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16. STRUCTURE FUNCTIONS
Updated July 2009 by B. Foster (University of Oxford), A.D. Martin (University of
Durham), and M.G. Vincter (Carleton University).

16.1. Deep inelastic scattering

High-energy lepton-nucleon scattering (deep inelastic scattering) plays a key role in
determining the partonic structure of the proton. The process �N → �′X is illustrated in
Fig. 16.1. The filled circle in this figure represents the internal structure of the proton
which can be expressed in terms of structure functions.
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Figure 16.1: Kinematic quantities for the description of deep inelastic scattering.
The quantities k and k′ are the four-momenta of the incoming and outgoing
leptons, P is the four-momentum of a nucleon with mass M , and W is the mass
of the recoiling system X . The exchanged particle is a γ, W±, or Z; it transfers
four-momentum q = k − k′ to the nucleon.

Invariant quantities:

ν =
q · P
M

= E − E′ is the lepton’s energy loss in the nucleon rest frame (in earlier
literature sometimes ν = q · P ). Here, E and E′ are the initial and final
lepton energies in the nucleon rest frame.

Q2 = −q2 = 2(EE′−−→
k · −→k ′)−m2

� −m2
�′ where m�(m�′) is the initial (final) lepton mass.

If EE′ sin2(θ/2) � m2
� , m2

�′ , then

≈ 4EE′ sin2(θ/2), where θ is the lepton’s scattering angle with respect to the lepton
beam direction.

x =
Q2

2Mν
where, in the parton model, x is the fraction of the nucleon’s momentum

carried by the struck quark.

y =
q · P
k · P =

ν

E
is the fraction of the lepton’s energy lost in the nucleon rest frame.

W 2 = (P + q)2 = M2 + 2Mν − Q2 is the mass squared of the system X recoiling against
the scattered lepton.

s = (k + P )2 =
Q2

xy
+ M2 + m2

� is the center-of-mass energy squared of the lepton-nucleon

system.
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2 16. Structure functions

The process in Fig. 16.1 is called deep (Q2 � M2) inelastic (W 2 � M2) scattering
(DIS). In what follows, the masses of the initial and scattered leptons, m� and m�′ , are
neglected.

16.1.1. DIS cross sections :
d2σ

dx dy
= x (s − M2)

d2σ

dx dQ2
=

2π Mν

E′
d2σ

dΩNrest dE′ . (16.1)

In lowest-order perturbation theory, the cross section for the scattering of polarized
leptons on polarized nucleons can be expressed in terms of the products of leptonic and
hadronic tensors associated with the coupling of the exchanged bosons at the upper and
lower vertices in Fig. 16.1 (see Refs. 1–4)

d2σ

dxdy
=

2πyα2

Q4

∑
j

ηj L
µν
j W j

µν . (16.2)

For neutral-current processes, the summation is over j = γ, Z and γZ representing
photon and Z exchange and the interference between them, whereas for charged-current
interactions there is only W exchange, j = W . (For transverse nucleon polarization, there
is a dependence on the azimuthal angle of the scattered lepton.) Lµν is the lepton tensor
associated with the coupling of the exchange boson to the leptons. For incoming leptons
of charge e = ±1 and helicity λ = ±1,

Lγ
µν = 2

(
kµk′ν + k′µkν − k · k′gµν − iλεµναβkαk′β

)
,

LγZ
µν =(ge

V + eλge
A) Lγ

µν , LZ
µν = (ge

V + eλge
A)2 Lγ

µν ,

LW
µν =(1 + eλ)2 Lγ

µν , (16.3)

where ge
V = − 1

2
+ 2 sin2 θW , ge

A = − 1
2

.

Although here the helicity formalism is adopted, an alternative approach is to express the
tensors in Eq. (16.3) in terms of the polarization of the lepton.

The factors ηj in Eq. (16.2) denote the ratios of the corresponding propagators and
couplings to the photon propagator and coupling squared

ηγ = 1 ; ηγZ =

(
GF M2

Z

2
√

2πα

) (
Q2

Q2 + M2
Z

)
;

ηZ = η2
γZ ; ηW = 1

2

(
GF M2

W

4πα

Q2

Q2 + M2
W

)2

. (16.4)

The hadronic tensor, which describes the interaction of the appropriate electroweak
currents with the target nucleon, is given by

Wµν =
1
4π

∫
d4z eiq·z 〈

P, S
∣∣∣[J†

µ(z), Jν(0)
]∣∣∣ P, S

〉
, (16.5)

where S denotes the nucleon-spin 4-vector, with S2 = −M2 and S · P = 0.
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16. Structure functions 3

16.2. Structure functions of the proton

The structure functions are defined in terms of the hadronic tensor (see Refs. 1–3)

Wµν =
(
−gµν +

qµqν

q2

)
F1(x, Q2) +

P̂µP̂ν

P · q F2(x, Q2)

− iεµναβ
qαPβ

2P · q F3(x, Q2)

+ iεµναβ
qα

P · q
[
Sβg1(x, Q2) +

(
Sβ − S · q

P · q Pβ
)

g2(x, Q2)
]

+
1

P · q
[

1
2

(
P̂µŜν + ŜµP̂ν

)
− S · q

P · q P̂µP̂ν

]
g3(x, Q2)

+
S · q
P · q

[
P̂µP̂ν

P · q g4(x, Q2) +
(
−gµν +

qµqν

q2

)
g5(x, Q2)

]
(16.6)

where
P̂µ = Pµ − P · q

q2
qµ, Ŝµ = Sµ − S · q

q2
qµ . (16.7)

In Ref. [2], the definition of Wµν with µ ↔ ν is adopted, which changes the sign of
the εµναβ terms in Eq. (16.6), although the formulae given here below are unchanged.
Ref. [1] tabulates the relation between the structure functions defined in Eq. (16.6) and
other choices available in the literature.

The cross sections for neutral- and charged-current deep inelastic scattering on
unpolarized nucleons can be written in terms of the structure functions in the generic
form

d2σi

dxdy
=

4πα2

xyQ2
ηi

{(
1 − y − x2y2M2

Q2

)
F i

2

+ y2xF i
1 ∓

(
y − y2

2

)
xF i

3

}
, (16.8)

where i = NC, CC corresponds to neutral-current (eN → eX) or charged-current
(eN → νX or νN → eX) processes, respectively. For incoming neutrinos, LW

µν of
Eq. (16.3) is still true, but with e, λ corresponding to the outgoing charged lepton. In the
last term of Eq. (16.8), the − sign is taken for an incoming e+ or ν and the + sign for an
incoming e− or ν. The factor ηNC = 1 for unpolarized e± beams, whereas∗

ηCC = (1 ± λ)2ηW (16.9)

with ± for �±; and where λ is the helicity of the incoming lepton and ηW is defined in
Eq. (16.4); for incoming neutrinos ηCC = 4ηW . The CC structure functions, which derive
exclusively from W exchange, are

FCC
1 = FW

1 , FCC
2 = FW

2 , xFCC
3 = xFW

3 . (16.10)
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4 16. Structure functions

The NC structure functions F
γ
2 , F

γZ
2 , FZ

2 are, for e±N → e±X , given by Ref. [5],

FNC
2 = F γ

2 − (ge
V ± λge

A)ηγZF γZ
2 + (ge 2

V + ge 2
A ± 2λge

V ge
A) ηZFZ

2 (16.11)

and similarly for FNC
1 , whereas

xFNC
3 = −(ge

A ± λge
V )ηγZxF

γZ
3 + [2ge

V ge
A ± λ(ge 2

V + ge 2
A )]ηZxFZ

3 . (16.12)

The polarized cross-section difference

∆σ = σ(λn = −1, λ�) − σ(λn = 1, λ�) , (16.13)

where λ�, λn are the helicities (±1) of the incoming lepton and nucleon, respectively, may
be expressed in terms of the five structure functions g1,...5(x, Q2) of Eq. (16.6). Thus,

d2∆σi

dxdy
=

8πα2

xyQ2
ηi

{
−λ�y

(
2 − y − 2x2y2 M2

Q2

)
xgi

1 + λ�4x3y2 M2

Q2
gi
2

+ 2x2y
M2

Q2

(
1 − y − x2y2 M2

Q2

)
gi
3

−
(

1 + 2x2y
M2

Q2

) [(
1 − y − x2y2 M2

Q2

)
gi
4 + xy2gi

5

]}
(16.14)

with i = NC or CC as before. The Eq. (16.13) corresponds to the difference of antiparallel
minus parallel spins of the incoming particles for e− or ν initiated reactions, but the
difference of parallel minus antiparallel for e+ or ν initiated processes. For longitudinal
nucleon polarization, the contributions of g2 and g3 are suppressed by powers of M2/Q2.
These structure functions give an unsuppressed contribution to the cross section for
transverse polarization [1], but in this case the cross-section difference vanishes as
M/Q → 0.

Because the same tensor structure occurs in the spin-dependent and spin-independent
parts of the hadronic tensor of Eq. (16.6) in the M2/Q2 → 0 limit, the differential
cross-section difference of Eq. (16.14) may be obtained from the differential cross section
Eq. (16.8) by replacing

F1 → −g5 , F2 → −g4 , F3 → 2g1 , (16.15)

and multiplying by two, since the total cross section is the average over the initial-state
polarizations. In this limit, Eq. (16.8) and Eq. (16.14) may be written in the form

d2σi

dxdy
=

2πα2

xyQ2
ηi

[
Y+F i

2 ∓ Y−xF i
3 − y2F i

L

]
,

d2∆σi

dxdy
=

4πα2

xyQ2
ηi

[
−Y+gi

4 ∓ Y−2xgi
1 + y2gi

L

]
, (16.16)
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16. Structure functions 5

with i = NC or CC, where Y± = 1 ± (1 − y)2 and

F i
L = F i

2 − 2xF i
1 , gi

L = gi
4 − 2xgi

5 . (16.17)

In the naive quark-parton model, the analogy with the Callan-Gross relations [6] F i
L = 0,

are the Dicus relations [7] gi
L = 0. Therefore, there are only two independent polarized

structure functions: g1 (parity conserving) and g5 (parity violating), in analogy with the
unpolarized structure functions F1 and F3.

16.2.1. Structure functions in the quark-parton model :
In the quark-parton model [8,9], contributions to the structure functions F i and gi

can be expressed in terms of the quark distribution functions q(x, Q2) of the proton,
where q = u, u, d, d etc.The quantity q(x, Q2)dx is the number of quarks (or antiquarks)
of designated flavor that carry a momentum fraction between x and x+dx of the proton’s
momentum in a frame in which the proton momentum is large.

For the neutral-current processes ep → eX ,

[
F

γ
2 , F

γZ
2 , FZ

2

]
= x

∑
q

[
e2
q , 2eqg

q
V , g

q 2
V + g

q 2
A

]
(q + q) ,

[
F γ

3 , F γZ
3 , FZ

3

]
=

∑
q

[
0, 2eqg

q
A, 2gq

V gq
A

]
(q − q) ,

[
g
γ
1 , g

γZ
1 , gZ

1

]
= 1

2

∑
q

[
e2
q , 2eqg

q
V , g

q 2
V + g

q 2
A

]
(∆q + ∆q) ,

[
gγ
5 , gγZ

5 , gZ
5

]
=

∑
q

[
0, eqg

q
A, gq

V gq
A

]
(∆q − ∆q) , (16.18)

where g
q
V = ± 1

2
− 2eq sin2 θW and g

q
A = ± 1

2
, with ± according to whether q is a u− or

d−type quark respectively. The quantity ∆q is the difference q↑ −q↓ of the distributions
with the quark spin parallel and antiparallel to the proton spin.

For the charged-current processes e−p → νX and νp → e+X , the structure functions
are:

FW−
2 = 2x(u + d + s + c . . .) ,

FW−
3 = 2(u − d − s + c . . .) ,

gW−
1 = (∆u + ∆d + ∆s + ∆c . . .) ,

gW−
5 = (−∆u + ∆d + ∆s − ∆c . . .) , (16.19)

where only the active flavors are to be kept and where CKM mixing has been neglected.
For e+p → νX and νp → e−X , the structure functions FW+

, gW+
are obtained by

the flavor interchanges d ↔ u, s ↔ c in the expressions for FW−
, gW−

. The structure
functions for scattering on a neutron are obtained from those of the proton by the
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6 16. Structure functions

interchange u ↔ d. For both the neutral- and charged-current processes, the quark-parton
model predicts 2xF i

1 = F i
2 and gi

4 = 2xgi
5.

Neglecting masses, the structure functions g2 and g3 contribute only to scattering from
transversely polarized nucleons (for which S · q = 0), and have no simple interpretation
in terms of the quark-parton model. They arise from off-diagonal matrix elements
〈P, λ′|[J†

µ(z), Jν(0)]|P, λ〉, where the proton helicities satisfy λ′ �= λ. In fact, the leading-
twist contributions to both g2 and g3 are both twist-2 and twist-3, which contribute at
the same order of Q2. The Wandzura-Wilczek relation [10] expresses the twist-2 part of
g2 in terms of g1 as

gi
2(x) = −gi

1(x) +
∫ 1

x

dy

y
gi
1(y) . (16.20)

However, the twist-3 component of g2 is unknown. Similarly, there is a relation expressing
the twist-2 part of g3 in terms of g4. A complete set of relations, including M2/Q2

effects, can be found in Ref. [11].

16.2.2. Structure functions and QCD :
One of the most striking predictions of the quark-parton model is that the structure

functions Fi, gi scale, i.e., Fi(x, Q2) → Fi(x) in the Bjorken limit that Q2 and ν → ∞
with x fixed [12]. This property is related to the assumption that the transverse
momentum of the partons in the infinite-momentum frame of the proton is small. In
QCD, however, the radiation of hard gluons from the quarks violates this assumption,
leading to logarithmic scaling violations, which are particularly large at small x, see
Fig. 16.2. The radiation of gluons produces the evolution of the structure functions. As
Q2 increases, more and more gluons are radiated, which in turn split into qq pairs. This
process leads both to the softening of the initial quark momentum distributions and to
the growth of the gluon density and the qq sea as x decreases.

In QCD, the above process is described in terms of scale-dependent parton distributions
fa(x, µ2), where a = g or q and, typically, µ is the scale of the probe Q. For Q2 � M2,
the structure functions are of the form

Fi =
∑
a

Ca
i ⊗ fa, (16.21)

where ⊗ denotes the convolution integral

C ⊗ f =
∫ 1

x

dy

y
C(y) f

(
x

y

)
, (16.22)

and where the coefficient functions Ca
i are given as a power series in αs. The parton

distribution fa corresponds, at a given x, to the density of parton a in the proton
integrated over transverse momentum kt up to µ. Its evolution in µ is described in QCD
by a DGLAP equation (see Refs. 14–17) which has the schematic form

∂fa

∂ ln µ2
∼ αs(µ2)

2π

∑
b

(Pab ⊗ fb) , (16.23)
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Figure 16.2: The proton structure function F
p
2 given at two Q2 values (3.5 GeV2

and 90 GeV2), which exhibit scaling at the ‘pivot’ point x ∼ 0.14. See the captions
in Fig. 16.7 and Fig. 16.10 for the references of the data. The various data sets have
been renormalised by the factors shown in brackets in the key to the plot, which
were determined in the NNLO MSTW2008 global analysis, see Table 3 of [13].

where the Pab, which describe the parton splitting b → a, are also given as a power series
in αs. Although perturbative QCD can predict, via Eq. (16.23), the evolution of the
parton distribution functions from a particular scale, µ0, these DGLAP equations cannot
predict them a priori at any particular µ0. Thus they must be measured at a starting
point µ0 before the predictions of QCD can be compared to the data at other scales,
µ. In general, all observables involving a hard hadronic interaction (such as structure
functions) can be expressed as a convolution of calculable, process-dependent coefficient
functions and these universal parton distributions, e.g. Eq. (16.21).

It is often convenient to write the evolution equations in terms of the gluon, non-singlet
(qNS) and singlet (qS) quark distributions, such that

qNS = qi − qi (or qi − qj), qS =
∑

i

(qi + qi) . (16.24)
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8 16. Structure functions

The non-singlet distributions have non-zero values of flavor quantum numbers, such as
isospin and baryon number. The DGLAP evolution equations then take the form

∂qNS

∂ lnµ2
=

αs(µ2)
2π

Pqq ⊗ qNS ,

∂

∂ ln µ2

(
qS

g

)
=

αs(µ2)
2π

(
Pqq 2nf Pqg

Pgq Pgg

)
⊗

(
qS

g

)
, (16.25)

where P are splitting functions that describe the probability of a given parton splitting
into two others, and nf is the number of (active) quark flavors. The leading-order
Altarelli-Parisi [16] splitting functions are

Pqq = 4
3

[
1 + x2

(1 − x)

]
+

= 4
3

[
1 + x2

(1 − x)+

]
+ 2δ(1 − x) , (16.26)

Pqg = 1
2

[
x2 + (1 − x)2

]
, (16.27)

Pgq = 4
3

[
1 + (1 − x)2

x

]
, (16.28)

Pgg = 6
[
1 − x

x
+ x(1 − x) +

x

(1 − x)+

]

+
[
11
2

− nf

3

]
δ(1 − x), (16.29)

where the notation [F (x)]+ defines a distribution such that for any sufficiently regular
test function, f(x),

∫ 1

0
dxf(x)[F (x)]+ =

∫ 1

0
dx (f(x)− f(1))F (x) . (16.30)

In general, the splitting functions can be expressed as a power series in αs. The series
contains both terms proportional to lnµ2 and to ln 1/x. The leading-order DGLAP
evolution sums up the (αs ln µ2)n contributions, while at next-to-leading order (NLO) the
sum over the αs(αs ln µ2)n−1 terms is included [18,19]. In fact, the NNLO contributions
to the splitting functions and the DIS coefficient functions are now also all known [20–22].

In the kinematic region of very small x, it is essential to sum leading terms in
ln 1/x, independent of the value of lnµ2. At leading order, LLx, this is done by
the BFKL equation for the unintegrated distributions (see Refs. [23,24]). The leading-
order (αs ln(1/x))n terms result in a power-like growth, x−ω with ω = (12αsln2)/π,
at asymptotic values of ln 1/x. More recently, the next-to-leading ln 1/x (NLLx)
contributions have become available [25,26]. They are so large (and negative) that
the result appears to be perturbatively unstable. Methods, based on a combination
of collinear and small x resummations, have been developed which reorganize the
perturbative series into a more stable hierarchy [27–30]. There are indications that small
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16. Structure functions 9

x resummations become necessary for real precision for x � 10−3 at low scales. On the
other hand, there is no convincing indication that, for Q2 � 2 GeV2, we have entered
the ‘non-linear’ regime where the gluon density is so high that gluon-gluon recombination
effects become significant.

The precision of the contemporary experimental data demands that at least NLO, and
preferably NNLO, DGLAP evolution be used in comparisons between QCD theory and
experiment. Beyond the leading order, it is necessary to specify, and to use consistently,
both a renormalization and a factorization scheme. The renormalization scheme used is
almost universally the modified minimal subtraction (MS) scheme [31,32]. There are
two popular choices for factorization scheme, in which the form of the correction for
each structure function is different. The most-used factorization scheme is again MS [33].
However, sometimes the DIS [34] scheme is adopted, in which there are no higher-order
corrections to the F2 structure function. The two schemes differ in how the non-divergent
pieces are assimilated in the parton distribution functions.

The u, d, and s quarks are taken to be massless, and the effects of the c and b-quark
masses have been studied up to NNLO, for example, in [35–41]. An approach using
a variable flavor number is now generally adopted, in which evolution with nf = 3 is
matched to that with nf = 4 at the charm threshold, with an analogous matching at the
bottom threshold.

The discussion above relates to the Q2 behavior of leading-twist (twist-2) contributions
to the structure functions. Higher-twist terms, which involve their own non-perturbative
input, exist. These die off as powers of Q; specifically twist-n terms are damped by
1/Qn−2. The higher-twist terms appear to be numerically unimportant for Q2 above a
few GeV2, except for x close to 1.

16.3. Determination of parton distributions

The parton distribution functions (PDFs) can be determined from data for deep
inelastic lepton-nucleon scattering and for related hard-scattering processes initiated by
nucleons. Table 16.1 highlights some processes and their primary sensitivity to PDFs.

The kinematic ranges of fixed-target and collider experiments are complementary (as
is shown in Fig. 16.3), which enables the determination of PDFs over a wide range in
x and Q2. Recent determinations of the unpolarized PDF’s from NLO global analyses
are given in Ref. [13,42], see also Ref. [43] for progress towards a neural network global
analysis. NNLO global analyses are given in Ref. [13,44]. The results of one analysis are
shown in Fig. 16.4 at scales µ2 = 10 and 104 GeV2.

Spin-dependent (or polarized) PDFs have been obtained through NLO global analyses
which include measurements of the g1 structure function in inclusive polarized DIS,
‘flavour-tagged’ semi-inclusive DIS data, and results from polarized pp scattering at
RHIC. Recent NLO analyses are given in Refs. [45–47]. Improved parton-to-hadron
fragmentation functions, needed to describe the semi-inclusive DIS data, can be found
in [48–50]. Fig. 16.5 shows several global analyses at a scale of 2.5 GeV2 along with the
data from semi-inclusive DIS.
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10 16. Structure functions

Table 16.1: The main processes included in the current global PDF analyses,
ordered in three groups: fixed-target experiments, HERA and the Tevatron. For
each process we give an indication of their dominant partonic subprocesses, the
primary partons which are probed and the approximate range of x constrained by
the data. The Table is taken from [13].

Process Subprocess Partons x range

�± {p, n} → �± X γ∗q → q q, q̄, g x � 0.01
�± n/p → �± X γ∗ d/u → d/u d/u x � 0.01
pp → µ+µ− X uū, dd̄ → γ∗ q̄ 0.015 � x � 0.35
pn/pp → µ+µ− X (ud̄)/(uū) → γ∗ d̄/ū 0.015 � x � 0.35
ν(ν̄) N → µ−(µ+) X W ∗q → q′ q, q̄ 0.01 � x � 0.5
ν N → µ−µ+ X W ∗s → c s 0.01 � x � 0.2
ν̄ N → µ+µ− X W ∗s̄ → c̄ s̄ 0.01 � x � 0.2

e± p → e± X γ∗q → q g, q, q̄ 0.0001 � x � 0.1
e+ p → ν̄ X W+ {d, s} → {u, c} d, s x � 0.01
e±p → e± cc̄ X γ∗c → c, γ∗g → cc̄ c, g 0.0001 � x � 0.01
e±p → jet+X γ∗g → qq̄ g 0.01 � x � 0.1

pp̄ → jet+X gg, qg, qq → 2j g, q 0.01 � x � 0.5
pp̄ → (W± → �±ν) X ud → W, ūd̄ → W u, d, ū, d̄ x � 0.05
pp̄ → (Z → �+�−) X uu, dd → Z d x � 0.05

Comprehensive sets of PDFs are available as program-callable functions from the
HepData website [55], which includes comparison graphics of PDFs, and from the
LHAPDF library [56], which can be linked directly into a users programme to provide
access to recent PDFs in a standard format.

16.4. DIS determinations of αs

Table 16.2 shows the values of αs(M2
Z) found in recent fits to DIS and related data in

which the coupling is left as a free parameter. There have been several other studies of
αs using subsets of inclusive DIS data, and also from measurements of spin-dependent
structure functions, see the Quantum Chromodynamics section of this Review.

January 28, 2010 12:02



16. Structure functions 11

10
-1

1

10

10 2

10 3

10 4

10 5

10 6

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
x

Q
2  (

G
eV

2 )

Figure 16.3: Kinematic domains in x and Q2 probed by fixed-target and collider
experiments, shown together with the parton distributions that are most strongly
constrained by the indicated regions.

16.5. The hadronic structure of the photon

Besides the direct interactions of the photon, it is possible for it to fluctuate into a
hadronic state via the process γ → qq. While in this state, the partonic content of the
photon may be resolved, for example, through the process e+e− → e+e−γ∗γ → e+e−X ,
where the virtual photon emitted by the DIS lepton probes the hadronic structure of
the quasi-real photon emitted by the other lepton. The perturbative LO contributions,
γ → qq followed by γ∗q → q, are subject to QCD corrections due to the coupling of
quarks to gluons.

Often the equivalent-photon approximation is used to express the differential cross
section for deep inelastic electron–photon scattering in terms of the structure functions
of the transverse quasi-real photon times a flux factor NT

γ (for these incoming quasi-real
photons of transverse polarization)

d2σ

dxdQ2
= NT

γ
2πα2

xQ4

[(
1 + (1 − y)2

)
F

γ
2 (x, Q2) − y2F

γ
L(x, Q2)

]
,
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Figure 16.4: Distributions of x times the unpolarized parton distributions f(x)
(where f = uv, dv, u, d, s, c, b, g) and their associated uncertainties using the NNLO
MSTW2008 parameterization [13] at a scale µ2 = 10 GeV2 and µ2 = 10, 000 GeV2.

where we have used F
γ
2 = 2xF

γ
T + F

γ
L , not to be confused with F

γ
2 of Sec. 16.2. Complete

formulae are given, for example, in the comprehensive review of Ref. [62].

The hadronic photon structure function, F
γ
2 , evolves with increasing Q2 from

the ‘hadron-like’ behavior, calculable via the vector-meson-dominance model, to the
dominating ‘point-like’ behaviour, calculable in perturbative QCD. Due to the point-like
coupling, the logarithmic evolution of F

γ
2 with Q2 has a positive slope for all values of x,

see Fig. 16.14. The ‘loss’ of quarks at large x due to gluon radiation is over-compensated
by the ‘creation’ of quarks via the point-like γ → qq̄ coupling. The logarithmic evolution
was first predicted in the quark–parton model (γ∗γ → qq̄) [63,64], and then in QCD in
the limit of large Q2 [65]. The evolution is now known to NLO [66–68]. NLO data
analyses to determine the parton densities of the photon can be found in [69–71].

16.6. Diffractive DIS (DDIS)

Some 10% of DIS events are diffractive, γ∗p → X + p, in which the slightly deflected
proton and the cluster X of outgoing hadrons are well-separated in rapidity. Besides
x and Q2, two extra variables are needed to describe a DDIS event: the fraction xIP
of the proton’s momentum transferred across the rapidity gap and t, the square of the
4-momentum transfer of the proton. The DDIS data [72–76] are usually analyzed using
two levels of factorization. First, the diffractive structure function FD

2 satisfies collinear
factorization, and can be expressed as the convolution [77]

FD
2 =

∑
a=q,g

Ca
2 ⊗ fD

a/p, (16.31)
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Figure 16.5: Distributions of x times the polarized parton distributions ∆q(x)
(where q = u, d, u, d, s) using the LSS2006 [45], AAC2008 [46], and DSSV2008 [47]
parameterizations at a scale µ2 = 2.5 GeV2, showing the error corridor of the latter
set (corresponding to a one-unit increase in χ2). Points represent data from semi-
inclusive positron (HERMES [51,52]) and muon (SMC [53] and COMPASS [54])
deep inelastic scattering given at Q2 = 2.5 GeV2. SMC results are extracted under
the assumption that ∆u(x) = ∆d(x).

with the same coefficient functions as in DIS (see Eq. (16.21)), and where the diffractive
parton distributions fD

a/p
(a = q, g) satisfy DGLAP evolution. Second, Regge factorization

is assumed [78],
fD
a/p(xIP , t, z, µ2) = fIP/p(xIP , t) fa/IP (z, µ2), (16.32)

where fa/IP are the parton densities of the Pomeron, which itself is treated like a
hadron, and z ∈ [x/xIP , 1] is the fraction of the Pomeron’s momentum carried by the
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Table 16.2: The values of αs(M2
Z) found in NLO and NNLO fits to DIS and

related data. CTEQ [57] and MSTW [58] are global fits. H1 [59] fit only a subset
of the F

ep
2 data, while Alekhin [61] also includes F ed

2 and ZEUS [60] in addition
include their charged current and jet data. At NNLO, Alekhin et al. [44] include
Drell-Yan data in their fit. The experimental errors quoted correspond to 68% C.L.
See [58] for an extended comparative discussion.

αs(M2
Z) ± expt ± theory ± model

NLO
CTEQ 0.1170 ± 0.0047
MSTW08 0.1202 +0.0012

−0.0015 ± 0.003
ZEUS 0.1183 ± 0.0028 ± 0.0008
H1 0.115 ± 0.0017 ± 0.005 +0.0009

−0.0005

Alekhin 0.1171 ± 0.0015± 0.0033

NNLO
MSTW08 0.1171 ± 0.0014 ± 0.003
Alekhin 0.1128 ± 0.0015

parton entering the hard subprocess. The Pomeron flux factor fIP/p(xIP , t) is taken from
Regge phenomenology. There are also secondary Reggeon contributions to Eq. (16.32). A
sample of the t-integrated diffractive parton densities, obtained in this way, is shown in
Fig. 16.6 as Fit A.

Although collinear factorization holds as µ2 → ∞, there are non-negligible corrections
for finite µ2 and small xIP . Besides the resolved interactions of the Pomeron, the
perturbative QCD Pomeron may also interact directly with the hard subprocess, giving
rise to an inhomogeneous evolution equation for the diffractive parton densities analogous
to the photon case. The results of the MRW analysis [79], which includes these
contributions, are also shown in Fig. 16.6. Unlike the inclusive case, the diffractive parton
densities cannot be directly used to calculate diffractive hadron-hadron cross sections,
since account must first be taken of “soft” rescattering effects.

∗ The value of ηCC deduced from Ref. [1] is found to be a factor of two too small; ηCC

of Eq. (16.9) agrees with Refs. [2,3].
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Figure 16.6: Diffractive parton distributions, xIP zfD
a/p

, obtained from fitting to

the H1 data with Q2 > 8.5 GeV2 assuming Regge factorization [75], and using
a more perturbative QCD approach [79]. Only the Pomeron contributions are
shown and not the secondary Reggeon contributions which are negligible at the
value of xIP = 0.003 chosen here. Diffractive DIS dijet data [80,81,82] favour a
smaller gluon at high z than that in H1 Fit A, more like MRW, as shown by the H1
Jets curve [81].
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