$N(1860)\, 5/2^+$

$I(J^P) = \frac{1}{2}(5/2^+)$ Status: $**$

OMITTED FROM SUMMARY TABLE

Before the 2012 Review, all the evidence for a $J^P = 5/2^+$ state with a mass above 1800 MeV was filed under a two-star $N(2000)$. There is now some evidence from ANISOVICH 12A for two $5/2^+$ states in this region, so we have split the older data (according to mass) between two two-star $5/2^+$ states, an $N(1860)$ and an $N(2000)$.

$N(1860)$ BREIT-WIGNER MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1820 to 1960 (≈ 1860) OUR ESTIMATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1860 $^{+120}_{-60}$</td>
<td>ANISOVICH 12A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>1817.7</td>
<td>ARNDT 06</td>
<td>DPWA $\pi N \rightarrow \pi N, \eta N$</td>
<td></td>
</tr>
<tr>
<td>1882 $^{±10}_{-10}$</td>
<td>HOEHLER 79</td>
<td>IPWA $\pi N \rightarrow \pi N$</td>
<td></td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900 $^{±7}_{-10}$</td>
<td>SHRESTHA 12A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>1814</td>
<td>ARNDT 95</td>
<td>DPWA $\pi N \rightarrow N\pi$</td>
<td></td>
</tr>
<tr>
<td>1903 $^{±87}_{-87}$</td>
<td>MANLEY 92</td>
<td>IPWA $\pi N \rightarrow \pi N & N\pi\pi$</td>
<td></td>
</tr>
</tbody>
</table>

$N(1860)$ BREIT-WIGNER WIDTH

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>270 $^{+140}_{-50}$</td>
<td>ANISOVICH 12A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>117.6</td>
<td>ARNDT 06</td>
<td>DPWA $\pi N \rightarrow \pi N, \eta N$</td>
<td></td>
</tr>
<tr>
<td>95 $^{±20}_{-20}$</td>
<td>HOEHLER 79</td>
<td>IPWA $\pi N \rightarrow \pi N$</td>
<td></td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>219 $^{±23}_{-23}$</td>
<td>SHRESTHA 12A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>ARNDT 95</td>
<td>DPWA $\pi N \rightarrow N\pi$</td>
<td></td>
</tr>
<tr>
<td>490 $^{±310}_{-310}$</td>
<td>MANLEY 92</td>
<td>IPWA $\pi N \rightarrow \pi N & N\pi\pi$</td>
<td></td>
</tr>
</tbody>
</table>

$N(1860)$ POLE POSITION

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1830 $^{+120}_{-60}$</td>
<td>ANISOVICH 12A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>1807</td>
<td>ARNDT 06</td>
<td>DPWA $\pi N \rightarrow \pi N, \eta N$</td>
<td></td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1863</td>
<td>SHRESTHA 12A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 1 Created: 8/21/2014 12:54
\[-2 \times \text{IMAGINARY PART} \]

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 ± 150</td>
<td>ANISOVICH</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
<tr>
<td>109</td>
<td>ARNDT</td>
<td>06</td>
<td>DPWA (\pi N \rightarrow \pi N, \eta N)</td>
</tr>
</tbody>
</table>

- We do not use the following data for averages, fits, limits, etc.

\[\text{VALUE} (\text{MeV}) \]

| MODULUS \(|r|\) | DOCUMENT ID | TECN | COMMENT |
|-----------------|-------------|------|---------|
| 50 ± 20 | ANISOVICH | 12A | DPWA Multichannel |
| 60 | ARNDT | 06 | DPWA \(\pi N \rightarrow \pi N, \eta N\) |

<table>
<thead>
<tr>
<th>PHASE (\theta)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-80 ± 40)</td>
<td>ANISOVICH</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
<tr>
<td>(-67)</td>
<td>ARNDT</td>
<td>06</td>
<td>DPWA (\pi N \rightarrow \pi N, \eta N)</td>
</tr>
</tbody>
</table>

\[\text{N(1860) ELASTIC POLE RESIDUE} \]

\[\text{N(1860) DECAY MODES} \]

\[\text{Mode} \]

\[\Gamma_1 \quad N\pi \]
\[\Gamma_2 \quad N\eta \]
\[\Gamma_3 \quad \Lambda K \]
\[\Gamma_4 \quad N\pi\pi \]
\[\Gamma_5 \quad \Delta(1232)\pi, P\text{-wave} \]
\[\Gamma_6 \quad \Delta(1232)\pi, F\text{-wave} \]
\[\Gamma_7 \quad N\rho, S=3/2, P\text{-wave} \]
\[\Gamma_8 \quad N\rho, S=3/2, F\text{-wave} \]
\[\Gamma_9 \quad N(\pi\pi)^{I=0}_{S=wave} \]
\[\Gamma_{10} \quad p\gamma \]
\[\Gamma_{11} \quad p\gamma, \text{helicity}=1/2 \]
\[\Gamma_{12} \quad p\gamma, \text{helicity}=3/2 \]
\[\Gamma_{13} \quad n\gamma \]
\[\Gamma_{14} \quad n\gamma, \text{helicity}=1/2 \]
\[\Gamma_{15} \quad n\gamma, \text{helicity}=3/2 \]

\[\text{N(1860) BRANCHING RATIOS} \]

\[\Gamma(N\pi)/\Gamma_{\text{total}} \]

<table>
<thead>
<tr>
<th>VALUE (%)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ± 6</td>
<td>ANISOVICH</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
<tr>
<td>12.7</td>
<td>ARNDT</td>
<td>06</td>
<td>DPWA (\pi N \rightarrow \pi N, \eta N)</td>
</tr>
<tr>
<td>4 ± 2</td>
<td>HOEHLER</td>
<td>79</td>
<td>IPWA (\pi N \rightarrow \pi N)</td>
</tr>
<tr>
<td>((\Gamma_i \Gamma_f)^{1/2}/(\Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1860) \rightarrow \Delta(1232)\pi, P\text{-wave}))</td>
<td>((\Gamma_1 \Gamma_5)^{1/2}/\Gamma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Gamma_{\text{2}/\Gamma})</td>
<td>(\Gamma_{\text{3}/\Gamma})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Gamma_{\text{6}/\Gamma})</td>
<td>(\Gamma_{\text{7}/\Gamma})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\Gamma(N\pi)/\Gamma_{\text{total}} \)	\(\Gamma_2/\Gamma \)
\(\Gamma(\Lambda K)/\Gamma_{\text{total}} \)	\(\Gamma_{\text{3}/\Gamma} \)
\(\Gamma(N(1860)/N\pi) \)	\(\Gamma_6/\Gamma \)
\(\Gamma(\Delta(1232)\pi, F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_{\text{7}/\Gamma} \)
\(\Gamma(N(\pi))_S=0/F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_9/\Gamma \)

| \(\Gamma(N(\pi))_S=0/F\text{-wave})/\Gamma_{\text{total}} \) | \(\Gamma_9/\Gamma \) |

| We do not use the following data for averages, fits, limits, etc. | We do not use the following data for averages, fits, limits, etc. |
| We do not use the following data for averages, fits, limits, etc. | We do not use the following data for averages, fits, limits, etc. |

| \(\Gamma_{\text{2}/\Gamma} \) | \(\Gamma_{\text{3}/\Gamma} \) |
| \(\Gamma_{\text{6}/\Gamma} \) | \(\Gamma_{\text{7}/\Gamma} \) |

\(\Gamma(N\pi)/\Gamma_{\text{total}} \)	\(\Gamma_2/\Gamma \)
\(\Gamma(\Lambda K)/\Gamma_{\text{total}} \)	\(\Gamma_{\text{3}/\Gamma} \)
\(\Gamma(N(1860)/N\pi) \)	\(\Gamma_6/\Gamma \)
\(\Gamma(\Delta(1232)\pi, F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_{\text{7}/\Gamma} \)
\(\Gamma(N(\pi))_S=0/F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_9/\Gamma \)

| \(\Gamma(N(\pi))_S=0/F\text{-wave})/\Gamma_{\text{total}} \) | \(\Gamma_9/\Gamma \) |

\(\Gamma(N\pi)/\Gamma_{\text{total}} \)	\(\Gamma_2/\Gamma \)
\(\Gamma(\Lambda K)/\Gamma_{\text{total}} \)	\(\Gamma_{\text{3}/\Gamma} \)
\(\Gamma(N(1860)/N\pi) \)	\(\Gamma_6/\Gamma \)
\(\Gamma(\Delta(1232)\pi, F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_{\text{7}/\Gamma} \)
\(\Gamma(N(\pi))_S=0/F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_9/\Gamma \)

\(\Gamma(N\pi)/\Gamma_{\text{total}} \)	\(\Gamma_2/\Gamma \)
\(\Gamma(\Lambda K)/\Gamma_{\text{total}} \)	\(\Gamma_{\text{3}/\Gamma} \)
\(\Gamma(N(1860)/N\pi) \)	\(\Gamma_6/\Gamma \)
\(\Gamma(\Delta(1232)\pi, F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_{\text{7}/\Gamma} \)
\(\Gamma(N(\pi))_S=0/F\text{-wave})/\Gamma_{\text{total}} \)	\(\Gamma_9/\Gamma \)
$N(1860)$ PHOTON DECAY AMPLITUDES

$N(1860) \to p\gamma$, helicity-1/2 amplitude $A_{1/2}$

<table>
<thead>
<tr>
<th>VALUE ($\text{GeV}^{-1/2}$)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020±0.012</td>
<td>1 ANISOVICH</td>
<td>12A</td>
<td>DPWA Phase = (120 ± 50)$^\circ$</td>
</tr>
<tr>
<td>−0.017±0.003</td>
<td>SHRESTHA</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

$N(1860) \to p\gamma$, helicity-3/2 amplitude $A_{3/2}$

<table>
<thead>
<tr>
<th>VALUE ($\text{GeV}^{-1/2}$)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050±0.020</td>
<td>1 ANISOVICH</td>
<td>12A</td>
<td>DPWA Phase = (−80 ± 60)$^\circ$</td>
</tr>
<tr>
<td>0.029±0.004</td>
<td>SHRESTHA</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

$N(1860) \to n\gamma$, helicity-1/2 amplitude $A_{1/2}$

<table>
<thead>
<tr>
<th>VALUE ($\text{GeV}^{-1/2}$)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010±0.005</td>
<td>SHRESTHA</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

$N(1860) \to n\gamma$, helicity-3/2 amplitude $A_{3/2}$

<table>
<thead>
<tr>
<th>VALUE ($\text{GeV}^{-1/2}$)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.009±0.005</td>
<td>SHRESTHA</td>
<td>12A</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

$N(1860)$ FOOTNOTES

1 This ANISOVICH 12A value is the complex helicity amplitude at the pole position.

$N(1860)$ REFERENCES

ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley
ARNDT	06	PR C74 045205	R.A. Arndt et al.
MANLEY	92	PR D45 4002	D.M. Manley, E.M. Saleski
HOEHLER	79	PDAT 12-1	G. Hohler et al.

BONN, PNPI
(KSU)
(GWU)
(VPI, BRCO)
(KSA)
(VPI)
(KARLT)