$\Xi_c^+ (J^P) = \frac{1}{2}(1^+) \quad \text{Status: } ***$

See the note in the Listing for the $\Xi_c^+$, above.

### $\Xi_c^0$ MASS

The mass is obtained from the mass-difference measurement that follows.

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577.9 ± 2.9 OUR FIT</td>
<td></td>
</tr>
</tbody>
</table>

### $\Xi_c^0 - \Xi_c^0$ MASS DIFFERENCE

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>107.0 ± 2.9 OUR FIT</td>
<td>28</td>
<td>JESSOP</td>
<td>99</td>
<td>CLE2 $e^+ e^- \approx \Upsilon(4S)$</td>
</tr>
<tr>
<td>107.0 ± 1.4 ± 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### $\Xi_c^0$ DECAY MODES

The $\Xi_c^0 - \Xi_c^0$ mass difference is too small for any strong decay to occur.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction ($\Gamma_i/\Gamma$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_1$</td>
<td>$\Xi_c^0 \gamma$ seen</td>
</tr>
</tbody>
</table>

### $\Xi_c^0$ REFERENCES

JESSOP 99 PRL 82 492 C.P. Jessop et al. (CLEO Collab.)