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30. PASSAGE OF PARTICLES THROUGH MATTER

Revised January 2012 by H. Bichsel (University of Washington), D.E. Groom
(LBNL), and S.R. Klein (LBNL).

30.1. Notation

Table 30.1: Summary of variables used in this section. The kinematic
variables β and γ have their usual meanings.

Symbol Definition Units or Value

α Fine structure constant 1/137.035 999 11(46)
(e2/4πǫ0~c)

M Incident particle mass MeV/c2

E Incident part. energy γMc2 MeV
T Kinetic energy MeV

mec
2 Electron mass × c2 0.510 998 918(44) MeV

re Classical electron radius 2.817 940 325(28) fm
e2/4πǫ0mec

2

NA Avogadro’s number 6.022 1415(10)× 1023 mol−1

ze Charge of incident particle
Z Atomic number of absorber
A Atomic mass of absorber g mol−1

K/A 4πNAr2
emec

2/A 0.307 075 MeV g−1 cm2

for A = 1 g mol−1

I Mean excitation energy eV (Nota bene! )
δ(βγ) Density effect correction to ionization energy loss

~ωp Plasma energy
√

ρ 〈Z/A〉 × 28.816 eV

(
√

4πNer3
e mec

2/α) (ρ in g cm−3)

Ne Electron density (units of re)
−3

wj Weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

— 4αr2
eNA/A (716.408 g cm−2)−1 for A = 1 g mol−1

X0 Radiation length g cm−2

Ec Critical energy for electrons MeV
Eµc Critical energy for muons GeV

Es Scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2
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30. Passage of particles through matter 3

30.2. Electronic energy loss by heavy particles [1–34]

30.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed v = βc occur
in single collisions with energy losses E [1], leading to ionization, atomic, or
collective excitation. Most frequently the energy losses are small (for 90% of all
collisions the energy losses are less than 100 eV). In thin absorbers few collisions
will take place and the total energy loss will show a large variance [1]; also
see Sec. 30.2.7 below. For particles with charge ze more massive than electrons
(“heavy” particles), scattering from free electrons is adequately described by the
Rutherford differential cross section [2], * †

dσR(E;β)

dE
=

2πr2
emec

2z2

β2

(1 − β2E/Tmax)

E2
, (30.1)

where Tmax is the maximum energy transfer possible in a single collision. But in
matter electrons are not free. E must be finite and depends on atomic and bulk
structure. For electrons bound in atoms Bethe [3] used “Born Theorie” to obtain
the differential cross section

dσB(E;β)

dE
=

dσR(E, β)

dE
B(E) . (30.2)

Examples of B(E) and dσB/dE can be seen in Figs. 5 and 6 of Ref. 1.
Bethe’s theory extends only to some energy above which atomic effects were

not important. The free-electron cross section (Eq. (30.1)) can be used to extend
the cross section to Tmax. At high energies σB is further modified by polarization
of the medium, and this “density effect,” discussed in Sec. 30.2.4, must also be
included. Less important corrections are discussed below.

The mean number of collisions with energy loss between E and E +dE occurring
in a distance δx is Neδx (dσ/dE)dE, where dσ(E;β)/dE contains all contributions.
It is convenient to define the moments

Mj(β) = Ne δx

∫

Ej dσ(E;β)

dE
dE , (30.3)

so that M0 is the mean number of collisions in δx, M1 is the mean energy loss in δx,
M2 − M2

1 is the variance, etc. The number of collisions is Poisson-distributed with
mean M0. Ne is either measured in electrons/g (Ne = NAZ/A) or electrons/cm3

(Ne = NA ρZ/A). The former is used throughout this chapter, since quantities

* For spin 0 particles. The β dependence in the parentheses is different for
spin 1/2 and spin 1 particles, but it is not important except at energies far above
atomic binding energies.

† In high-energy physics E normally means total energy, T + mc2. In stopping
power discussions, E means kinetic energy, and we follow that convention (with
some inconsistency).
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4 30. Passage of particles through matter

of interest (dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.

Fig. 30.1: Stopping power (= 〈−dE/dx〉) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher
energies are from Ref. 5. Vertical bands indicate boundaries between different
approximations discussed in the text. The short dotted lines labeled “µ− ” illustrate
the “Barkas effect,” the dependence of stopping power on projectile charge at very
low energies [6].

30.2.2. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged heavy particles,
M1/δx, is well-described by the “Bethe” equation,

−
〈

dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]

. (30.4)

It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000
for intermediate-Z materials with an accuracy of a few %. With the symbol
definitions and values given in Table 30.1, the units are MeV g−1cm2. At the lower
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30. Passage of particles through matter 5

limit the projectile velocity becomes comparable to atomic electron “velocities”
(Sec. 30.2.3), and at the upper limit radiative effects begin to be important
(Sec. 30.6). Both limits are Z dependent. Here Tmax is the maximum kinetic
energy which can be imparted to a free electron in a single collision, and the other
variables are defined in Table 30.1. A minor dependence on M at the highest
energies is introduced through Tmax, but for all practical purposes 〈dE/dx〉 in a
given material is a function of β alone.

For heavy projectiles, like ions, additional terms are required to account for
higher-order photon coupling to the target, and to account for the finite size of the
target radius. These can change dE/dx by a factor of two or more for the heaviest
nuclei in certain kinematic regimes [7].
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Figure 30.2: Mean energy loss rate in liquid (bubble chamber) hydrogen,
gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects,
relevant for muons and pions, are not included. These become significant for
muons in iron for βγ >∼ 1000, and at lower momenta for muons in higher-Z
absorbers. See Fig. 30.23.

Few concepts in high-energy physics are as misused as 〈dE/dx〉. The main
problem is that the mean is weighted by very rare events with large single-collision
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6 30. Passage of particles through matter

energy deposits. Even with samples of hundreds of events a dependable value for
the mean energy loss cannot be obtained. Far better and more easily measured is
the most probable energy loss, discussed in Sec. 30.2.7. The most probable energy
loss in a detector is considerably below the mean given by the Bethe equation.

In a TPC (Sec. 31.6.5), the mean of 50%–70% of the samples with the smallest
signals is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉 as de-
scribed in Eq. (30.4) still forms the basis of much of our understand-
ing of energy loss by charged particles. Extensive tables are available[5,4,
pdg.lbl.gov/AtomicNuclearProperties/].
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Figure 30.3: Stopping power at minimum ionization for the chemical
elements. The straight line is fitted for Z > 6. A simple functional
dependence on Z is not to be expected, since 〈−dE/dx〉 also depends on
other variables.

The function as computed for muons on copper is shown as the “Bethe”
region of Fig. 30.1. Mean energy loss behavior below this region is discussed in
Sec. 30.2.3, and the radiative effects at high energy are discussed in Sec. 30.6.
Only in the Bethe region is it a function of β alone; the mass dependence is more
complicated elsewhere. The stopping power in several other materials is shown in
Fig. 30.2. Except in hydrogen, particles with the same velocity have similar rates
of energy loss in different materials, although there is a slow decrease in the rate of
energy loss with increasing Z. The qualitative behavior difference at high energies
between a gas (He in the figure) and the other materials shown in the figure is
due to the density-effect correction, δ(βγ), discussed in Sec. 30.2.4. The stopping
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30. Passage of particles through matter 7

power functions are characterized by broad minima whose position drops from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a
function of atomic number are shown in Fig. 30.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean
energy loss rates close to the minimum; they are “minimum-ionizing particles,” or
mip’s.
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Figure 30.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a K+ whose
momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so
the range is 195 g cm−2.

Eq. (30.4) may be integrated to find the total (or partial) “continuous slowing-
down approximation” (CSDA) range R for a particle which loses energy only
through ionization and atomic excitation. Since dE/dx depends only on β, R/M
is a function of E/M or pc/M . In practice, range is a useful concept only for
low-energy hadrons (R <∼ λI , where λI is the nuclear interaction length), and for
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8 30. Passage of particles through matter

muons below a few hundred GeV (above which radiative effects dominate). R/M
as a function of βγ = p/Mc is shown for a variety of materials in Fig. 30.4.

The mass scaling of dE/dx and range is valid for the electronic losses described
by the Bethe equation, but not for radiative losses, relevant only for muons and
pions.

For a particle with mass M and momentum Mβγc, Tmax is given by

Tmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (30.5)

In older references [2,8] the “low-energy” approximation Tmax = 2mec
2 β2γ2, valid

for 2γme/M ≪ 1, is often implicit. For a pion in copper, the error thus introduced
into dE/dx is greater than 6% at 100 GeV.

At energies of order 100 GeV, the maximum 4-momentum transfer to the
electron can exceed 1 GeV/c, where hadronic structure effects significantly modify
the cross sections. This problem has been investigated by J.D. Jackson [9], who
concluded that for hadrons (but not for large nuclei) corrections to dE/dx are
negligible below energies where radiative effects dominate. While the cross section
for rare hard collisions is modified, the average stopping power, dominated by
many softer collisions, is almost unchanged.
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Figure 30.5: Mean excitation energies (divided by Z) as adopted by the
ICRU [11]. Those based on experimental measurements are shown by
symbols with error flags; the interpolated values are simply joined. The grey
point is for liquid H2; the black point at 19.2 eV is for H2 gas. The open
circles show more recent determinations by Bichsel [13]. The dotted curve
is from the approximate formula of Barkas [14] used in early editions of this
Review.
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30. Passage of particles through matter 9

“The determination of the mean excitation energy is the principal non-trivial
task in the evaluation of the Bethe stopping-power formula” [10]. Recommended
values have varied substantially with time. Estimates based on experimental
stopping-power measurements for protons, deuterons, and alpha particles and on
oscillator-strength distributions and dielectric-response functions were given in
ICRU 49 [4]. See also ICRU 37 [11]. These values, shown in Fig. 30.5, have since
been widely used. Machine-readable versions can also be found [12]. These values
are widely used.

30.2.3. Energy loss at low energies : Shell corrections C/Z must be included
in the square brackets of of Eq. (30.4) [4,11,13,14] to correct for atomic binding
having been neglected in calculating some of the contributions to Eq. (30.4). The
Barkas form [14] was used in generating Fig. 30.1. For copper it contributes about
1% at βγ = 0.3 (kinetic energy 6 MeV for a pion), and the correction decreases
very rapidly with increasing energy.

Equation 30.2, and therefore Eq. (30.4), are based on a first-order Born
approximation. Higher-order corrections, again important only at lower energies,
are normally included by adding the “Bloch correction” z2L2(β) inside the square
brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping power for a
negative particle below that for a positive particle with the same mass and velocity.
In a 1956 paper, Barkas et al. noted that negative pions had a longer range than
positive pions [6]. The effect has been measured for a number of negative/positive
particle pairs, including a detailed study with antiprotons [15].

A detailed discussion of low-energy corrections to the Bethe formula is given
in ICRU Report 49 [4]. When the corrections are properly included, the Bethe
treatment is accurate to about 1% down to β ≈ 0.05, or about 1 MeV for protons.

For 0.01 < β < 0.05, there is no satisfactory theory. For protons, one usually
relies on the phenomenological fitting formulae developed by Andersen and
Ziegler [4,16]. As shown in ICRU 49 [4] (using data taken from Ref. 16), the
nuclear plus electronic proton stopping power in copper is 113 MeV cm2 g−1 at
T = 10 keV, rises to a maximum of 210 MeV cm2 g−1 at 100–150 keV, then falls
to 120 MeV cm2 g−1 at 1 MeV.

For particles moving more slowly than ≈ 0.01c (more or less the velocity of the
outer atomic electrons), Lindhard has been quite successful in describing electronic
stopping power, which is proportional to β [17]. Finally, we note that at even
lower energies, e.g., for protons of less than several hundred eV, non-ionizing
nuclear recoil energy loss dominates the total energy loss [4,17,18].
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10 30. Passage of particles through matter

30.2.4. Density effect : As the particle energy increases, its electric field flattens
and extends, so that the distant-collision contribution to Eq. (30.4) increases as
ln βγ. However, real media become polarized, limiting the field extension and
effectively truncating this part of the logarithmic rise [2–8,19–21]. At very high
energies,

δ/2 → ln(~ωp/I) + ln βγ − 1/2 , (30.6)

where δ(βγ)/2 is the density effect correction introduced in Eq. (30.4) and ~ωp is
the plasma energy defined in Table 30.1. A comparison with Eq. (30.4) shows that
|dE/dx| then grows as ln βγ rather than lnβ2γ2, and that the mean excitation
energy I is replaced by the plasma energy ~ωp. The ionization stopping power as
calculated with and without the density effect correction is shown in Fig. 30.1.
Since the plasma frequency scales as the square root of the electron density, the
correction is much larger for a liquid or solid than for a gas, as is illustrated by the
examples in Fig. 30.2.

The density effect correction is usually computed using Sternheimer’s parame-
terization [19]:

δ(βγ) =















2(ln 10)x − C if x ≥ x1;
2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ0102(x−x0) if x < x0 (conductors)

(30.7)

Here x = log10 η = log10(p/Mc). C (the negative of the C used in Ref. 19) is
obtained by equating the high-energy case of Eq. (30.7) with the limit given in
Eq. (30.6). The other parameters are adjusted to give a best fit to the results of
detailed calculations for momenta below Mc exp(x1). Parameters for elements and
nearly 200 compounds and mixtures of interest are published in a variety of places,
notably in Ref. 21. A recipe for finding the coefficients for nontabulated materials
is given by Sternheimer and Peierls [22], and is summarized in Ref. 5.

The remaining relativistic rise comes from the β2γ2 growth of Tmax, which in
turn is due to (rare) large energy transfers to a few electrons. When these events
are excluded, the energy deposit in an absorbing layer approaches a constant value,
the Fermi plateau (see Sec. 30.2.6 below). At extreme energies (e.g., > 332 GeV
for muons in iron, and at a considerably higher energy for protons in iron),
radiative effects are more important than ionization losses. These are especially
relevant for high-energy muons, as discussed in Sec. 30.6.
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30. Passage of particles through matter 11

30.2.5. Energetic knock-on electrons (δ rays) : The distribution of secondary
electrons with kinetic energies T ≫ I is [2]

d2N

dTdx
=

1

2
Kz2Z

A

1

β2

F (T )

T 2
(30.8)

for I ≪ T ≤ Tmax, where Tmax is given by Eq. (30.5). Here β is the velocity
of the primary particle. The factor F is spin-dependent, but is about unity for
T ≪ Tmax. For spin-0 particles F (T ) = (1 − β2T/Tmax); forms for spins 1/2 and
1 are also given by Rossi [2]( Sec. 2.3, Eqns. 7 and 8). For incident electrons, the
indistinguishability of projectile and target means that the range of T extends only
to half the kinetic energy of the incident particle. Additional formulae are given in
Ref. 23. Equation (30.8) is inaccurate for T close to I [24].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for example, on
average only one collision with Te > 10 keV will occur along a path length of 90
cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is produced at
an angle θ given by

cos θ = (Te/pe)(pmax/Tmax) , (30.9)

where pmax is the momentum of an electron with the maximum possible energy
transfer Tmax.
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Figure 30.6: Bethe dE/dx, two examples of restricted energy loss, and
the Landau most probable energy per unit thickness in silicon. The change
of ∆p/x with thickness x illustrates its a ln x + b dependence. Minimum
ionization (dE/dx|min) is 1.664 MeV g−1 cm2. Radiative losses are excluded.
The incident particles are muons.
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12 30. Passage of particles through matter

30.2.6. Restricted energy loss rates for relativistic ionizing particles : Fur-
ther insight can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Tcut ≤ Tmax. The restricted
energy loss rate is

−dE

dx

∣

∣

∣

∣

T<Tcut

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Tcut

I2

−β2

2

(

1 +
Tcut

Tmax

)

− δ

2

]

. (30.10)

This form approaches the normal Bethe function (Eq. (30.4)) as Tcut → Tmax. It
can be verified that the difference between Eq. (30.4) and Eq. (30.10) is equal to
∫ Tmax

Tcut
T (d2N/dTdx)dT , where d2N/dTdx is given by Eq. (30.8).

Since Tcut replaces Tmax in the argument of the logarithmic term of Eq. (30.4),
the βγ term producing the relativistic rise in the close-collision part of dE/dx
is replaced by a constant, and |dE/dx|T<Tcut

approaches the constant “Fermi
plateau.” (The density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is illustrated in
Fig. 30.6, where restricted loss rates for two examples of Tcut are shown in
comparison with the full Bethe dE/dx and the Landau-Vavilov most probable
energy loss (to be discussed in Sec. 30.2.7 below).

30.2.7. Fluctuations in energy loss : For detectors of moderate thickness x (e.g.
scintillators or LAr cells),* the energy loss probability distribution f(∆;βγ, x)
is adequately described by the highly-skewed Landau (or Landau-Vavilov)
distribution [25,26]. The most probable energy loss is [27]

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (30.11)

where ξ = (K/2) 〈Z/A〉 (x/β2) MeV for a detector with a thickness x in g cm−2,
and j = 0.200 [27]. † While dE/dx is independent of thickness, ∆p/x scales as
a ln x + b. The density correction δ(βγ) was not included in Landau’s or Vavilov’s
work, but it was later included by Bichsel [27]. The high-energy behavior of δ(βγ)
(Eq. (30.6)) is such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(~ωp)2
+ j

]

. (30.12)

* G <∼ 0.05–0.1, where G is given by Rossi [Ref. 2, Eq. 2.7.10]. It is Vavilov’s
κ [26].

† Rossi [2], Talman [28], and others give somewhat different values for j. The
most probable loss is not sensitive to its value.
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30. Passage of particles through matter 13

Thus the Landau-Vavilov most probable energy loss, like the restricted energy loss,
reaches a Fermi plateau. The Bethe dE/dx and Landau-Vavilov-Bichsel ∆p/x in
silicon are shown as a function of muon energy in Fig. 30.6. The energy deposit in
the 1600 µm case is roughly the same as in a 3 mm thick plastic scintillator.
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kinetic energy transfer limit of Tmax. The solid curve was calculated using
Bethe-Fano theory. M0(∆) and M1(∆) are the cumulative 0th moment (mean
number of collisions) and 1st moment (mean energy loss) in crossing the
silicon. (See Sec. 30.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable energy loss,
and 〈∆〉 divided by the thickness is the Bethe 〈dE/dx〉.

The distribution function for the energy deposit by a 10 GeV muon going
through a detector of about this thickness is shown in Fig. 30.7. In this case
the most probable energy loss is 62% of the mean (M1(〈∆〉)/M1(∞)). Folding in
experimental resolution displaces the peak of the distribution, usually toward a
higher value. 90% of the collisions (M1(〈∆〉)/M1(∞)) contribute to energy deposits
below the mean. It is the very rare high-energy-transfer collisions, extending to
Tmax at several GeV, that drives the mean into the tail of the distribution. The
mean of the energy loss given by the Bethe equation, Eq. (30.4), is thus ill-defined
experimentally and is not useful for describing energy loss by single particles.* It

* It does find application in dosimetry, where only bulk deposit is relevant.
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rises as ln βγ because Tmax increases as β2γ2. The large single-collision energy
transfers that increasingly extend the long tail are rare, making the mean of
an experimental distribution consisting of a few hundred events subject to large
fluctuations and sensitive to cuts. The most probable energy loss should be used.†
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Mean energy
loss rate
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(∆

/
x
) 

∆/x   (eV/µm)

∆p/x

∆/x   (MeV g−1 cm2)

Figure 30.8: Straggling functions in silicon for 500 MeV pions, normalized
to unity at the most probable value δp/x. The width w is the full width at
half maximum.

The Landau distribution fails to describe energy loss in thin absorbers such as
gas TPC cells [1] and Si detectors [27], as shown clearly in Fig. 1 of Ref. 1 for
an argon-filled TPC cell. Also see Talman [28]. While ∆p/x may be calculated
adequately with Eq. (30.11), the distributions are significantly wider than the
Landau width w = 4ξ [Ref. 27, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 30.8. For very thick absorbers the
distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum ionization,
is shown in Fig. 30.9 for several silicon detector thicknesses.

† An alternative approach is taken in TPC analysis, where some fraction of the
highest energy deposit signals along a track, e.g. 20%, are discarded before taking
the average.
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Figure 30.9: Most probable energy loss in silicon, scaled to the mean loss of
a minimum ionizing particle, 388 eV/µm (1.66 MeV g−1cm2).

30.2.8. Energy loss in mixtures and compounds : A mixture or compound can
be thought of as made up of thin layers of pure elements in the right proportion
(Bragg additivity). In this case,

dE

dx
=

∑

wj
dE

dx

∣

∣

∣

∣

j

, (30.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2) in the jth element.
Eq. (30.4) can be inserted into Eq. (30.13) to find expressions for 〈Z/A〉, 〈I 〉,
and 〈δ〉; for example, 〈Z/A〉 =

∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, 〈I 〉 as
defined this way is an underestimate, because in a compound electrons are more
tightly bound than in the free elements, and 〈δ〉 as calculated this way has little
relevance, because it is the electron density that matters. If possible, one uses the
tables given in Refs. 21 and 30, which include effective excitation energies and in-
terpolation coefficients for calculating the density effect correction for the chemical
elements and nearly 200 mixtures and compounds. If a compound or mixture is
not found, then one uses the recipe for δ given in Ref. 22 (repeated in Ref. 5), and
calculates 〈I〉 according to the discussion in Ref. 10. (Note the “13%” rule!)
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16 30. Passage of particles through matter

30.2.9. Ionization yields : Physicists frequently relate total energy loss to the
number of ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic knock-on
electrons whose ranges exceed the dimensions of the fiducial volume. For a
qualitative appraisal of the nonlocality of energy deposition in various media by
such modestly energetic knock-on electrons, see Ref. 31. The mean local energy
dissipation per local ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [32]. For gases, W can be surprisingly
sensitive to trace amounts of various contaminants [32]. Furthermore, ionization
yields in practical cases may be greatly influenced by such factors as subsequent
recombination [33].

30.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle
scatters. Most of this deflection is due to Coulomb scattering from nuclei, and
hence the effect is called multiple Coulomb scattering. (However, for hadronic
projectiles, the strong interactions also contribute to multiple scattering.) The
Coulomb scattering distribution is well represented by the theory of Molière [35].
It is roughly Gaussian for small deflection angles, but at larger angles (greater
than a few θ0, defined below) it behaves like Rutherford scattering, with larger
tails than does a Gaussian distribution.

If we define

θ0 = θ rms
plane =

1√
2

θrms
space . (30.14)

then it is sufficient for many applications to use a Gaussian approximation for the
central 98% of the projected angular distribution, with a width given by [36,37]

θ0 =
13.6 MeV

βcp
z

√

x/X0

[

1 + 0.038 ln(x/X0)
]

. (30.15)

Here p, βc, and z are the momentum, velocity, and charge number of the incident
particle, and x/X0 is the thickness of the scattering medium in radiation lengths
(defined below). This value of θ0 is from a fit to Molière distribution for singly
charged particles with β = 1 for all Z, and is accurate to 11% or better for
10−3 < x/X0 < 100.

Eq. (30.15) describes scattering from a single material, while the usual problem
involves the multiple scattering of a particle traversing many different layers and
mixtures. Since it is from a fit to a Molière distribution, it is incorrect to add the
individual θ0 contributions in quadrature; the result is systematically too small. It
is much more accurate to apply Eq. (30.15) once, after finding x and X0 for the
combined scatterer.
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Figure 30.10: Quantities used to describe multiple Coulomb scattering.
The particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given
approximately by [35]
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dΩ , (30.16)
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exp
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dθplane , (30.17)

where θ is the deflection angle. In this approximation, θ2
space ≈ (θ2

plane,x + θ2
plane,y),

where the x and y axes are orthogonal to the direction of motion, and
dΩ ≈ dθplane,x dθplane,y. Deflections into θplane,x and θplane,y are independent and
identically distributed.

Fig. 30.10 shows these and other quantities sometimes used to describe multiple
Coulomb scattering. They are

ψ rms
plane =

1√
3

θ rms
plane =

1√
3

θ0 , (30.18)

y rms
plane =

1√
3

x θ rms
plane =

1√
3

x θ0 , (30.19)

s rms
plane =

1

4
√

3
x θ rms

plane =
1

4
√

3
x θ0 . (30.20)

All the quantitative estimates in this section apply only in the limit of small
θ rms

plane and in the absence of large-angle scatters. The random variables s, ψ, y, and
θ in a given plane are correlated. Obviously, y ≈ xψ. In addition, y and θ have the
correlation coefficient ρyθ =

√
3/2 ≈ 0.87. For Monte Carlo generation of a joint

(y plane, θplane) distribution, or for other calculations, it may be most convenient
to work with independent Gaussian random variables (z1, z2) with mean zero and
variance one, and then set

yplane =z1 x θ0(1 − ρ2
yθ)

1/2/
√

3 + z2 ρyθx θ0/
√

3 (30.21)
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18 30. Passage of particles through matter

Table 30.2: Tsai’s Lrad and L′
rad, for use in calculating the radiation length

in an element using Eq. (30.24).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

=z1 x θ0/
√

12 + z2 x θ0/2 ; (30.22)

θplane =z2 θ0 . (30.23)

Note that the second term for y plane equals x θplane/2 and represents the
displacement that would have occurred had the deflection θplane all occurred at the
single point x/2.

For heavy ions the multiple Coulomb scattering has been measured and
compared with various theoretical distributions [38].

30.4. Photon and electron interactions in matter

30.4.1. Radiation length : High-energy electrons predominantly lose energy in
matter by bremsstrahlung, and high-energy photons by e+e− pair production. The
characteristic amount of matter traversed for these related interactions is called the
radiation length X0, usually measured in g cm−2. It is both (a) the mean distance
over which a high-energy electron loses all but 1/e of its energy by bremsstrahlung,
and (b) 7

9 of the mean free path for pair production by a high-energy photon [39].
It is also the appropriate scale length for describing high-energy electromagnetic
cascades. X0 has been calculated and tabulated by Y.S. Tsai [40]:

1

X0
= 4αr2

e

NA

A

{

Z2[Lrad − f(Z)] + Z L′
rad

}

. (30.24)

For A = 1 g mol−1, 4αr2
eNA/A = (716.408 g cm−2)−1. Lrad and L′

rad are given in
Table 30.2. The function f(Z) is an infinite sum, but for elements up to uranium
can be represented to 4-place accuracy by

f(Z) = a2

[

(1 + a2)−1 + 0.20206

−0.0369 a2 + 0.0083 a4 − 0.002 a6

]

, (30.25)

where a = αZ [41].
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The radiation length in a mixture or compound may be approximated by

1/X0 =
∑

wj/Xj , (30.26)

where wj and Xj are the fraction by weight and the radiation length for the jth
element.

Figure 30.11: Fractional energy loss per radiation length in lead as a
function of electron or positron energy. Electron (positron) scattering is
considered as ionization when the energy loss per collision is below 0.255
MeV, and as Møller (Bhabha) scattering when it is above. Adapted from
Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution
Function Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but we have modified
the figures to reflect the value given in the Table of Atomic and Nuclear
Properties of Materials (X0(Pb) = 6.37 g/cm2).

30.4.2. Energy loss by electrons : At low energies electrons and positrons
primarily lose energy by ionization, although other processes (Møller scattering,
Bhabha scattering, e+ annihilation) contribute, as shown in Fig. 30.11. While
ionization loss rates rise logarithmically with energy, bremsstrahlung losses rise
nearly linearly (fractional loss is nearly independent of energy), and dominates
above a few tens of MeV in most materials (See Sec. 30.4.3 below.)

Ionization loss by electrons and positrons differ somewhat, and both differ from
loss by heavy particles because of the kinematics, spin, and the identity of the
incident electron with the electrons which it ionizes. Complete discussions and
tables can be found in Refs. 10, 11, and 30.
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20 30. Passage of particles through matter

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case”
as [40]

dσ/dk = (1/k)4αr2
e{(4

3 − 4
3y + y2)[Z2(Lrad − f(Z)) + Z L′

rad]

+ 1
9(1 − y)(Z2 + Z)} ,

(30.27)

where y = k/E is the fraction of the electron’s energy transfered to the radiated
photon. At small y (the “infrared limit”) the term on the second line ranges from
1.7% (low Z) to 2.5% (high Z) of the total. If it is ignored and the first line
simplified with the definition of X0 given in Eq. (30.24), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (30.28)

This cross section (times k) is shown by the top curve in Fig. 30.12.
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Figure 30.12: The normalized bremsstrahlung cross section k dσLPM/dk in
lead versus the fractional photon energy y = k/E. The vertical axis has units
of photons per radiation length.

This formula is accurate except in near y = 1, where screening may become
incomplete, and near y = 0, where the infrared divergence is removed by
the interference of bremsstrahlung amplitudes from nearby scattering centers
(the LPM effect) [42,43] and dielectric suppression [44,45]. These and other
suppression effects in bulk media are discussed in Sec. 30.4.5.

With decreasing energy (E <∼ 10 GeV) the high-y cross section drops and the
curves become rounded as y → 1. Curves of this familar shape can be seen in
Rossi [2] (Figs. 2.11.2,3); see also the review by Koch & Motz [46].

Except at these extremes, and still in the complete-screening approximation,
the number of photons with energies between kmin and kmax emitted by an electron
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Figure 30.14: Electron critical energy for the chemical elements, using
Rossi’s definition [2]. The fits shown are for solids and liquids (solid line)
and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0%
for the gases. (Computed with code supplied by A. Fassó.)

travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

− 4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

. (30.29)
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30.4.3. Critical energy : An electron loses energy by bremsstrahlung at a
rate nearly proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is sometimes
defined as the energy at which the two loss rates are equal [47]. Among
alternate definitions is that of Rossi [2], who defines the critical energy as
the energy at which the ionization loss per radiation length is equal to the
electron energy. Equivalently, it is the same as the first definition with the
approximation |dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see below).
These definitions are illustrated in the case of copper in Fig. 30.13.

The accuracy of approximate forms for Ec has been limited by the failure
to distinguish between gases and solid or liquids, where there is a substantial
difference in ionization at the relevant energy because of the density effect. We
distinguish these two cases in Fig. 30.14. Fits were also made with functions of the
form a/(Z + b)α, but α was found to be essentially unity. Since Ec also depends
on A, I, and other factors, such forms are at best approximate.

Values of Ec for both electrons and positrons in more than 300 materials can be
found at pdg.lbl.gov/AtomicNuclearProperties.

30.4.4. Energy loss by photons : Contributions to the photon cross section in a
light element (carbon) and a heavy element (lead) are shown in Fig. 30.15. At
low energies it is seen that the photoelectric effect dominates, although Compton
scattering, Rayleigh scattering, and photonuclear absorption also contribute. The
photoelectric cross section is characterized by discontinuities (absorption edges)
as thresholds for photoionization of various atomic levels are reached. Photon
attenuation lengths for a variety of elements are shown in Fig. 30.16, and data for
30 eV< k <100 GeV for all elements is available from the web pages given in the
caption. Here k is the photon energy.

The increasing domination of pair production as the energy increases is shown
in Fig. 30.17. Using approximations similar to those used to obtain Eq. (30.28),
Tsai’s formula for the differential cross section [40] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(30.30)

in the complete-screening limit valid at high energies. Here x = E/k is the
fractional energy transfer to the pair-produced electron (or positron), and k is
the incident photon energy. The cross section is very closely related to that for
bremsstrahlung, since the Feynman diagrams are variants of one another. The
cross section is of necessity symmetric between x and 1 − x, as can be seen by
the solid curve in Fig. 30.18. See the review by Motz, Olsen, & Koch for a more
detailed treatment [50].

Eq. (30.30) may be integrated to find the high-energy limit for the total e+e−
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Figure 30.15: Photon total cross sections as a function of energy in carbon and
lead, showing the contributions of different processes [48]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)
σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Reso-
nance [49]. In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).
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Figure 30.16: The photon mass attenuation length (or mean free path) λ =
1/(µ/ρ) for various elemental absorbers as a function of photon energy. The
mass attenuation coefficient is µ/ρ, where ρ is the density. The intensity I
remaining after traversal of thickness t (in mass/unit area) is given by I = I0

exp(−t/λ). The accuracy is a few percent. For a chemical compound or
mixture, 1/λeff ≈ ∑

elements wZ/λZ , where wZ is the proportion by weight of
the element with atomic number Z. The processes responsible for attenuation
are given in Fig. 30.11. Since coherent processes are included, not all these
processes result in energy deposition. The data for 30 eV < E < 1 keV are
obtained from http://www-cxro.lbl.gov/optical constants (courtesy of
Eric M. Gullikson, LBNL). The data for 1 keV < E < 100 GeV are from
http://physics.nist.gov/PhysRefData, through the courtesy of John H.
Hubbell (NIST).

pair-production cross section:

σ = 7
9(A/X0NA) . (30.31)

Equation Eq. (30.31) is accurate to within a few percent down to energies as low
as 1 GeV, particularly for high-Z materials.
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Figure 30.17: Probability P that a photon interaction will result in
conversion to an e+e− pair. Except for a few-percent contribution from
photonuclear absorption around 10 or 20 MeV, essentially all other
interactions in this energy range result in Compton scattering off an atomic
electron. For a photon attenuation length λ (Fig. 30.16), the probability
that a given photon will produce an electron pair (without first Compton
scattering) in thickness t of absorber is P [1 − exp(−t/λ)].
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30.4.5. Bremsstrahlung and pair production at very high energies : At ul-
trahigh energies, Eqns. 30.27–30.31 will fail because of quantum mechanical
interference between amplitudes from different scattering centers. Since the
longitudinal momentum transfer to a given center is small (∝ k/E(E − k), in
the case of bremsstrahlung), the interaction is spread over a comparatively long
distance called the formation length (∝ E(E − k)/k) via the uncertainty principle.
In alternate language, the formation length is the distance over which the highly
relativistic electron and the photon “split apart.” The interference is usually
destructive. Calculations of the “Landau-Pomeranchuk-Migdal” (LPM) effect
may be made semi-classically based on the average multiple scattering, or more
rigorously using a quantum transport approach [42,43].

In amorphous media, bremsstrahlung is suppressed if the photon energy k is less
than E2/(E + ELPM) [43], where*

ELPM =
(mec

2)2αX0

4π~cρ
= (7.7 TeV/cm) × X0

ρ
. (30.32)

Since physical distances are involved, X0/ρ, in cm, appears. The energy-weighted
bremsstrahlung spectrum for lead, k dσLPM/dk, is shown in Fig. 30.12. With
appropriate scaling by X0/ρ, other materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM . The
pair-production cross sections for different photon energies are shown in Fig. 30.18.

If k ≪ E, several additional mechanisms can also produce suppression. When
the formation length is long, even weak factors can perturb the interaction. For
example, the emitted photon can coherently forward scatter off of the electrons in
the media. Because of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed
by a factor (kme/ωpE)2 [45]. Magnetic fields can also suppress bremsstrahlung.

In crystalline media, the situation is more complicated, with coherent
enhancement or suppression possible. The cross section depends on the electron
and photon energies and the angles between the particle direction and the
crystalline axes [52].

30.4.6. Photonuclear and electronuclear interactions at still higher energies

: At still higher photon and electron energies, where the bremsstrahlung and pair
production cross-sections are heavily suppressed by the LPM effect, photonuclear
and electronuclear interactions predominate over electromagnetic interactions.

At photon energies above about 1020 eV, for example, photons usually interact
hadronically. The exact cross-over energy depends on the model used for the
photonuclear interactions. At still higher energies (>∼ 1023 eV), photonuclear
interactions can become coherent, with the photon interaction spread over multiple

* This definition differs from that of Ref. 51 by a factor of two. ELPM scales
as the 4th power of the mass of the incident particle, so that ELPM = (1.4 ×
1010 TeV/cm) × X0/ρ for a muon.
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nuclei. Essentially, the photon coherently converts to a ρ0, in a process that is
somewhat similar to kaon regeneration [53]. These processes are illustrated in
Fig. 30.19.
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Figure 30.19: Interaction length for a photon in ice as a function of photon
energy for the Bethe-Heitler (BH), LPM (Mig) and photonuclear (γA) cross
sections [53]. The Bethe-Heitler interaction length is 9X0/7, and X0 is
0.393 m in ice.

Similar processes occur for electrons. As electron energies increase and the
LPM effect suppresses bremsstrahlung, electronuclear interactions become more
important. At energies above 1021eV, these electronuclear interactions dominate
electron energy loss [53].

30.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick absorber, it initiates
an electromagnetic cascade as pair production and bremsstrahlung generate more
electrons and photons with lower energy. The longitudinal development is governed
by the high-energy part of the cascade, and therefore scales as the radiation length
in the material. Electron energies eventually fall below the critical energy, and then
dissipate their energy by ionization and excitation rather than by the generation
of more shower particles. In describing shower behavior, it is therefore convenient
to introduce the scale variables

t = x/X0 , y = E/Ec , (30.33)

so that distance is measured in units of radiation length and energy in units of
critical energy.
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Figure 30.20: An EGS4 simulation of a 30 GeV electron-induced cascade in
iron. The histogram shows fractional energy deposition per radiation length,
and the curve is a gamma-function fit to the distribution. Circles indicate the
number of electrons with total energy greater than 1.5 MeV crossing planes
at X0/2 intervals (scale on right) and the squares the number of photons
with E ≥ 1.5 MeV crossing the planes (scaled down to have same area as the
electron distribution).

Longitudinal profiles from an EGS4 [54] simulation of a 30 GeV electron-
induced cascade in iron are shown in Fig. 30.20. The number of particles crossing
a plane (very close to Rossi’s Π function [2]) is sensitive to the cutoff energy,
here chosen as a total energy of 1.5 MeV for both electrons and photons. The
electron number falls off more quickly than energy deposition. This is because,
with increasing depth, a larger fraction of the cascade energy is carried by photons.
Exactly what a calorimeter measures depends on the device, but it is not likely to
be exactly any of the profiles shown. In gas counters it may be very close to the
electron number, but in glass Cherenkov detectors and other devices with “thick”
sensitive regions it is closer to the energy deposition (total track length). In such
detectors the signal is proportional to the “detectable” track length Td, which is
in general less than the total track length T . Practical devices are sensitive to
electrons with energy above some detection threshold Ed, and Td = T F (Ed/Ec).
An analytic form for F (Ed/Ec) obtained by Rossi [2] is given by Fabjan [55]; see
also Amaldi [56].

The mean longitudinal profile of the energy deposition in an electromagnetic
cascade is reasonably well described by a gamma distribution [57]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(30.34)
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The maximum tmax occurs at (a − 1)/b. We have made fits to shower profiles in
elements ranging from carbon to uranium, at energies from 1 GeV to 100 GeV.
The energy deposition profiles are well described by Eq. (30.34) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (30.35)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for photon-induced
cascades. To use Eq. (30.34), one finds (a− 1)/b from Eq. (30.35) and Eq. (30.33),
then finds a either by assuming b ≈ 0.5 or by finding a more accurate value
from Fig. 30.21. The results are very similar for the electron number profiles, but
there is some dependence on the atomic number of the medium. A similar form
for the electron number maximum was obtained by Rossi in the context of his
“Approximation B,” [2] (see Fabjan’s review in Ref. 55), but with Ce = −1.0 and
Cγ = −0.5; we regard this as superseded by the EGS4 result.
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y = E/Ec

Figure 30.21: Fitted values of the scale factor b for energy deposition
profiles obtained with EGS4 for a variety of elements for incident electrons
with 1 ≤ E0 ≤ 100 GeV. Values obtained for incident photons are essentially
the same.

The “shower length” Xs = X0/b is less conveniently parameterized, since b
depends upon both Z and incident energy, as shown in Fig. 30.21. As a corollary
of this Z dependence, the number of electrons crossing a plane near shower
maximum is underestimated using Rossi’s approximation for carbon and seriously
overestimated for uranium. Essentially the same b values are obtained for incident
electrons and photons. For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and electrons is
somewhat greater than at lower energies since the first or first few interaction
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lengths are increased via the mechanisms discussed above.
The gamma function distribution is very flat near the origin, while the EGS4

cascade (or a real cascade) increases more rapidly. As a result Eq. (30.34) fails
badly for about the first two radiation lengths; it was necessary to exclude this
region in making fits.

Because fluctuations are important, Eq. (30.34) should be used only in
applications where average behavior is adequate. Grindhammer et al. have
developed fast simulation algorithms in which the variance and correlation of
a and b are obtained by fitting Eq. (30.34) to individually simulated cascades,
then generating profiles for cascades using a and b chosen from the correlated
distributions [58].

The transverse development of electromagnetic showers in different materials
scales fairly accurately with the Molière radius RM , given by [59,60]

RM = X0 Es/Ec , (30.36)

where Es ≈ 21 MeV (Table 30.1), and the Rossi definition of Ec is used.
In a material containing a weight fraction wj of the element with critical energy

Ecj and radiation length Xj , the Molière radius is given by

1

RM
=

1

Es

∑ wj Ecj

Xj
. (30.37)

Measurements of the lateral distribution in electromagnetic cascades are shown
in Refs. 59 and 60. On the average, only 10% of the energy lies outside the
cylinder with radius RM . About 99% is contained inside of 3.5RM , but at this
radius and beyond composition effects become important and the scaling with RM

fails. The distributions are characterized by a narrow core, and broaden as the
shower develops. They are often represented as the sum of two Gaussians, and
Grindhammer [58] describes them with the function

f(r) =
2r R2

(r2 + R2)2
, (30.38)

where R is a phenomenological function of x/X0 and ln E.
At high enough energies, the LPM effect (Sec. 30.4.5) reduces the cross sections

for bremsstrahlung and pair production, and hence can cause significant elongation
of electromagnetic cascades [43].
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30.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more important than
ionization for all charged particles. For muons and pions in materials such as iron,
this “critical energy” occurs at several hundred GeV. (There is no simple scaling
with particle mass, but for protons the “critical energy” is much, much higher.)
Radiative effects dominate the energy loss of energetic muons found in cosmic
rays or produced at the newest accelerators. These processes are characterized by
small cross sections, hard spectra, large energy fluctuations, and the associated
generation of electromagnetic and (in the case of photonuclear interactions)
hadronic showers [61–69]. As a consequence, at these energies the treatment of
energy loss as a uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss as [70]

−dE/dx = a(E) + b(E)E . (30.39)

Here a(E) is the ionization energy loss given by Eq. (30.4), and b(E) is the sum
of e+e− pair production, bremsstrahlung, and photonuclear contributions. To the
approximation that these slowly-varying functions are constant, the mean range
x0 of a muon with initial energy E0 is given by

x0 ≈ (1/b) ln(1 + E0/Eµc) , (30.40)

where Eµc = a/b. Fig. 30.22 shows contributions to b(E) for iron. Since
a(E) ≈ 0.002 GeV g−1 cm2, b(E)E dominates the energy loss above several
hundred GeV, where b(E) is nearly constant. The rates of energy loss for muons
in hydrogen, uranium, and iron are shown in Fig. 30.23 [5].

The “muon critical energy” Eµc can be defined more exactly as the energy
at which radiative and ionization losses are equal, and can be found by solving
Eµc = a(Eµc)/b(Eµc). This definition corresponds to the solid-line intersection
in Fig. 30.13, and is different from the Rossi definition we used for electrons. It
serves the same function: below Eµc ionization losses dominate, and above Eµc

radiative effects dominate. The dependence of Eµc on atomic number Z is shown
in Fig. 30.24.

The radiative cross sections are expressed as functions of the fractional energy
loss ν. The bremsstrahlung cross section goes roughly as 1/ν over most of the
range, while for the pair production case the distribution goes as ν−3 to ν−2

[71]. “Hard” losses are therefore more probable in bremsstrahlung, and in fact
energy losses due to pair production may very nearly be treated as continuous.
The simulated [69] momentum distribution of an incident 1 TeV/c muon beam
after it crosses 3 m of iron is shown in Fig. 30.25. The most probable loss is
8 GeV, or 3.4 MeV g−1cm2. The full width at half maximum is 9 GeV/c, or 0.9%.
The radiative tail is almost entirely due to bremsstrahlung, although most of the
events in which more than 10% of the incident energy lost experienced relatively
hard photonuclear interactions. The latter can exceed detector resolution [72],
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Figure 30.22: Contributions to the fractional energy loss by muons in iron
due to e+e− pair production, bremsstrahlung, and photonuclear interactions,
as obtained from Groom et al. [5] except for post-Born corrections to the
cross section for direct pair production from atomic electrons.

Figure 30.23: The average energy loss of a muon in hydrogen, iron, and
uranium as a function of muon energy. Contributions to dE/dx in iron from
ionization and the processes shown in Fig. 30.22 are also shown.

necessitating the reconstruction of lost energy. Tables [5] list the stopping power
as 9.82 MeV g−1cm2 for a 1 TeV muon, so that the mean loss should be 23 GeV
(≈ 23 GeV/c), for a final momentum of 977 GeV/c, far below the peak. This
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Figure 30.24: Muon critical energy for the chemical elements, defined as
the energy at which radiative and ionization energy loss rates are equal [5].
The equality comes at a higher energy for gases than for solids or liquids
with the same atomic number because of a smaller density effect reduction of
the ionization losses. The fits shown in the figure exclude hydrogen. Alkali
metals fall 3–4% above the fitted function, while most other solids are within
2% of the function. Among the gases the worst fit is for radon (2.7% high).

agrees with the indicated mean calculated from the simulation. Electromagnetic
and hadronic cascades in detector materials can obscure muon tracks in detector
planes and reduce tracking efficiency [73].

30.7. Cherenkov and transition radiation [74,75,34]

A charged particle radiates if its velocity is greater than the local phase velocity
of light (Cherenkov radiation) or if it crosses suddenly from one medium to
another with different optical properties (transition radiation). Neither process is
important for energy loss, but both are used in high-energy and cosmic-ray physics
detectors.

30.7.1. Optical Cherenkov radiation : The angle θc of Cherenkov radiation,
relative to the particle’s direction, for a particle with velocity βc in a medium with
index of refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2(1 − 1/nβ) for small θc, e.g . in gases. (30.41)

The threshold velocity βt is 1/n, and γt = 1/(1 − β2
t )1/2. Therefore, βtγt =

1/(2δ + δ2)1/2, where δ = n − 1. Values of δ for various commonly used gases
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traversing 3 m of iron as calculated with the MARS15 Monte Carlo code [69]
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Figure 30.26: Cherenkov light emission and wavefront angles. In a
dispersive medium, θc + η 6= 900.

are given as a function of pressure and wavelength in Ref. 76. For values at
atmospheric pressure, see Table 6.1. Data for other commonly used materials are
given in Ref. 77.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon’s
frequency, and let k = 2π/λ be its wavenumber. The photons propage at the
group velocity vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a non-dispersive medium,
this simplies to vg = c/n.

In his classical paper, Tamm [78] showed that for dispersive media the radiation
is concentrated in a thin conical shell whose vertex is at the moving charge, and
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whose opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n(ω)
dn

dω
cot θc

]

ω0

, (30.42)

where ω0 is the central value of the small frequency range under consideration.
(See Fig. 30.26.) This cone has a opening half-angle η, and, unless the medium
is non-dispersive (dn/dω = 0), θc + η 6= 900. The Cherenkov wavefront ‘sideslips’
along with the particle [79]. This effect may have timing implications for ring
imaging Cherenkov counters [80], but it is probably unimportant for most
applications.

The number of photons produced per unit path length of a particle with charge
ze and per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

re mec2

(

1 − 1

β2n2(E)

)

≈ 370 sin2 θc(E) eV−1cm−1 (z = 1) , (30.43)

or, equivalently,

d2N

dxdλ
=

2παz2

λ2

(

1 − 1

β2n2(λ)

)

. (30.44)

The index of refraction n is a function of photon energy E = ~ω, as is the
sensitivity of the transducer used to detect the light. For practical use, Eq. (30.43)
must be multiplied by the the transducer response function and integrated over
the region for which β n(ω) > 1. Further details are given in the discussion of
Cherenkov detectors in the Particle Detectors section (Sec. 31 of this Review).

When two particles are close together (lateral separation <∼ 1 wavelength),
the electromagnetic fields from the particles may add coherently, affecting the
Cherenkov radiation. Because of their opposite charges, the radiation from
an e+e− pair at close separation is suppressed compared to two independent
leptons [81].

30.7.2. Coherent radio Cherenkov radiation :

Coherent Cherenkov radiation is produced by many charged particles with
a non-zero net charge moving through matter on an approximately common
“wavefront”—for example, the electrons and positrons in a high-energy elec-
tromagnetic cascade. The signals can be visible above backgrounds for shower
energies as low as 1017 eV; see Sec. 32.3.2 for more details. The phenomenon is
called the Askaryan effect [82]. Near the end of a shower, when typical particle
energies are below Ec (but still relativistic), a charge imbalance develops. The
photons can Compton-scatter atomic electrons, and positrons can annihilate

June 18, 2012 16:19



36 30. Passage of particles through matter

with atomic electrons to contribute even more photons which can in turn
Compton scatter. These processes result in a roughly 20% excess of electrons
over positrons in a shower. The net negative charge leads to coherent radio
Cherenkov emission. The radiation includes a component from the decellerating
charges (as in bremsstrahlung). Because the emission is coherent, the electric field
strength is proportional to the shower energy, and the signal power increases as
its square. The electric field strength also increases linearly with frequency, up
to a maximum frequency determined by the lateral spread of the shower. This
cutoff occurs at about 1 GHz in ice, and scales inversely with the Moliere radius.
At low frequencies, the radiation is roughly isotropic, but, as the frequency rises
toward the cutoff frequency, the radiation becomes increasingly peaked around the
Cherenkov angle. The radiation is linearly polarized in the plane containing the
shower axis and the photon direction. A measurement of the signal polarization
can be used to help determine the shower direction. The characteristics of this
radiation have been nicely demonstrated in a series of experiments at SLAC [83].
A detailed discussion of the radiation can be found in Ref. 84.

30.7.3. Transition radiation : The energy radiated when a particle with charge
ze crosses the boundary between vacuum and a medium with plasma frequency ωp

is
I = αz2γ~ωp/3 , (30.45)

where

~ωp =
√

4πNer3
e mec

2/α =
√

ρ (in g/cm3) 〈Z/A〉 × 28.81 eV . (30.46)

For styrene and similar materials, ~ωp ≈ 20 eV; for air it is 0.7 eV.
The number spectrum dNγ/d(~ω diverges logarithmically at low energies and

decreases rapidly for ~ω/γ~ωp > 1. About half the energy is emitted in the range
0.1 ≤ ~ω/γ~ωp ≤ 1. Inevitable absorption in a practical detector removes the
divergence. For a particle with γ = 103, the radiated photons are in the soft x-ray
range 2 to 40 keV. The γ dependence of the emitted energy thus comes from the
hardening of the spectrum rather than from an increased quantum yield.

The number of photons with energy ~ω > ~ω0 is given by the answer to problem
13.15 in Ref. 34,

Nγ(~ω > ~ω0) =
αz2

π

[

(

ln
γ~ωp

~ω0
− 1

)2

+
π2

12

]

, (30.47)

within corrections of order (~ω0/γ~ωp)
2. The number of photons above a fixed

energy ~ω0 ≪ γ~ωp thus grows as (ln γ)2, but the number above a fixed fraction
of γ~ωp (as in the example above) is constant. For example, for ~ω > γ~ωp/10,
Nγ = 2.519 αz2/π = 0.59% × z2.

The particle stays “in phase” with the x ray over a distance called the
formation length, d(ω). Most of the radiation is produced in a distance
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Figure 30.27: X-ray photon energy spectra for a radiator consisting of 200
25µm thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a
single surface (dashed line). Curves are shown with and without absorption.
Adapted from Ref. 85.

d(ω) = (2c/ω)(1/γ2 + θ2 + ω2
p/ω2)−1. Here θ is the x-ray emission angle,

characteristically 1/γ. For θ = 1/γ the formation length has a maximum at
d(γωp/

√
2) = γc/

√
2 ωp. In practical situations it is tens of µm.

Since the useful x-ray yield from a single interface is low, in practical detectors
it is enhanced by using a stack of N foil radiators—foils L thick, where L is
typically several formation lengths—separated by gas-filled gaps. The amplitudes
at successive interfaces interfere to cause oscillations about the single-interface
spectrum. At increasing frequencies above the position of the last interference
maximum (L/d(w) = π/2), the formation zones, which have opposite phase,
overlap more and more and the spectrum saturates, dI/dω approaching zero as
L/d(ω) → 0. This is illustrated in Fig. 30.27 for a realistic detector configuration.

For regular spacing of the layers fairly complicated analytic solutions for the
intensity have been obtained [85]. (See also Ref. 86 and references therein.)
Although one might expect the intensity of coherent radiation from the stack of
foils to be proportional to N2, the angular dependence of the formation length
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conspires to make the intensity ∝ N .
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