ANOMALOUS ZZγ, Zγγ, AND ZZV COUPLINGS

Revised September 2013 by M.W. Grünewald (U. College Dublin and U. Ghent) and A. Gurtu (Formerly Tata Inst.).

In on-shell $Z\gamma$ production, deviations from the Standard Model for the $Z\gamma\gamma^*$ and $Z\gamma Z^*$ couplings may be described in terms of eight parameters, h^V_i ($i = 1, 4; V = \gamma, Z$) [1]. The parameters h^Z_i describe the $Z\gamma\gamma^*$ couplings and the parameters h^Z_{γ} the $Z\gamma Z^*$ couplings. In this formalism h^V_1 and h^V_2 lead to CP-violating and h^V_3 and h^V_4 to CP-conserving effects. All these anomalous contributions to the cross section increase rapidly with center-of-mass energy. In order to ensure unitarity, these parameters are usually described by a form-factor representation, $h^V_i(s) = h^V_{io} / (1 + s/\Lambda^2)^n$, where Λ is the energy scale for the manifestation of a new phenomenon and n is a sufficiently large power. By convention one uses $n = 3$ for $h^V_{1,3}$ and $n = 4$ for $h^V_{2,4}$. Usually limits on h^V_i's are put assuming some value of Λ, sometimes ∞.

In on-shell ZZ production, deviations from the Standard Model for the ZZγ* and ZZZ* couplings may be described by means of four anomalous couplings f^V_i ($i = 4, 5; V = \gamma, Z$) [2]. As above, the parameters f^γ_i describe the ZZγ* couplings and the parameters f^Z_i the ZZZ* couplings. The anomalous couplings f^V_5 lead to violation of C and P symmetries while f^V_4 introduces CP violation. Also here, formfactors depending on a scale Λ are used.

All these couplings h^V_i and f^V_i are zero at tree level in the Standard Model; they are measured in e^+e^-, pp and pp collisions at LEP, Tevatron and LHC.

References