
37. Monte Carlo techniques 1

37. MONTE CARLO TECHNIQUES

Revised September 2011 by G. Cowan (RHUL).

Monte Carlo techniques are often the only practical way to evaluate difficult integrals
or to sample random variables governed by complicated probability density functions.
Here we describe an assortment of methods for sampling some commonly occurring
probability density functions.

37.1. Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a “random number
generator,” which generates uniform statistically independent values on the half open
interval [0, 1); for reviews see, e.g., [1,2].

Uniform random number generators are available in software libraries such as CERNLIB
[3], CLHEP [4], and ROOT [5]. For example, in addition to a basic congruential generator
TRandom (see below), ROOT provides three more sophisticated routines: TRandom1

implements the RANLUX generator [6] based on the method by Lüscher, and allows
the user to select different quality levels, trading off quality with speed; TRandom2 is
based on the maximally equidistributed combined Tausworthe generator by L’Ecuyer [7];
the TRandom3 generator implements the Mersenne twister algorithm of Matsumoto and
Nishimura [8]. All of the algorithms produce a periodic sequence of numbers, and to
obtain effectively random values, one must not use more than a small subset of a single
period. The Mersenne twister algorithm has an extremely long period of 219937 − 1.

The performance of the generators can be investigated with tests such as DIEHARD
[9] or TestU01 [10]. Many commonly available congruential generators fail these tests and
often have sequences (typically with periods less than 232), which can be easily exhausted
on modern computers. A short period is a problem for the TRandom generator in ROOT,
which, however, has the advantage that its state is stored in a single 32-bit word. The
generators TRandom1, TRandom2, or TRandom3 have much longer periods, with TRandom3

being recommended by the ROOT authors as providing the best combination of speed
and good random properties. For further information see, e.g., Ref. 11.

37.2. Inverse transform method

If the desired probability density function is f(x) on the range −∞ < x < ∞, its
cumulative distribution function (expressing the probability that x ≤ a) is given by
Eq. (35.6). If a is chosen with probability density f(a), then the integrated probability
up to point a, F (a), is itself a random variable which will occur with uniform probability
density on [0, 1]. Suppose u is generated according to a uniformly distributed in (0, 1). If
x can take on any value, and ignoring the endpoints, we can then find a unique x chosen
from the p.d.f. f(x) for a given u if we set

u = F (x) , (37.1)

provided we can find an inverse of F , defined by

x = F−1(u) . (37.2)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
June 18, 2012 16:20

2 37. Monte Carlo techniques

This method is shown in Fig. 37.1a. It is most convenient when one can calculate by
hand the inverse function of the indefinite integral of f . This is the case for some common
functions f(x) such as exp(x), (1 − x)n, and 1/(1 + x2) (Cauchy or Breit-Wigner),
although it does not necessarily produce the fastest generator. Standard libraries contain
software to implement this method numerically, working from functions or histograms in
one or more dimensions, e.g., the UNU.RAN package [12], available in ROOT.

0

1

0

1

F(x)

F(x)

} f (xk)

x
xk+1xk

u

x
x = F−1(u)

Continuous

distribution

Discrete

distribution

u

(a)

(b)

Figure 37.1: Use of a random number u chosen from a uniform distribution (0,1)
to find a random number x from a distribution with cumulative distribution function
F (x).

For a discrete distribution, F (x) will have a discontinuous jump of size f(xk) at each
allowed xk, k = 1, 2, · · ·. Choose u from a uniform distribution on (0,1) as before. Find
xk such that

F (xk−1) < u ≤ F (xk) ≡ Prob (x ≤ xk) =
k

∑

i=1

f(xi) ; (37.3)

then xk is the value we seek (note: F (x0) ≡ 0). This algorithm is illustrated in Fig. 37.1b.

June 18, 2012 16:20

37. Monte Carlo techniques 3

37.3. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F (x) is unknown or too complex to work with,
so that obtaining an inverse as in Eq. (37.2) is impractical. We suppose that for any
given value of x, the probability density function f(x) can be computed, and further
that enough is known about f(x) that we can enclose it entirely inside a shape which
is C times an easily generated distribution h(x), as illustrated in Fig. 37.2. That is,
Ch(x) ≥ f(x) must hold for all x.

C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure 37.2: Illustration of the acceptance-rejection method. Random points are
chosen inside the upper bounding figure, and rejected if the ordinate exceeds f(x).
The lower figure illustrates a method to increase the efficiency (see text).

Frequently h(x) is uniform or is a normalized sum of uniform distributions.
Note that both f(x) and h(x) must be normalized to unit area, and therefore, the
proportionality constant C > 1. To generate f(x), first generate a candidate x according
to h(x). Calculate f(x) and the height of the envelope C h(x); generate u and test if
uC h(x) ≤ f(x). If so, accept x; if not reject x and try again. If we regard x and uC h(x)
as the abscissa and ordinate of a point in a two-dimensional plot, these points will
populate the entire area C h(x) in a smooth manner; then we accept those which fall
under f(x). The efficiency is the ratio of areas, which must equal 1/C; therefore we must
keep C as close as possible to 1.0. Therefore, we try to choose C h(x) to be as close to
f(x) as convenience dictates, as in the lower part of Fig. 37.2.

June 18, 2012 16:20

4 37. Monte Carlo techniques

37.4. Algorithms

Algorithms for generating random numbers belonging to many different distributions
are given for example by Press [13], Ahrens and Dieter [14], Rubinstein [15], Devroye [16],
Walck [17] and Gentle [18]. For many distributions, alternative algorithms exist, varying
in complexity, speed, and accuracy. For time-critical applications, these algorithms may
be coded in-line to remove the significant overhead often encountered in making function
calls.

In the examples given below, we use the notation for the variables and parameters
given in Table 35.1. Variables named “u” are assumed to be independent and uniform
on [0,1). Denominators must be verified to be non-zero where relevant.

37.4.1. Exponential decay :

This is a common application of the inverse transform method, and uses the fact that
if u is uniformly distributed in [0, 1], then (1 − u) is as well. Consider an exponential
p.d.f. f(t) = (1/τ) exp(−t/τ) that is truncated so as to lie between two values, a and b,
and renormalized to unit area. To generate decay times t according to this p.d.f., first let
α = exp(−a/τ) and β = exp(−b/τ); then generate u and let

t = −τ ln(β + u(α − β)). (37.4)

For (a, b) = (0,∞), we have simply t = −τ lnu. (See also Sec. 37.4.6.)

37.4.2. Isotropic direction in 3D :

Isotropy means the density is proportional to solid angle, the differential element of
which is dΩ = d(cos θ)dφ. Hence cos θ is uniform (2u1 − 1) and φ is uniform (2πu2). For
alternative generation of sinφ and cos φ, see the next subsection.

37.4.3. Sine and cosine of random angle in 2D :

Generate u1 and u2. Then v1 = 2u1 − 1 is uniform on (−1,1), and v2 = u2 is uniform
on (0,1). Calculate r2 = v2

1
+ v2

2
. If r2 > 1, start over. Otherwise, the sine (S) and cosine

(C) of a random angle (i.e., uniformly distributed between zero and 2π) are given by

S = 2v1v2/r2 and C = (v2
1 − v2

2)/r2 . (37.5)

37.4.4. Gaussian distribution :

If u1 and u2 are uniform on (0,1), then

z1 = sin(2πu1)
√

−2 lnu2 and z2 = cos(2πu1)
√

−2 lnu2 (37.6)

are independent and Gaussian distributed with mean 0 and σ = 1.

There are many variants of this basic algorithm, which may be faster. For example,
construct v1 = 2u1 − 1 and v2 = 2u2 − 1, which are uniform on (−1,1). Calculate
r2 = v2

1
+ v2

2
, and if r2 > 1 start over. If r2 < 1, it is uniform on (0,1). Then

z1 = v1

√

−2 ln r2

r2
and z2 = v2

√

−2 ln r2

r2
(37.7)

June 18, 2012 16:20

37. Monte Carlo techniques 5

are independent numbers chosen from a normal distribution with mean 0 and variance 1.
z′i = µ + σzi distributes with mean µ and variance σ2.

For a multivariate Gaussian with an n × n covariance matrix V , one can start by
generating n independent Gaussian variables, {ηj}, with mean 0 and variance 1 as above.
Then the new set {xi} is obtained as xi = µi +

∑

j Lijηj , where µi is the mean of xi, and

Lij are the components of L, the unique lower triangular matrix that fulfils V = LLT .
The matrix L can be easily computed by the following recursive relation (Cholesky’s
method):

Ljj =

Vjj −
j−1
∑

k=1

L2

jk

1/2

, (37.8a)

Lij =
Vij −

∑j−1

k=1
LikLjk

Ljj
, j = 1, ..., n ; i = j + 1, ..., n, (37.8b)

where Vij = ρijσiσj are the components of V . For n = 2 one has

L =

(

σ1 0
ρσ2

√

1 − ρ2 σ2

)

, (37.9)

and therefore the correlated Gaussian variables are generated as x1 = µ1 + σ1η1,
x2 = µ2 + ρσ2η1 +

√

1 − ρ2 σ2η2.

37.4.5. χ2(n) distribution :

To generate a variable following the χ2 distribution for n degrees of freedom, use the
Gamma distribution with k = n/2 and λ = 1/2 using the method of Sec. 37.4.6.

37.4.6. Gamma distribution :

All of the following algorithms are given for λ = 1. For λ 6= 1, divide the resulting
random number x by λ.

• If k = 1 (the exponential distribution), accept x = − lnu. (See also Sec. 37.4.1.)

• If 0 < k < 1, initialize with v1 = (e + k)/e (with e = 2.71828... being the natural log
base). Generate u1, u2. Define v2 = v1u1.

Case 1: v2 ≤ 1. Define x = v
1/k
2

. If u2 ≤ e−x, accept x and stop, else restart
by generating new u1, u2.
Case 2: v2 > 1. Define x = −ln([v1 − v2]/k). If u2 ≤ xk−1, accept x and stop,
else restart by generating new u1, u2. Note that, for k < 1, the probability
density has a pole at x = 0, so that return values of zero due to underflow must
be accepted or otherwise dealt with.

June 18, 2012 16:20

6 37. Monte Carlo techniques

• Otherwise, if k > 1, initialize with c = 3k − 0.75. Generate u1 and compute
v1 = u1(1 − u1) and v2 = (u1 − 0.5)

√

c/v1. If x = k + v2 − 1 ≤ 0, go back and
generate new u1; otherwise generate u2 and compute v3 = 64v3

1
u2

2
. If v3 ≤ 1− 2v2

2
/x

or if ln v3 ≤ 2{[k − 1] ln[x/(k − 1)] − v2}, accept x and stop; otherwise go back and
generate new u1.

37.4.7. Binomial distribution :

Begin with k = 0 and generate u uniform in [0, 1). Compute Pk = (1 − p)n and store
Pk into B. If u ≤ B accept rk = k and stop. Otherwise, increment k by one; compute the
next Pk as Pk · (p/(1− p)) · (n− k)/(k + 1); add this to B. Again, if u ≤ B, accept rk = k
and stop, otherwise iterate until a value is accepted. If p > 1/2, it will be more efficient
to generate r from f(r; n, q), i.e., with p and q interchanged, and then set rk = n − r.

37.4.8. Poisson distribution :

Iterate until a successful choice is made: Begin with k = 1 and set A = 1 to start.
Generate u. Replace A with uA; if now A < exp(−µ), where µ is the Poisson parameter,
accept nk = k − 1 and stop. Otherwise increment k by 1, generate a new u and repeat,
always starting with the value of A left from the previous try.

Note that the Poisson generator used in ROOT’s TRandom classes before version
5.12 (including the derived classes TRandom1, TRandom2, TRandom3) as well as the
routine RNPSSN from CERNLIB, use a Gaussian approximation when µ exceeds a given
threshold. This may be satisfactory (and much faster) for some applications. To do
this, generate z from a Gaussian with zero mean and unit standard deviation; then use
x = max(0, [µ + z

√
µ + 0.5]) where [] signifies the greatest integer ≤ the expression. The

routines from Numerical Recipes [13] and CLHEP’s routine RandPoisson do not make
this approximation (see, e.g., Ref. 11).

37.4.9. Student’s t distribution :

Generate u1 and u2 uniform in (0, 1); then t = sin(2πu1)[n(u
−2/n
2

− 1)]1/2 follows the
Student’s t distribution for n > 0 degrees of freedom (n not necessarily an integer).

Alternatively, generate x from a Gaussian with mean 0 and σ2 = 1 according to the
method of 37.4.4. Next generate y, an independent gamma random variate, according to
37.4.6 with λ = 1/2 and k = n/2. Then z = x/

√

y/n is distributed as a t with n degrees
of freedom.

For the special case n = 1, the Breit-Wigner distribution, generate u1 and u2; set
v1 = 2u1 − 1 and v2 = 2u2 − 1. If v2

1
+ v2

2
≤ 1 accept z = v1/v2 as a Breit-Wigner

distribution with unit area, center at 0.0, and FWHM 2.0. Otherwise start over. For
center M0 and FWHM Γ, use W = zΓ/2 + M0.

June 18, 2012 16:20

37. Monte Carlo techniques 7

37.4.10. Beta distribution :

The choice of an appropriate algorithm for generation of beta distributed random
numbers depends on the values of the parameters α and β. For, e.g., α = 1, one can use
the transformation method to find x = 1 − u1/β , and similarly if β = 1 one has x = u1/α.
For more general cases see, e.g., Refs. [17,18] and references therein.

37.5. Markov Chain Monte Carlo

In applications involving generation of random numbers following a multivariate
distribution with a high number of dimensions, the transformation method may not be
possible and the acceptance-rejection technique may have too low of an efficiency to be
practical. If it is not required to have independent random values, but only that they
follow a certain distribution, then Markov Chain Monte Carlo (MCMC) methods can
be used. In depth treatments of MCMC can be found, e.g., in the texts by Robert and
Casella [19], Liu [20], and the review by Neal [21].

MCMC is particularly useful in connection with Bayesian statistics, where a p.d.f. p(θ)
for an n-dimensional vector of parameters θ = (θ1, . . . , θn) is obtained, and one needs the
marginal distribution of a subset of the components. Here one samples θ from p(θ) and
simply records the marginal distribution for the components of interest.

A simple and broadly applicable MCMC method is the Metropolis-Hastings algorithm,
which allows one to generate multidimensional points θ distributed according to a target
p.d.f. that is proportional to a given function p(θ). It is not necessary to have p(θ)
normalized to unit area, which is useful in Bayesian statistics, as posterior probability
densities are often determined only up to an unknown normalization constant.

To generate points that follow p(θ), one first needs a proposal p.d.f. q(θ; θ0), which
can be (almost) any p.d.f. from which independent random values θ can be generated,
and which contains as a parameter another point in the same space θ0. For example, a
multivariate Gaussian centered about θ0 can be used. Beginning at an arbitrary starting
point θ0, the Hastings algorithm iterates the following steps:

1. Generate a value θ using the proposal density q(θ; θ0);

2. Form the Hastings test ratio, α = min

[

1,
p(θ)q(θ0; θ)

p(θ0)q(θ; θ0)

]

;

3. Generate a value u uniformly distributed in [0, 1];

4. If u ≤ α, take θ1 = θ. Otherwise, repeat the old point, i.e., θ1 = θ0.

5. Set θ0 = θ1 and return to step 1.

If one takes the proposal density to be symmetric in θ and θ0, then this is the
Metropolis -Hastings algorithm, and the test ratio becomes α = min[1, p(θ)/p(θ0)]. That
is, if the proposed θ is at a value of probability higher than θ0, the step is taken. If the
proposed step is rejected, the old point is repeated.

Methods for assessing and optimizing the performance of the algorithm are discussed
in, e.g., Refs. [19–21]. One can, for example, examine the autocorrelation as a function
of the lag k, i.e., the correlation of a sampled point with that k steps removed. This
should decrease as quickly as possible for increasing k.

June 18, 2012 16:20

8 37. Monte Carlo techniques

Generally one chooses the proposal density so as to optimize some quality measure
such as the autocorrelation. For certain problems it has been shown that one achieves
optimal performance when the acceptance fraction, that is, the fraction of points with
u ≤ α, is around 40%. This can be adjusted by varying the width of the proposal density.
For example, one can use for the proposal p.d.f. a multivariate Gaussian with the same
covariance matrix as that of the target p.d.f., but scaled by a constant.

References:

1. F. James, Comp. Phys. Comm. 60, 329 (1990).

2. P. L’Ecuyer, Proc. 1997 Winter Simulation Conference, IEEE Press, Dec. 1997,
127–134.

3. The CERN Program Library (CERNLIB); see cernlib.web.cern.ch/cernlib.

4. Leif Lönnblad, Comp. Phys. Comm. 84, 307 (1994).

5. Rene Brun and Fons Rademakers, Nucl. Inst. Meth. A389, 81 (1997); see also
root.cern.ch.

6. F. James, Comp. Phys. Comm. 79, 111 (1994), based on M. Lüscher, Comp. Phys.
Comm. 79, 100 (1994).

7. P. L’Ecuyer, Mathematics of Computation, 65, 213 (1996) and 65, 225 (1999).

8. M. Matsumoto and T. Nishimura, ACM Transactions on Modeling and Computer

Simulation, Vol. 8, No. 1, January 1998, 3–30.

9. Much of DIEHARD is described in: G. Marsaglia, A Current View of Random

Number Generators, keynote address, Computer Science and Statistics: 16th

Symposium on the Interface, Elsevier (1985).

10. P. L’Ecuyer and R. Simard, ACM Transactions on Mathematical Software 33, 4,
Article 1, December 2007.

11. J. Heinrich, CDF Note CDF/MEMO/STATISTICS/PUBLIC/8032, 2006.

12. UNU.RAN is described at statmath.wu.ac.at/software/unuran; see also
W. Hörmann, J. Leydold, and G. Derflinger, Automatic Nonuniform Random

Variate Generation, (Springer, New York, 2004).

13. W.H. Press et al., Numerical Recipes, 3rd edition, (Cambridge University Press, New
York, 2007).

14. J.H. Ahrens and U. Dieter, Computing 12, 223 (1974).

15. R.Y. Rubinstein, Simulation and the Monte Carlo Method, (John Wiley and Sons,
Inc., New York, 1981).

16. L. Devroye, Non-Uniform Random Variate Generation, (Springer-Verlag, New York,
1986); available online at cg.scs.carleton.ca/~luc/rnbookindex.html.

17. C. Walck, Handbook on Statistical Distributions for Experimentalists, University of
Stockholm Internal Report SUF-PFY/96-01, available from www.physto.se/~walck.

18. J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd ed.,
(Springer, New York, 2003).

19. C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., (Springer,
New York, 2004).

20. J.S. Liu, Monte Carlo Strategies in Scientific Computing, (Springer, New York,
2001).

June 18, 2012 16:20

37. Monte Carlo techniques 9

21. R.M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods,
Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto,
available from www.cs.toronto.edu/~radford/res-mcmc.html.

June 18, 2012 16:20

