a multi-parameter space, one has to assume a ‘prior’ range for each of
the parameters (e.g., Hubble constant 0.5 < h < 1), and there may be some dependence
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14 21. The Cosmological Parameters

Figure 21.2: The angular power spectrum of the cosmic microwave background
temperature from WMAP3. The solid line shows the prediction from the best-fitting
ΛCDM model [2]. The error bars on the data points (which are tiny for most
of them) indicate the observational errors, while the shaded region indicates the
statistical uncertainty from being able to observe only one microwave sky, known as
cosmic variance, which is the dominant uncertainty on large angular scales. [Figure
courtesy NASA/WMAP Science Team.]

on these assumed priors.
WMAP3 provides an exquisite measurement of the location of the first acoustic peak,

which directly probes the spatial geometry and yields a total density Ωtot ≡
∑

Ωi + ΩΛ
of

Ωtot = 1.011 ± 0.012 , (21.14)

consistent with spatial flatness and completely excluding significantly curved Universes.
(This result does however require constraints on the Hubble parameter from other
measurements, in this case the SNLS supernovae; WMAP3 alone constrains Ωtot only
weakly, and allows significantly closed Universes if h is small. This result also assumes
that the dark energy is a cosmological constant.) WMAP3 also gives a precision
measurement of the age of the Universe. It gives a baryon density consistent with, and
at much higher precision than, that coming from nucleosynthesis. It affirms the need for
both dark matter and dark energy if the data are to be explained. It shows no evidence
for dynamics of the dark energy, being consistent with a pure cosmological constant
(w = −1).

The density perturbations are consistent with a power-law primordial spectrum.
There are indications that the spectral slope is less than the Harrison–Zel’dovich value
n = 1 [2], though the result appears less strong using Bayesian techniques [9]. There is
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no indication of tensor perturbations, but the upper limit is quite weak.

WMAP3 gives a much lower result for the reionization optical depth τ than did their
first year results [23]. The current best-fit value τ = 0.089 is in reasonable agreement
with models of how early structure formation induces reionization.

WMAP3 is consistent with other experiments and its dynamic range can be enhanced
by including information from small-angle CMB experiments including ACBAR, CBI
and VSA. However the WMAP3 dataset on its own is so powerful that these add little
constraining power.

21.3.4. Galaxy clustering :

The power spectrum of density perturbations depends on the nature of the dark matter.
Within the Cold Dark Matter model, the shape of the power spectrum depends primarily
on the primordial power spectrum and on the combination Ωmh which determines
the horizon scale at matter–radiation equality, with a subdominant dependence on the
baryon density. The matter distribution is most easily probed by observing the galaxy
distribution, but this must be done with care as the galaxies do not perfectly trace the
dark matter distribution. Rather, they are a ‘biased’ tracer of the dark matter. The need
to allow for such bias is emphasized by the observation that different types of galaxies
show bias with respect to each other. Further, the observed 3D galaxy distribution is in
redshift space, i.e., the observed redshift is the sum of the Hubble expansion and the
line-of-sight peculiar velocity, leading to linear and non-linear dynamical effects which
also depend on the cosmological parameters. On the largest length scales, the galaxies are
expected to trace the location of the dark matter, except for a constant multiplier b to the
power spectrum, known as the linear bias parameter. On scales smaller than 20 h−1 Mpc
or so, the clustering pattern is ‘squashed’ in the radial direction due to coherent infall,
which depends on the parameter β ≡ Ω0.6

m /b (on these shorter scales, more complicated
forms of biasing are not excluded by the data). On scales of a few h−1 Mpc, there is
an effect of elongation along the line of sight (colloquially known as the ‘finger of God’
effect) which depends on the galaxy velocity dispersion σp.

21.3.4.1. The galaxy power spectrum:

The 2-degree Field (2dF) Galaxy Redshift Survey is now complete and publicly
available.∗∗ The power-spectrum analysis of the final 2dFGRS data set of approximately
220,000 galaxies was fitted to a CDM model [24]. It shows evidence for baryon acoustic
oscillations, with baryon fraction Ωb/Ωm = 0.185 ± 0.046 (1-σ uncertainties). The shape
of the power spectrum is characterized by Ωmh = 0.168 ± 0.016, and in combination with
WMAP data gives Ωm = 0.231 ± 0.021 (see also Ref. 25). The 2dF power spectrum is
compared with the Sloan Digital Sky Survey (SDSS) †† power spectrum [26] in Fig. 21.3.
We see agreement in the gross features, but also some discrepancies. Eisenstein et al. [27]
reported on detection of baryon acoustic peak in the large-scale correlation function
of the SDSS sample of nearly 47,000 Luminous Red Galaxies (LRG). By using the

∗∗ See http://www.mso.anu.edu.au/2dFGRS
†† See http://www.sdss.org
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baryon acoustic peak as a ‘standard ruler’ they found, independent of WMAP, that
Ωm = 0.273 ± 0.025 for a flat ΛCDM model. A combination of the 2dF, the SDSS main
and the LRG samples [28] yield from the baryon oscillation signals Ωm = 0.249 ± 0.018
and w = −1.004 ± 0.089, assuming a flat universe and constraints from SN Ia and CMB
data. Signatures of baryon acoustic oscillations have also been measured [29,30] from
samples nearly 600,000 LRGs with photometric redshifts (which are less accurate than
spectroscopic redshifts, but easier to obtain for large samples).

2dFGRS - Cole et al. (2005)
SDSS - Tegmark et al. (2004)
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Figure 21.3: The galaxy power spectrum from the 2dF galaxy redshift survey [24]
compared with that from SDSS [26], each corrected for its survey geometry. The
2dFGRS power spectrum (with distances measured in redshift space) is shown by
solid circles with one-sigma errors shown by the shaded area. The triangles and
error bars show the SDSS power spectrum. The solid curve shows a linear-theory
ΛCDM model with Ωmh = 0.168, Ωb/Ωm = 0.17, h = 0.72, n = 1 and normalization
matched to the 2dFGRS power spectrum. The dotted vertical lines indicate the
range over which the best-fit model was evaluated. [Figure provided by Shaun Cole
and Will Percival; see Ref. 24.]

Combination of the 2dF data with the CMB indicates a ‘biasing’ parameter b ∼ 1, in
agreement with a 2dF-alone analysis of higher-order clustering statistics. However, results
for biasing also depend on the length scale over which a fit is done, and the selection of
the objects by luminosity, spectral type, or color. In particular, on scales smaller than
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10 h−1Mpc, different galaxy types are clustered differently. This ‘biasing’ introduces a
systematic effect on the determination of cosmological parameters from redshift surveys.
Prior knowledge from simulations of galaxy formation could help, but is model-dependent.
We also note that the present-epoch power spectrum is not sensitive to dark energy, so it
is mainly a probe of the matter density.

21.3.4.2. Limits on neutrino mass from galaxy surveys and other probes:
Large-scale structure data can put an upper limit on the ratio Ων/Ωm due to the

neutrino ‘free streaming’ effect [31,32]. For example, by comparing the 2dF galaxy
power spectrum with a four-component model (baryons, cold dark matter, a cosmological
constant, and massive neutrinos), it was estimated that Ων/Ωm < 0.13 (95% confidence
limit), giving Ων < 0.04 if a concordance prior of Ωm = 0.3 is imposed. The latter
corresponds to an upper limit of about 2 eV on the total neutrino mass, assuming a prior
of h ≈ 0.7 [33]. Potential systematic effects include biasing of the galaxy distribution
and non-linearities of the power spectrum. A similar upper limit of 2 eV was derived
from CMB anisotropies alone [2,34,35]. The above analyses assume that the primordial
power spectrum is adiabatic, scale-invariant and Gaussian. Additional cosmological data
sets bring down this upper limit [36,37]. An upper limit on the total neutrino mass of
0.17 eV was reported by combining a large number of cosmological probes [38].

Laboratory limits on absolute neutrino masses from tritium beta decay and especially
from neutrinoless double-beta decay should, within the next decade, push down towards
(or perhaps even beyond) the 0.1 eV level that has cosmological significance.

21.3.5. Clusters of galaxies :
A cluster of galaxies is a large collection of galaxies held together by their mutual

gravitational attraction. The largest ones are around 1015 solar masses, and are the
largest gravitationally-collapsed structures in the Universe. Even at the present epoch
they are relatively rare, with only a few percent of galaxies being in clusters. They
provide various ways to study the cosmological parameters; here we discuss constraints
from the measurements of the cluster number density and the baryon fraction in clusters.

21.3.5.1. Cluster number density:
The first objects of a given kind form at the rare high peaks of the density distribution,

and if the primordial density perturbations are Gaussian-distributed, their number
density is exponentially sensitive to the size of the perturbations, and hence can strongly
constrain it. Clusters are an ideal application in the present Universe. They are usually
used to constrain the amplitude σ8, as a box of side 8 h−1 Mpc contains about the right
amount of material to form a cluster. The most useful observations at present are of
X-ray emission from hot gas lying within the cluster, whose temperature is typically a few
keV, and which can be used to estimate the mass of the cluster. A theoretical prediction
for the mass function of clusters can come either from semi-analytic arguments or from
numerical simulations. At present, the main uncertainty is the relation between the
observed gas temperature and the cluster mass, despite extensive study using simulations.
Ref. [39] gives

σ8 = 0.78+0.30
−0.06 (95% confidence) (21.15)
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for Ωm = 0.35, with highly non-Gaussian error bars, but different authors still find a
spread of values. Scaling to lower Ωm increases σ8. This result is somewhat above the
values predicted in cosmologies compatible with WMAP3.

The same approach can be adopted at high redshift (which for clusters means redshifts
approaching one) to attempt to measure σ8 at an earlier epoch. The evolution of σ8 is
primarily driven by the value of the matter density Ωm, with a sub-dominant dependence
on the dark energy density. It is generally recognized that such analyses favor a low
matter density, though there is not complete consensus on this, and at present this
technique for constraining the density is not competitive with the CMB.

21.3.5.2. Cluster baryon fraction:
If clusters are representative of the mass distribution in the Universe, the fraction of

the mass in baryons to the overall mass distribution would be fb = Ωb/Ωm. If Ωb, the
baryon density parameter, can be inferred from the primordial nucleosynthesis abundance
of the light elements, the cluster baryon fraction fb can then be used to constrain Ωm and
h (e.g., Ref. 40). The baryons in clusters are primarily in the form of X-ray-emitting gas
that falls into the cluster, and secondarily in the form of stellar baryonic mass. Hence,
the baryon fraction in clusters is estimated to be

fb =
Ωb

Ωm
� fgas + fgal , (21.16)

where fb = Mb/Mgrav, fgas = Mgas/Mgrav, fgal = Mgal/Mgrav, and Mgrav is the total
gravitating mass.

This can be used to obtain an approximate relation between Ωm and h:

Ωm =
Ωb

fgas + fgal
� Ωb

0.08h−1.5 + 0.01h−1
. (21.17)

Big Bang Nucleosynthesis gives Ωbh2 ≈ 0.02, allowing the above relation to be
approximated as Ωmh0.5 ≈ 0.25 (e.g., Ref. 41). For example, Allen et al. [42] derived a
density parameter consistent with Ωm = 0.3 from Chandra observations.

21.3.6. Clustering in the inter-galactic medium :
It is commonly assumed, based on hydrodynamic simulations, that the neutral

hydrogen in the inter-galactic medium (IGM) can be related to the underlying mass
distribution. It is then possible to estimate the matter power spectrum on scales of a few
megaparsecs from the absorption observed in quasar spectra, the so-called Lyman-alpha
forest. The usual procedure is to measure the power spectrum of the transmitted flux,
and then to infer the mass power spectrum. Photo-ionization heating by the ultraviolet
background radiation and adiabatic cooling by the expansion of the Universe combine to
give a simple power-law relation between the gas temperature and the baryon density.
It also follows that there is a power-law relation between the optical depth τ and ρb.
Therefore, the observed flux F = exp(−τ) is strongly correlated with ρb, which itself
traces the mass density. The matter and flux power spectra can be related by

Pm(k) = b2(k) PF (k) , (21.18)
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where b(k) is a bias function which is calibrated from simulations. Croft et al. [43] derived
cosmological parameters from Keck Telescope observations of the Lyman-alpha forest at
redshifts z = 2 − 4. Their derived power spectrum corresponds to that of a CDM model,
which is in good agreement with the 2dF galaxy power spectrum. A recent study using
VLT spectra [44] agrees with the flux power spectrum of Ref. 43. This method depends
on various assumptions. Seljak et al. [45] pointed out that errors are sensitive to the
range of cosmological parameters explored in the simulations, and the treatment of the
mean transmitted flux.

21.3.7. Gravitational lensing :
Images of background galaxies get distorted due to the gravitational effect of mass

fluctuations along the line of sight. Deep gravitational potential wells such as galaxy
clusters generate ‘strong lensing,’ i.e., arcs and arclets, while more moderate fluctuations
give rise to ‘weak lensing’. Weak lensing is now widely used to measure the mass power
spectrum in random regions of the sky (see Ref. 46 for recent reviews). As the signal is
weak, the CCD frame of deformed galaxy shapes (‘shear map’) is analyzed statistically to
measure the power spectrum, higher moments, and cosmological parameters.

The shear measurements are mainly sensitive to the combination of Ωm and the
amplitude σ8. For example, the weak lensing signal detected by the CFHT Legacy
Survey [47] translates into σ8 = 0.85 ± 0.06 for a fiducial Ωm = 0.3 assuming a ΛCDM
model. Earlier results are summarized in Ref. 46. There are various systematic effects
in the interpretation of weak lensing, e.g., due to atmospheric distortions during
observations, the redshift distribution of the background galaxies, intrinsic correlation of
galaxy shapes, and non-linear modeling uncertainties.

21.3.8. Peculiar velocities :
Deviations from the Hubble flow directly probe the mass fluctuations in the Universe,

and hence provide a powerful probe of the dark matter. Peculiar velocities are deduced
from the difference between the redshift and the distance of a galaxy. The observational
difficulty is in accurately measuring distances to galaxies. Even the best distance
indicators (e.g., the Tully–Fisher relation) give an error of 15% per galaxy, hence limiting
the application of the method at large distances. Peculiar velocities are mainly sensitive
to Ωm, not to ΩΛ or quintessence. Extensive analyses in the early 1990s (e.g., Ref. 48)
suggested a value of Ωm close to unity. A more recent analysis [49], which takes into
account non-linear corrections, gives σ8Ω0.6

m = 0.49 ± 0.06 and σ8Ω0.6
m = 0.63 ± 0.08 (90%

errors) for two independent data sets. While at present cosmological parameters derived
from peculiar velocities are strongly affected by random and systematic errors, a new
generation of surveys may improve their accuracy. Three promising approaches are the
6dF near-infrared survey of 15,000 peculiar velocities‡‡, supernovae Type Ia, and the
kinematic Sunyaev–Zel’dovich effect.

‡‡ See http://www.mso.anu.edu.au/6dFGS/
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21.4. Bringing observations together

Although it contains two ingredients—dark matter and dark energy—which have not
yet been verified by laboratory experiments, the ΛCDM model is almost universally
accepted by cosmologists as the best description of present data. The basic ingredients
are given by the parameters listed in Sec. 21.1.4, with approximate values of some of
the key parameters being Ωb ≈ 0.04, Ωdm ≈ 0.20, ΩΛ ≈ 0.76, and a Hubble constant
h ≈ 0.73. The spatial geometry is very close to flat (and often assumed to be precisely
flat), and the initial perturbations Gaussian, adiabatic, and nearly scale-invariant.

Table 21.2: Parameter constraints reproduced from Spergel et al. [2], with some
additional rounding. All columns assume the ΛCDM cosmology with a power-law
initial spectrum, no tensors, spatial flatness, and a cosmological constant as dark
energy. Three different data combinations are shown to highlight the extent to
which this choice matters. The first column is WMAP3 alone, the second combines
this with 2dF, and the third column shows a combination of all datasets considered
in Ref. 2. The perturbation amplitude is specified via the derived parameter σ8; see
Ref. 2 for details. Uncertainties are shown at one sigma, and caution is needed in
extrapolating them to higher significance levels due to non-Gaussian likelihoods and
assumed priors.

WMAP alone WMAP + 2dF WMAP + all

Ωmh2 0.128 ± 0.008 0.126 ± 0.005 0.132 ± 0.004

Ωbh2 0.0223 ± 0.0007 0.0222 ± 0.0007 0.0219 ± 0.0007

h 0.73 ± 0.03 0.73 ± 0.02 0.704+0.015
−0.016

n 0.958 ± 0.016 0.948 ± 0.015 0.947 ± 0.015

τ 0.089 ± 0.030 0.083 ± 0.028 0.073+0.027
−0.028

σ8 0.76 ± 0.05 0.74 ± 0.04 0.78 ± 0.03

The most powerful single experiment is WMAP3, which on its own supports all these
main tenets. Values for some parameters, as given in Spergel et al. [2], are reproduced in
Table 21.2. This model presumes a flat Universe, and so ΩΛ is a derived quantity in this
analysis, with best-fit value ΩΛ = 0.76.

These constraints can be somewhat strengthened by adding additional datasets, as
shown in the Table. However, WMAP3 on its own is sufficiently powerful that inclusion
of other datasets only changes things at quite a detailed level. In our view, the most
robust present constraints are those from WMAP3 alone.
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The baryon density Ωb is now measured with quite high accuracy from the CMB
and large-scale structure, and is consistent with the determination from big bang
nucleosynthesis; Fields and Sarkar in this volume quote the range 0.017 ≤ Ωbh2 ≤ 0.024.

While ΩΛ is measured to be non-zero with very high confidence, there is no evidence
of evolution of the dark energy density. The WMAP team find the limit w < −0.82 at
95% confidence from a compilation of data including SNe Ia data, with the cosmological
constant case w = −1 giving an excellent fit to the data.

The data provides strong support for the main predictions of the simplest
inflation models: spatial flatness and adiabatic, Gaussian, nearly scale-invariant density
perturbations. But it is disappointing that there is no sign of primordial gravitational
waves, with WMAP3 providing only a weak upper limit r < 0.65 at 95% confidence [2]
(this assumes no running, and weakens yet further if running is allowed). The spectral
index n is placed in an interesting position by WMAP3, with indications that n < 1 is
required by the data. However, the conclusion that n = 1 is ruled out that is suggested
by parameter estimation [2] receives much less compelling support in Bayesian model
selection analyses [9], and in our view, it is premature to conclude that n = 1 is no longer
viable.

Tests have been made for various types of non-Gaussianity, a particular example being
a parameter fNL which measures a quadratic contribution to the perturbations and is
constrained to −54 < fNL < 114 at 95% confidence [2] (this looks weak, but prominent
non-Gaussianity requires the product fNL∆R to be large, and ∆R is of order 10−5).

Two parameters which are still uncertain are Ωm and σ8, both of which were revised
downwards significantly by WMAP3 to a level where they do not sit well against local
measures of σ8, particularly those using weak gravitational lensing. However an analysis
including Lyman-alpha data with WMAP3 has found that this brings σ8 up again [38].
It is clear that we have yet to reach the last word on these parameters. It is also worth
noting that WMAP3 only probes larger length scales, and the constraint comes from
using WMAP to estimate all the parameters of the model needed to determine σ8. As
such, their constraint depends strongly on the assumed set of cosmological parameters
being sufficient.

One parameter which is surprisingly robust is the age of the Universe. There is a useful
coincidence that for a flat Universe the position of the first peak is strongly correlated
with the age of the Universe. The WMAP3 result is 13.7 ± 0.2 Gyr (assuming a flat
Universe). This is in good agreement with the ages of the oldest globular clusters [50]
and radioactive dating [51].
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21.5. Outlook for the future

The concordance model is now well established, and there seems little room left for any
dramatic revision of this paradigm. A measure of the strength of that statement is how
difficult it has proven to formulate convincing alternatives. For example, one corner of
parameter space that has been explored is the possibility of abandoning the dark energy,
and instead considering a mixed dark matter model with Ωm = 1 and Ων = 0.2. Such a
model fits both the 2dF and WMAP data reasonably well, but only for a Hubble constant
h < 0.5 [33,52]. However, this model is inconsistent with the HST key project value of h,
the results from SNe Ia, cluster number density evolution, and baryon fraction in clusters.

Should there indeed be no major revision of the current paradigm, we can expect
future developments to take one of two directions. Either the existing parameter set
will continue to prove sufficient to explain the data, with the parameters subject to
ever-tightening constraints, or it will become necessary to deploy new parameters. The
latter outcome would be very much the more interesting, offering a route towards
understanding new physical processes relevant to the cosmological evolution. There are
many possibilities on offer for striking discoveries, for example:

• The cosmological effects of a neutrino mass may be unambiguously detected, shedding
light on fundamental neutrino properties;

• Compelling detection of deviations from scale-invariance in the initial perturbations
would indicate dynamical processes during perturbation generation by, for instance,
inflation;

• Detection of primordial non-Gaussianities would indicate that non-linear processes
influence the perturbation generation mechanism;

• Detection of variation in the dark energy density (i.e., w �= −1) would provide
much-needed experimental input into the question of the properties of the dark
energy.

These provide more than enough motivation for continued efforts to test the cosmological
model and improve its precision.

Over the coming years, there are a wide range of new observations, which will bring
further precision to cosmological studies. Indeed, there are far too many for us to be able
to mention them all here, and so we will just highlight a few areas.

The cosmic microwave background observations will improve in several directions. The
new frontier is the study of polarization, first detected in 2002 by DASI and for which
power spectrum measurements have now been made by WMAP and Boomerang [53].
Dedicated ground-based polarization experiments, such as CBI, QUaD, and Clover
promise powerful measures of the polarization spectrum in the next few years, and may
be able to separately detect the two modes of polarization. Another area of development
is pushing accurate power spectrum measurements to smaller angular scales, typically
achieved by interferometry, which should allow measurements of secondary anisotropy
effects, such as the Sunyaev–Zel’dovich effect, whose detection has already been tentatively
claimed by CBI. Finally, we mention the Planck satellite, due to launch in 2008, which will
make high-precision all-sky maps of temperature and polarization, utilizing a very wide
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frequency range for observations to improve understanding of foreground contaminants,
and to compile a large sample of clusters via the Sunyaev–Zel’dovich effect.

On the supernova side, the most ambitious initiative at present is a proposed satellite
mission JDEM (Joint Dark Energy Mission) funded by NASA and DOE. There are
several candidates for this mission, including the much-publicized SNAP satellite, but the
funding has yet to be secured. An impressive array of ground-based dark energy surveys
are also already operational or proposed, including the ESSENCE project, the Dark
Energy Survey, LSST, and WFMOS. With large samples, it may be possible to detect
evolution of the dark energy density, thus measuring its equation of state and perhaps
even its variation.

An exciting new area for the future will be radio surveys of the redshifted 21-cm line
of hydrogen. Because of the intrinsic narrowness of this line, by tuning of the bandpass
the emission from narrow redshift slices of the Universe will be measured to extremely
high redshift, probing the details of the reionization process at redshifts up to perhaps
20. LOFAR is the first instrument able to do this and is at an advanced construction
stage. In the medium term, the Square Kilometer Array (SKA) will take these studies to
a precision level.

The above future surveys will address fundamental questions of physics well beyond
just testing the ‘concordance’ ΛCDM model and minor variations. It would be important
to distinguish the imprint of dark energy and dark matter on the geometry from the
growth of perturbations, and to test theories of modified gravity as alternatives for fitting
the observations to a Dark Energy component.

The development of the first precision cosmological model is a major achievement.
However, it is important not to lose sight of the motivation for developing such a model,
which is to understand the underlying physical processes at work governing the Universe’s
evolution. On that side, progress has been much less dramatic. For instance, there are
many proposals for the nature of the dark matter, but no consensus as to which is
correct. The nature of the dark energy remains a mystery. Even the baryon density, now
measured to an accuracy of a few percent, lacks an underlying theory able to predict it
even within orders of magnitude. Precision cosmology may have arrived, but at present
many key questions remain unanswered.
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