Neutrino Mixing ### A REVIEW GOES HERE - Check our WWW List of Reviews ### (A) Neutrino fluxes and event ratios ## Events (observed/expected) from accelerator u_{μ} experiments. Some neutrino oscillation experiments compare the flux in two or more detectors. This is usually quoted as the ratio of the event rate in the far detector to the expected rate based on an extrapolation from the near detector in the absence of oscillations. | VALUE | DOCUMENT ID | | TECN | COMMENT | |------------------------------------|--|-----------------|------|--| | • • • We do not use the following | fits, lim | its, etc. • • • | | | | 0.71 ± 0.08
0.64 ± 0.05 | ¹ AHN
² MICHAEL | | | K2K to Super-K
All charged current events | | $0.71^{+0.08}_{-0.09}$ | ³ ALIU | | | KEK to Super-K | | $0.70^{+0.10}_{-0.11}$ | ⁴ AHN | 03 | K2K | KEK to Super-K | $^{^{1}}$ Based on the observation of 112 events when $158.1^{+9.2}_{-8.6}$ were expected without oscillations. Including not only the number of events but also the shape of the energy distribution, the evidence for oscillation is at the level of about 4.3 σ . Supersedes ALIU 05. ### Events (observed/expected) from reactor $\overline{\nu}_e$ experiments. The quoted values are the ratios of the measured reactor $\overline{ u}_e$ event rate at the quoted distances, and the rate expected without oscillations. The expected rate is based on the experimental data for the most significant reactor fuels (235 U, 239 Pu, 241 Pu) and on calculations for 238 U. | VALUE | DOCUMENT ID | | TECN | COMMENT | |---------------------------------|------------------------|-------|-------------|--| | ● ● We do not use the | e following data for | avera | iges, fits, | limits, etc. • • • | | $0.658 \pm 0.044 \pm 0.047$ | ⁵ ARAKI | 05 | KLND | Japanese react. \sim 180 km | | $0.611\!\pm\!0.085\!\pm\!0.041$ | ⁶ EGUCHI | 03 | KLND | Japanese react. ~ 180 km | | $1.01\ \pm0.024\pm0.053$ | ⁷ BOEHM | 01 | | Palo Verde react. 0.75-0.89 km | | $1.01\ \pm0.028\pm0.027$ | ⁸ APOLLONIO | 99 | CHOZ | Chooz reactors 1 km | | $0.987 \pm 0.006 \pm 0.037$ | ⁹ GREENWOOD | 96 | | Savannah River, 18.2 m | | $0.988 \pm 0.004 \pm 0.05$ | ACHKAR | 95 | CNTR | Bugey reactor, 15 m | | $0.994 \pm 0.010 \pm 0.05$ | ACHKAR | 95 | CNTR | Bugey reactor, 40 m | | $0.915 \pm 0.132 \pm 0.05$ | ACHKAR | 95 | CNTR | Bugey reactor, 95 m | | $0.987 \pm 0.014 \pm 0.027$ | ¹⁰ DECLAIS | 94 | CNTR | Bugey reactor, 15 m | | $0.985 \pm 0.018 \pm 0.034$ | KUVSHINN | 91 | CNTR | Rovno reactor | | $1.05 \pm 0.02 \pm 0.05$ | VUILLEUMIER | 82 | | Gösgen reactor | | $0.955\!\pm\!0.035\!\pm\!0.110$ | 11 KWON | 81 | | $\overline{\nu}_e p \rightarrow e^+ n$ | | $0.89\ \pm0.15$ | ¹¹ ВОЕНМ | 80 | | $\overline{\nu}_e p \rightarrow e^+ n$ | | | | | | | ²This ratio is based on the observation of 215 events compared to an expectation of $^{336\}pm14$ without oscillations. See also ADAMSON 08. 3 This ratio is based on the observation of 107 events at the far detector 250 km away from KEK, and an expectation of 151^{+12}_{-10} . ⁴ This ratio is based on the observation of 56 events with an expectation of $80.1^{+6.2}_{-5.4}$ 6 EGUCHI 03 observe reactor neutrino disappearance at $\sim 180\,\mathrm{km}$ baseline to various Japanese nuclear power reactors. ⁷ BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. - ⁸ APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e \, p \to e^+ \, n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed description. - ⁹ GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River. - 10 DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95. - ¹¹ KWON 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80. #### Atmospheric neutrinos Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/total$, $R(\mu/total)$ with total $=\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions. In addition, the measured "up-down asymmetry" for μ (N $_{up}(\mu)/N_{down}(\mu)$) or e (N $_{up}(e)/N_{down}(e)$) is reported. The expected "up-down asymmetry" is nearly unity if there is no neutrino oscillation. $R(\mu/e) = (Measured Ratio \mu/e) / (Expected Ratio \mu/e)$ | VALUE | DOCUMENT ID | | TECN | COMMENT | |--|---|-------------|-----------|---| | • • • We do not use the following | ng data for averages | s, fits, | limits, e | etc. • • • | | $0.658 \pm 0.016 \pm 0.035$ | ¹² ASHIE | 05 | SKAM | sub-GeV | | $0.702^{igoplus 0.032}_{-0.030}\!\pm\!0.101$ | ¹³ ASHIE | 05 | SKAM | multi-GeV | | $0.69 \pm 0.10 \pm 0.06$ | ¹⁴ SANCHEZ
¹⁵ FUKUDA | 03
96в | | Calorimeter raw data
Water Cherenkov | | $1.00 \pm 0.15 \pm 0.08$ | ¹⁶ DAUM | 95 | FREJ | Calorimeter | | $0.60 \ ^{+ 0.06}_{- 0.05} \ \pm 0.05$ | ¹⁷ FUKUDA | 94 | KAMI | sub-GeV | | $0.57 \ ^{+0.08}_{-0.07} \ \pm 0.07$ | ¹⁸ FUKUDA | 94 | KAMI | multi-Gev | | | ¹⁹ BECKER-SZ | 92 B | IMB | Water Cherenkov | ⁵ Updated result of KamLAND, including the data used in EGUCHI 03. Note that the survival probabilities for different periods are not directly comparable because the effective baseline varies with power output of the reactor sources involved, and there were large variations in the reactor power production in Japan in 2003. - 12 ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with 0.1 GeV/c < p_e and μ -like events 0.2 GeV/c < p_{μ} , both having a visible energy < 1.33 GeV. These criteria match the definition used by FUKUDA 94. - ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as μ -like. - ¹⁴SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99 result. The analyzed data sample consists of fully-contained *e*-flavor and μ -flavor events having lepton momentum > 0.3 GeV/c. - ¹⁵ FUKUDA 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found. - 16 DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events. - 17 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33~{\rm GeV}/c$ and fully-contained μ -like events with 0.2 < $p_{\mu} < 1.5~{\rm GeV}/c$. - 18 FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained μ -like events. - 19 BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atmospheric neutrinos) as $0.36 \pm 0.02 \pm 0.02$, as compared with expected fraction $0.51 \pm 0.01 \pm 0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value. # $\mathsf{R}(u_{\mu}) = (\mathsf{Measured} \; \mathsf{Flux} \; \mathsf{of} \; u_{\mu}) \; / \; (\mathsf{Expected} \; \mathsf{Flux} \; \mathsf{of} \; u_{\mu})$ | <u>VALUE</u> | DOCUMENT ID | | TECN | <u>COMMENT</u> | | | | | |---|--|----------------|---------------------|---|--|--|--|--| | • • • We do not use the following data for averages, fits, limits, etc. • • | | | | | | | | | | 0.84 ± 0.12 | ²⁰ ADAMSON | 06 | MINS | MINOS atmospheric | | | | | | $0.72 \pm 0.026 \pm 0.13$ | ²¹ AMBROSIO | 01 | MCRO | upward through-going | | | | | | $0.57 \pm 0.05 \pm 0.15$ | ²² AMBROSIO | 00 | MCRO | upgoing partially contained | | | | | | $0.71 \pm 0.05 \ \pm 0.19$ | ²³ AMBROSIO | 00 | MCRO | downgoing partially contained | | | | | | $0.74 \pm 0.036 \pm 0.046$ | ²⁴ AMBROSIO
²⁵ CASPER
²⁶ AGLIETTA | 98
91
89 | MCRO
IMB
NUSX | + upgoing stopping Streamer tubes Water Cherenkov | | | | | | 0.95 ± 0.22
0.62 ± 0.17 | ²⁷ BOLIEV
CROUCH | 81
78 | | Baksan
Case Western/UCI | | | | | - 20 ADAMSON 06 uses a measurement of 107 total neutrinos compared to an expected rate of 127 \pm 13 without oscillations. - AMBROSIO 01 result is based on the upward through-going muon tracks with $E_{\mu}>1$ GeV. The data came from three different detector configurations, but the statistics is largely
dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux. - ²² AMBROSIO 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle. - 23 AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle. - 24 AMBROSIO 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2\!2\theta{=}1.0$ and $\Delta(m^2)\sim~$ a few times $10^{-3}~\rm eV^2$. However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis. - 25 CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst). - 26 AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho=$ (measured number of ν_{e} 's)/(measured number of ν_{μ} 's). They report $\rho(\text{measured}){=}\rho(\text{expected})=0.96^{+0.32}_{-0.28}.$ - ²⁷ From this data BOLIEV 81 obtain the limit $\Delta(m^2) \leq 6 \times 10^{-3} \text{ eV}^2$ for maximal mixing, $\nu_{\mu} \not\rightarrow \nu_{\mu}$ type oscillation. ### $R(\mu/total) = (Measured Ratio \mu/total) / (Expected Ratio \mu/total)$ <u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $$1.1^{+0.07}_{-0.12} \pm 0.11$$ 28 CLARK 97 IMB multi-GeV # $N_{ m up}(\mu)/N_{ m down}(\mu)$. ALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • $$0.551 ^{+0.035}_{-0.033} \pm 0.004$$ 29 ASHIE 05 SKAM multi-GeV ### $N_{\rm up}(e)/N_{\rm down}(e)$ • • We do not use the following data for averages, fits, limits, etc. • • • $0.961^{+0.086}_{-0.079}\pm0.016$ 30 ASHIE 05 SKAM multi-GeV ²⁸ CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV. ²⁹ ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring μ -like events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as μ -like. Upward-going events are those with $-1 < \cos(\text{zenith angle}) < -0.2$ and downward-going events are those with $0.2 < \cos(\text{zenith angle}) < 1$. The μ -like up-down ratio for the multi-GeV data deviates from 1 (the expectation for no atmospheric ν_{μ} oscillations) by more than 12 standard deviations. 30 ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos(\text{zenith angle}) < -0.2$ and downward-going events are those with 0.2 $<\cos(\text{zenith angle})<1$. The e-like up-down ratio for the multi-GeV data is consistent with 1 (the expectation for no atmospheric ν_{ρ} oscillations). ## R(up/down; μ) = (Measured up/down; μ) / (Expected up/down; μ) DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. $0.62^{\color{red}+0.19}_{-0.14}\!\pm\!0.02$ ³¹ ADAMSON 06 MINS atmospheric ν with far detector # $R(\mu^+/\mu^-) = (Measured N(\mu^+)/N(\mu^-)) / (Expected N(\mu^+)/N(\mu^-))$ DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. $1.39 ^{\,+\, 0.35 \,+\, 0.08}_{\,-\, 0.46 \,-\, 0.14}$ 32 ADAMSON MINS Upward and horizontal μ with far detector $0.96^{+0.38}_{-0.27}\pm0.15$ 33 ADAMSON 06 atmospheric ν with far detector MINS ³² ADAMSON 07 result is obtained with the MINOS far detector in 854.24 live days, based on neutrino-induced upward-going and horizontal muons. This result is consistent with CPT conservation. 33 ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr, based on contained events. The expected ratio is calculated by assuming the same oscillation parameters for neutrinos and antineutrinos. #### - Solar neutrinos - Solar neutrinos are produced by thermonuclear fusion reactions in the Sun. Radiochemical experiments measure particular combinations of fluxes from various neutrino-producing reactions, whereas water-Cherenkov experiments mainly measure a flux of neutrinos from decay of ⁸B. Solar neutrino fluxes are composed of all active neutrino species, ν_{e} , ν_{μ} , and ν_{τ} . In addition, some other mechanisms may cause antineutrino components in solar neutrino fluxes. Each measurement method is sensitive to a particular component or a combination of components of solar neutrino fluxes. For details, see Section 13.4 of Reviews, Tables, and Plots. ### ν_e Capture Rates from Radiochemical Experiments 1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second. VALUE (SNU) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $65.4 \begin{array}{l} +3.1 \\ -3.0 \end{array} \begin{array}{l} +2.6 \\ -2.8 \end{array}$ 34 ABDURASHI... 09 SAGE 71 Ga ightarrow 71 Ge $\mathsf{GNO} \quad ^{71}\mathsf{Ga} \rightarrow \ ^{71}\mathsf{Ge}$ 62.9 $^{+5.5}_{-5.3}$ ± 2.5 35 ALTMANN ³⁶ ALTMANN 69.3 ± 4.1 ± 3.6 GNO GNO + GALX combined 05 77.5 $\pm 6.2 \begin{array}{c} +4.3 \\ -4.7 \end{array}$ ³⁷ HAMPEL $\mathsf{GALX} \quad ^{71}\mathsf{Ga} \rightarrow \ ^{71}\mathsf{Ge}$ 99 98 HOME $^{37}CI \rightarrow ^{37}Ar$ ³⁸ CLEVELAND $2.56 \pm 0.16 \pm 0.16$ HTTP://PDG.LBL.GOV Page 5 $^{^{}m 31}$ ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr. The expected ratio is calculated with no neutrino oscillation. - 34 ABDURASHITOV 09 reports a combined analysis of 168 extractions of the SAGE solar neutrino experiment during the period January 1990 through December 2007, and updates the ABDURASHITOV 02 result. The data are consistent with the assumption that the solar neutrino production rate is constant in time. Note that a $\sim 15\%$ systematic uncertainty in the overall normalization may be added to the ABDURASHITOV 09 result, because calibration experiments for gallium solar neutrino measurements using intense ^{51}Cr (twice by GALLEX and once by SAGE) and ^{37}Ar (by SAGE) result in an average ratio of 0.87 \pm 0.05 of the observed to calculated rates. - ³⁵ ALTMANN 05 reports the complete result from the GNO solar neutrino experiment (GNO I+II+III), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 9 April 2003. - $^{36}\,\text{Combined}$ result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I+II+III. - 37 HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is $118.4\pm17.8\pm6.6$ SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 $^{71}{\rm Ge}$ events were observed. Note that a $\sim15\%$ systematic uncertainty in the overall normalization may be added to the HAMPEL 99 result, because calibration experiments for gallium solar neutrino measurements using intense $^{51}{\rm Cr}$ (twice by GALLEX and once by SAGE) and $^{37}{\rm Ar}$ (by SAGE) result in an average ratio of 0.87 ± 0.05 of the observed to calculated rates. - ³⁸ CLEVELAND 98 is a detailed report of the ³⁷Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result. # $\phi_{\it ES}$ (8B) ^8B solar-neutrino flux measured via $\nu\,e$ elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_μ , ν_τ due to the cross-section difference, $\sigma(\nu_{\,\mu,\tau}\,e)\sim 0.16\sigma(\nu_e\,e)$. If the ^8B solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_e . | $VALUE
(10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|-----------------------|---------|------------|---| | • • • We do not use t | he following data fo | or aver | ages, fits | s, limits, etc. • • • | | $1.77 {+0.24 +0.09\atop -0.21 -0.10}$ | ³⁹ AHARMIM | 80 | SNO | Phase III | | $2.38\!\pm\!0.05\!+\!0.16\\-0.15$ | ⁴⁰ CRAVENS | 80 | SKAM | average flux | | $2.35\!\pm\!0.02\!\pm\!0.08$ | ⁴¹ HOSAKA | 06 | SKAM | average flux | | $2.35 \pm 0.22 \pm 0.15$ | ⁴² AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape not con-
strained | | $2.34\!\pm\!0.23 {}^{+0.15}_{-0.14}$ | ⁴² AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape constrained | | $2.39^{+0.24}_{-0.23}{\pm}0.12$ | ⁴³ AHMAD | 02 | SNO | average flux | | $2.39 \pm 0.34 {+0.16 \atop -0.14}$ | ⁴⁴ AHMAD | 01 | SNO | average flux | | $2.80\!\pm\!0.19\!\pm\!0.33$ | ⁴⁵ FUKUDA | 96 | KAMI | average flux | | 2.70 ± 0.27 | ⁴⁵ FUKUDA | 96 | KAMI | day flux | | $2.87^{igoplus 0.27}_{igoplus 0.26}$ | ⁴⁵ FUKUDA | 96 | KAMI | night flux | - ³⁹ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape. - ⁴⁰ CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the average flux is 7 MeV. - ⁴¹ HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV). - ⁴² AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The *CC*, *ES*, and *NC* events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. - with AHMAD 02 results. 43 AHMAD 02 reports the 8 B solar-neutrino flux measured via $\nu\,e$ elastic scattering above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results. - ⁴⁴ AHMAD 01 reports the 8 B solar-neutrino flux measured via $\nu \, e$ elastic scattering above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001. - 45 FUKUDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $\rm E_e>9.3~MeV$ (first 449 days), >7.5~MeV (middle 794 days), and >7.0~MeV (last 836 days). These results update the HIRATA 90 result for the average $^8\rm B$ solar-neutrino flux and HIRATA 91 result for the day-night variation in the $^8\rm B$ solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found. # ϕ_{CC} (8B) ⁸B solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to ν_a . | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|-----------------------|----------|---------|---| | • • • We do not use the following | ng data for average | s, fits, | limits, | etc. • • • | | $1.67 {+ 0.05 + 0.07 \atop - 0.04 - 0.08}$ | ⁴⁶ AHARMIM | 80 | SNO | Phase III | | $1.68 \pm 0.06 {+0.08 \atop -0.09}$ | ⁴⁷ AHARMIM | | SNO | Salty D ₂ O; ⁸ B shape | | $1.72 \pm 0.05 \pm 0.11$ | ⁴⁷ AHARMIM | 05A | SNO | not const.
Salty D ₂ O; ⁸ B shape
constrained | | $1.76^{igoplus 0.06}_{-0.05}\!\pm\!0.09$ | ⁴⁸ AHMAD | 02 | SNO | average flux | | $1.75 \pm 0.07 ^{+0.12}_{-0.11} \pm 0.05$ | ⁴⁹ AHMAD | 01 | SNO | average flux | $^{ m 46}$ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. 48 AHMAD 02 reports the SNO result of the ⁸B solar-neutrino flux measured with chargedcurrent reaction on deuterium, $\nu_e d \to ppe^-$, above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results. The complete description of the SNO Phase I data set is given in AHARMIM 07. ⁴⁹ AHMAD 01 reports the first SNO result of the ⁸B solar-neutrino flux measured with the charged-current reaction on deuterium, $\nu_e d \to ppe^-$, above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001. ϕ_{NC} (8B) 8B solar neutrino flux measured with neutral-current reaction, which is equally sensitive to ν_e , ν_u , and ν_τ . | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|-----------------------|--------|-----------|--| | • • • We do not use th | e following data fo | r aver | ages, fit | s, limits, etc. • • • | | $5.54 ^{+ 0.33 + 0.36}_{- 0.31 - 0.34}$ | ⁵⁰ AHARMIM | 08 | SNO | Phase III, prop. $counter + PMT$ | | $4.94 \pm 0.21 {}^{+ 0.38}_{- 0.34}$ | ⁵¹ AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape not const. | | $4.81\!\pm\!0.19 \!+\!0.28 \\ -0.27$ | ⁵¹ AHARMIM | 05A | SNO | Salty D ₂ O; ⁸ B shape constrained | | $5.09 ^{+ 0.44}_{- 0.43} ^{+ 0.46}_{- 0.43}$ | ⁵² AHMAD | 02 | SNO | average flux; ⁸ B shape const. | | $6.42\!\pm\!1.57{+0.55\atop -0.58}$ | ⁵² AHMAD | 02 | SNO | average flux; ⁸ B shape not const. | - $^{50}\,\mathrm{AHARMIM}$ 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B - 51 AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. - 52 AHMAD 02 reports the first SNO result of the ⁸B solar-neutrino flux measured with the neutral-current reaction on deuterium, $\nu_\ell d \to n p \nu_\ell$, above the neutral-current reaction threshold of 2.2 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001. The complete description of the SNO Phase I data set is given in AHARMIM 07. # $\phi_{ u_{\mu}+ u_{ au}}$ (8B) Nonelectron-flavor active neutrino component (ν_{μ} and $\nu_{ au}$) in the $^{8}{\rm B}$ solar-neutrino flux | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |--|-----------------------|--------|------------|---| | • • • We do not use the | following data for | averag | ges, fits, | limits, etc. • • • | | $3.26 \pm 0.25 {+0.40 \atop -0.35}$ | ⁵³ AHARMIM | 05A | SNO | From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ;
⁸ B shape not const. | | $3.09 \pm 0.22 ^{+0.30}_{-0.27}$ | ⁵³ AHARMIM | 05A | SNO | From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ; 8B shape constrained | | $3.41 \pm 0.45 {+0.48 \atop -0.45}$ | ⁵⁴ AHMAD | 02 | SNO | From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} | | 3.69 ± 1.13 | ⁵⁵ AHMAD | 01 | | Derived from SNO+SuperKam, water Cherenkov | ⁵³ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B
energy spectrum was added for comparison with AHMAD 02 results. 54 AHMAD 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the 8 B solar-neutrino flux, by combining the charged-current result, the $\nu\,e$ elastic-scattering result and the neutral-current result. The complete description of the SNO Phase I data set is given in AHARMIM 07. ⁵⁵ AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ⁸B solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande ν e elastic-scattering result (FUKUDA 01). ### Total Flux of Active ⁸B Solar Neutrinos Total flux of active neutrinos (ν_e , ν_u , and ν_{τ}). | $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ | DOCUMENT ID | | TECN | COMMENT | |---|-----------------------|--------|------------|---| | • • • We do not use t | the following data f | or ave | erages, fi | ts, limits, etc. • • • | | $5.54 ^{igoplus 0.33}_{-0.31} \! + \! 0.36_{-0.34}$ | ⁵⁶ AHARMIM | 80 | SNO | ϕ_{NC} in Phase III | | $4.94\!\pm\!0.21\!+\!0.38 \\ -0.34$ | ⁵⁷ AHARMIM | 05A | SNO | From ϕ_{NC} ; ⁸ B shape not const. | | $4.81\!\pm\!0.19 {}^{+0.28}_{-0.27}$ | ⁵⁷ AHARMIM | 05A | SNO | From ϕ_{NC} ; ⁸ B shape constrained | | $5.09^{+0.44+0.46}_{-0.43-0.43}$ | ⁵⁸ AHMAD | 02 | SNO | Direct measurement from $\phi_{\it NC}$ | | 5.44 ± 0.99 | ⁵⁹ AHMAD | 01 | | Derived from SNO+SuperKam, water Cherenkov | ⁵⁶ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape. ⁵⁷ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the $^8\mathrm{B}$ energy spectrum was not constrained. In the other method, the constraint of an undistorted $^8\mathrm{B}$ energy spectrum was added for comparison with AHMAD 02 results. AHMAD 02 determined the total flux of active 8 B solar neutrinos by directly measuring the neutral-current reaction, $\nu_\ell \, d \to n p \nu_\ell$, which is equally sensitive to ν_e , ν_μ , and ν_τ . The complete description of the SNO Phase I data set is given in AHARMIM 07. 59 AHMAD 01 deduced the total flux of active 8 B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande $\nu\,e$ elastic-scattering result (FUKUDA 01). ### Day-Night Asymmetry (8B) $$A = (\phi_{\mathsf{night}} - \phi_{\mathsf{day}}) / \phi_{\mathsf{average}}$$ | VALUE | | DOCUMENT ID | | TECN | COMMENT | |--------------|-----------------------------------|-----------------------|-------------|--------------|---| | • • • We | do not use the f | following data for a | verage | es, fits, li | imits, etc. • • • | | $0.063\pm$ | 0.042 ± 0.037 | ⁶⁰ CRAVENS | 80 | SKAM | Based on ϕ_{ES} | | $0.021\pm$ | $0.020 ^{+ 0.012}_{- 0.013}$ | ⁶¹ HOSAKA | 06 | SKAM | Based on ϕ_{ES} | | $0.017\pm$ | $0.016^{+0.012}_{-0.013}$ | ⁶² HOSAKA | 06 | SKAM | Fitted in the LMA region | | $-0.056\pm$ | 0.074 ± 0.053 | ⁶³ AHARMIM | 05A | SNO | From salty SNO ϕ_{CC} | | $-0.037 \pm$ | 0.063 ± 0.032 | ⁶³ AHARMIM | 05A | SNO | From salty SNO ϕ_{CC} ; const. of no ϕ_{NC} asymmetry | | 0.14 \pm | $0.063^{igoplus 0.015}_{-0.014}$ | ⁶⁴ AHMAD | 02 B | SNO | Derived from SNO $\phi_{\it CC}$ | | $0.07~\pm$ | $0.049 ^{igoplus 0.013}_{-0.012}$ | ⁶⁵ AHMAD | 02 B | SNO | Const. of no $\phi_{\mbox{\it NC}}$ asymmetry | ⁶⁰ CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December 2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from 40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold for the day and night fluxes is 7.5 MeV. 61 HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV). 62 This result with reduced statistical uncertainty is obtained by assuming two-neutrino oscillations within the LMA (large mixing angle) region and by fitting the time variation of the solar neutrino flux measured via $\nu_{\rm e}$ elastic scattering to the variations expected from neutrino oscillations. For details, see SMY 04. There is an additional small systematic error of ± 0.0004 coming from uncertainty of oscillation parameters. ⁶³ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, with 176.5 days of the live time recorded during the day and 214.9 days during the night. This result is obtained with the spectral distribution of the CC events not constrained to the ⁸B shape. 64 AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07. 65 AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and $\nu\,e$ elastic scattering, with the total flux of active neutrinos constrained to have no asymmetry. The data were recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The complete description of the SNO Phase I data set is given in AHARMIM 07. # ϕ_{ES} (⁷Be) $^\prime$ Be solar-neutrino flux measured via u_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_{\mu},~\nu_{ au}$ due to the crosssection difference, $\sigma(\nu_{\mu,\tau} \, e) \sim$ 0.2 $\sigma(\nu_e \, e)$. If the 7 Be solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.2 times that of $\nu_{\mathbf{A}}$. $VALUE (10^9 \text{ cm}^{-2} \text{ s}^{-1})$ • • • We do not use the following data for averages, fits, limits, etc. • • ⁶⁶ ARPESELLA 3.36 ± 0.34 66 ARPESELLA 08A reports the 0.862 MeV 7 Be solar-neutrino flux measured via u elastic scattering. The data correspond to 192 live days with BOREXINO (41.3 ton yr fiducial exposure) between May 16, 2007 and April 12, 2008. The measured flux is calculated from the ratio of the measured rate to the rate expected from the non-oscillated solar uin the high metallicity SSM PENA-GARAY 09. ### $\phi_{CC}(pp)$ $p\bar{p}$ solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to ν_{ρ} . $VALUE (10^{10} \text{ cm}^{-2} \text{ s}^{-1})$ DOCUMENT ID ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet 3.38 ± 0.47 67 ABDURASHI... 09 FIT 67 ABDURASHITOV 09 reports the pp solar-neutrino flux derived from the Ga solar neutrino capture rate by subtracting contributions from ⁸B, ⁷Be, pep and CNO solar neutrino fluxes determined by other solar neutrino experiments as well as neutrino oscillation parameters determined from available world neutrino oscillation data. ### ϕ_{ES} (hep) hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the crosssection difference, $\sigma(\nu_{\mu,\tau}\,e)\sim 0.16\sigma(\nu_e\,e)$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.16 times of $VALUE (10^3 \text{ cm}^{-2} \text{s}^{-1}) \qquad CL\%$ • • • We do not use the following data for averages, fits, limits, etc. • ⁶⁸ HOSAKA <73 $\phi_{\overline{\nu}_e}$ (8B) Searches are made for electron antineutrino flux from the Sun. Flux limits listed here with an assumption that solar $\overline{\nu}_{\rho}$ s follow an unoscillated ⁸B neutrino spectrum. | VALUE (%) | CL% | DOCUMENT ID | | TECN | COMMENT | |---------------------------------|-------------|-------------------|---------|-----------|---| | ullet $ullet$ We do not use the | following o | lata for averages | , fits, | limits, e | etc. • • • | | <1.9 | 90 69 | BALATA | 06 | CNTR | $1.8 < E_{\overline{ u}_{p}} < 20.0 \; MeV$ | | < 0.72 | 90 | AHARMIM | 04 | SNO | $4.0 < E_{\overline{\mathcal{V}}_{P}}^{C} < 14.8 \; MeV$ | | < 0.025 | 90 | EGUCHI | 04 | KLND | $8.3 < E_{\overline{\nu}_e} < 14.8 \text{ MeV}$ | | < 0.7 | 90 | GANDO | 03 | SKAM | $8.0 < E_{\overline{\nu}_e} < 20.0 \text{ MeV}$ | | <1.7 | 90 | AGLIETTA | 96 | LSD | $7 < E_{\overline{\mathcal{V}}_{P}} \overset{\circ}{<} 17 \; MeV$ | HTTP://PDG.LBL.GOV Page 11 $^{^{68}\, \}text{HOSAKA}$ 06 result is obtained from the recoil electron energy window of 18–21 MeV, and updates FUKUDA 01 result. ⁶⁹ BALATA 06 obtained this result from the search for $\overline{\nu}_e$ interactions with Counting Test Facility (the prototype of the Borexino detector). #### (B) Three-neutrino mixing parameters ## A REVIEW GOES HERE - Check our WWW List of Reviews | $\sin^2(2\theta_{12})$ | | | | | |--------------------------------------|-------------------------|-------------
-------------|-----------------------------| | VALUE | DOCUMENT ID | DOCUMENT ID | | COMMENT | | 0.87 ± 0.03 | ⁷⁰ AHARMIM | 80 | FIT | $KamLAND + global \; solar$ | | • • • We do not use the | ne following data for a | verage | es, fits, l | imits, etc. • • • | | 0.92 ± 0.05 | ⁷¹ ABE | 08A | FIT | KamLAND | | 0.87 ± 0.04 | ⁷² ABE | 08A | FIT | $KamLAND + global \ fit$ | | $0.85 ^{+0.04}_{-0.06}$ | ⁷³ HOSAKA | 06 | FIT | $KamLAND + global \; solar$ | | $0.85 ^{igoplus 0.06}_{-0.05}$ | ⁷⁴ HOSAKA | 06 | FIT | SKAM + SNO + KamLAND | | $0.86^{+0.05}_{-0.07}$ | ⁷⁵ HOSAKA | 06 | FIT | SKAM+SNO | | $0.86^{+0.03}_{-0.04}$ | ⁷⁶ AHARMIM | 05A | FIT | $KamLAND + global \; solar$ | | 0.75-0.95 | 77 AHARMIM | 05A | FIT | global solar | | 0.82 ± 0.05 | ⁷⁸ ARAKI | 05 | FIT | $KamLAND + global \ solar$ | | 0.82 ± 0.04 | ⁷⁹ AHMED | 04A | FIT | KamLAND + global solar | | 0.71-0.93 | ⁸⁰ AHMED | 04A | FIT | global solar | | $0.85 ^{igoplus 0.05}_{-0.07}$ | ⁸¹ SMY | 04 | FIT | $KamLAND + global \; solar$ | | $0.83^{igoplus 0.06}_{igoplus 0.08}$ | ⁸² SMY | 04 | FIT | global solar | | $0.87 ^{+ 0.07}_{- 0.08}$ | ⁸³ SMY | 04 | FIT | SKAM + SNO | | 0.62-0.88 | ⁸⁴ AHMAD | 02 B | FIT | global solar | | 0.62-0.95 | ⁸⁵ FUKUDA | 02 | FIT | global solar | $^{^{70}}$ The result given by AHARMIM 08 is $\theta=(34.4^{+1.3}_{-1.2})^{\circ}.$ This result is obtained by a two-neutrino oscillation analysis using solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). CPT invariance is assumed. ⁷¹ ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2\theta_{12}$, using KamLAND data only. $^{^{72}}$ ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. *CPT* invariance is assumed. $^{^{73}}$ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using SK ν_e data, CC data from other solar neutrino experiments, and KamLAND data (ARAKI 05). CPT __invariance is assumed. ⁷⁴ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. CPT invariance is assumed. ⁷⁵ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. $^{^{76}}$ The result given by AHARMIM 05A is $\theta=(33.9\pm1.6)^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using SNO pure deuteron and salt phase data, SK ν_e data, CI and Ga CC data, and KamLAND data (ARAKI 05). *CPT* invariance is assumed. AHARMIM 05A also quotes $\theta=(33.9^{+2.4}_{-2.2})^{\circ}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2 2\theta=0.86^{+0.05}_{-0.06}$. - 77 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\tan^2\!\theta = 0.45 {+0.09 \atop -0.08}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2\!2$ $\theta = 0.86 {+0.05 \atop -0.07}$. - 78 ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. CPT invariance is assumed. The 1σ error shown here is translated from the number provided by the KamLAND collaboration, $\tan^2\theta = 0.40^{+0.07}_{-0.05}$. The corresponding number quoted in ARAKI 05 is $\tan^2\theta = 0.40^{+0.10}_{-0.07}$ ($\sin^2\theta = 0.82 \pm 0.07$), which envelops the 68% CL two-dimensional region. - ⁷⁹ The result given by AHMED 04A is $\theta=(32.5^{+1.7}_{-1.6})^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). *CPT* invariance is assumed. AHMED 04A also quotes $\theta=(32.5^{+2.4}_{-2.3})^{\circ}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2 2 \theta = 0.82 \pm 0.06$. - ⁸⁰ AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2) = 6.5 \times 10^{-5} \text{ eV}^2$, $\tan^2\theta = 0.40 \text{ (sin}^2 2 \theta = 0.82)$. - ⁸¹ The result given by SMY 04 is $\tan^2\theta = 0.44 \pm 0.08$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). *CPT* invariance is assumed. - 82 SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04. - 83 SMY 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04. - ⁸⁴AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2) = 5.0 \times 10^{-5} \text{ eV}^2$ and $\tan\theta = 0.34 \ (\sin^2 2\theta = 0.76)$. - ⁸⁵ FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2) = 6.9 \times 10^{-5} \text{ eV}^2$ and $\tan^2\theta = 0.38$ ($\sin^2\theta = 0.80$). # Δm_{21}^2 | $VALUE (10^{-5} \text{ eV}^2)$ | DOCUMENT ID | | TECN | COMMENT | |---|---|-----------------|-------------------|--| | $7.59^{+0.19}_{-0.21}$ | ⁸⁶ AHARMIM | 08 | FIT | $KamLAND + global \; solar$ | | • • • We do not use | e the following data | for a | verages, | fits, limits, etc. \bullet \bullet | | $7.58^{+0.14}_{-0.13}\pm0.15$ | ⁸⁷ ABE | 08A | FIT | KamLAND | | 7.59 ± 0.21
8.0 ± 0.3
8.0 ± 0.3 | ⁸⁸ ABE
⁸⁹ HOSAKA
⁹⁰ HOSAKA | 08A
06
06 | FIT
FIT
FIT | ${\sf KamLAND} + {\sf global\ solar}$ ${\sf KamLAND} + {\sf global\ solar}$ ${\sf SKAM+SNO+KamLAND}$ | | $6.3 \begin{array}{c} +3.7 \\ -1.5 \end{array}$ | ⁹¹ HOSAKA | 06 | FIT | SKAM+SNO | | 5–12 | ⁹² HOSAKA | 06 | FIT | SKAM day/night in the LMA region | | $8.0 \begin{array}{c} +0.4 \\ -0.3 \end{array}$ | ⁹³ AHARMIM | 05A | FIT | $KamLAND + global \; solar \; LMA$ | | HTTP://PDG.LBL.GOV | | Page | e 13 | Created: 7/30/2010 16:47 | | 3.3-14.4 | ⁹⁴ AHARMIM | 05A | FIT | global solar | |---|---|-----------|------------|------------------------------| | $7.9 \begin{array}{c} +0.4 \\ -0.3 \end{array}$ | ⁹⁵ ARAKI | 05 | FIT | $KamLAND + global \; solar$ | | $7.1 \begin{array}{c} +1.0 \\ -0.3 \end{array}$ | ⁹⁶ AHMED | 04A | FIT | $KamLAND + global \; solar$ | | 3.2-13.7 | ⁹⁷ AHMED | 04A | FIT | global solar | | $7.1 \begin{array}{c} +0.6 \\ -0.5 \end{array}$ | ⁹⁸ SMY | 04 | FIT | $KamLAND + global \; solar$ | | $6.0 \begin{array}{c} +1.7 \\ -1.6 \end{array}$ | ⁹⁹ SMY | 04 | FIT | global solar | | $6.0 \begin{array}{c} +2.5 \\ -1.6 \end{array}$ | ¹⁰⁰ SMY | 04 | FIT | SKAM + SNO | | 2.8–12.0
3.2–19.1 | ¹⁰¹ AHMAD
¹⁰² FUKUDA | 02в
02 | FIT
FIT | global solar
global solar | - ⁸⁶ AHARMIM 08 obtained this result by a two-neutrino oscillation analysis using all solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). *CPT* invariance is assumed. - ⁸⁷ ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2 \theta_{12}$, using KamLAND data only. - ⁸⁸ ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. *CPT* invariance is assumed. - 89 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). *CPT* invariance is assumed. - 90 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. CPT invariance is assumed. - 91 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. - 92 HOSAKA 06 obtained this result from the consistency between the observed and expected day-night flux asymmetry amplitude. The listed 68% CL range is derived from the 1σ boundary of the amplitude fit to the data. Oscillation parameters are constrained to be in the LMA region. The mixing angle is fixed at $\tan^2\theta=0.44$ because the fit depends only very weekly on it. - 93 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (ARAKI 05). *CPT* invariance is assumed. AHARMIM 05A also quotes $\Delta(m^2)=(8.0^{+0.6}_{-0.4})\times10^{-5}~\text{eV}^2$ as the error enveloping the 68% CL two-dimensional region. - 94 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the
parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\Delta(m^2)=(6.5^{+4.4}_{-2.3})\times 10^{-5}~\text{eV}^2$ as the error enveloping the 68% CL two-dimensional region. - 95 ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. *CPT* invariance is assumed. The 1σ error shown here is provided by the KamLAND collaboration. The error quoted in ARAKI 05, $\Delta(m^2)=(7.9^{+0.6}_{-0.5})\times 10^{-5}$, envelops the 68% CL two-dimensional region. - 96 AHMED 04A obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). CPT invariance is assumed. AHMED 04A also quotes $\Delta(m^2)=(7.1^{+1.2}_{-0.6})\times 10^{-5}~{\rm eV}^2$ as the error enveloping the 68% CL two-dimensional region. - 97 AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% - CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2)=6.5\times 10^{-5}~\text{eV}^2$, $\tan^2\theta=0.40~(\sin^22~\theta=0.82)$. - 98 SMY 04 obtained this result by a two-neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). *CPT* invariance is assumed. - $^{99}\,\text{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04. - $^{100}\,\text{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04. - 101 AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2)=5.0\times 10^{-5}~\text{eV}^2$ and $\tan\theta=0.34~(\sin^2\!2~\theta=0.76).$ - ¹⁰² FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2)$ = 6.9×10^{-5} eV² and $\tan^2\theta = 0.38$ ($\sin^2\theta = 0.80$). ### $\sin^2(2\theta_{23})$ The ranges below correspond to the projection onto the $\sin^2(2\theta_{23})$ axis of the 90% CL contours in the $\sin^2(2\theta_{23}) - \Delta m_{32}^2$ plane presented by the authors. | VALUE | DOCUMENT ID | | TECN | COMMENT | |-------------------------|---------------------------|-------------|---------|---| | >0.92 | ¹⁰³ ASHIE | 05 | SKAM | Super-Kamiokande | | ullet $ullet$ We do not | use the following da | ta for | average | s, fits, limits, etc. • • • | | >0.85 | ADAMSON | 08A | MINS | MINOS | | >0.2 | 104 ADAMSON | 06 | MINS | atmospheric $ u$ with far detector | | >0.59 | ¹⁰⁵ AHN | 06A | K2K | KEK to Super-K | | >0.91 | ¹⁰⁶ HOSAKA | 06A | SKAM | 3ν oscillation; normal mass hierarchy | | >0.86 | ¹⁰⁷ HOSAKA | 06A | SKAM | 3ν oscillation; inverted mass hierarchy | | >0.7 | ¹⁰⁸ MICHAEL | 06 | MINS | MINOS | | >0.58 | ¹⁰⁹ ALIU | 05 | K2K | KEK to Super-K | | >0.6 | ¹¹⁰ ALLISON | 05 | SOU2 | | | >0.80 | ¹¹¹ AMBROSIO | 04 | MCRO | MACRO | | >0.90 | ¹¹² ASHIE | 04 | SKAM | L/E distribution | | >0.30 | ¹¹³ AHN | 03 | K2K | KEK to Super-K | | >0.45 | ¹¹⁴ AMBROSIO | 03 | MCRO | MACRO | | >0.77 | ¹¹⁵ AMBROSIO | 03 | MCRO | MACRO | | >0.50 | ¹¹⁶ SANCHEZ | 03 | SOU2 | Soudan-2 Atmospheric | | >0.80 | ¹¹⁷ AMBROSIO | 01 | | upward μ | | >0.82 | ¹¹⁸ AMBROSIO | 01 | | upward μ | | >0.45 | ¹¹⁹ FUKUDA | 99 C | SKAM | upward μ | | >0.70 | ¹²⁰ FUKUDA | 99 D | SKAM | upward μ | | >0.30 | ¹²¹ FUKUDA | 99 D | SKAM | stop μ / through | | >0.82 | ¹²² FUKUDA | 98C | | Super-Kamiokande | | >0.30 | ¹²³ HATAKEYAMA | 498 | | Kamiokande | | >0.73 | ¹²⁴ HATAKEYAMA | 498 | KAMI | Kamiokande | | >0.65 | ¹²⁵ FUKUDA | 94 | KAMI | Kamiokande | - 103 ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period. - ¹⁰⁴ ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector. - $^{105}\,\mathrm{Supercedes}$ ALIU 05. - $^{106}\,\text{HOSAKA}$ 06A obtained this result (sin $^2\theta_{23}=0.37\text{--}0.65$) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2=0$) using the Super-Kamiokande-I atmospheric neutrino data. The normal mass hierarchy is assumed. - 107 HOSAKA 06A obtained this result (sin $^2\theta_{23}=0.37$ –0.69) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2=0$) using the Super-Kamiokande-I atmospheric neutrino data. The inverted mass hierarchy is assumed. - $^{108}\,\mathrm{MICHAEL}$ 06 best fit is for maximal mixing. See also ADAMSON 08. - ¹⁰⁹ The best fit is for maximal mixing. - ¹¹⁰ ALLISON 05 result is based upon atmospheric neutrino interactions including upward-stopping muons, with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2 = 0.0017 \text{ eV}^2$ and $\sin^2(2\theta) = 0.97$. - 111 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies < 30 GeV and > 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for maximal mixing. - 112 ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data. - ¹¹³ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. The best fit is for maximal mixing. - 114 AMBROSIO 03 obtained this result on the basis of the ratio R = N_{low}/N_{high}, where N_{low} and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. - 115 AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is to maximal mixing. - ¹¹⁶ SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is $\sin^2(2\theta) = 0.97$. - 117 AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. The best fit is for maximal mixing. - 118 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\iota\iota}>1$ GeV. See the previous footnote. - 119 FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold - of $E_{\mu} >$ 1.6 GeV, the observed flux is (1.74 \pm 0.07 \pm 0.02) \times 10⁻¹³ cm⁻²s⁻¹sr⁻¹. The best fit is $\sin^2(2\theta) = 0.95$. - 120 FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 \pm 0.04 \pm 0.02) \times 10 $^{-13}$ cm $^{-2}$ s $^{-1}$. This is compared to the expected flux of (0.73 \pm 0.16 (theoretical error)) \times 10 $^{-13}$ cm $^{-2}$ s $^{-1}$. The best fit is to maximal mixing. - 121 FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is to maximal mixing. - 122 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for maximal mixing. - 123 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94\pm0.10^{+0.07}_{-0.06})\times 10^{-13}~\rm cm^{-2}s^{-1}sr^{-1}$. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times $10^{-13}~\rm cm^{-2}s^{-1}sr^{-1}$. The best fit is for maximal mixing. - ¹²⁴ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained
events (FUKUDA 94) and upward going muon events. The best fit is $\sin^2(2\theta) = 0.95$. - 125 FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for maximal mixing. # Δm_{32}^2 The sign of Δm_{32}^2 is not known at this time. Only the absolute value is quoted below. Unless otherwise specified, the ranges below correspond to the projection onto the Δm_{32}^2 axis of the 90% CL contours in the $\sin^2(2\theta_{23}) - \Delta m_{32}^2$ plane presented by the authors. | $VALUE (10^{-3} \text{ eV}^2)$ | <u>CL%</u> | DOCUMENT ID | | TECN | COMMENT | |--------------------------------|-------------|-----------------|-------|------------|---| | 2.43±0.13 6 | 68 | ADAMSON | 08A | MINS | MINOS | | • • • We do not i | use the fol | lowing data for | avera | ges, fits, | limits, etc. • • • | | 0.07-50 | 126 | ADAMSON | 06 | MINS | atmospheric $ u$ with far detector | | 1.9-4.0 | 127,128 | AHN | 06A | K2K | KEK to Super-K | | 1.8-3.1 | | HOSAKA | 06A | SKAM | 3ν oscillation; normal mass hierarchy | | 1.8–3.7 | | HOSAKA | 06A | SKAM | 3ν oscillation; inverted mass hierarchy | | 2.2-3.8 | 131 | MICHAEL | 06 | MINS | MINOS | | 1.9-3.6 | 127 | ALIU | 05 | K2K | KEK to Super-K | | 0.3-12 | 132 | ALLISON | 05 | SOU2 | | | 1.5-3.4 | | ASHIE | 05 | SKAM | atmospheric neutrino | | 0.6-8.0 | 134 | AMBROSIO | 04 | MCRO | MACRO | | 1.9 to 3.0 | 135 | ASHIE | 04 | SKAM | L/E distribution | | 1.5-3.9 | | AHN | 03 | K2K | KEK to Super-K | | 0.25-9.0 | 137 | AMBROSIO | 03 | MCRO | MACRO | | 0.6-7.0 | 138 | AMBROSIO | 03 | MCRO | MACRO | | 0.15-15 | 139 | SANCHEZ | 03 | SOU2 | Soudan-2 Atmospheric | | 0.6–15 | 140 | AMBROSIO | 01 | MCRO | upward μ | | 1.0-6.0 | 141 | AMBROSIO | 01 | MCRO | upward μ | | 1.0-50 | 142 | FUKUDA | 99C | SKAM | upward μ | | | ¹⁴³ FUKUDA | 99 D | SKAM | upward μ | |---------|---------------------------|-------------|------|----------------------| | | ¹⁴⁴ FUKUDA | 99 D | SKAM | stop μ / through | | 0.5-6.0 | | | | Super-Kamiokande | | 0.55-50 | ¹⁴⁶ HATAKEYAMA | | | | | 4-23 | ¹⁴⁷ HATAKEYAMA | | | | | 5-25 | ¹⁴⁸ FUKUDA | 94 | KAMI | Kamiokande | $^{^{126}}$ ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector. - AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies < 30 GeV and > 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for $\Delta m^2 = 2.3 \times 10^{-3} \text{ eV}^2$. - detector. The best fit is for $\Delta m^2=2.3\times 10^{-3}~{\rm eV}^2$. 135 ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data. The best fit is for $\Delta m^2=2.4\times 10^{-3}~{\rm eV}^2$. - ¹³⁶ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. The best fit is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$. - AMBROSIO 03 obtained this result on the basis of the ratio R = N $_{low}$ /N $_{high}$, where N $_{low}$ and N $_{high}$ are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \ \text{eV}^2$. - 138 AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$. - $^{139}\,\text{SANCHEZ}$ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is for $\Delta m^2 = 5.2 \times 10^{-3} \text{ eV}^2$. - 140 AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu}~>1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December ¹²⁷ The best fit in the physical region is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$. ¹²⁸ Supercedes ALIU 05. $^{^{129}}$ HOSAKA 06A obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m^2_{21}=0$) using the Super-Kamiokande-I atmospheric neutrino data. The normal mass hierarchy is assumed. $^{^{130}\,\}text{HOSAKA}$ 06A obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m^2_{21}=0$) using the Super-Kamiokande-I atmospheric neutrino data. The inverted mass hierarchy is assumed. $^{^{131}}$ MICHAEL 06 best fit is 2.74×10^{-3} eV 2 . See also ADAMSON 08. ¹³² ALLISON 05 result is based on an atmospheric neutrino observation with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2 = 0.0017$ eV² and $\sin^2 2\theta = 0.97$. ¹³³ ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period. The best fit is for $\Delta m^2 = 2.1 \times 10^{-3} \text{ eV}^2$. - 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. - 141 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\iota\iota} > 1$ GeV. See the previous footnote. - The best fit is for $\Delta m^2=5.9\times 10^{-3}~{\rm eV}^2$. - 143 FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 \pm 0.04 \pm 0.02) \times 10⁻¹³ cm⁻²s⁻¹sr⁻¹. This is compared to the expected flux of (0.73 \pm 0.16 (theoretical error)) \times 10⁻¹³ cm⁻²s⁻¹sr⁻¹. The best fit is for $\Delta m^2 = 3.9 \times 10^{-3}$ eV². - ¹⁴⁴ FUKUDA 99D obtained this result from the zenith dependence of the upward-stopping/through-going flux ratio. The best fit is for $\Delta m^2 = 3.1 \times 10^{-3} \text{ eV}^2$. - ¹⁴⁵ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$. - HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94\pm0.10^{+0.07}_{-0.06}) \times 10^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. This is compared to the expected flux of (2.46 ± 0.54) (theoretical error)) $\times 10^{-13}$ cm $^{-2}$ s $^{-1}$ sr $^{-1}$. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3}$ eV 2 . - 147 HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is for $\Delta m^2 = 13 \times 10^{-3} \text{ eV}^2$. - ¹⁴⁸ FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for $\Delta m^2 = 16 \times 10^{-3}$ eV². ## $\sin^2(2\theta_{13})$ At present time, limits of $\sin^2(2\,\theta_{13})$ are derived from the search for the reactor $\overline{\nu}_e$ disappearance at distances corresponding to the Δm_{32}^2 value, i.e. L ~ 1 km. Alternatively, somewhat weaker limits can be obtained from the analysis of the solar neutrino data. | VALUE | CL% | DOCUMENT ID | | TECN | COMMENT | |-------------------------|-------|--------------------------|--------|----------|--| | <0.15 | 90 | ¹⁴⁹ APOLLONIO | 99 | CHOZ | Reactor Experiment | | • • • We do | o not | use the following da | ta for | averages | s, fits, limits, etc. • • • | | $0.11^{+0.11}_{-0.08}$ | 68 | ¹⁵⁰ ADAMSON | 09 | MINS | Normal mass hierarchy | | $0.18 ^{+0.15}_{-0.11}$ | 68 | ¹⁵¹ ADAMSON | 09 | MINS | Inverted mass hierarchy | | 0.06 ± 0.04 | | ¹⁵² FOGLI | 80 | FIT | Global neutrino data | | 0.08 ± 0.07 | | ¹⁵³ FOGLI | 80 | FIT | Solar + KamLAND data | | 0.05 ± 0.05 | | ¹⁵⁴ FOGLI | 80 | FIT | ${\sf Atmospheric} + {\sf LBL} + {\sf CHOOZ} \ {\sf data}$ | | < 0.48 | 90 | ¹⁵⁵ HOSAKA | 06A | SKAM | 3ν oscillation; normal mass hierarchy | | < 0.79 | 90 | ¹⁵⁶ HOSAKA | 06A | SKAM | 3ν oscillation; inverted mass hierarchy | | < 0.36 | | ¹⁵⁷ YAMAMOTO | 06 | K2K | Accelerator experiment | | < 0.48 | 90 | ¹⁵⁸ AHN | 04 | K2K | Accelerator experiment | | < 0.36 | 90 | ¹⁵⁹ BOEHM | 01 | | Palo Verde react. | | < 0.45 | 90 | ¹⁶⁰ военм | 00 | | Palo Verde react. | - ¹⁴⁹ The quoted limit is
for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the central value for ADAMSON 08. For the ADAMSON 08 1- σ low value of 2.30×10^{-3} eV², the $\sin^2 2\theta_{13}$ limit is < 0.16. See also APOLLONIO 03 for a detailed description of the experiment. - 150 The quoted limit is for $\Delta m^2_{32}=2.43\times 10^{-3}$ eV 2 , $heta_{13}=\pi/2$, and $\delta=0$. For other - values of δ , the 68% CL region spans from 0.02 to 0.26. ¹⁵¹ The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{13} = \pi/2$, and $\delta = 0$. For other values of δ , the 68% CL region spans from 0.04 to 0.34. - $^{152}\, ext{FOGLI}$ 08 obtained this result from a global analysis of all neutrino oscillation data, that is, solar + KamLAND + atmospheric + accelerator long baseline + CHOOZ. - $^{153}\mathsf{FOGLI}$ 08 obtained this result from an analysis using the solar and KamLAND neutrino oscillation data. - 154 FOGLI 08 obtained this result from an analysis using the atmospheric, accelerator long baseline, and CHOOZ neutrino oscillation data. - $^{155}\,\mathrm{HOSAKA}$ 06A obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2 = 0$) using the Super-Kamiokande-I atmospheric neutrino data. The normal mass hierarchy is assumed. - $156\,\mathrm{HOSAKA}$ 06A obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2 = 0$) using the Super-Kamiokande-I atmospheric neutrino data. The inverted mass hierarchy is assumed. - 157 YAMAMOTO 06 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assumes 2 $\sin^{2}(2\theta_{\mu\,e}) = \sin^{2}(2\theta_{13})$. The quoted limit is for $\Delta m_{32}^{2} = 1.9 \times 10^{-3} \text{ eV}^{2}$. That value of Δm_{32}^{2} is the one- σ low value for AHN 06A. For the AHN 06A best fit value of 2.8×10^{-3} eV², the $\sin^2(2\theta_{13})$ limit is < 0.26. Supersedes AHN 04. - ¹⁵⁸ AHN 04 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assuming 2 sin²(2 $\theta_{\mu_{e}}$) = sin²(2 θ_{13}), a limit on $\sin^2(2~\theta_{\mu_e})$ is converted to a limit on $\sin^2(2~\theta_{13})$. The quoted limit is for Δm_{32}^2 $=1.9 imes10^{-3}~{ m eV}^2$. That value of Δm_{32}^2 is the one- σ low value for ALIU 05. For the ALIU 05 best fit value of 2.8 \times 10 $^{-3}$ eV 2 , the sin $^{2}(2~\theta_{13})$ limit is < 0.30. - 159 The quoted limit is for $\Delta m^2_{32}=1.9 imes 10^{-3}$ eV 2 . That value of Δm^2_{32} is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^2$, the $\sin^2 2\theta_{13}$ limit is < 0.19. In this range, the θ_{13} limit is larger for lower values of Δm_{32}^2 , and smaller for higher values of Δm_{32}^{\angle} . - 160 The quoted limit is for $\Delta m^2_{32}=1.9\times 10^{-3}$ eV 2 . That value of Δm^2_{32} is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^{2}$, the $\sin^2 2 \theta_{13}$ limit is < 0.23. #### (C) Other neutrino mixing results The LSND collaboration reported in AGUILAR 01 a signal which is consistent with $\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm_{21}^2 . This does not appear to be consistent with the interpretation of other neutrino data. The MiniBooNE experiment, reported in AGUILAR-AREVALO 07, does a two-neutrino analysis which, assuming CPT conservation, rules out AGUILAR 01. The following listings include results which might be relevant towards understanding these observations. They include searches for $\nu_{\mu} \to \ \nu_{e}, \overline{\nu}_{\mu} \to \ \overline{\nu}_{e}$, sterile neutrino oscillations, and CPT violation. # $\Delta(m^2)$ for $\sin^2(2\theta) = 1$ $(\nu_{\mu} \rightarrow \nu_{e})$ | VALUE (e | $\sqrt{2}$) | CL% | DOCUMENT ID | | TECN | COMMENT | |----------|------------------|-------------|------------------------|---------|-----------|---| | • • • W | e do not use the | e following | data for averages | , fits, | limits, e | tc. • • • | | < 0.034 | | 90 | AGUILAR-AR | .07 | МВОО | MiniBooNE | | < 0.0008 | 3 | 90 | AHN | 04 | K2K | Water Cherenkov | | < 0.4 | | 90 | ASTIER | 03 | NOMD | CERN SPS | | < 2.4 | | 90 | AVVAKUMOV | 02 | NTEV | NUTEV FNAL | | | | 16 | ¹ AGUILAR | 01 | LSND | $ u\mu ightarrow \nu_{ m e} { m osc.prob}.$ | | 0.03 | to 0.3 | 95 16 | ² ATHANASSO | .98 | | $ u_{\mu} ightarrow u_{e}$ | | < 2.3 | | 90 16 | ³ LOVERRE | 96 | | CHARM/CDHS | | < 0.9 | | 90 | VILAIN | 94C | CHM2 | CERN SPS | | < 0.09 | | 90 | ANGELINI | 86 | HLBC | BEBC CERN PS | - 161 AGUILAR 01 is the final analysis of the LSND full data set. Search is made for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^{+} decay in flight by observing beam-on electron events from ν_e C \rightarrow $e^- X$. Present analysis results in 8.1 \pm 12.2 \pm 1.7 excess events in the 60< E_e < 200 MeV energy range, corresponding to oscillation probability of 0.10 \pm 0.16 \pm 0.24%. This is a simple constant of the contract $0.10\pm0.16\pm0.04\%$. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98. - 162 ATHANASSOPOULOS 98 is a search for the u_{μ} ightarrow u_{e} oscillations using u_{μ} from π^{+} decay in flight. The 40 observed beam-on electron events are consistent with $\nu_{\rm P}\,{\rm C}$ e^- X; the expected background is 21.9 ± 2.1 . Authors interpret this excess as evidence for an oscillation signal corresponding to oscillations with probability $(0.26 \pm 0.10 \pm 0.05)\%$. Although the significance is only 2.3σ , this measurement is an important and consistent cross check of ATHANASSOPOULOS 96 who reported evidence for $\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$ oscillations from μ^+ decay at rest. See also ATHANASSOPOULOS 98B. - ¹⁶³LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986. # $\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(\nu_{\mu} \rightarrow \nu_{e})$ | VAL | UE (units 10^{-3}) | CL% | | DOCUMENT ID | | TECN | COMMENT | |-----|-----------------------|----------|------|------------------|---------|-----------|---| | • • | • We do not use the | followin | ng d | ata for averages | , fits, | limits, e | tc. • • • | | < | 1.8 | 90 | | AGUILAR-AR | .07 | мвоо | MiniBooNE | | <1 | 10 | 90 | 165 | AHN | 04 | K2K | Water Cherenkov | | < | 1.4 | 90 | | ASTIER | 03 | NOMD | CERN SPS | | < | 1.6 | 90 | | AVVAKUMOV | | | | | | | | 166 | AGUILAR | 01 | LSND | $ u\mu ightarrow \; \nu_{e} \; { m osc.prob}.$ | | | 0.5 to 30 | 95 | 167 | ATHANASSO | | | $ u_{\mu} ightarrow u_{e}$ | | < | 3.0 | 90 | 168 | LOVERRE | 96 | | CHARM/CDHS | | < | 9.4 | 90 | | VILAIN | 94C | CHM2 | CERN SPS | | < | 5.6 | 90 | 169 | VILAIN | 94C | CHM2 | CERN SPS | | | | | | | | | | $^{^{164}}$ The limit is $\sin^2\!2\theta < 0.9 \times 10^{-3}$ at $\Delta m^2 = 2~\text{eV}^2$. That value of Δm^2 corresponds to the smallest mixing angle consistent with the reported signal from LSND in AGUILAR 01. 165 The limit becomes $\sin^2\!2\theta < 0.15$ at $\Delta m^2 = 2.8 \times 10^{-3}~\text{eV}^2$, the bets-fit value of the $[\]nu_{\mu}$ disappearance analysis in K2K. $^{^{166}}$ AGUILAR 01 is the final analysis of the LSND full data set of the search for the u_{μ} ightarrow $\boldsymbol{\nu_e}$ oscillations. See footnote in preceding table for further details. - ¹⁶⁷ ATHANASSOPOULOS 98 report $(0.26 \pm 0.10 \pm 0.05)\%$ for the oscillation probability; the value of $\sin^2 2\theta$ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 98B. - also ATHANASSOPOULOS 98B. 168 LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986. - 169 VILAIN 94C limit derived by combining the u_{μ} and $\overline{ u}_{\mu}$ data assuming *CP* conservation. # $\Delta(m^2)$ for $\sin^2(2\theta)=1~~(\overline{ u}_{\mu} ightarrow ~\overline{ u}_{\rm e})$ | <i>VALUE</i> (eV ²) | CL% | DOCUMENT ID TECN COMMENT | |---------------------------------|-----------|---| | • • • We do not use the | e followi | ing data for averages, fits, limits, etc. ● ● | | < 0.06 | 90 | AGUILAR-AR09B MBOO MiniBooNE | | < 0.055 | 90 | ¹⁷⁰ ARMBRUSTER02 KAR2 Liquid Sci. calor. | | <2.6 | 90 | AVVAKUMOV 02 NTEV NUTEV FNAL | | 0.03-0.05 | | ¹⁷¹ AGUILAR 01 LSND LAMPF | | 0.05-0.08 | 90 | ¹⁷² ATHANASSO96 LSND LAMPF | | 0.048-0.090 | 80 | ¹⁷³ ATHANASSO95 | | < 0.07 | 90 | ¹⁷⁴ HILL 95 | | < 0.9 | 90 | VILAIN 94c CHM2 CERN SPS | | < 0.14 | 90 | ¹⁷⁵ FREEDMAN 93 CNTR LAMPF | - ¹⁷⁰ ARMBRUSTER 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\overline{\nu}_e$, detected by the inverse β-decay reaction on protons and 12 C. 15 candidate events are observed, and 15.8 \pm 0.5 background events are expected, hence no oscillation signal is detected. The results exclude large regions of the parameter area favored by the LSND experiment. - AGUILAR 01 is the final analysis of
the LSND full data set. It is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_e$ are detected through $\overline{\nu}_e p \to e^+ n$ (20<E $_{e^+}$ < 60 MeV) in delayed coincidence with $np \to d\gamma$. AUthors observe 87.9 \pm 22.4 \pm 6.0 total excess events. The observation is attributed to $\overline{\nu}_{\mu} \to \overline{\nu}_e$ oscillations with the oscillation probability of 0.264 \pm 0.067 \pm 0.045%, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from 0.2–2.0 eV 2 . Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98. - ATHANASSOPOULOS 98. 172 ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{\nu}_e$ could come from either $\overline{\nu}_\mu \to \overline{\nu}_e$ or $\nu_e \to \overline{\nu}_e$; our entry assumes the first interpretation. They are detected through $\overline{\nu}_e \, p \to e^+ \, n$ (20 MeV $<\!E_{e^+}$ $<\!60$ MeV) in delayed coincidence with $np \to d\gamma$. Authors observe 51 \pm 20 \pm 8 total excess events over an estimated background 12.5 \pm 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper. - 173 ATHANASSOPOULOS 95 error corresponds to the 1.6σ band in the plot. The expected background is 2.7 ± 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18}\pm0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96. - ATHANASSOPOULOS 96. 174 HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits. - ¹⁷⁵ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_μ , $\overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e \, p \to e^+ \, n$. FREEDMAN 93 replaces DURKIN 88. # $\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ | <i>VALUE</i> (units 10 ⁻³) | CL% | DOCUMENT ID TECN COM | 1MENT | |--|----------|--|-----------------| | • • • We do not use th | e follow | ng data for averages, fits, limits, etc. | • • | | <3.3 | 90 | 176 AGUILAR-AR09B MBOO Min | | | <1.7 | 90 | ¹⁷⁷ ARMBRUSTER02 KAR2 Liqu | ıid Sci. calor. | | <1.1 | 90 | AVVAKUMOV 02 NTEV NU | | | $5.3\!\pm\!1.3\!\pm\!9.0$ | | 178 AGUILAR 01 LSND LAN | | | $6.2 \pm 2.4 \pm 1.0$ | | 179 ATHANASSO96 LSND LAN | /IPF | | 3–12 | 80 | ¹⁸⁰ ATHANASSO95 | | | <6 | 90 | ¹⁸¹ HILL 95 | | 176 This result is inconclusive with respect to small amplitude mixing suggested by LSND. 177 ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See footnote in the preceding table for further details, and the paper for the exclusion plot. AGUILAR 01 is the final analysis of the LSND full data set. The deduced oscillation probability is $0.264 \pm 0.067 \pm 0.045\%$; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for further details, and the paper for a plot showing allowed regions. Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98. 179 ATHANASSOPOULOS 96 reports $(0.31\pm0.12\pm0.05)\%$ for the oscillation probability; the value of $\sin^2 2\theta$ for large $\Delta(m^2)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. 180 ATHANASSOPOULOS 95 error corresponds to the $^{1.6\sigma}$ band in the plot. The expected background is $^{2.7}$ \pm 0.4 events. Corresponds to an oscillation probability of $(0.34^{+0.20}_{-0.18} \pm 0.07)\%$. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96. HILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ and obtains only upper limits. # $\Delta(m^2)$ for $\sin^2(2\theta) = 1 \quad (\nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e}))$ | <i>VALUE</i> (eV ²) | CL% | DOCUMENT ID | TECN | COMMENT | |---------------------------------|------------|----------------------------|-------------|------------| | <0.075 | 90 | BORODOV 92 | CNTR | BNL E776 | | • • • We do not use th | e followir | ng data for averages, fits | , limits, e | etc. • • • | | <1.6 | 90 | ¹⁸² ROMOSAN 97 | CCFR | FNAL | | 100 | | | | | ¹⁸² ROMOSAN 97 uses wideband beam with a 0.5 km decay region. # $\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ $(\nu_{\mu}(\overline{\nu}_{\mu}) ightarrow \nu_{e}(\overline{\nu}_{e}))$ | $VALUE$ (units 10^{-3}) | CL% | DOCUMENT ID | | TECN | COMMENT | | | |---|-----|--------------------------|----|------|----------|--|--| | <1.8 | 90 | ¹⁸³ ROMOSAN | 97 | CCFR | FNAL | | | | ◆ We do not use the following data for averages, fits, limits, etc. | | | | | | | | | <3.8 | 90 | ¹⁸⁴ MCFARLAND | 95 | CCFR | FNAL | | | | <3 | 90 | BORODOV | 92 | CNTR | BNL E776 | | | ¹⁸³ ROMOSAN 97 uses wideband beam with a 0.5 km decay region. $^{^{184}}$ MCFARLAND 95 state that "This result is the most stringent to date for 250 < $\Delta(m^2)$ <450 eV 2 and also excludes at 90%CL much of the high $\Delta(m^2)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOULOS 96. solar neutrino data. # REFERENCES FOR Neutrino Mixing | ABDURASHI 09 | PR C80 015807 | J.N. Abdurashitov et al. | (SAGE Collab.) | | |--|-----------------------|---------------------------------|----------------------------|--| | ADAMSON 09 | PRL 103 261802 | P. Adamson et al. | (MINOS Collab.) | | | AGUILAR-AR 09B | PRL 103 111801 | A.A. Aguilar-arevalo et al. | (MiniBooNE Collab.) | | | PENA-GARAY 09 | arXiv:0811.2424v1 | C. Pena-Garay, A. Serenelli | , | | | ABE 08A | PRL 100 221803 | S. Abe <i>et al.</i> | (KamLAND Collab.) | | | Also | PRL 101 119904E | S. Abe <i>et al.</i> | (KamLAND Collab.) | | | ADAMSON 08 | PR D77 072002 | P. Adamson <i>et al.</i> | (MINOS Collab.) | | | ADAMSON 08A | PRL 101 131802 | P. Adamson <i>et al.</i> | (MINOS Collab.) | | | AHARMIM 08 | PRL 101 111301 | B. Aharmim <i>et al.</i> | (SNO Collab.) | | | ARPESELLA 08A | PRL 101 091302 | C. Arpesella <i>et al.</i> | (Borexino Collab.) | | | | | · · | | | | CRAVENS 08 | PR D78 032002 | J.P. Cravens <i>et al.</i> | (Super-Kamiokande Collab.) | | | FOGLI 08 | PRL 101 141801 | G.L. Fogli, et al | (MINIOS S II I) | | | ADAMSON 07 | PR D75 092003 | P. Adamson <i>et al.</i> | (MINOS Collab.) | | | AGUILAR-AR 07 | PRL 98 231801 | A.A. Aguilar-Arevalo et al. | (MiniBooNE Collab.) | | | AHARMIM 07 | PR C75 045502 | B. Aharmim <i>et al.</i> | (SNO Collab.) | | | ADAMSON 06 | PR D73 072002 | P. Adamson et al. | (MINOS Collab.) | | | AHN 06A | PR D74 072003 | M.H. Ahn <i>et al.</i> | (K2K Collab.) | | | BALATA 06 | EPJ C47 21 | M. Balata <i>et al.</i> | (Borèxino Collab.) | | | HOSAKA 06 | PR D73 112001 | J. Hosaka <i>et al.</i> | (Super-Kamiokande Collab.) | | | HOSAKA 06A | PR D74 032002 | J. Hosaka <i>et al.</i> | (Super-Kamiokande Collab.) | | | MICHAEL 06 | PRL 97 191801 | D. Michael <i>et al.</i> | (MINOS Collab.) | | | YAMAMOTO 06 | PRL 96 181801 | S. Yamamoto <i>et al.</i> | (K2K Collab.) | | | | | | | | | AHARMIM 05A | PR C72 055502 | B. Aharmim <i>et al.</i> | (SNO Collab.) | | | ALIU 05 | PRL 94 081802 | E. Aliu <i>et al.</i> | (K2K Collab.) | | | ALLISON 05 | PR D72 052005 | W.W.M. Allison et al. | (SOUDAN-2 Collab.) | | | ALTMANN 05 | PL B616 174 | M. Altmann <i>et al.</i> | (GNO Collab.) | | | ARAKI 05 | PRL 94 081801 | T. Araki <i>et al.</i> | (KamLAND Collab.) | | | ASHIE 05 | PR D71 112005 | Y. Ashie <i>et al.</i> | (Super-Kamiokande Collab.) | | | DEGOUVEA 05 | PR D71 093002 | A. de Gouvea, C. Pena-Garay | y . | | | AHARMIM 04 | PR D70 093014 | B. Aharmim et al. | (SNO Collab.) | | | AHMED 04A | PRL 92 181301 | S.N. Ahmed et al. | (SNO Collab.) | | | AHN 04 | PRL 93 051801 | M.H. Ahn et al. | (K2K Collab.) | | | AMBROSIO 04 | EPJ C36 323 | M. Ambrosio <i>et al.</i> | (MACRO Collab.) | | | ASHIE 04 | PRL 93 101801 | Y. Ashie <i>et al.</i> | | | | | | | (Super-Kamiokande Collab.) | | | EGUCHI 04 | PRL 92 071301 | K. Eguchi <i>et al.</i> | (KamLAND Collab.) | | | SMY 04 | PR D69 011104R | M.B. Smy et al. | (Super-Kamiokande Collab.) | | | AHN 03 | PRL 90 041801 | M.H. Ahn <i>et al.</i> | (K2K Collab.) | | | AMBROSIO 03 | PL B566 35 | M. Ambrosio <i>et al.</i> | (MACRO Collab.) | | | APOLLONIO 03 | EPJ C27 331 | M. Apollonio <i>et al.</i> | (CHOOZ Collab.) | | | ASTIER 03 | PL B570 19 | P. Astier <i>et al.</i> | (NOMAD Collab.) | | | EGUCHI 03 | PRL 90 021802 | K. Eguchi et al. | (KamLAND Collab.) | | | GANDO 03 | PRL 90 171302 | Y. Gando <i>et al.</i> | (Super-Kamiokande Collab.) | | | IANNI 03 | JPG 29 2107 | A. lanni | (INFN Gran Sasso) | | | SANCHEZ 03 | PR D68 113004 | M. Sanchez <i>et al.</i> | (Soudan 2 Collab.) | | | ABDURASHI 02 | JETP 95 181 | J.N. Abdurashitov <i>et al.</i> | (SAGE Collab.) | | | ABDONASIII 02 | | | (SAGE Collab.) | | |
Translated from ZETF 122 211. AHMAD 02 PRL 89 011301 Q.R. Ahmad <i>et al.</i> (SNO Collab.) | | | | | | AHMAD 02B | PRL 89 011302 | Q.R. Ahmad et al. | 1 | | | | | • | (SNO Collab.) | | | ARMBRUSTER 02 | PR D65 112001 | B. Armbruster <i>et al.</i> | (KARMEN 2 Collab.) | | | AVVAKUMOV 02 | PRL 89 011804 | S. Avvakumov <i>et al.</i> | (NuTeV Collab.) | | | FUKUDA 02 | PL B539 179 | S. Fukuda <i>et al.</i> | (Super-Kamiokande Collab.) | | | AGUILAR 01 | PR D64 112007 | A. Aguilar <i>et al.</i> | (LSND Collab.) | | | AHMAD 01 | PRL 87 071301 | Q.R. Ahmad <i>et al.</i> | (SNO Collab.) | | | AMBROSIO 01 | PL B517 59 | M. Ambrosio <i>et al.</i> | (MACRO Collab.) | | | BOEHM 01 | PR D64 112001 | F. Boehm <i>et al.</i> | | | | FUKUDA 01 | PRL 86 5651 | S. Fukuda <i>et al.</i> | (Super-Kamiokande Collab.) | | | AMBROSIO 00 | PL B478 5 | M. Ambrosio et al. | (MACRO Collab.) | | | BOEHM 00 | PRL 84 3764 | F. Boehm <i>et al.</i> | (, | | | FUKUDA 00 | PRL 85 3999 | S. Fukuda <i>et al.</i> | (Super-Kamiokande Collab.) | | | ALLISON 99 | PL B449 137 | W.W.M. Allison <i>et al.</i> | (Soudan 2 Collab.) | | | APOLLONIO 99 | | | | | | | PL B466 415 | M. Apollonio <i>et al.</i> | (CHOOZ Collab.) | | | Also | PL B472 434 (erratum) | M. Apollonio <i>et al.</i> | (CHOOZ Collab.) | | | FUKUDA 99C | PRL 82 2644 | Y. Fukuda <i>et al.</i> | (Super-Kamiokande Collab.) | | | FUKUDA 99D | PL B467 185 | Y. Fukuda <i>et al.</i> | (Super-Kamiokande Collab.) | | | HAMPEL 99 | PL B447 127 | W. Hampel et al. | (GALLEX Collab.) | | | AMBROSIO 98 | PL B434 451 | M. Ambrosio <i>et al.</i> | (MACRO Collab.) | | | APOLLONIO 98 | PL B420 397 | M. Apollonio et al. | (CHOOZ Collab.) | | | ATHANASSO 98 | PRL 81 1774 | C. Athanassopoulos et al. | (LSND Collab.) | | | | | | | | | ATHANASSO
CLEVELAND
FELDMAN | 98B
98
98 | PR C58 2489
APJ 496 505
PR D57 3873 | C. Athanassopoulos <i>et al.</i> B.T. Cleveland <i>et al.</i> G.J. Feldman, R.D. Cousins | (LSND Collab.)
(Homestake Collab.) | |-----------------------------------|-----------------|---|--|--| | FUKUDA | 98C | PRL 81 1562 | Y. Fukuda <i>et al.</i> | (Super-Kamiokande Collab.) | | HATAKEYAMA | 98 | PRL 81 2016 | S. Hatakeyama <i>et al.</i> | (Kamiokande Collab.) | | CLARK | 97 | PRL 79 345 | R. Clark et al. | (IMB Collab.) | | ROMOSAN | 97 | PRL 78 2912 | A. Romosan <i>et al.</i> | (CCFR Collab.) | | AGLIETTA | 96 | JETPL 63 791 | M. Aglietta <i>et al.</i> | (LSD Collab.) | | ATHANASSO | 06 | Translated from ZETFP (
PR C54 2685 | | (LSND Collab.) | | ATHANASSO | | PRL 77 3082 | C. Athanassopoulos <i>et al.</i> C. Athanassopoulos <i>et al.</i> | (LSND Collab.) | | FUKUDA | 96B | PRL 77 1683 | Y. Fukuda <i>et al.</i> | (Kamiokande Collab.) | | FUKUDA | 96B | PL B388 397 | Y. Fukuda <i>et al.</i> | (Kamiokande Collab.) | | GREENWOOD | | PR D53 6054 | Z.D. Greenwood <i>et al.</i> | (UCI, SVR, SCUC) | | HAMPEL | 96 | PL B388 384 | W. Hampel <i>et al.</i> | (GALLEX Collab.) | | LOVERRE | 96 | PL B370 156 | P.F. Loverre | (- | | ACHKAR | 95 | NP B434 503 | B. Achkar et al. (SINO | G, SACLD, CPPM, CDEF+) | | AHLEN | 95 | PL B357 481 | S.P. Ahlen <i>et al.</i> | (MACRO Collab.) | | ATHANASSO | 95 | PRL 75 2650 | C. Athanassopoulos et al. | ` (LSND Collab.) | | DAUM | 95 | ZPHY C66 417 | K. Daum <i>et al.</i> | (FŘEJUS Collab.) | | HILL | 95 | PRL 75 2654 | J.E. Hill | (PENN) | | MCFARLAND | 95 | PRL 75 3993 | K.S. McFarland et al. | (CCFR Collab.) | | DECLAIS | 94 | PL B338 383 | Y. Declais <i>et al.</i> | | | FUKUDA | 94 | PL B335 237 | Y. Fukuda <i>et al.</i> | (Kamiokande Collab.) | | VILAIN | 94C | ZPHY C64 539 | P. Vilain et al. | (CHARM II Collab.) | | FREEDMAN | 93 | PR D47 811 | S.J. Freedman et al. | (LAMPF E645 Collab.) | | BECKER-SZ | 92B | PR D46 3720 | R.A. Becker-Szendy et al. | (IMB Collab.) | | BEIER | 92 | PL B283 446 | E.W. Beier et al. | (KAM2 Collab.) | | Also | 00 | PTRSL A346 63 | E.W. Beier, E.D. Frank | (PENN) | | BORODOV
HIRATA | 92
92 | PRL 68 274
PL B280 146 | L. Borodovsky <i>et al.</i>
K.S. Hirata <i>et al.</i> | (COLU, JHU, ILL) | | CASPER | 92
91 | PRL 66 2561 | D. Casper <i>et al.</i> | (Kamiokande II Collab.)
(IMB Collab.) | | HIRATA | 91 | PRL 66 9 | K.S. Hirata <i>et al.</i> | (Kamiokande II Collab.) | | KUVSHINN | 91 | JETPL 54 253 | A.A. Kuvshinnikov <i>et al.</i> | (KIAE) | | BERGER | 90B | PL B245 305 | C. Berger <i>et al.</i> | (FREJUS Collab.) | | HIRATA | 90 | PRL 65 1297 | K.S. Hirata <i>et al.</i> | (Kamiokande II Collab.) | | AGLIETTA | 89 | EPL 8 611 | M. Aglietta <i>et al.</i> | (FREJUS Collab.) | | DAVIS | 89 | ARNPS 39 467 | R. Davis, A.K. Mann, L. Wo | ` | | OYAMA | 89 | PR D39 1481 | Y. Oyama et al. | (Kamiokande II Collab.) | | BIONTA | 88 | PR D38 768 | R.M. Bionta et al. | ` (IMB Collab.) | | DURKIN | 88 | PRL 61 1811 | L.S. Durkin et al. | (OSU, ANL, CIT+) | | ABRAMOWICZ | | PRL 57 298 | H. Abramowicz et al. | (CDHS Collab.) | | ALLABY | 86 | PL B177 446 | J.V. Allaby et al. | (CHARM_Collab.) | | ANGELINI | 86 | PL B179 307 | C. Angelini et al. | (PISA, ATHU, PADO+) | | VUILLEUMIER | | PL 114B 298 | J.L. Vuilleumier et al. | (CIT, SIN, MUNI) | | BOLIEV | 81 | SJNP 34 787
Translated from YAF 34 | M.M. Boliev et al. | (INRM) | | KWON | 81 | PR D24 1097 | H. Kwon <i>et al.</i> | (CIT, ISNG, MUNI) | | BOEHM | 80 | PL 97B 310 | F. Boehm <i>et al.</i> | (ILLG, CIT, ISNG, MUNI) | | CROUCH | 78 | PR D18 2239 | M.F. Crouch <i>et al.</i> | (CASE, UCI, WITW) | | | | | | (2.12=, 2.21, 11111) |