$$=_{c}^{\prime+}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The $\Xi_c^{\prime+}$ and $\Xi_c^{\prime0}$ presumably complete the SU(3) sextet whose other members are the Σ_c^{++} , Σ_c^{+} , Σ_c^{0} , and Ω_c^{0} : see Fig. 3 in the Note on Charmed Baryons just before the Λ_c^{+} Listings. The quantum numbers given above come from this presumption but have not been measured.

Ξ'+ MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV)

DOCUMENT ID

2575.6±3.1 OUR FIT

$\Xi_c^{\prime+} - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT107.8 \pm 3.0 OUR FIT107.8 \pm 1.7 \pm 2.525JESSOP99CLE2 $e^+e^-\approx \Upsilon(4S)$

$\Xi_c^{\prime+}$ DECAY MODES

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\equiv_c^+ \gamma$	seen

E'+ REFERENCES

JESSOP 99 PRL 82 492 C.P. Jessop et al. (CLEO Collab.)

Created: 6/16/2011 12:06