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DALITZ PLOT ANALYSIS FORMALISM

Revised March 2012 by D. Asner (Pacific Northwest National
Laboratory) and C. Hanhart (Forschungszentrum Jülich).

Introduction: Weak nonleptonic decays of D and B mesons

are expected to proceed dominantly through resonant two-body

decays [1]; see Ref. 2 for a review of resonance phenomenology.

The amplitudes are typically calculated with the Dalitz-plot

analysis technique [3], which uses the minimum number of

independent observable quantities. For three-body decays of a

spin-0 particle to all pseudo-scalar final states, such as D or

B → abc, the decay rate [4] is

Γ =
1

(2π)332
√

s3
|M|2 dm2

ab dm2
bc , (1)

where mij is the invariant mass of particles i and j. Here the

prefactor contains all kinematic factors, while |M|2 contains the

dynamics. The scatter plot in m2
ab versus m2

bc is the Dalitz plot.

If |M|2 is constant, the kinematically allowed region of the plot

will be populated uniformly with events. Any variation in the

population over the Dalitz plot is due to dynamic rather than

kinematic effects. It is straightforward to extend the formalism

beyond three-body final states.

Formalism: The amplitude for the process R → rc, r → ab

where R is a D or B meson, r is an intermediate resonance,

and a, b, c are pseudo-scalars, is given by

Mr(J, L, l, mab, mbc) =
∑

λ

〈ab|rλ〉Tr(mab) 〈crλ|RJ〉 (2)

= Z(J, L, l, ~p, ~q)BR
L (|~p|)Br

L(|~q|)Tr(mab) .

The sum is over the helicity states λ of r; J is the total angular

momentum of R (for D and B decays, J = 0); L is the orbital

angular momentum between r and c; l is the orbital angular

momentum between a and b; (the spin of r); ~p and ~q are the

momenta of c and of a in the r rest frame; Z describes the

angular distribution of the final-state particles; BR
L and Br

L are

the barrier factors for the production of rc and of ab; and Tr

is the dynamical function describing the resonance r. Tr is a
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phenomenological object, with the resonances modeled often by

a Breit-Wigner form, although some more recent analyses use a

K-matrix formalism [5–7] with the P -vector approximation [8]

to describe the ππ S-wave.

The nonresonant (NR) contribution to D → abc is

parametrized as constant (S-wave), with no variation in magni-

tude or phase across the Dalitz plot. The available phase space

is much greater for B decays than for D decays, and the non-

resonant contribution to B → abc requires a more sophisticated

parametrization. Experimentally, several parametrizations have

been used [9,10]. Differences in the parametrizations of the

NR contributions, and in Z, BL, and Tr, as well as in the

set of resonances r, complicate the comparison of results from

different experiments.

Angular distribution Z: The tensor or Zemach formal-

ism [11,12] and the helicity formalism [13,12] yield identical

descriptions of the angular distributions for the decay process

R → rc, r → ab when a, b and c all have spin 0. The angular

distributions for L = 0, 1, and 2 are given in Table 1. For a

derivation of the expressions, see, e.g., Ref. 12. For final-state

particles with non-zero spin (e.g., radiative decays), the helicity

formalism is required.

Table 1: Angular distributions for L = 0, 1, 2
for the decay process R → rc, r → ab when a,
b and c all have spin 0. Here θ is the angle
between particles a and c in the rest frame of

resonance r,
√

1 + ζ2 = Er/mab is a relativistic
correction, where Er = (m2

R + m2
ab − m2

c)/2mR

is the energy of resonance r in the rest frame of
R.

J → L + l Angular distribution

0→0+0 uniform

0→1+1 (1+ζ2) cos2 θ

0→2+2

(

ζ2+
3

2

)2

(cos2 θ−1/3)2

June 18, 2012 15:23



– 3–

Barrier Factor BL: The maximum angular momentum L

in a strong decay is limited by the linear momentum q —

the relative momentum of the decay particles in the center of

mass frame of the decaying resonance. Decay particles moving

slowly with an impact parameter (meson radius) d of order

1 fm have difficulty generating sufficient angular momentum to

conserve the spin of the resonance. The Blatt-Weisskopf [14,15]

functions BL, given in Table 2, weight the reaction amplitudes

to account for this spin-dependent effect. These functions are

normalized to give BL = 1 for z = (|q| d)2 = 1. Another

common formulation, B′
L, also in Table 2, is normalized to give

B′
L = 1 for z = z0 = (|q0| d)2 where q0 is the value of q when

mab = mr. An important difference between the BL and the

B′
L is that the former include explictly the centrifugal barrier,

while it is to be moved to the dynamical functions in the case

of B′
L.

Table 2: Blatt-Weisskopf barrier factors weight
the reaction amplitudes to account for spin-
dependent effects (c.f. Sec. VIII.5 of Ref. 14) .
Two formulations with different normalization
conditions (described in text) are shown. BL is
commonly used in Dalitz plot analyses; B′

L is
commonly used with the helicity formalism.

L BL(q) B′
L(q, q0)

0 1 1

1

√

2z

1 + z

√

1 + z0

1 + z

2

√

13z2

(z−3)2+9z

√

(z0−3)2+9z0

(z−3)2+9z

where z = (|q| d)2 and z0 = (|q0| d)2

Dynamical Function Tr: The dynamical function Tr is de-

rived from the S-matrix formalism [5]. In general, the am-

plitude that a final state f couples to an initial state i is

Sfi = 〈f |S|i〉, where the scattering operator S is unitary:
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SS† = S†S = I . The Lorentz-invariant transition operator T̂ is

defined by separating the probability that f = i, yielding

S = I + 2iT = I + 2i {ρ}1/2 T̂ {ρ}1/2 , (3)

where I is the identity operator and ρ is the diagonal phase-

space matrix. If channel i denotes the two–body state ab, then

ρii = ρi =
2qi

mab
θ [mab − (ma + mb)] , (4)

where mab is the invariant mass of the system;

qi =
1

2mab

√

(m2
ab − (ma + mb)2)(m

2
ab − (ma − mb)2) (5)

is the momentum of a in the r rest frame, and θ[...] is the

step function. In the single-channel case, unitarity allows one

to express S through a single parameter, S = e2iδ, and

T̂ =
1

ρ
eiδ sin δ. (6)

There are three common formulations of the dynamical

function. The Breit-Wigner form—the first term in a Taylor

expansion about a T -matrix pole—is the simplest. The K-

matrix formalism [5] is more general (allowing more than one

T -matrix pole and coupled channels while preserving unitarity).

The Flatté distribution [16] is used to parametrize resonances

near threshold, located at s = (ma + mb)
2, and is equivalent to

a one-pole, two-channel K-matrix.

Breit-Wigner Form

The common formulation of a Breit-Wigner resonance de-

caying to spin-0 particles a and b is

Tr(mab) ∝
1

m2
r − m2

ab − imrΓab(mab)
. (7)

A standard formulation for the “mass-dependent” width Γab

reads

Γab(mab) =
∑

i

Γr
i

(

qi

qr

)2Li+1 (

mr

mab

)

B′
Li

(qi, q0)
2 , (8)
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where qi, Li, Γr
i and B′

Li
(qi, q0) are the momentum and angular

momentum of the decay products, the partial width and Blatt-

Weisskopf barrier factor (see Table 2) for the decay of resonance

r into channel i, respectively. A Breit-Wigner parametrization

best describes isolated, non-overlapping resonances far from

the threshold of additional decay channels. For the ρ(770) and

ρ(1450) a more complex parametrization suggested by Gounaris-

Sakarai [17] is often used [18-22]. Unitarity is violated when the

dynamical function is parametrized as the sum of two or more

overlapping Breit-Wigners — see the discussion below Eq. (13).

The proximity of a threshold to a resonance distorts the line

shape from a simple Breit-Wigner. Here the Flatté formula

provides a better description and is discussed below.

K-matrix Formulation

The T matrix can be written as

T̂ = (I − iK̂ρ)−1K̂, (9)

where K̂ is the Lorentz-invariant K-matrix describing the

scattering process and ρ is the phase-space factor defined below

Eq. (3). Resonances appear as poles in the K-matrix:

K̂ij =
∑

α

√

mαΓαi(m)mαΓαj(m)

(m2
α − m2)

√
ρiρj

. (10)

The K-matrix is real by construction, and so the associated T -

matrix respects unitarity. However, in the given form it has the

wrong analytic structure. To improve it, some authors use the

analytic continuation for the momentum qi, defined in Eq. (5),

to below-threshold values, where for ma 6= mb the phase space

factor needs to be modified to avoid false singularities (see, e.g.,

Ref. 7, Sec. 2.1). For further improvements see below.

For a single pole in a single channel, K = ρK̂ is

K =
m0 Γ(m)

m2
0 − m2

(11)

and

T = K(1 − iK)−1 =
m0Γ(m)

m2
0 − m2 − im0Γ(m)

, (12)
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which is the relativistic Breit-Wigner formula. For two poles in

a single channel, K is

K =
mαΓα(m)

m2
α − m2

+
mβΓβ(m)

m2
β − m2

. (13)

If mα and mβ are far apart relative to the widths, the T

matrix is approximately the sum of two Breit-Wigners, T (Kα +

Kβ) ≈ T (Kα) + T (Kβ), each of the form of Eq. (12). This

approximation is not valid for two nearby resonances, for it

violates unitarity. For example, for m = mα the full, unitary

K-matrix expression gives Im(T )=1, while the imaginary part

of T (Kα) + T (Kβ) is 1 + (mβΓβ)2/[(m2
β − m2

α)2 + (mβΓβ)2].

This formulation, which applies to S-channel production in

two-body scattering, ab → cd, can be generalized to describe the

production of resonances in processes such as the decay of charm

mesons. The key assumption here is that the two-body system

described by the K-matrix does not interact with the rest of

the final state [8]. The validity of this assumption varies with

the production process and is appropriate for reactions such as

π−p → π0π0n in the several-GeV regime, and for semileptonic

decays such as D → Kπℓν. The assumption may be of limited

validity for production processes such as pp → πππ, D → πππ,

D → Kππ and J/ψ → ωππ. In the last two cases, additional

three–body rescatterings were found to be relevant. In the J/ψ

decays, they appeared where the two–body amplitudes were

very small [23]; in the D decays, they were shown to lead to a

significant difference between the Kπ scattering phase and the

phase extracted from the production process [24]. If three–

body interactions are neglected, the two-body Lorentz-invariant

amplitude, F̂ , is given by

F̂i = (I − iK̂ρ)−1
ij P̂j = (T̂ K̂−1)ijP̂j , (14)

where P is the production vector that parametrizes the reso-

nance production in the open channels.

For the ππ S-wave, a common formulation of the K-

matrix [7,20,21,25] is

Kij(s)=





∑

α

(
g

(α)
i g

(α)
j

m2
α−s

)+f sc
ij

1+ssc
0

s+ssc
0





[

(s−sA)

(s+sA0)

]

. (15)
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The factor g
(α)
i is the real coupling constant of the K-matrix

pole mα to meson channel i; the parameters f sc
ij and ssc

0 describe

a smooth part of the K-matrix elements; the second factor in

square brackets, with sA ∼ (0.1−0.5)m2
π contains the Adler zero

and at the same time suppresses a false kinematical singularity;

e.g., in Ref. 25, sA0 = 0.15 GeV2 and sA = 0.5m2
π were used.

The number 1 has units GeV2.

The production vector, with i = 1 denoting ππ, is

Pj(s) =





∑

α

(
βαg

(α)
j

m2
α−s

) + fpr
1j

1+spr
0

s+spr
0



 , (16)

where the free parameters of the Dalitz-plot fit are the complex

production couplings βα and the production-vector background

parameters fpr
1j and spr

0 . All other parameters are fixed by

scattering experiments. Ref. 6 describes the ππ scattering data

with a 4-pole, 2-channel (ππ, KK̄) model, while Ref. 7 describes

the scattering data with a 5-pole, 5-channel (ππ, KK̄, ηη,

η′η′ and 4π) model. The former has been implemented by

CLEO [26] and the latter by FOCUS [21] and BABAR [20]. In

both cases, only the ππ channel was analyzed. A more complete

coupled-channel analysis would simultaneously fit all final states

accessible by rescattering.

Flatté Formalism

The Flatté formulation is used when a second channel opens

close to a resonance. This situation occurs in the ππ S-wave

where the f0(980) is near the KK threshold, and in the πη

channel where the a0(980) also lies near the KK threshold.

The T -matrix is parameterized as

T̂ (mab)ij =
gigj

m2
r − m2

ab − i(ρ1g2
1 + ρ2g2

2)
, (17)

where ρ1g
2
1 +ρ2g

2
2 = m0Γr , when the phase spaces are evaluated

at the resonance mass. For the a0(980) resonance, the relevant

coupling constants are g1 = gπη and g2 = gKK , and the phase

space terms are ρ1 = ρπη and ρ2 = ρKK , with ρi defined

in Eq. (4). For the f0(980) the relevant coupling constants are

g1 = gππ and g2 = gKK , and the phase space terms are ρ1 = ρππ
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and ρ2 = ρKK . The charged and neutral K channels are usually

assumed to have the same coupling constant but different phase

space factors, due to mK+ 6= mK0 ; the result is

ρKK =
1

2





√

1−
(

2mK±

mKK

)2

+

√

1−
(

2mK0

mKK

)2


 . (18)

The effect of using this expression compared to using the

averaged kaon masses is confined in the region very near

threshold and is significant only in between the two kaon

thresholds. If the coupling of a resonance to the channel opening

nearby is strong, the Flatté parametrization shows a scaling

invariance and does not allow for an extraction of the parameters

individually, but only of ratios [27].

Further improvements:

The K–matrix described above usually allows one to get

a proper fit of physical amplitudes and it is easy to deal

with. However, it also has an important deficit: it violates

constraints from analyticity — e.g., ρii has a pole at s = 0,

and for unequal masses develops an unphysical cut. An analytic

continuation of the amplitudes into the complex plane is not

controlled, and typically the parameters of broad resonances

come out wrong (see, e.g., the minireview on scalar mesons).

A method to improve the analytic properties was suggested in

Refs. [25,28–30]. It basically amounts to replacing the phase-

space factor iρi in Eqs. 9 and 14 with an analytic function that

produces the identical imaginary part. In the simplest case of a

channel with equal masses the expressions are

−ρi

π
log

∣

∣

∣

∣

1 + ρi

1 − ρi

∣

∣

∣

∣

, −2ρi

π
arctan

(

1

ρi

)

, −ρi

π
log

∣

∣

∣

∣

1 + ρi

1 − ρi

∣

∣

∣

∣

+ iρi

for m2 < 0, 0 < m2 < (ma + mb)
2, and (ma + mb)

2 < m2,

respectively. Here ρi =
√

|1 − (ma + mb)2/m2| for all values

of m2, extending the expression of Eq. (4) into the regime

below threshold. The more complicated expression for the case

of different masses can be found, e.g., in Ref. 29.

Branching Ratios from Dalitz Plot Fits: A fit to the

Dalitz plot distribution using either a Breit-Wigner or a K-

matrix formalism factorizes into a resonant contribution to
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the amplitude Mj and a complex coefficient, aje
iδj , where aj

and δj are real. The definition of a rate of a single process,

given a set of amplitudes aj and phases δj , is the square of

the relevant matrix element (see Eq. (1)). The “fit fraction”

is usually defined as the integral over the Dalitz plot (mab

vs. mbc) of a single amplitude squared divided by the integral

over the Dalitz plot of the square of the coherent sum of all

amplitudes, or

fit fractionj =

∫ ∣

∣aje
iδjMj

∣

∣

2
dm2

abdm2
bc

∫
∣

∣

∑

k akeiδkMk

∣

∣

2
dm2

abdm2
bc

, (19)

where Mj is defined in Eq. (2) and described in Ref. 31. In

general, the sum of the fit fractions for all components will not

be unity due to interference.

When the K-matrix of Eq. (9) is used to describe a wave

(e.g., the ππ S-wave), then Mj refers to the entire wave. In

this case, it may not be straightforward to separate Mj into a

sum of individual resonances unless these are narrow and well

separated.

Reconstruction Efficiency and Resolution: The efficiency

for reconstructing an event as a function of position on the

Dalitz plot is in general non-uniform. Typically, a Monte Carlo

sample generated with a uniform distribution in phase space

is used to determine the efficiency. The variation in efficiency

across the Dalitz plot varies with experiment and decay mode.

Most recent analyses utilize a full GEANT [32] detector simu-

lation.

Finite detector resolution can usually be safely neglected,

as most resonances are comparatively broad. Notable excep-

tions where detector resolution effects must be modeled are

φ → K+K−, ω → π+π−, and a0 → ηπ0. One approach is

to convolve the resolution function in the Dalitz-plot variables

m2
ab and m2

bc with the function that parametrizes the resonant

amplitudes. In high-statistics data samples, resolution effects

near the phase-space boundary typically contribute to a poor

goodness of fit. The momenta of the final-state particles can be

recalculated with a D or B mass constraint, which forces the

kinematic boundaries of the Dalitz plot to be strictly respected.
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If the three-body mass is not constrained, then the efficiency

(and the parametrization of background) may also depend on

the reconstructed mass.

Backgrounds: The contribution of background to D and B

samples varies by experiment and final state. The background

naturally falls into six categories: (1) Purely combinatoric back-

ground containing no resonances. (2) Combinatoric background

containing intermediate resonances, such as a real K∗ or ρ, plus

additional random particles. (3) Final states containing identi-

cal particles as in D0 → K0
Sπ0 background to D0 → π+π−π0

and B → Dπ background to B → Kππ. (4) Mistagged de-

cays such as a real D0 or B0 incorrectly identified as a D0

or B0. (5) Particle misidentification of the decay products,

such as D+ → π−π+π+ or D+
s → K−K+π+ reconstructed as

D+ → K−π+π+. (6) Background from decays of charged pions

or kaons in flight.

The contribution from combinatoric background with inter-

mediate resonances is distinct from the resonances in the signal

because the former do not interfere with the latter since they

are not from true resonances. The usual identification tag of the

initial particle as a D0 or a D0 is the charge of the distinctive

slow pion in the decay sequence D∗+→D0π+
s or D∗− → D0π−

s .

Another possibility is the identification or “tagging” of one of

the D mesons from ψ(3770)→D0D0, as is done for B mesons

from Υ(4S). The mistagged background is subtle and may be

mistakenly enumerated in the signal fraction determined by a

D0 mass fit. Mistagged decays contain true D0’s or B0’s and

so the resonances in the mistagged sample exhibit interference

on the Dalitz plot.
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