$$=_{c}^{\prime+}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The $\Xi_c^{\prime+}$ and $\Xi_c^{\prime0}$ presumably complete the SU(3) sextet whose other members are the Σ_c^{++} , Σ_c^+ , Σ_c^0 , and Ω_c^0 : see Fig. 3 in the Note on Charmed Baryons just before the Λ_{c}^{+} Listings. The quantum numbers given above come from this presumption but have not been measured.

Ξ'+ MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV)

DOCUMENT ID

2575.6±3.1 OUR FIT

$\Xi_c^{\prime +} - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT

107.8 ± 3.0 OUR FIT 107.8 ± 1.7 ± 2.5

25 **JESSOP** 99 CLE2 $e^+e^-\approx \Upsilon(4S)$

$\Xi_c^{\prime+}$ DECAY MODES

The $\Xi_{c}^{\prime +} - \Xi_{c}^{+}$ mass difference is too small for any strong decay to occur.

Mode Fraction (Γ_i/Γ) Γ_1 seen

='+ REFERENCES

JESSOP PRL 82 492 C.P. Jessop et al.

(CLEO Collab.)

Created: 7/30/2010 16:47